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ABSTRACT

Deep neural network models have become the dominant
approach to a large variety of tasks within music informa-
tion retrieval (MIR). These models generally require large
amounts of (annotated) training data to achieve high ac-
curacy. Because not all applications in MIR have suffi-
cient quantities of training data, it is becoming increasingly
common to transfer models across domains. This approach
allows representations derived for one task to be applied to
another, and can result in high accuracy with less strin-
gent training data requirements for the downstream task.
However, the properties of pre-trained audio embeddings
are not fully understood. Specifically, and unlike tradi-
tionally engineered features, the representations extracted
from pre-trained deep networks may embed and propagate
biases from the model’s training regime.

This work investigates the phenomenon of bias prop-
agation in the context of pre-trained audio representations
for the task of instrument recognition. We first demonstrate
that three different pre-trained representations (VGGish,
OpenL3, and YAMNet) exhibit comparable performance
when constrained to a single dataset, but differ in their abil-
ity to generalize across datasets (OpenMIC and IRMAS).
We then investigate dataset identity and genre distribution
as potential sources of bias. Finally, we propose and evalu-
ate post-processing countermeasures to mitigate the effects
of bias, and improve generalization across datasets.

1. INTRODUCTION

Transfer learning generally refers to the concept of adapt-
ing a model for one task to solve another task. Often,
this is achieved by extracting the internal representation
(an embedding) of input data from a pre-trained neural net-
work, and providing it as input features to some (often sim-
pler) downstream model for the target task. While this ap-
proach is increasingly common and effective, pre-trained
embedding models may encode and propagate implicit bi-
ases which can have detrimental and disparate population-
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dependent effects. Biases have caught wide attention from
research fields such as natural language processing (NLP)
[1–3], cognitive science [4], and computer vision [5], while
in music information retrieval (MIR), bias of pre-trained
audio embeddings, is under-explored.

In this paper, we identify and address the bias of dif-
ferent pre-trained audio embeddings for transfer learning
on the task of instrument recognition. We summarize the
contributions as following. (1) We study the within- and
cross-domain performance of three pre-trained audio em-
beddings (VGGish, OpenL3, YAMNet) on two instrument
datasets (IRMAS and OpenMIC-2018). (2) We demon-
strate that this approach can propagate bias by produc-
ing classifiers which are sensitive to the source domain
(dataset). (3) Based on the performance variation in cross-
domain generalization, we investigate dataset identity and
genre distribution as potential sources of bias. (4) We
propose a post-processing countermeasure to mitigate un-
wanted bias in the representation. We experiment differ-
ent bias correction strategies, and analyze the robustness
of each pre-trained audio embedding. The proposed strate-
gies make use of relatively little additional information,
and generally produce a modest improvement to cross-
domain accuracy for the instrument recognition task. Our
code for all experiments is publicly available 1 .

2. RELATED WORK

Pre-trained embeddings are becoming increasingly used in
transfer learning for audio-related tasks. Choi et al. [6] pre-
sented a transfer learning approach for music classification
and regression tasks using the internal activations of a pre-
trained convolutional network as features. The network
was trained on the source task of music tagging, and the
learned representation was then transferred to five target
tasks, including genre classification, vocal/non-vocal clas-
sification, emotion prediction, speech/music classification,
and acoustic event classification. Other well-known au-
dio embedding models include OpenL3 [7], VGGish [8],
and YAMNet 2 . The OpenL3 is a 512-dimensional em-
bedding model that results from self-supervised training
of the look-listen-learn (L3)-Net for audiovisual correla-
tions. VGGish (128-dimensional) and YAMNet (1024-

1 https://github.com/changhongw/audio-embedding-bias
2 https://github.com/tensorflow/models/tree/master/research/audioset/
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dimensional) are both embeddings derived from classifica-
tion models trained on AudioSet [8]. Although these em-
bedding models differ in the architecture of the network,
source data, and training regime, they have each demon-
strated good and comparable generalization performance
for a variety of tasks.

Despite that embedding models are normally trained on
large amounts of data, it inevitably encodes biases due to
the limitation of collected data. This problem can be espe-
cially prevalent in models trained via unsupervised or self-
supervised strategies, where there may be no incentive for
the model to learn invariances or equivalencies in the data
beyond what is required for by the training objective. As
a result, pre-trained embeddings may propagate unwanted
biases to downstream tasks. Different types of biases and
bias correction methods are explored in the NLP literature,
such as gender [9], race and religion [10]. A general ap-
proach for addressing gender bias in word embedding was
proposed by Bolukbasi et al., following three steps: iden-
tify bias direction, remove bias by projecting out the bias
direction, and equalize pairs [9].

Besides field-specific biases, dataset bias is a general
type of bias that could happen in any application domain.
Tommasi et al. [5] investigated dataset bias in visual recog-
nition with a cross-dataset testbed comprising 12 different
datasets. Ganin et al. [11] proposed adversarial training
for domain adaptation to reduce sensitivity to data drawn
from similar but different distributions. When detecting
depression, a mental health disorder, from speech, Bailey
and Plumbley [12] found that biases in dataset could result
in skewed classification performance.

The approach we take in this paper is most similar to
those of Bolukbasi et al. [9] and Ganin et al. [11]. While
Bolukbasi et al.’s method requires numerous paired exam-
ples to identify a subspace which encodes undesirable bias,
our proposed method works at the level of collection statis-
tics rather than individual correspondence, and may be eas-
ier to apply for audio applications. Similarly, Ganin et al.’s
method requires adversarial training of the initial model to
produce a representation which cannot discriminate well
between subsets of data that should be treated equivalently.
Our approach is implemented as a post-processing step,
and can be applied to any pre-trained model. While we
focus in this work on dataset identity as a concrete source
of bias, we emphasize that the method should be generally
applicable to other scenarios in which audio representa-
tions exhibit unwanted sensitivity to identifiable attributes.

3. METHODS

We consider embedding bias from the perspective of do-
main adaptation. Unlike transfer learning, which relates to
the output of the model, domain adaptation refers to the be-
havior of a model (classifier, regressor, etc.) under changes
to the distribution of input data. This is closely related to
representation bias, which is one among many forms of
bias known to impact machine learning systems as enu-
merated by Mehrabi et al. [13]. If a classifier is trained on
a sample of (labeled) data which is not representative of

the target population, then we expect the model to gener-
alize poorly. The degree to which a pre-trained audio em-
bedding is sensitive to differences between populations of
interest—e.g., between a dataset annotated for instrumen-
tation, compared to other collections of music—is there-
fore of principal interest [14].

3.1 Domain sensitivity

We investigate the domain sensitivity of three pre-trained
embeddings (OpenL3, VGGish, and YAMNet) in transfer
learning for the downstream task of instrument recogni-
tion. Each embedding is evaluated in both within-domain
and cross-domain setting. For within-domain evaluation,
we train and test the embedding in a single dataset; while
for cross-domain case, we investigate the domain adapta-
tion capability of the embedding models across datasets,
i.e. training and testing the downstream classifier using
data from different datasets. As a study case, we consider
two well-known datasets for instrument recognition, i.e.
IRMAS [15] and OpenMIC-2018 [16] (see Section 4.1 for
dataset details).

Fig. 1 (a) and (d) visualize the within-domain (IRMAS–
IRMAS and OpenMIC–OpenMIC) recognition results in
terms of area under the receiver operating characteristic
curve (ROC-AUC) using the three embeddings above for
each of the ten instrument classes. 3 All three embeddings
achieve comparable results, although there is a loose per-
formance ranking of YAMNet > OpenL3 > VGGish for
most instrument classes.

When generalizing across domains, performance degra-
dation happens for both cross-dataset pairs, as shown in
Fig. 1 (b) IRMAS–OpenMIC and (c) OpenMIC–IRMAS.
The performance ranking of the three embedding does
not persist either. Comparing the results when testing on
OpenMIC, i.e. (b) and (d), only voice, piano, and guitar re-
tain close results. For the remaining instrument classes, all
three embeddings exhibit diminished performance. Simi-
lar trends take place in the comparison between (a) and (c)
where the test set is IRMAS.

Surprisingly, a dramatic performance drop happens for
the organ class. Examining this class in both datasets, we
notice a large distribution difference on genre, as shown
in Fig. 2. Organ in IRMAS is confined to pop/rock and
jazz/blue genres, suggesting that examples mostly contain
electric organ sounds (e.g. Hammond B3). The distribu-
tion of organ in OpenMIC is more balanced, but domi-
nated by classical recordings which are more likely to con-
tain pipe organ than electric. These differences aside, we
generally expect the instrument labels to refer to similar
sounds across domains.

3.2 Quantifying domain bias

To quantify the effect of domain bias, we first obtain the
domain separation direction vector w ∈ RD by fitting a
linear discriminant analysis (LDA) model to discriminate

3 We report AUC because it is invariant to overall class proportions and
decision thresholds—which vary between datasets—and thereby allows
us to focus on the separating directions identified for each class.
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Figure 1. Within-domain (a, d) and cross-domain (b, c)
performance of pre-trained audio embeddings (VGGish,
OpenL3, and YAMNet) on instrument recognition in the
IRMAS and OpenMIC datasets. ROC-AUC refers to area
under the receiver operating characteristic curve.

between the OpenMIC and IRMAS datasets in each rep-
resentation (VGGish, OpenL3, and YAMNet). vk ∈ RD

is the instrument separation direction vector, i.e. the coef-
ficient vector of the trained downstream classifier, for the
k-th instrument. k = 1, 2, ...,K is the instrument class
index and D is the dimension of pre-trained embedding.
We measure the correlation between the domain separation
and downstream classification using the cosine similarity
between w and vk:

ck(w,v) =
⟨w,vk⟩

∥w∥ × ∥vk∥
(1)

Large (in magnitude) ck indicates that the instrument clas-
sifier is sensitive to dataset identity.

Fig. 3 top shows the absolute correlation value for each
instrument class, when the classifier is trained on the train-
ing set of (a) IRMAS and (b) OpenMIC dataset, respec-
tively. The mean correlation value over all instruments for
each embedding is displayed in the legend. It clearly shows
that YAMNet is the least sensitive to dataset bias; OpenL3
is also relatively stable while VGGish is the most sensi-
tive to dataset bias. The relatively large correlation value
for the organ class matches our analysis in Section 3.1
that genre distribution might be also a potential source of
bias (see Fig. 2). Although the sensitivity of different em-
beddings to dataset bias are different, bias cannot gener-
ally be removed by simply using different pre-trained em-
beddings. As we will demonstrate, explicitly correcting
for dataset bias can potentially improve domain adaptation

performance for each choice of embedding.

3.3 Bias correction

To mitigate domain bias, we propose a post-processing
countermeasure on the pre-trained embeddings which does
not interact with the training process of embeddings. Im-
portantly, the proposed method requires only samples of
data which should behave similarly for the downstream
task, but it does not require these samples to be labeled
for the downstream task.

Continuing our instrument classification example, given
that both datasets contain examples from each of the in-
strument categories of interest, we should expect that a
well-formed linear classifier should behave independently
of the domain from which data is drawn. Concretely, this
means that the separating direction vk should be orthogo-
nal to any direction w which separates the two datasets in
the embedding space, resulting in ck(w,vk) = 0. While
Ganin et al. [11] use this intuition to adversarially train
the representation, this approach is impractical when using
pre-trained embeddings which are presumed to be fixed
in advance. Instead, we approach this problem by post-
processing the embedding to project out the direction w
which separates domains that should be indistinguishable
for the downstream task.

Concretely, if w ∈ RD is the domain-separating di-
rection (normalized to unit length, ∥w∥ = 1), we project
this dimension out of the space by applying the following
transformation to input data x ∈ RD:

xP :=
(
I−wwT

)
x (2)

where I is the D×D identity matrix. The new embedding
xP is the input to the classifier.

3.4 Multiple bias correction

While the above strategy is defined for binary bias correc-
tion, e.g. where there are two domains to be reconciled,
it does generalize to more complex settings. In the instru-
ment recognition example, we may also consider differ-
ences between genres across datasets as a source of bias.
Even if two datasets both consist of examples in the same
genre categories, this does not necessarily mean that the
genre terms are used consistently between datasets.

To consider the influence of genre distribution, we pro-
pose also multiple bias correction, where we extract the
dataset separation direction in the genre subspace. That
is, for each pair of matched genre labels, e.g. pop/rock
in IRMAS and pop/rock in OpenMIC, we fit a binary
LDA to separate them. Then for each genre category
g = 1, 2, . . . G (for G ≥ 1 genres), we obtain a dataset
separation direction vector wg which depends only on ex-
amples from genre g. Collecting all wg into a matrix
W ∈ RD×G defines a basis for a subspace of the embed-
ding of dimension at most G. Note that W may not be an
orthogonal basis, as different wg may correlate with each
other.
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Figure 2. Number of genre examples for each instrument in the training set of IRMAS and OpenMIC datasets. We align
the genre labels according to those in the IRMAS dataset: pop/rock, jazz/blue, classical, and country/folk.

We therefore derive an orthogonal basis by factorizing
W via the reduced singular vector decomposition (SVD):

W = UΣV T (3)

where Σ is a G×G diagonal matrix of singular values, and
U ∈ RD×G and V ∈ RD×G are the left- and right-singular
vectors. We use the right singular vectors as an orthogonal
basis for the domain-separating subspace, resulting in the
following generalization of Eq. (2):

xP :=
(
I− V V T

)
x (4)

In applying Eq. (4), it is important to verify that W is
full rank (G), e.g. by verifying that all singular values Σ
are sufficiently large, as Eq. (4) would otherwise remove a
larger than necessary subspace from the representation. In
all cases studied in this work, W was full rank.

3.5 Nonlinear bias correction

The above methods are based on two assumptions: 1) that
the downstream model will be linear, and 2) that the do-
mains are linearly separable. These assumptions may be
restrictive in practice, so we generalize the method above
by transforming the embeddings to a higher dimensional
space using kernel methods. While both logistic regres-
sion and linear discriminant analysis support kernel gener-
alizations [17], the subspace projection method described
above is less directly adaptable. 4

Instead of using implicit kernel representations, we will
use approximate, i.e. explicit kernel approximation. That
is, instead of replacing inner products ⟨w,v⟩ by nonlinear
kernel function calculations k(w,v), we apply an explicit
nonlinear transformation f : RD → RD′

such that

⟨f(w), f(v)⟩ ≈ k(w,v) (5)

We then apply the previously defined bias correction meth-
ods on the transformed data f(w), which results in project-
ing out the dataset-separating direction(s) after applying f
but prior to fitting the downstream (instrument) classifiers.

There are several choices to be made here when select-
ing the kernel k and the approximating map f . In this
work, we use a standard radial basis function (Gaussian)

4 One could achieve a similar effect by adding a linear constraint
⟨w,v⟩ = 0 to the logistic regression problem, but this would require
a custom solver and limit the general utility of the approach.

kernel and the “random Fourier features” approximation
method [18]. However, we note that other choices (e.g., the
Nyström method) are readily available in scikit-learn [19],
and may work just as well.

In total, we have four bias-correction strategies: lin-
ear bias correction (LDA), linear multiple bias correction
(mLDA), nonlinear bias correction in the kernelized em-
bedding space (KLDA), nonlinear multiple bias correction
in the kernelized embedding space (mKLDA).

4. EXPERIMENTS

4.1 Datasets and experimental details

The datasets we use are two well-known datasets with
instrument annotations, IRMAS [15] and OpenMIC-
2018 [16]. The former comprises 20,000 examples of 10-
second excerpts, partially labeled for the presence or ab-
sence of 20 instrument classes; and the latter contains 6705
audio files of 3-second clips, of which only the predomi-
nant instrument were annotated. Since there are 20 instru-
ment classes in the OpenMIC dataset and 11 in the IR-
MAS, we focus only on the 10 mutual classes: cello, clar-
inet, flute, guitar, organ, piano, saxophone, trumpet, violin,
and voice. For the sake of consistency, electric guitar and
acoustic guitar in the IRMAS dataset have been merged
into a single class: guitar.

To investigate the impact of genre, we also align the
genres in the two datasets. Each audio sample in the
IRMAS dataset is labeled with one of the five genres:
pop/rock, jazz/blue, classical, country/folk, and latin/soul;
while samples in the OpenMIC datase has multiple la-
bels from around 130 genres. We consider four gen-
res (pop/rock, jazz/blue, classical, country/folk) as the
latin/soul genre has few examples in both datasets. The
genre labels of the OpenMIC dataset are merged into those
of IRMAS with name intersections. For example, we
merge the genres—Rock, Loud-Rock, Noise-Rock, Psych-
Rock, et. al.—in OpenMIC into one genre label: pop/rock.
Multiple genre labels in the OpenMIC dataset are reduced
to a single label by the first activation from the four con-
sidered genres or the first of the original labels otherwise.

With the embedding features extracted using pre-
trained VGGish, OpenL3, and YAMNet models, we train
a logistic regression classifier for each instrument class us-
ing IRMAS and OpenMIC training data. The input to the
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Figure 3. Correlation between domain separation and instrument classification for each instrument in the IRMAS and
OpenMIC training set. (Top): correlation in the original embedding space with domain separation direction extracted using
only dataset identity; (middle): correlation in the original embedding space with domain separation direction extracted
class-wise; (bottom): same as middle but in the kernelized embedding space. Mean value is given in parentheses.

classifier is the mean frame embedding of each audio ex-
ample. For OpenMIC dataset, we follow the train-test split
in [16], with a ratio of 3:1. For fair comparisons, we create
a new partition with the same train-test ratio on IRMAS
dataset which takes into account of the class-balance and
non-track overlap between training and test sets. To focus
only on distribution shift, we use the same number of sam-
ples per class for both datasets during training, following
the lower one.

For the nonlinear method, we first standardize the em-
bedding features using z-score normalization with the
training-set statistics. Then we approximate the kernels for
the embeddings with a fixed dimension D′ of four times
the dimension (D) of the original embeddings. Finally, we
tune the hyper-parameter for the logistic regression classi-
fier, i.e. the inverse of regularization strength C, by cross-
validation with a grid of 10−8:1:4.

4.2 Results

Table. 1 lists the instrument classification performance of
the debiasing methods discussed in Section 3 in terms
of mean ROC-AUC over the 10 instrument classes. To
compare the performance of using only dataset identity
as additional information and that uses also class-labels,
we present two sets of results: global bias correction and
class-wise bias correction. We first present some obser-
vations that are common to both cases and then discuss
the comparison. For the original embeddings (in italic),
large performance drop shows for all cross-domain cases.
OpenL3 is most sensitive to distribution shift, with a drop
of 12.7% and 7% when testing on IRMAS and OpenMIC

dataset, respectively. Yet, from the cosine similarity values
in Fig. 3 top and middle, OpenL3 does not embed the most
domain bias. This may indicate that for the task at hand,
other more significant distribution shifts that OpenL3 is
sensitive to may exist. For all embeddings, projecting
to the higher dimensional space (debiasing methods with
“K”) almost never substantially hurts the within-domain
performance and sometimes improves the performance.

Interestingly, when comparing linear debiasing (“-
LDA” and “-mLDA”) with nonlinear debiasing (“-KLDA”
and “-mKLDA”) for all embeddings, we find that kernel-
ization does not help for VGGish while YAMNet only
works in the kernelized embedding space. This explains
the relative increase of cosine similarity values for YAM-
Net after kernelization as compared to the other two em-
beddings (see Fig. 3 bottom). Both linear and nonlinear
debiasing exhibit performance improvement for OpenL3.
In terms of global bias correction, almost no improvement
for VGGish except LDA for OpenMIC->IRMAS; OpenL3
yields some boost for both cross-domain cases. YAMNet
improves the results only for OpenMIC->IRMAS. It is ex-
pected that the class-wise bias correction achieves better
performance as we extract the domain bias for the target
instrument exactly. This is also verified by the more no-
ticeable cosine similarity values in the middle subfigure as
compared to the top of Fig. 3. VGGish and OpenL3 yields
slight improvement for most linear debiasing. All nonlin-
ear debiasing improves the results of OpenL3 for IRMAS-
>OpenMIC and YAMNet for OpenMIC->IRMAS. Al-
though the overall improvement is not significant, we ob-
serve large improvements for some instrument classes.



Global bias correction Class-wise bias correction
Debiasing method Within-domain Cross-domain Within-domain Cross-domain

IR-IR OP-OP OP-IR IR-OP IR-IR OP-OP OP-IR IR-OP

VGGish 91.6 87.95 82.82 83.81 91.60 87.95 82.82 83.81
VGGish-LDA 91.60 87.99 82.99 (+0.18) 83.82 (0.0) 91.60 87.94 82.93 (+0.12) 83.85 (+0.03)
VGGish-mLDA 91.45 87.98 82.70 (-0.11) 83.30 (-0.51) 91.56 87.87 83.13 (+0.31) 83.66 (-0.16)
VGGish-K 92.24 88.08 82.57 (-0.25) 83.67 (-0.14) 92.24 88.08 82.57 (-0.25) 83.67 (-0.14)
VGGish-KLDA 92.24 88.08 82.58 (-0.24) 83.67 (-0.14) 92.22 88.07 82.70 (-0.12) 83.78 (-0.04)
VGGish-mKLDA 92.22 88.15 82.42 (-0.39) 83.70 (-0.11) 92.26 88.08 82.70 (-0.11) 83.76 (-0.05)

OpenL3 93.26 87.16 80.56 80.13 93.26 87.16 80.56 80.13
OpenL3-LDA 93.26 87.16 80.56 (+0.01) 80.15 (+0.02) 93.24 87.18 80.59 (+0.04) 80.38 (+0.26)
OpenL3-mLDA 93.11 87.16 80.67 (+0.12) 79.93 (-0.20) 93.09 87.23 80.57 (+0.02) 80.62 (+0.50)
OpenL3-K 93.89 87.91 79.46 (-1.09) 81.23 (+1.11) 93.89 87.91 79.46 (-1.09) 81.23 (+1.11)
OpenL3-KLDA 93.89 87.84 79.03 (-1.53) 81.23 (+1.11) 93.96 87.91 79.99 (-0.57) 81.79 (+1.66)
OpenL3-mKLDA 93.88 87.88 79.56 (-1.00) 81.20 (+1.07) 94.04 87.83 79.97 (-0.59) 81.32 (+1.19)

YAMNet 94.65 89.74 85.01 85.47 94.65 89.74 85.01 85.47
YAMNet-LDA 94.65 89.74 85.01 (0.0) 85.47 (0.0) 94.65 89.74 85.02 (0.0) 85.47 (0.0)
YAMNet-mLDA 94.65 89.74 85.01 (0.0) 85.47 (0.0) 94.65 89.74 85.02 (0.0) 85.46 (0.0)
YAMNet-K 93.83 89.24 85.87 (+0.86) 84.56 (-0.91) 93.83 89.24 85.87 (+0.86) 84.56 (-0.91)
YAMNet-KLDA 93.83 89.23 85.87 (+0.86) 84.56 (-0.91) 93.63 89.24 86.00 (+0.99) 84.76 (-0.70)
YAMNet-mKLDA 93.79 89.19 85.72 (+0.71) 84.43 (-1.04) 93.79 89.34 85.53 (+0.51) 84.60 (-0.87)

Table 1. Mean ROC-AUC (%) of global bias correction and class-wise bias correction on instrument classification in
IRMAS (IR) and OpenMIC (OP) datasets. VGGish, OpenL3, and YAMNet (in italic) refers to the original embedding; the
other cases, i.e. with -LDA, -mLDA, -LDA, and -mKLDA, correspond to linear, linear-multiple, nonlinear, and nonlinear-
multiple debiasing strategies; cases with -K are the kernelized embeddings. Values in parenthesis are the performance boost
(>0.1 are bolded) or degradation as compared to the original embedding (the closest underlined above).

5. DISCUSSION

We notice two important factors for transfer learning with
pre-trained audio embeddings: the training regime of the
embeddings, and the class vocabulary alignment between
the source task and downstream task.

The better generalization performance of YAMNet and
VGGish in a transfer setting may be attributed to their
training regime. YAMNet and VGGish are derived from
supervised training while OpenL3 is from self-supervised
training and more prone to overfitting a domain. As a re-
sult, YAMNet and VGGish have both been incentivized
to learn invariances within specific categories (including
musical instrumentation), while OpenL3 has no such in-
centive as it is only designed to predict audio-visual corre-
spondence. Moreover, YAMNet was specifically trained
for sound classification using a vocabluary that broadly
subsumes that of our downstream task (instrumentation).
This likely contributes to its high performance and cross-
domain stability overall.

The class vocabulary alignment is related to label shift,
an under-explored type of distribution shift in the domain-
adaptation field [20]. The labelling scheme difference be-
tween the two datasets complicates the debiasing as the
IRMAS dataset only contains labels for the predominant
instrument while all active instruments are annotated in the
OpenMIC dataset. Aligning these two datasets is nontrivial
as it involves label shift besides covariate shift. We pro-
pose multiple-bias correction, i.e. debiasing in the genre
subpsace, to deal with this problem. Yet, it does not resolve
the conditional probability shift that happens due to un-
balanced relationships between instrumentation and genre,
e.g. the strong dependence between organ and pop/jazz

in IRMAS, and in this specific case an argument could be
made that the classification task is closer to transfer learn-
ing than domain adaptation.

A notable limitation of the presented experiments is
the small amount of functional data. Although OpenMIC
dataset is relatively large with 14915 samples for training,
only a small portion is actually used in the binary classifi-
cation of each instrument. After equalizing the number of
samples per class in both datasets, there are only 288, 221,
177, 578, 290, 551, 476, 427, 385, and 358 samples for
the 10 instrument classes in the binary classification. Most
classes have number of samples less than the dimension of
OpenL3 (512) and all of them are below that of YAMNet
(1024).

6. CONCLUSION

The method proposed in this work addresses one specific
form of bias that can arise in transfer learning scenarios.
Correctly applying this method requires identifying sub-
sets of data that should be treated equivalently, i.e., be in-
distinguishable under the chosen representation. We stress
that this notion of equivalence ultimately depends on the
choice of the downstream task, and caution should be ex-
ercised when identifying populations to treat as equiva-
lent. For the case study presented here—domain adapta-
tion and instrument recognition—we argue that the down-
stream task ought to be generally independent of the source
domain, though we recognize that this will not always be
true in practice. We therefore urge practitioners to criti-
cally investigate all assumptions of equivalence and inde-
pendence when applying bias correction methods.
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