
Computing Wasserstein Barycenter via operator splitting: the method

of averaged marginals

D. Mimouni∗1,3, P. Malisani†1, J. Zhu‡2, and W. de Oliveira§3

1
IFP Energies nouvelles, Dpt. Applied Mathematics, 1-4 Av Bois-Préau, 92852 Rueil-Malmaison

2IFP Energies nouvelles, Dpt. Control and Signal Processing, 1-4 Av Bois-Préau, 92852 Rueil-Malmaison
3Mines Paris, Center for Applied Mathematics, 1, rue Claude Daunesse, F-06904 Sophia Antipolis

Abstract

The Wasserstein barycenter (WB) is an important tool for summarizing sets of probability measures. It finds
applications in applied probability, clustering, image processing, etc. When the measures’ supports are finite,
computing a (balanced) WB can be done by solving a linear optimization problem whose dimensions generally
exceed standard solvers’ capabilities. In the more general setting where measures have different total masses, we
propose a convex nonsmooth optimization formulation for the so-called unbalanced WB problem. Due to their
colossal dimensions, we introduce a decomposition scheme based on the Douglas-Rachford splitting method that
can be applied to both balanced and unbalanced WB problem variants. Our algorithm, which has the interesting
interpretation of being built upon averaging marginals, operates a series of simple (and exact) projections that
can be parallelized and even randomized, making it suitable for large-scale datasets. Numerical comparisons
against state-of-the-art methods on several data sets from the literature illustrate the method’s performance.

1 Introduction

In applied probability, stochastic optimization, and data science, a crucial aspect is the ability to compare, sum-
marize, and reduce the dimensionality of empirical/discrete measures. Since these tasks rely heavily on pairwise
comparisons of measures, it is essential to use an appropriate metric for accurate data analysis. Different metrics
define different barycenters of a set of measures: a barycenter is a mean element that minimizes the (weighted)
sum of all its square distances to the set of target measures. When the chosen metric is the optimal transport one,
and there is mass equality between the measures, the underlying barycenter is denoted by (balanced) Wasserstein
Barycenter (WB).

The optimal transport metric defines the so-called Wasserstein distance (also known as Mallows or Earth Mover’s
distance), a popular choice in statistics, machine learning, and stochastic optimization [18,28,29]. The Wasserstein
distance has several valuable theoretical and practical properties [31,36] that are transferred to WBs [1,16,28,30].
Indeed, thanks to the Wasserstein distance, one key advantage of WBs is their ability to preserve the underlying
geometry of the data, even in high-dimensional spaces. This fact makes WBs particularly useful in image processing,

∗daniel.mimouni@ifpen.fr
†paul.malisani@ifpen.fr
‡jiamin.zhu@ifpen.fr
§welington.oliveira@minesparis.psl.eu

1

where datasets often contain many pixels and complex features that must be accurately represented and analyzed
[23,33].

Being defined by the Wasserstein distance, WBs are challenging to compute. The Wasserstein distance is
computationally expensive because, to compute an optimal transport plan, one needs to cope with a large linear
program (LP) problem that has no analytical solution and cubic worst-case complexity1 [41]. The situation becomes
even worse for computing a WB of a set of finitely many discrete measures as the problem involves several transport
plans [1]. This problem can be written as LP [4, 11], whose size becomes astronomical as it scales exponentially
in the number of measures, exceeding thus the capabilities of standard LP solvers even for a small number of
measures [4,10,11]. For this reason, significant effort has been made to reduce the LP’s size and design specialized
solvers [2, 4, 9, 11]. In particular, the work [9] proposes reduced LP models that exploit data structure. Although
significantly smaller than the original LP problem defining WBs, those models are in general large scale and still
hard to solve. The work [2] leverages techniques from computational geometry and combinatorial optimization
to propose a specialized LP solver for computing WBs. The approach, which works on the dual problem and
implements a separation oracle, is not efficient beyond moderate-scale inputs [2, § 5]. Indeed, a WB cannot be
computed in time polynomial in the number of measures, (maximum) support size, and dimension [3].

Given the difficulty of computing exact (free-support) WBs, much research has focused on inexact approaches.
A vast body of literature focuses on computing inexact WBs, either by employing approximate LP approaches as
in [8,26,30], or by restricting the support of the WB to a fixed set, the so-called fixed-support approaches [16,28,41].
These techniques often employ a block-coordinate scheme consisting of two steps, first fixing the support and
optimizing over the masses, then fixing the masses and optimizing over the support (of a given size). The first of
these steps is an LP problem with the same structure as the exact (free-support) WB’s LP formulation discussed
above. The only difference is the LP’s size, as fixing the support reduces the problem significantly. The second
step in the block-coordinate scheme has a straightforward solution, provided the quadratic Wasserstein distance is
employed.

Hence, whether an exact or inexact approach is employed to compute (approximate) a WB, one invariably has
to face a large-scale LP of the form (see equations (9) and (10) for details)

min
π∈B

M∑
m=1

⟨c(m), π(m)⟩ s.t. π(m) ∈ Π(m), m = 1, . . . ,M, (1)

where M stands for the number of discrete measures, c for the transportation costs, Π(m) represents a polytope
containing measures with given marginal, and B symbolizes a linear subspace. While exact techniques usually
build upon linear programming techniques, inexact approaches tackle (1) via reformulations based on an entropic
regularization [6, 16, 17, 22, 28, 41]. Indeed, the work [16] proposes to compute a WB inexactly by decomposing
(1) along the measures and then regularizing the resulting optimal transportation problems with an entropy-
like function. A projected subgradient method gives rise to a minimization scheme with decomposition to deal
with the high dimensions of the LP. The regularization technique allows one to employ the celebrated Sinkhorn
algorithm [15,34], which has a simple closed-form expression and can be implemented efficiently using only matrix
operations. Furthermore, this technique opened the way to the Iterative Bregman Projection (IBP) method proposed
in [6]. IBP is highly memory efficient for distributions with a shared support set and is considered to be one of
the most effective methods to tackle fixed-support WB problems. However, as IBP works with an approximating
model and fixed support, the method falls in the class of inexact approaches.

Another approach fitting into the category of inexact methods has been recently proposed in [41], which uses
the same type of regularization as IBP but decomposes the problem into a sequence of smaller subproblems with
straightforward solutions. More specifically, the approach in [41] is a modification (tailored to the WB problem)

1More precisely, O(S3log(S)), with S the size of the input data.

2

of the Bregman Alternating Direction Method of Multipliers (B-ADMM) of [37]. The modified B-ADMM has been
shown to compute promising results for sparse support measures and therefore is well-suited in some clustering
applications. However, the theoretical convergence properties of the modified B-ADMM algorithm are not well
understood and the approach should be considered as a heuristic. In the same vein, the work [40] proposes to
address the WB problem via the standard ADMM algorithm, which decomposes the problem into smaller and
simpler subproblems. As mentioned by the authors in their subsequent paper [41], the numerical efficiency of the
standard ADMM is still inadequate for large datasets.

To cope with the challenge of solving LPs of the form (1) resulting from computing exact (free-support) or
inexact (fixed-support) WBs, we propose a new algorithm based on the celebrated Douglas-Rachford splitting
operator method (DR) [19–21]. Our proposal, which exploits the problem structure for decomposition, is denoted by
Method of Averaged Marginals (MAM) as at every iteration, the algorithm computes a barycenter approximation by
averaging marginals issued by transportation plans that are updated independently, in parallel, and even randomly
if necessary. Accordingly, the algorithm operates a series of simple and exact projections that can be carried out
in parallel and even randomly. These compelling features allow for considering data sets beyond moderate sizes in
the free-support setting and attaining more accurate results than entropy-based methods usually get in the fixed-
support case. Furthermore, MAM can be applied to a more general setting where measures have different total
masses.

All the methods mentioned in the above references deal exclusively with sets of probability measures because
WBs are limited to measures with equal total masses. A tentative way to circumvent this limitation is to normalize
general positive measures to compute a standard (balanced) WB. However, such a naive strategy is generally
unsatisfactory and limits the use of WBs in many real-life applications such as logistics, medical imaging, and others
coming from the field of biology [24, 32]. Consequently, the concept of WB has been generalized to summarize
such more general measures. Different generalizations of the WB exist in the literature, and they are based on
variants of unbalanced optimal transport problems that define a distance between general non-negative, finitely
supported measures by allowing for mass creation and destruction [24]. Essentially, such generalizations, known as
unbalanced Wasserstein barycenters (UWBs), depend on how one chooses to relax the marginal constraints. In the
review paper [32] and references therein, marginal constraints are moved to the objective function with the help
of divergence functions. Differently, in [24] the authors replace the marginal constraints with sub-couplings and
penalize their discrepancies. It is worth mentioning that UWB is more than simply copying with global variation in
the measures’ total masses. Generalized barycenters tend to be more robust to local mass variations, which include
outliers and missing parts [32].

For the sake of a unified algorithmic proposal for both balanced and unbalanced WBs, in this work, we consider
a different formulation for dealing with sets of measures with different total masses. Instead of relaxing both
marginal constraints in each one of the M transportation plans as done in [24, 32] and references therein, our
formulation generalizes the balanced WB by relaxing the constraint that the barycenter is a marginal measure of
all underlying transportation plans. More specifically, by using the distance function to the subspace B, that is
distB(π) := minθ∈B ∥θ − π∥, and a penalty parameter γ > 0, we propose the following nonlinear optimization
problem yielding a UWB:

min
π

M∑
m=1

⟨c(m), π(m)⟩+ γdistB(π) s.t. π(m) ∈ Π(m), m = 1, . . . ,M. (2)

While our approach can be seen as an abridged alternative to the thorough methodologies of [24] and [32], its
favorable structure for efficient splitting techniques combined with the good quality of the issued UWBs confirms
the formulation’s practical interest.

Thanks to our unified analysis, MAM can be applied to both balanced and unbalanced WB problems without
any change: all that is needed is to set up the parameter γ > 0 in (2). To the best of our knowledge, MAM

3

is the first approach capable of handling balanced and unbalanced WB problems in a single algorithm, which
can be further run in a deterministic or randomized fashion. In addition to its versatility, MAM copes with
scalability issues arising from barycenter problems, is memory efficient, and has convergence guarantees. As further
contributions, we conduct experiments on several data sets from the literature to demonstrate the computational
efficiency and accuracy of the new algorithm and make our Python codes publicly available at the link (https:
//ifpen-gitlab.appcollaboratif.fr/detocs/mam_wb).

The remainder of this work is organized as follows. Section 2 introduces the notation and recalls the formulation
of balanced WB problems. The proposed formulation for unbalanced WBs is presented in Section 3. Section 4
briefly recalls the Douglas-Rachford splitting (DR) method and its convergence properties both in the deterministic
and randomized settings. The main contribution of this work, the Method of Averaged Marginals, is presented in
Section 5. Convergence analysis is given in the same section by relying on the DR algorithm’s properties. Section 6
illustrates the numerical performance of the deterministic and randomized variants of MAM on several data sets
from the literature. Numerical comparisons with the free-support method [2] and fixed-support approaches in [6]
and [41] are presented for the balanced case. Then, some applications of the UWB are considered.

2 Background on optimal transport and Wasserstein barycenter

Throughout this work, for τ ≥ 0 a given scalar, the notation ∆R(τ) denotes the set of vectors in RR
+ adding up to

τ , that is,

∆R(τ) :=

{
u ∈ RR

+ :

R∑
i=1

ui = τ

}
. (3)

If τ = 1, then ∆R(τ), denoted simply by ∆R, is the R + 1 simplex. Let P(Rd) be the set of Borel probability
measures on Rd. Furthermore, let ξ and ζ be two random vectors having probability measures µ and ν in P(Rd),
that is, ξ ∼ µ and ζ ∼ ν. Their (quadratic) 2-Wasserstein distance is given by:

W2(µ, ν) :=

(
inf

π∈U(µ,ν)

∫
Rd×Rd

∥ξ − ζ∥2dπ(ξ, ζ)
)1/2

, (WD)

where U(µ, ν) is the set of all probability measures on Rd ×Rd having marginals µ and ν. We denote by W 2
2 (µ, ν)

the squared Wassserstein distance, i.e., W 2
2 (µ, ν) := (W2(µ, ν))

2.

Definition 1 (Wasserstein Barycenter - WB). Given M measures {ν(1), . . . , ν(M)} in P(Rd) and α ∈ ∆M , a
Wasserstein barycenter with weights α is a solution to the following optimization problem

min
µ∈P(Rd)

M∑
m=1

αmW 2
2 (µ, ν

(m)) . (4)

Informally, a WB µ is a measure such that the total cost for transporting from µ to all ν(m) is minimal concerning
the quadratic Wasserstein distance. A WB µ exists in generality and, if one of the ν(m) vanishes on all Borel subsets
of Hausdorff dimension d− 1, then it is also unique [1]. In this work, we are given M empirical (discrete) measures
ν(m) having finite support sets:

supp(ν(m)) :=
{
ζ
(m)
1 , . . . , ζ

(m)

S(m)

}
and ν(m) =

S(m)∑
s=1

q(m)
s δζ(m) , (5)

4

https://ifpen-gitlab.appcollaboratif.fr/detocs/mam_wb
https://ifpen-gitlab.appcollaboratif.fr/detocs/mam_wb

with δu the Dirac unit mass on u ∈ Rd and q(m) ∈ ∆S(m) , m = 1, . . . ,M . In this case, the uniqueness of WB is no
longer ensured in general but the following results hold [4].

Theorem 1 (From [4]). Consider M empirical measures ν(m) as in (5). Then, problem (4) has at least one
solution.

a) Every solution µ satisfies

supp(µ) ⊂ Ξ :=

{
M∑

m=1

αmζ(m)
s : ζ(m)

s ∈ supp(ν(m)), m = 1, . . . ,M

}
. (6)

b) There exists a sparse solution µ̄ such that

|supp(µ̄)| ≤ T −M + 1, where T :=

M∑
m=1

S(m) (7)

c) If ν(m), m = 1, . . . ,M , are supported on the same grid K1 × · · · × Kd-grid in Rd, and αm = 1
M for all m,

then there exits a solution µ to (4) supported on (M(K1 − 1) + 1)× · · · × (M(Kd − 1) + 1)-grid, uniform in
all directions.

Proof. Item a) is Proposition 1 (iii) in [4], Items b) and c) are Theorem 2 and Corollary 1 in the same paper.

Let R := |Ξ| be the number of points ξ in the finite set Ξ. It follows from item a) that any solution µ to
problem (4) defined with discrete measures has the form

µ =

R∑
r=1

prδξr , with p ∈ ∆R.

By letting PΞ(R
d) :=

{
µ ∈ P(Rd) : supp(µ) ⊂ Ξ

}
, problem (4) can be reformulated as a finite-dimensional LP by

replacing the constraint µ ∈ P(Rd) with µ ∈ PΞ(R
d). Indeed, by considering all the R points in Ξ, problem (4)

boils down to
min

p∈∆R, π≥0

M∑
m=1

αm

R∑
r=1

S(m)∑
s=1

∥ξr − ζ(m)
s ∥2π(m)

rs

s.t.
∑R

r=1 π
(m)
rs = q

(m)
s , s = 1, . . . , S(m), m = 1, . . . ,M∑S(m)

s=1 π
(m)
rs = pr, r = 1, . . . , R, m = 1, . . . ,M.

(8)

Such LP scales exponentially in the number of measures. To see that, assume that all measures have support of same
cardinality S, i.e., S(m) = S for all m = 1, . . . ,M : then R = SM and the LP has MRS + R = M(S)M+1 + (S)M

variables and M(R + S) = M(S)M + MS equality constraints. When the measures are supported on the same
discrete grid in Rd and αm = 1

M for all m, the number of different points in Ξ reduces drastically: in this case,
S = Kd and R = ((K − 1)M + 1)d from item c) above, which is significantly smaller than SM = KdM in the
previous general setting (however still colossal in real-life applications) [9, 10]. These observations shed light on
how the number of measures, the sizes of their support sets, and dimension d impact the size of problem (8). The
paper [10] investigates the complexity of computing a sparse Wasserstein barycenter, and [3] shows that a WB
cannot be computed in time polynomial in the number of measures, (maximum) support size, and dimension d.

5

Item b) ensures that a sparse solution exists with a support size of at most M(S − 1) + 1, motivating thus the
so-called fixed-support approaches that generally employ a block-coordinate optimization heuristic: at iteration k, a
support Ξk of size R (say R ≤M(S− 1)+1) is fixed and the LP (8) (with ξr ∈ Ξk) is solved to get an optimal plan

πk, which is in turn fixed in the optimization problem minξ
∑M

m=1 αm

∑R
r=1

∑S(m)

s=1 ∥ξr − ζ
(m)
s ∥2πk,(m)

rs yielding a
new fixed support Ξk+1. Observe that this last problem has a straightforward solution (see for instance [16, Alg.
2] and [41, § II]). Otherwise, when the free-support approach is taken, computing a WB amounts to solve (8) by
considering all points ξ ∈ Ξ, thus yielding an LP of astronomical size. Hence, whether an exact (free-support)
or inexact (fixed-support) approach is employed to compute (approximate) a WB, one invariably has to face a
large-scale LP of the form (8), which fits into the structure of (1) by dropping the decision variable2 p, setting

Π(m) :=

{
π(m) ≥ 0 :

R∑
r=1

π(m)
rs = q(m)

s , s = 1, . . . , S(m)

}
, m = 1, . . . ,M, (9)

and the linear subspace

B :=

π = (π(1), . . . , π(M))

∣∣∣∣∣∣∣∣∣∣

∑S(1)

s=1 π
(1)
rs =

∑S(2)

s=1 π
(2)
rs , r = 1, . . . , R∑S(2)

s=1 π
(2)
rs =

∑S(3)

s=1 π
(3)
rs , r = 1, . . . , R

...∑S(M−1)

s=1 π
(M−1)
rs =

∑S(M)

s=1 π
(M)
rs , r = 1, . . . , R

 . (10)

The polytope Π(m) is composed of transportation plans π(m) with right marginals q(m). The set with all left
marginals is characterized by the linear subspace B of “balanced plans”.

In light of the above observations, we focus on a decomposition technique for solving LPs of the form (1) to
render computing a (free or fixed support) WB possible beyond moderate-scale data inputs. We mention in passing
that no assumption on the costs of (1) is required. This fact opens the way to consider, for instance, W ι

ι Wasserstein
distances with ι ∈ [1,∞).

3 Discrete unbalanced Wasserstein Barycenter

A well-known drawback of formulation (4) is its limitation to measures with equal total masses, so the feasible set
defining the Wasserstein distance (WD) is nonempty. To overcome this limitation, an idea is to relax the marginal
constraints in (WD) to cope with “unbalanced” measures, i.e., with different masses [32]. Different manners to relax
these marginal constraints yield different generalizations of the concept of Wasserstein barycenter, known in the
literature by the name of unbalanced Wasserstein barycenters (UWBs). In this work, we propose a new formulation
that uses a metric to measure the distance of a multi-plan π = (π(1), . . . , π(M)) to the balanced subspace B defined
in eq. (10). We take such a metric as being the Euclidean distance distB(π) = minθ∈B ∥θ − π∥ and define the
following nonlinear optimization problem, with γ > 0 a penalty parameter, Π(m) given in (9), and B in (10):

min
π

M∑
m=1

αm

R∑
r=1

S(m)∑
s=1

∥ξr − ζ(m)
s ∥2π(m)

rs + γdistB(π)

s.t. π(m) ∈ Π(m), m = 1, . . . ,M.

(11)

2Although variable p is the one of interest, it can be removed from (8) and easily recovered thanks to the balanced subspace (10).

6

This problem has always a solution because the objective function is continuous and the non-empty feasible set
is compact. Note that in the balanced case, problem eq. (11) is a relaxation of eq. (1). In the unbalanced setting,
any feasible point to eq. (11) yields distB(π) > 0. As this distance function is strictly convex outside B, the above
problem has a unique solution.

Definition 2 (Discrete Unbalanced Wassertein Barycenter - UWB). Given a set {ν(1), . . . , ν(M)} of unbalanced
non-negative vectors, let π̄ ≥ 0 be the unique solution to problem eq. (11), and π̃ the projection of π̄ onto the balanced

subspace B, that is, π̃ := ProjB(π̄). The measure µ =
∑R

r=1 prδξr with pr :=
∑S(m)

s=1 π̃
(m)
rs ,r = 1, . . . , R (no matter

m ∈ {1, . . . ,M}) is defined as the γ-unbalanced Wasserstein barycenter of {ν(1), . . . , ν(M)}.

The above definition differs from the ones found in the literature, which relaxes the constraints
∑R

r=1 π
(m)
rs = q

(m)
s ,

see for instance [24,32]. Although the above definition is not as general as the ones of the latter references, it provides
meaningful results (see Section 6.4 below), uniqueness of the barycenter (if unbalanced), and is indeed an extension
of (balanced) WB as the LP (8) is for (1) what the nonlinear problem (11) is for (2).

Proposition 1. Suppose that {ν(1), . . . , ν(M)} are probability measures and let γ > ∥c∥ in problem eq. (2). Then π̄
solves (2) if and only if π̄ solves (1). In particular, any UWB according to definition 2 is also a (balanced) WB.

Proof. Being a linear function, the objective of (1) is Lipschitz continuous with constant ∥c∥. Thus, the standard
theory of exact penalty methods in optimization (see for instance [7, Prop. 1.5.2]) ensures that, when γ > ∥c∥, π̄
solves problem eq. (2) if and only if π̄ solves eq. (1). In particular, for Π(m) and B given in (9) and (10), respectively,

π̄ = ProjB(π̄) and the measure µ =
∑R

r=1 prδξr with pr =
∑S(m)

s=1 π̄
(m)
rs (as in definition 2) solves (8).

Another advantage of definition 2 is that the problem yielding the proposed UBW enjoys a favorable structure that
can be efficiently exploited by splitting methods. Indeed, it turns out that computing a balanced or unbalanced
WB can be done by the algorithm presented in Section 5.3. In the next section, we show that the computational
burden to solve either the LP eq. (1) or the nonlinear problem eq. (2) by the Douglas-Rachford splitting method is
the same.

4 Problem reformulation and the DR algorithm

We have recalled that computing a free or fixed-support (balanced) WB requires solving one or more LPs of the
form (1), with Π(m) and B given in (9) and (10), respectively. Furthermore, according to our new Definition 2,
computing a UWB requires solving one (or more) nonlinear problems of the form (2). In this section, we focus
on problems eq. (1) and eq. (2) and reformulate them in a suitable way so that the Douglas-Rachford splitting
operator method can be easily deployed to compute a discrete barycenter in the balanced and unbalanced settings.
To this end, let us consider the indicator function iC of a convex set C (that is iC(x) = 0 if x ∈ C and iC(x) =∞
otherwise) to define the convex functions

f (m)(π(m)) :=

R∑
r=1

S(m)∑
s=1

c(m)
rs π(m)

rs + iΠ(m)(π(m)), m = 1, . . . ,M, (12)

and recast problems eq. (1) and eq. (2) in the following more general setting

min
π

f(π) + g(π) , with : (13a)

f(π) :=

M∑
m=1

f (m)(π(m)) and g(x) :=

{
iB(π) if balanced
γ distB(π) if unbalanced.

(13b)

7

Since f is polyhedral, Dom(f) ∩ ri(Dom(g)) ̸= ∅3, and eq. (13) is solvable, it follows from [5, Thm 27.2] that
computing one of its solutions is equivalent to

find π such that 0 ∈ ∂f(π) + ∂g(π). (14)

Recall that the subdifferential of a proper convex lower semicontinuous functions is a maximal monotone operator
[5, Thm 20.40]. Thus, the above generalized equation is nothing but the problem of finding a zero of the sum of
two maximal monotone operators, a well-understood problem for which several methods exist (see, for instance,
Chapters 25 and 27 of the textbook [5]). Among the existing algorithms, the Douglas-Rachford operator splitting
method [19] (see also [5, § 25.2 and § 27.2]) is the most popular one. When applied to problem eq. (14), the DR
algorithm asymptotically computes a solution by repeating the following steps, with k = 0, 1, . . ., given initial point
θ0 = (θ(1),0, . . . , θ(M),0) and prox-parameter ρ > 0:

πk+1 = argmin
π

g(π) +
ρ

2
∥π − θk∥2

π̂k+1 = argmin
π

f(π) +
ρ

2
∥π − (2πk+1 − θk)∥2

θk+1 = θk + π̂k+1 − πk+1.

(15)

By noting that f and g in eq. (13b) are proper convex lower semicontinuous functions and problem eq. (13) is
solvable (so is (14) [5, Thm 27.2(ii)]), the following is a direct consequence of Theorem 25.6 and Corollary 27.4
of [5].

Theorem 2. The sequence {θk} produced by the DR algorithm eq. (15) converges to a point θ̄, and the following
holds: π̄ := argminπ g(π) + ρ

2∥π − θ̄∥2 solves eq. (13), and {πk} and {π̂k} converge to π̄.

The DR algorithm is attractive when the two first steps in eq. (15) are convenient to execute, which is the
case in our settings. As we will shortly see, the iterate πk+1 above has an explicit formula in both balanced and
unbalanced cases, and computing π̂k+1 amounts to executing a series of independent projections onto the simplex.
This task can be accomplished exactly and efficiently by specialized algorithms.

Since f in eq. (13b) has a separable structure, the computation of π̂k+1 in eq. (15) breaks down to a series of
smaller and simpler subproblems as just mentioned. Hence, we may exploit such a structure by combining recent
developments in DR’s literature to produce the following randomized version of the DR algorithm eq. (15), with α
the vector of weights in eq. (4):

πk+1 = argmin
π

g(π) +
ρ

2
∥π − θk∥2

Draw randomly m ∈ {1, 2, . . . ,M} with probability αm > 0

π̂(m),k+1 = argmin
π(m)

f (m)(π(m)) +
ρ

2
∥π(m) − (2π(m),k+1 − θ(m),k)∥2

θ(m
′),k+1 =

{
θ(m),k + π̂(m),k+1 − π(m),k+1 if m′ = m

θ(m
′),k if m′ ̸= m.

(16)

The randomized DR algorithm eq. (16) aims at reducing the computational burden and accelerating the optimiza-
tion process. Such goals can be attained in some situations, depending on the underlying problem and available
computational resources. The particular choice of αm > 0 as the probability of picking up the mth subproblem is

3ri denotes the relative interior of a set.

8

not necessary for convergence: the only requirement is that every subproblem is picked up with a fixed and positive
probability. The intuition behind our choice is that measures that play a more significant role in eq. (4) (i.e., higher
αm) should have more chance to be picked by the randomized DR algorithm. Furthermore, the presentation above
where only one measure (subproblem) in eq. (16) is drawn is made for the sake of simplicity. One can perfectly
split the set of measures into nb < M bundles, each containing a subset of measures, and select randomly bundles
instead of individual measures. Such an approach proves advantageous in a parallel computing environment with nb
available machines/processors (see section 6.2.3 in the numerical section). The almost surely (i.e., with probability
one) convergence of the randomized DR algorithm depicted in eq. (16) can be summarized as follows [25, Thm 2].

Theorem 3. The sequence {πk} produced by the randomized DR algorithm eq. (16) converges almost surely to a
random variable π̄ taking values in the solution set of problem eq. (13).

This result is a special case of a thorough analysis given in [13] (see, in particular, Remark 3.5 and Section 5
in that paper.) We note that the practical performance of the randomized scheme (16) depends on computational
resources and is thus not always effective (see Figure 6.2.3 below). The deterministic and asynchronous decomposi-
tion methods in [12] provide significantly more flexibility in selecting the measure ν(m) (or even part of it) activated
at every iteration and thus may perform better than the randomized scheme above. As these methods do not follow
the general lines of the DR algorithm, we leave the specialization of such approaches to the WB problem for future
research.

In the next section, we further exploit the structure of functions f and g in eq. (13) and rearrange terms in
the schemes eq. (15) and eq. (16) to provide an easy-to-implement and memory-efficient algorithm for computing
balanced and unbalanced WBs.

5 The Method of Averaged Marginals

Both deterministic and randomized DR algorithms above require evaluating the proximal mapping of the function
g given in eq. (13b). In the balanced WB setting, g is the indicator function of B given in eq. (10), and thus πk+1

in (15) is the projection of θk onto B: πk+1 = ProjB(θ
k). On the other hand, in the unbalanced WB case, g(·) is

the penalized distance function γ distB(·). Computing πk+1 then amounts to evaluating the proximal mapping of
the distance function: minπ distB(π)+

ρ
2γ ∥π− θk∥2. The unique solution to this problem is given by [5, Example

24.28]

πk+1 =

{
ProjB(θ

k) if ρ distB(θ
k) ≤ γ

θk + γ
ρ distB(θk)

(ProjB(θ
k)− θk) otherwise.

(17)

Hence, computing πk+1 in both balanced and unbalanced settings boils down to projecting onto the balanced
subspace. This fact allows us to provide a unified algorithm for WB and UWB problems.

5.1 Projecting onto the subspace of balanced plans

In what follows we exploit the particular geometry of B to provide an explicit formula for projecting onto this linear
subspace.

Proposition 2. With the notation of Section 2, let θ ∈ RR×T ,

am :=
1

S(m)∑M
j=1

1
S(j)

, p(m) :=

S(m)∑
s=1

θ(m)
rs

1≤r≤R

, and p :=

M∑
m=1

amp(m). (18a)

9

The projection π = ProjB(θ) has the explicit form:

π(m)
rs := θ(m)

rs +
(pr − p

(m)
r)

S(m)
, s = 1, . . . , S(m), r = 1, . . . , R, m = 1, . . . ,M. (18b)

Proof. First, observe that π = ProjB(θ) solves the QP problem min
y(1),...,y(M)

1

2

M∑
m=1

∥y(m) − θ(m),k∥2

s.t
∑S(m)

s=1 y
(m)
rs =

∑S(m+1)

s=1 y
(m+1)
rs , r = 1, . . . , R, m = 1, . . . ,M − 1,

(19)

which is only coupled by the “columns” of π: there is no constraint linking π
(m)
rs with π

(m′)
r′s for r ̸= r′ and m and m′

arbitrary. Therefore, we can decompose it by rows: for r = 1, . . . , R, the rth-row (π
(1)
r1 , . . . , π

(1)

rS(1) , . . . , π
(M)
r1 , . . . , π

(M)

rS(M))
of π is the unique solution to the problem

min
w

1

2

M∑
m=1

S(m)∑
s=1

(
w(m)

s − θ(m)
rs

)2
s.t

∑S(m)

s=1 w
(m)
s =

∑S(m+1)

s=1 w
(m+1)
s , m = 1, . . . ,M − 1.

(20)

The Lagrangian function to this problem is, for a dual variable u, given by

Lr(w, u) =
1

2

M∑
m=1

S(m)∑
s=1

(
w(m)

s − θ(m)
rs

)2
+

M−1∑
m=1

u(m)
(S(m)∑

s=1

w(m)
s −

S(m+1)∑
s=1

w(m+1)
s

)
. (21)

A primal-dual (w, u) solution to problem eq. (20) must satisfy the Lagrange system, in particular ∇wLr(w, u) = 0
with w the rth row of π = ProjB(θ), that is,

π
(1)
rs − θ

(1)
rs + u(1) = 0 s = 1, . . . , S(1)

π
(2)
rs − θ

(2)
rs + u(2) − u(1) = 0 s = 1, . . . , S(2)

...

π
(M−1)
rs − θ

(M−1)
rs + u(M−1) − u(M−2) = 0 s = 1, . . . , S(M−1)

π
(M)
rs − θ

(M)
rs − u(M−1) = 0 s = 1, . . . , S(M).

(22)

Let us denote pr =
∑S(m)

s=1 π
(m)
rs (no matter m ∈ {1, . . . ,M} because π ∈ B), p(m)

r =
∑S(m)

s=1 θ
(m)
rs (the rth component

of p(m) as defined in eq. (18a)), and sum over s the first row of system eq. (22) to get

pr − p(1)r + u(1)S(1) = 0 ⇒ u(1) =
p
(1)
r − pr
S(1)

, (23)

Now, by summing the second row in eq. (22) over s we get

pr − p(2)r + u(2)S(2) − u(1)S(2) = 0 ⇒ u(2) = u(1) +
p
(2)
r − pr
S(2)

. (24)

10

By proceeding in this way and setting u(0) := 0 we obtain

u(m) = u(m−1) +
p
(m)
r − pr
S(m)

, m = 1, . . . ,M − 1. (25a)

Furthermore, for M − 1 we get the alternative formula u(M−1) = −p(M)
r −pr

S(M) . Given these dual values, we can

use eq. (22) to conclude that the rth row of π = ProjB(θ) is given as in eq. (18b). It is remaining to show

that pr =
∑S(m)

s=1 π
(m)
rs , as defined above, is alternatively given by eq. (18a). To this end, observe that u(M−1) =

u(M−1) − u(0) =
∑M−1

m=1 (u
(m) − u(m−1)), so:

u(M−1) =

M−1∑
m=1

(p(m)
r − pr
S(m)

)
=

M−1∑
m=1

p
(m)
r

S(m)
− pr

M−1∑
m=1

1

S(m)
. (26)

Recall that u(M−1) =
pr−p(M)

r

S(M) , i.e., pr = p
(M)
r + u(M−1)S(M). Replacing u(M−1) with the expression eq. (26) yields

pr = S(M)
[p(M)

r

S(M)
+ u(M−1)

]
= S(M)

[p(M)
r

S(M)
+

M−1∑
m=1

p
(m)
r

S(m)
− pr

M−1∑
m=1

1

S(m)

]
, (27)

which implies pr
∑M

m=1
1

S(m) =
∑M

m=1

(
p(m)
r

S(m)

)
. Hence, p is as given in eq. (18a), and the proof is complete.

Note that projection can be computed in parallel over the rows, and the average p of the marginals p(m) is the
gathering step between parallel processors.

5.2 Evaluating the Proximal Mapping of Transportation Costs

In this subsection we turn our attention to the DR algorithm’s second step, which requires solving a convex
optimization problem of the form: minπ f(π) + ρ

2∥π − y∥2 (see eq. (15)). Given the additive structure of f
in eq. (13b), the above problem can be decomposed into M smaller ones

min
π(m)

f (m)(π(m)) +
ρ

2
∥π(m) − y(m)∥2, m = 1, . . . ,M. (28)

Then looking closely at every subproblem above, we can see that we can decompose it even more: the columns of
the the transportation plan π(m) are independent in the minimization. Besides, as the following result shows, every
column optimization is simply the projection of an R-dimensional vector onto the simplex ∆R.

Proposition 3. Let ∆R(τ) be as in eq. (3). The minimization π̂ := minπ f(π) + ρ
2∥π − y∥2 can be performed

exactly, in parallel along the columns of each transport plan y(m), as follows: for all m ∈ {1, . . . ,M},
π̂
(m)
1s
...

π̂
(m)
Rs

 = Proj
∆R(q

(m)
s)

y1s − 1

ρc
(m)
1s

...

yRs − 1
ρc

(m)
Rs

 , s = 1, . . . , S(m). (29)

Proof. It has already been argued that evaluating this proximal mapping into M smaller subproblems eq. (28),
which is a quadratic program problem due to the definition of f (m) in eq. (12):

min
π(m)≥0

R∑
r=1

S(m)∑
s=1

[
c(m)
rs π(m)

rs +
ρ

2

∣∣∣π(m)
rs − y(m)

rs)
∣∣∣2] s.t.

R∑
r=1

π(m)
rs = q(m)

s , s = 1, . . . , S(m). (30)

11

By taking a close look at the above problem, we can see that the objective function is decomposable, and the
constraints couple only the “rows” of π(m). Therefore, we can go further and decompose the above problem per
columns: for s = 1, . . . , S(m), the sth-column of π̂(m) is the unique solution to the R-dimensional problem

min
w≥0

R∑
r=1

[
c(m)
rs wr +

ρ

2
(wr − y(m)

rs)2
]

s.t.

R∑
r=1

wr = q(m)
s , (31)

which is nothing but eq. (29). Such projection can be performed exactly [14].

Remark 1. If τ = 0, then ∆R(τ) = {0} and the projection onto this set is trivial. Otherwise, τ > 0 and
computing Proj∆R(τ)(w) amounts to projecting onto the R + 1 simplex ∆R: Proj∆R(τ)(w) = τ Proj∆R

(w/τ).
The latter task can be performed exactly by using efficient methods [14]. Hence, evaluating the proximal mapping
in proposition 3 decomposes into T independent projections onto ∆R.

5.3 The Method of Averaged Marginals (MAM)

Our approach is presented in Algorithm 1, which gathers the three main steps from the DR algorithm and integrates
a choice of γ for a simple switch between the balanced and unbalanced cases.

MAM’s interpretation At every iteration, the barycenter approximation pk is a weighted average of the M
marginals p(m) of the plans θ(m),k, m = 1, . . . ,M . As we will shortly see, the whole sequence {pk} converges
(almost surely or deterministically) to a barycenter upon specific assumptions on the choice of the index set at
line 6 of algorithm 1.

Initialization The choices for θ0 ∈ RR×T and ρ > 0 are arbitrary ones. The prox-parameter ρ > 0 is borrowed
from the DR algorithm, which is known to have an impact on the practical convergence speed. Therefore, ρ should
be tuned for the set of distributions at stakes. Some heuristics for tuning this parameter exist for other methods
derived from the DR algorithms [38,39] and can be adapted to the setting of algorithm 1.

Stopping criteria A possible stopping test is ∥θk+1 − θk∥∞ ≤ Tol, where Tol > 0 is a given tolerance. Alter-
natively, we may stop the algorithm when ∥pk+1 − pk∥ ≤ Tol. or distB(π̂

k) ≤ Tol. These latter tests should be
understood as heuristic criteria.

Deterministic and random variants of MAM The most computationally expensive step of MAM is Step 2,
which requires a series of independent projections onto the R+1 simplex (see remark 1). Our approach underlines
that this step can be conducted in parallel over s or, if preferable, over the measures m. As a result, it is a natural
idea to derive a randomized variant of the algorithm. This is the reason for having the possibility of choosing
an index set Mk ⊊ {1, . . . ,M} at line 6 of algorithm 1. For example, we may employ an economical rule and
choose Mk = {m} randomly (with a fixed and positive probability, e.g. αm) at every iteration, or the costly one
Mk = {1, . . . ,M} for all k. The latter yields the deterministic method of averaged marginals, while the former gives
rise to a randomized variant of MAM. Depending on the computational resources, intermediate choices between
these two extremes can perform better in practice.

Remark 2. Suppose that 1 < nb < M processors are available. We may then create a partition A1, . . . , Anb of the
set {1, . . . ,M} (= ∪nbi=1Ai) and define weights βi :=

∑
m∈Ai

αm > 0. Then, at every iteration k, we may draw with

probability βi the subset Ai of measures and setMk = Ai.

12

Algorithm 1 Method of Averaged Marginals - MAM

▷ Step 0: input
1: Given ρ > 0, the cost matrix and initial point c, θ0 ∈ RR×T , and a ∈ ∆M as in eq. (18a), set k ← 0 and

p
(m)
r ←

∑S(m)

s=1 θ
(m),0
rs , r = 1, . . . , R, m = 1, . . . ,M

2: Set γ ←∞ if q(m) ∈ RS(m)

+ , m = 1, . . . ,M , are balanced; otherwise, choose γ ∈ [0,∞)

3: while not converged do
▷ Step 1: average the marginals

4: Compute pk ←
∑M

m=1 amp(m)

5: Set tk = 1 if ρ
√∑M

m=1
∥pk−p(m)∥2

S(m) ≤ γ; otherwise, tk ← γ/

(
ρ
√∑M

m=1
∥pk−p(m)∥2

S(m)

)
6: Choose an index set ∅ ≠Mk ⊆ {1, . . . ,M}
7: for m ∈Mk do

▷ Step 2: update the mth plan
8: for s = 1, . . . , S(m) do

9: Define wr ← θ
(m),k
rs + 2 tk

pk
r−p(m)

r

S(m) − 1
ρc

(m)
rs , r = 1, . . . , R

10: Compute (π̂
(m)
1s , . . . , π̂

(m)
Rs)← Proj

∆R(q
(m)
s)

(w)

11: Update θ
(m),k+1
rs ← π̂

(m)
rs − tk

pk
r−p(m)

r

S(m) , r = 1, . . . , R
12: end for

▷ Step 3: update the mth marginal

13: Update p
(m)
r ←

∑S(m)

s=1 θ
(m),k+1
rs , r = 1, . . . , R

14: end for

15: end while
16: Return p̄← pk

This randomized variant would enable the algorithm to compute more iterations per time unit but with less
precision per iteration (since not all the marginals p(m) are updated). Such a randomized variant of MAM is
benchmarked against its deterministic counterpart in Section 6.2.3, where we demonstrate empirically that with
certain configurations (depending on the number M of probability distributions and the number of processors) this
randomized algorithm can be effective. We highlight that other choices for Mk rather than randomized ones or
the deterministic rule Mk = {1, . . . ,M} should be understood as heuristics. Within such a framework, one may
choose Mk ⊊ {1, . . . ,M} deterministically, for instance cyclically or yet by the discrepancy of the marginal p(m)

with respect to the average pk.

Storage complexity Note that the operation at line 10 is trivial if q
(m)
s = 0. This motivates us to remove all

the zero components of q(m) from the problem’s data, and consequently, all the columns s of the cost matrix c(m)

and variables θ, π̂ corresponding to q
(m)
s = 0, m = 1, . . . ,M . In some applications (e.g. general sparse problems),

this strategy significantly reduces the WB problem and thus memory allocation, since the non-taken columns are
both not stored and not treated in the for loops. This remark raises the question of how sparse data impacts the
practical performance of MAM. Section 6.1 conducts an empirical analysis on this matter.

13

In nominal use, the algorithm needs to store the decision variables θ(m) ∈ RR×S(m)

for all m = 1, . . . ,M

(transport plans for every measure), along with M distance matrices c ∈ RR×S(m)

, one barycenter approximation
pk ∈ RR, M approximated marginals p(m) ∈ RR and M marginals q(m) ∈ RS(m). Note that in practical terms,
the auxiliary variables w and π̂ in algorithm 1 can be easily removed from the algorithm’s implementation by
merging lines 9-11 into a single one. Hence, by letting T =

∑M
m=1 S

(m), the method’s memory allocation is
2RT + T + M(R + 1) floating-points. This number can be reduced if the measures share the same cost matrix,
i.e., c(m) = c(m

′) for all m,m′ = 1, . . . ,M . In this case, S(m) = S for all m, T = M S and the method’s memory
allocation drops to RT + RS + T + M(R + 1) floating-points. In the light of the previous remark this memory
complexity should be treated as an upper bound: the sparser the data the less memory will be needed.

Computation complexity Step 2 of the algorithm involves two main components: projection onto B, which
comprises straightforward operations detailed in Section 5.1, and projection onto Π, which relies on leveraging
the simplex projection technique discussed in Section 5.2. For each probability measure, the projection onto B
requires 3RS(m) computation operations, where R is the barycenter support size and S(m) denotes the support
size of the probability measure m, which undergoes iteration over its columns. On the other hand, the simplex
projection (line 10) is computationally more intensive. This is due to the adoption of a state-of-the-art algorithm
proposed by Condat [14], which operates in O(R log(R)). Therefore, the complexity of S(m) times line 10 amounts
to O(S(m)R log(R)). Deriving the precise number of computational operations is challenging due to the use of
a sorting algorithm in [14], the complexity of which depends on the characteristics of the input data, hence the
asymptotic complexity estimation. Note that Step 2 must be executed for the M probability measures, but these
operations can be performed in parallel (multiprocessing).

Balanced and unbalanced settings As already mentioned, our approach can handle both balanced and unbal-
anced WB problems. All that is necessary is to choose a finite (positive) value for the parameter γ in the unbalanced
case. Such a parameter is only used to define tk ∈ (0, 1] at every iteration. Indeed, algorithm 1 defines tk = 1 for

all iterations if the WB problem is balanced (because γ = ∞ in this case)4, and tk = γ/

(
ρ
√∑M

m=1
∥pk−p(m)∥2

S(m)

)
otherwise. This rule for setting up tk is a mere artifice to model eq. (17). Indeed, distB(θ

k) = ∥ProjB(θk) − θk∥
reduces to

√∑M
m=1

∥pk−p(m)∥2

S(m) thanks to proposition 2.

Convergence analysis The convergence analysis of algorithm 1 can be summarized as follows.

Theorem 4 (MAM’s convergence analysis). a) (Deterministic MAM.) Consider algorithm 1 with the choice
Mk = {1, . . . ,m} for all k. Then the sequence of points {pk} generated by the algorithm converges to a
point p̄. If the measures are balanced, then p̄ is a balanced WB; otherwise, p̄ is a γ-unbalanced WB.

b) (Randomized MAM.) Consider algorithm 1 with the choice Mk ⊂ {1, . . . ,m} as in remark 2. Then the
sequence of points {pk} generated by the algorithm converges almost surely to a point p̄. If the measures are
balanced, then p̄ is almost surely a balanced WB; otherwise, p̄ is almost surely a γ-unbalanced WB.

Proof. It suffices to show that algorithm 1 is an implementation of the (randomized) DR algorithm and invoke
theorem 2 for item a) and theorem 3 for item b). To this end, we first rely on proposition 2 to get that the projection

of θk onto the balanced subspace B is given by θ
(m),k
rs +

(pk
r−p(m)

r)

S(m) , s = 1, . . . , S(m), r = 1, . . . , R, m = 1, . . . ,M ,

where pk is computed at Step 1 of the algorithm, and the marginals p(m) of θk are computed at Step 0 if k = 0

4Observe that line 5 can be entirely disregarded in this case, by setting tk = t = 1 fixed at initialization.

14

or at Step 3 otherwise. Therefore, distB(θ
k) = ∥ProjB(θk) − θk∥ =

√∑M
m=1

∥pk−p(m)∥2

S(m) . Now, given the rule

for updating tk in algorithm 1 we can define the auxiliary variable πk+1 as πk+1 = θk + tk(ProjB(θ
k) − θk), or

alternatively,

π(m),k+1
rs = θ(m),k

rs + tk
(pkr − p

(m)
r)

S(m)
, s = 1, . . . , S(m), r = 1, . . . , R, m = 1, . . . ,M. (32)

In the balanced case, tk = 1 for all k (because γ = ∞) and thus πk+1 is as in eq. (18b). Otherwise, πk+1 is as
in eq. (17) (see the comments after algorithm 1). In both cases, πk+1 coincides with the auxiliary variable at the
first step of the DR scheme eq. (15) (see the developments at the beginning of this section). Next, observe that to
perform the second step of eq. (15) we need to assess y = 2πk+1 − θk, which is thanks to the above formula for

πk+1 given by y
(m)
rs = θ

(m),k
rs + 2 tk

pk
r−p(m)

r

S(m) , s = 1, . . . , S(m), r = 1, . . . , R, m = 1, . . . ,M .

As a result, for the choice Mk = {1, . . . ,M} for all k, Step 2 of algorithm 1 yields, thanks to proposition 3,
π̂k+1 as at the second step of eq. (15). Furthermore, the updating of θk+1 in the latter coincides with the rule in
algorithm 1: for s = 1, . . . , S(m), r = 1, . . . , R, and m = 1, . . . ,M ,

θ(m),k+1
rs = θ(m),k

rs + π̂(m),k+1
rs − π(m),k+1

rs = θ(m),k
rs + π̂(m),k+1

rs −

(
θ(m),k
rs + tk

(pkr − p
(m)
r)

S(m)

)

= π̂(m),k+1
rs − tk

(pkr − p
(m)
r)

S(m)
.

Hence, for the choice Mk = {1, . . . ,M} for all k, algorithm 1 is the DR Algorithm eq. (15) applied to the WB
eq. (13). Theorem 2 thus ensures that the sequence {πk} as defined above converges to some π̄ solving eq. (13).
To show that {pk} converges to a barycenter, let us first use the property that B is a linear subspace to obtain the
decomposition θ = ProjB(θ) + ProjB⊥(θ) that allows us to rewrite the auxiliary variable πk+1 differently:

πk+1 = θk + tk(ProjB(θ
k)− θk) = θk − tkProjB⊥(θk).

Let us denote π̃k+1 := ProjB(π
k+1). Then π̃k+1 = ProjB(θ

k − tkProjB⊥(θk)) = ProjB(θ
k), and thus proposition 2

yields

π̃(m),k+1
rs = θ(m),k

rs +
pkr − p

(m)
r

S(m)
s = 1, . . . , S(m), r = 1, . . . , R, m = 1, . . . ,M,

which in turn gives (by recalling that
∑S(m)

s=1 θ
(m),k
rs = p

(m)
r):

∑S(m)

s=1 π̃
(m),k+1
rs = pkr , r = 1, . . . , R, m = 1, . . . ,M . As

limk→∞ πk = π̄, limk→∞ π̃k = limk→∞ ProjB(π
k) = ProjB(π̄) =: π̃. Therefore, for all r = 1, . . . , R, m = 1, . . . ,M ,

the following limits are well defined:

p̄r :=

S(m)∑
s=1

π̃(m)
rs = lim

k→∞

S(m)∑
s=1

π̃(m),k+1
rs = lim

k→∞
pkr . (33)

We have shown that the whole sequence {pk} converges to p̄. By recalling that π̄ solves eq. (13), we conclude
that in the balanced setting π̃ = π̄ and thus p̄ is a WB. On the other hand, in the unbalanced setting, p̄ above is a
γ-unbalanced WB according to definition 2.

The proof of item b) is a verbatim copy of the above proof: the sole difference, given the assumptions on the
choice of Mk, is that we need to rely on theorem 3 (and not on theorem 2 as previously done) to conclude that
{πk} converges almost surely to some π̄ solving eq. (13). Thanks to the continuity of the orthogonal projection
onto the subspace B, the limits above yield almost surely convergence of {pk} to a barycenter p̄.

15

6 Numerical Experiments

This section illustrates the MAM’s practical performance on some well-known datasets. The impact of different
data structures is studied before the algorithm is compared to state-of-the-art methods. This section closes with an
illustrative example of MAM to compute UWBs. Numerical experiments were conducted using 20 cores (Intel(R)
Xeon(R) Gold 5120 CPU) and Python 3.9. The test problems and solvers’ codes are available for download in the
link https://ifpen-gitlab.appcollaboratif.fr/detocs/mam_wb.

6.1 Study on data structure influence

We start by evaluating the impact of conditions that influence the storage complexity and the algorithm performance.
The main conditions are the sparsity of the data and the number of distributions M . Naturally, the denser the
distributions or the more distributions are treated, the greater the storage. In these configurations, the time per
iteration grows because the number of projects onto the simplex increases. To assess the impact of data sparsity
and the number of measures on the algorithm’s performance, we consider a fixed-support approach and experiment
on datasets inspired by [6, 16]. The number of nested ellipses controls the density of a dataset: as exemplified in
section 6.1(a) and section 6.1, measures with only a single ellipse are very sparse. In contrast, a dataset with 5
nested ellipses is denser. In this first experiment, we apply MAM with ρ = 100 (without proper tuning) for every

(a) A sample of datasets (b) MAM’s number of iterations per second

Figure 1: (a) Sample of the artificial nested ellipses datasets. The first column is taken from the first dataset
with 1 ellipse, the second column from the second dataset with 2 nested ellipses, and the sixth column with 6
nested ellipses. (b) Evolution of the number of iterations per second depending on the density or the number of
distributions.

dataset. Only a single processor was considered to avoid CPU communication management. Figure 6.1(b) shows

16

https://ifpen-gitlab.appcollaboratif.fr/detocs/mam_wb

Table 1: Mean density with the number of nested ellipses. The density has been calculated by averaging the ratio of
non-null pixels per image over 100 generated pictures for each dataset sharing the same number of nested ellipses.

Number of ellipses 1 2 3 4 5 6

Density (%) 29.0 51.4 64.3 70.9 73.5 75.0

that, as expected, the execution time of an iteration increases with increasing density and number of measures.
The number of measures influences the method’s speed more than density (this phenomenon can be due to the
numpy matrix management). This means the quantity of information in each measure does not seem to make
the algorithm less efficient in terms of speed. Such a result is to be put in regard with algorithms such as B-
ADMM [41] that are particularly shaped for sparse datasets but less efficient for denser ones. Section 6.2.4 develops
this further. Additionally, it is worth noting that the proposed method can harness parallel computation, enabling
the distribution of work across the M measures. This approach effectively mitigates the impact of the measure
count on computational efficiency.

The growing dimensions of images have an impact on the computation time, as seen in Section 5.3. For example,
when treating dense K ×K images for a fixed support problem, the number of operations per probability density
for the projection onto B is OB

1 = 3 ·K2 ·K2 = 3 ·K4 and onto the simplex O∆
1 = K2 ·K2 · log(K2) = 2K4 · log(K).

• For a fixed-support problem with dense (nK) × (nK) images, OB
nK = 3 · (nK)4 = n4 · OB

1 and O∆
nK =

n4K4 log(n2K2) ≈ n4 ·O∆
1 .

• For a fixed-support problem with dense K × · · · × K = Kd measures, OB
Kd = 3 · (Kd)2 = K2d−4 · OB

1 and

O∆
Kd = (Kd)2 log(Kd) = d

2K
2d−4 ·O∆

1 .

• For a free-support problem, in dimension d, with dense Kd grids, the size of the support R depends on the
number M of treated measures, R = ((K−1)M+1)d. Following the details of Section 5.3, OB

free,Kd = 3((K−
1)M + 1)dKd ≈MdK2d−4OB

1 and O∆
free,Kd = ((K − 1)M + 1)dKd log(((K − 1)M + 1)d) ≈ d

2M
dK2d−4 ·O∆

1 .

For instance, for a fixed-support problem with 40× 40 images (see section 6.1), the algorithm computes the projec-
tions for one measure in an average time of 0.01 seconds. However, for the free-support problem formulation with
this dataset of 6 images, it takes 6 seconds per measure. Similarly, for a fixed-support problem with 40 × 40 × 40
objects (ellipsoids with similar properties as in section 6.1 in 3D), the projections for one measure take 16 seconds.

6.2 Fixed-support approach

This section focuses on the fixed-support approach: R in (8) is equal to K2, the number of pixels of a K×K image.

6.2.1 Comparison with IBP

The Iterative Bregman Projection (IBP) [6] is a well-known algorithm for computing Wasserstein barycenters. As
mentioned in the Introduction, IBP employs a regularizing function parameterized by λ > 0, which impacts precision
and must kept at a moderate magnitude to avoid numerical errors (double-precision overflow). The experiment
below sheds light on the differences between MAM and IBP and their advantages depending on the use. Our IBP
code is inspired by the original MATLAB code by G. Peyré5.

5https://github.com/gpeyre/2014-SISC-BregmanOT

17

https://github.com/gpeyre/2014-SISC-BregmanOT

6.2.2 Qualitative comparison

Here, we use 100 images per digit of the MNIST database [35], where each digit has been randomly translated
and rotated. Each image has 40 × 40 pixels and can be treated as probability distributions after normalization.
Section 6.2.2 displays intermediate solutions for digits 3, 4, 5 at different time steps both for MAM and IBP. For the
two methods, the hyperparameters have been tuned: for instance, λ = 1700 is the greatest lambda that enables IBP
to compute the barycenter of the 3’s dataset without double-precision overflow error. Regarding MAM, a range of
values for ρ > 0 have been tested for 100 seconds of execution, to identify which one provides good performance
(for example, ρ = 50 for the dataset of 3’s). Section 6.2.2 shows that, for each dataset, IBP gets quickly to a

Figure 2: (top) For each digit 36 out of the 100 scaled, translated, and rotated images considered for each barycenter.
(bottom) Barycenters after t = 10, 50, 500, 1000, 2000 seconds, where the left-hand-side is the IBP evolution of its
barycenter approximation, the middle panel is MAM’s evolution using 10 CPU and the right-hand-side is a solution
computed by applying Gurobi to the LP eq. (8).

stable barycenter approximation. Such a point is obtained shortly after with MAM (less than 10 seconds after).

18

However, MAM continues to move towards a sharper solution. It is clear that the more CPUs used for MAM, the
better. Furthermore, while IBP is not well-suitable for CPU parallelization [6,27,41], MAM offers a clear advantage
depending on the hardware at stake.

6.2.3 Quantitative comparison

Next, we benchmark MAM, randomized MAM and IBP on a dataset with 60 images per digit of the MNIST
database [35], where every digit is a normalized image 40 × 40 pixels. First, all three methods have their hyper-
parameters tuned thanks to a sensitivity study as explained in Section 6.2.2. Then, at every time step an approxi-
mation of the computed barycenter is stored to compute the error W̄ 2

2 (p
k) − W̄ 2

2 (pG) :=
∑M

m=1
1
MW 2

2 (µ
k, ν(m)) −∑M

m=1
1
MW 2

2 (µG, ν
(m))), where µG is a fixed-support barycenter computed using Gurobi to solve the LP eq. (8).

Figure 3: Evolution with respect to time of the difference between the Wasserstein barycenter distance of an
approximation, W̄ 2

2 (p
k), and the Wasserstein barycentric distance of the exact solution W̄ 2

2 (pG) given by the LP.
The time step between two points is 30 seconds.

For this dataset, section 6.2.3 shows that IBP is almost 10 times faster per iteration. However, IBP computes a
solution to the regularized model, not to the (fixed-support) WB linear problem (8). Instead, MAM does converge
to a solution of (8). So there is a threshold where the accuracy of MAM exceeds that of IBP: in our case, around
200s - for the computation with the greatest number of processors (see section 6.2.3). Such a threshold always exists
depending on the computational means (hardware). This quantitative study explains what has been exemplified
with the images of Section 6.2.2: the accuracy of IBP is bounded by the choice of λ, itself bounded by an overflow
error. In contrast, the MAM hyperparameter only impacts the convergence speed. For this dataset, the WB
computed by IBP is within 2% of accuracy and thus reasonably good. However, as shown in Table 1 in [41], one
can choose other datasets where IBP’s accuracy might be unsatisfactory.

Furthermore, section 6.2.3 exemplifies an attractive asset of randomized variants of MAM: in some configurations,
randomized MAM is more efficient than (deterministic) MAM. (The curve MAM 1-random, 1 processor does not
appear in the figure because it is above the y-axis value range due to its bad performance.) Indeed, a trade-off
exists between time spent per iteration and precision gained after an iteration. For example, with 10 processors,
each processor treats six measures in the deterministic MAM, but only one is treated in the randomized MAM.
Therefore, the time spent per iteration is roughly six times shorter in the latter, which counterbalances the loss

19

of accuracy per iteration. On the other hand, when using 20 processors, only three measures are treated by each
processor, and the trade-off is not worth it anymore: the gain in time does not compensate for the loss in accuracy
per iteration. One should adapt the use of the algorithm with care since this trade-off conclusion is only heuristic
and strongly depends on the underlying dataset and hardware. A sensitivity analysis is always a good thought for
choosing the most effective amount of measures handled per processor while using the randomized MAM against
the deterministic MAM

6.2.4 Influence of the support

This section echoes Section 6.1 and studies the influence of the support size. To do so, two datasets have been
tested for MAM and IBP. The first dataset is already used in Section 6.2.3: 60 pictures of 3’s taken from the MNIST
database [35]. The second dataset is also composed of these 60 images but each digit has been randomly translated
and rotated in the same way as in section 6.2.2. Therefore, the union of the support of the second dataset is greater
than the first one.

section 6.2.4 presents two graphs that have been obtained just as in Section 6.2.3, but displaying the evolution

in percentage: ∆W% :=
W̄ 2

2 (p
k)−W̄ 2

2 (pG)

W̄ 2
2 (pG)

× 100. Once more, the hyperparameters have been fully tuned. The

hyperparameter of the IBP method is smaller for the second dataset. Indeed, as stated in [41], the greater the
support, the stronger the restrictions on λ, and thus, the less precise IBP.

Figure 4: Evolution of the percentage of the distance between the exact solution of the barycenter problem and the
computed solution using IBP and MAM method with 20 processors: (left) for the standard MNIST, (right) for the
randomly translated and rotated MNIST.

6.2.5 Comparison with B-ADMM

This subsection compares MAM with the algorithm B-ADMM of [37] using the dataset and MATLAB implementation
provided by the authors at the link https://github.com/bobye/d2_kmeans. We omit IBP in our analysis because
it has already been shown in [37, Table I] that IBP is outperformed by B-ADMM in this dataset. As in [37, Section
IV], we consider M = 1000 discrete measures, each with a sparse finite support set obtained by clustering pixel
colors of images. The average number of support points is around 6, and the barycenter’s number of fixed-support
points is R = 60. The optimal value of (8) is 712.7, computed in 10.6 seconds by the Gurobi LP solver. We have
coded MAM in MATLAB to have a fair comparison with the MATLAB B-ADMM algorithm provided at the above link.
Since MAM and B-ADMM use different stopping tests, we have set their stopping tolerances equal to zero and

20

https://github.com/bobye/d2_kmeans

Table 2: MAM vs B-ADMM. B-ADMM code is the one provided by its designers without changing parameters
(except the stopping set to zero and the maximum number of iterations). Both algorithms use the same initial
point. The optimal value of the WB barycenter for this dataset is 712.7, computed by Gurobi in 10.6 seconds.

Iterations
Objective value Seconds

B-ADMM MAM B-ADMM MAM
100 742.8 716.7 1.1 1.1
200 725.9 714.1 2.4 2.2
500 716.5 713.3 5.6 5.4
1000 714.1 712.9 11.8 10.8
1500 713.5 712.8 18.9 16.2
2000 713.3 712.8 25.1 21.6
2500 713.2 712.8 31.0 27.1
3000 713.1 712.7 39.8 32.4

let the solvers stop with a maximum number of iterations. Table 2 below reports CPU time in seconds and the
objective values yielded by the (approximated) barycenter p̃ computed by both solvers: W̄ 2

2 (p̃).
The results show that, for the considered dataset, MAM and B-ADMM are comparable regarding CPU time,

with MAM providing more precise results. B-ADMM currently lacks a convergence analysis, unlike MAM.

6.3 Free-support approach

This section considers the free-support problem (see Section 2, theorem 1), where the measures are supported on
the same discrete grid in R2 (d = 2) and αm = 1

M for all m = 1, . . . ,M . The dataset we use is the one from [2],
illustrated in section 6.3. In this case, M = 10 measures, S = K2 = 602 and R = ((K−1)M+1)d = 5912 = 349281.
The resulting LP problem is too large to be solved by standard solvers. Therefore, we employed the dedicated solver
of [2], available at the link https://github.com/eboix/high_precision_barycenters.

Figure 5: Five 60× 60 images from the nested ellipses dataset in [2].

Section 6.3 presents the evolution of the points computed by MAM along 9 hours of processing. The image on
the right-hand side is an exact barycenter computed by the solver of [2] after 3.5 hours. We recall that [2] handles
the dual of (8) by employing a geometry-based separation oracle. Once the dual is solved, the method recovers
a primal vertex, yielding thus a sparse WB. As a result, the right-hand side image in Section 6.3 is sharp. Such
an exact WB is sharper than the point provided by MAM after 9 hours. Despite the visual differences, the point
provided by MAM is a Wasserstein barycenter. To see this, we compare the values of the objective function in (8),
i.e., the Wassersein barycentric distance. The exact solution of the method in [2] has a barycentric distance of
0.2666. After 1 hour of processing, our method had a barycenter distance of 0.2702, which improved to 0.2667 after
3.5 hours, when the solver [2] halts. The slight visual difference stems from the fact that [2] finds a vertex solution

21

https://github.com/eboix/high_precision_barycenters

Figure 6: Evolution of the approximated MAM barycenter with time in regards with the exact barycenter of the
Altschuler and Bois-Adsera algorithm computed in 4 hours [2].

to WB problem while MAM does not.
Section 6.3 illustrates MAM’s iterative process. Let π̂(m),k be the mth transportation plan computed by MAM

at iteration k (see Line 10 of Algorithm 1). Note that Ŵ 2
2 (p

k) :=
∑M

m=1⟨c(m), π̂(m),k⟩ is an approximation to

W̄ 2
2 (p

k) :=
∑M

m=1 W
2
2 (µ

k, ν(m)), the exact function value (barycentric distance) at iteration k. Furthermore, as it
can be seen from the Douglas-Rachford algorithm in eq. (15), the transport plans π̂(m),k do not necessarily respect
the constraint embodied by B and is thus infeasible to the WB problem (8). Thus, the approximate value Ŵ 2

2 (p
k)

has to be seen in perspective with the distance of π̂k to B, i.e., distB(π̂k). Section 6.3 shows the evolution of
the approximate barycentric distance Ŵ 2

2 (p
k), infeasibility measure distB(π̂

k), exact barycentric distance W̄ 2
2 (p

k),
and optimal value W̄ 2

2 (pexact) = 0.2666. We emphasize that W̄ 2
2 (p

k) is computed (by Gurobi) after terminating
MAM, while Ŵ 2

2 (p
k) and distB(π̂

k) are computed along the iterative process. After 3.5 hours, MAM provides
W̄ 2

2 (p
k) = 0.2667, Ŵ 2

2 (p
k) = 0.2658 and distB(π̂

k) = 1.27 · 10−5.
Because of its structure, the algorithm of [2] cannot provide intermediary approximations of the barycenters,

which is a disadvantage of the method over MAM. As an example, we consider M = 10 images 40 × 40 presented
in Section 6.2.3. Although smaller, these images are much denser than the ones in Section 6.3 and thus the WB
problem is more complicated. While MAM can provide free-support WB approximations all along its iterative
process, the solver of [2] could not provide a solution after 50 hours of processing.

6.4 Unbalanced Wasserstein Barycenter

This section treats a particular example to illustrate the interest in using UWB. The artificial dataset is composed
of 50 images with resolution 80×80. Each image is divided into four squares. The top left, bottom left, and bottom
right squares are randomly filled with double nested ellipses and the top right square is always empty as exemplified
in section 6.4. In this example, every image is normalized to depict a probability measure so that we can compare
(fixed-support) WB and UWB.

With respect to eq. (11), one set of constraints is relaxed and the influence of the hyperparameter γ is studied. If
γ is large enough (i.e. greater than ∥vec(c)∥ ≈ 1000, see proposition 1), the problem boils down to the standard WB
problem since the example deals with probability measures: the resulting UWB is indeed a WB. When decreasing γ
the transportation costs take more importance than the distance to B which is more and more relaxed. Therefore,
as illustrated by section 6.4, the resulting UWB splits the image into four parts, giving visual meaning to the

22

Figure 7: Evolution of the approximated Wasserstein barycenter distance Ŵ 2
2 (p

k) with iterations (k) and time.

fixed-support barycenter.
In the same vein, section 6.4 provides an illustrative application of MAM for computing UWB in another dataset.

References

References

[1] M. Agueh and G. Carlier, Barycenters in the wasserstein space, Siam Journal on Mathematical Analysis,
43 (2011), pp. 904–924, https://doi.org/10.1137/100805741.

[2] J. M. Altschuler and E. Boix-Adsera, Wasserstein barycenters can be computed in polynomial time in
fixed dimension, Journal of Machine Learning Research, 22 (2021), pp. 1–19.

[3] J. M. Altschuler and E. Boix-Adserà, Wasserstein barycenters are NP-Hard to compute, SIAM Journal
on Mathematics of Data Science, 4 (2022), pp. 179–203, https://doi.org/10.1137/21M1390062.

[4] E. Anderes, S. Borgwardt, and J. Miller, Discrete wasserstein barycenters: optimal transport for
discrete data, Mathematical Methods of Operations Research, 84 (2016), pp. 389–409, https://doi.org/10.
1007/s00186-016-0549-x.

[5] H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces,
Springer International Publishing, 2nd ed., 2017, https://doi.org/10.1007/978-3-319-48311-5.

23

https://doi.org/10.1137/100805741
https://doi.org/10.1137/21M1390062
https://doi.org/10.1007/s00186-016-0549-x
https://doi.org/10.1007/s00186-016-0549-x
https://doi.org/10.1007/978-3-319-48311-5

Figure 8: Dataset composed of 50 pictures with nested ellipses randomly positioned in the top left, bottom right,
and left corners.

Figure 9: UWB computed with MAM for different values of γ.

[6] J.-D. Benamou, G. Carlier, M. Cuturi, L. Nenna, and G. Peyré, Iterative bregman projections for
regularized transportation problems, SIAM Journal on Scientific Computing, 37 (2015), pp. 1111–1138, https:
//doi.org/10.1137/141000439.

[7] D. P. Bertsekas, Convex Optimization Algorithms, no. 1st, Athena Scientific, 2015, https://doi.org/

ISBN1-886529-28-0.

[8] S. Borgwardt, An LP-based, strongly-polynomial 2-approximation algorithm for sparse Wasserstein barycen-
ters, Operational Research, 22 (2022), pp. 1511–1551, https://doi.org/10.1007/s12351-020-00589-z.

[9] S. Borgwardt and S. Patterson, Improved linear programs for discrete barycenters, INFORMS Journal
on Optimization, 2 (2020), pp. 14–33, https://doi.org/10.1287/ijoo.2019.0020.

[10] S. Borgwardt and S. Patterson, On the computational complexity of finding a sparse Wasserstein barycen-
ter, Journal of Combinatorial Optimization, 41 (2021), pp. 736–761.

[11] G. Carlier, A. Oberman, and E. Oudet, Numerical methods for matching for teams and Wasserstein
barycenters, ESAIM: Mathematical Modelling and Numerical Analysis, 49 (2015), pp. 1621–1642, https:

//doi.org/10.1051/m2an/2015033.

24

https://doi.org/10.1137/141000439
https://doi.org/10.1137/141000439
https://doi.org/ISBN 1-886529-28-0
https://doi.org/ISBN 1-886529-28-0
https://doi.org/10.1007/s12351-020-00589-z
https://doi.org/10.1287/ijoo.2019.0020
https://doi.org/10.1051/m2an/2015033
https://doi.org/10.1051/m2an/2015033

Figure 10: (left) UWB for a dataset of letters M-A-M built in the same logic than section 6.4 with 50 figures: (right)
resulting UWB with γ = 0.01, computed in 200 seconds using 10 processors.

[12] P. L. Combettes and J. Eckstein, Asynchronous block-iterative primal-dual decomposition methods for
monotone inclusions, Mathematical Programming, 168 (2018), pp. 645–672, https://doi.org/10.1007/

s10107-016-1044-0.

[13] P. L. Combettes and J.-C. Pesquet, Stochastic quasi-Fejér block-coordinate fixed point iterations with
random sweeping, SIAM Journal on Optimization, 25 (2015), pp. 1221–1248, https://doi.org/10.1137/
140971233.

[14] L. Condat, Fast projection onto the simplex and the lll1ball, Mathematical Programming, 158 (2016), pp. 575–
585.

[15] M. Cuturi, Sinkhorn distances: Lightspeed computation of optimal transport, in Advances in Neural Informa-
tion Processing Systems, C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Weinberger, eds., vol. 26,
Curran Associates, Inc., 2013.

[16] M. Cuturi and A. Doucet, Fast computation of Wasserstein barycenters, in Proceedings of the 31st Inter-
national Conference on Machine Learning, E. P. Xing and T. Jebara, eds., vol. 32 of Proceedings of Machine
Learning Research, Bejing, China, 22–24 Jun 2014, PMLR, pp. 685–693.

[17] M. Cuturi and G. Peyré, A smoothed dual approach for variational Wasserstein problems, SIAM Journal
on Imaging Sciences, 9 (2016), pp. 320–343, https://doi.org/10.1137/15M1032600.

[18] W. de Oliveira, C. Sagastizábal, D. D. J. Penna, M. E. P. Maceira, and J. M. Damázio, Optimal
scenario tree reduction for stochastic streamflows in power generation planning problems, Optimization Methods
and Software, 25 (2010), pp. 917–936.

[19] J. Douglas and H. H. Rachford, On the numerical solution of heat conduction problems in two and three
space variables, Transactions of the American Mathematical Society, 82 (1956), pp. 421–439.

[20] J. Eckstein and D. P. Bertsekas, On the Douglas—Rachford splitting method and the proximal point
algorithm for maximal monotone operators, Mathematical Programming, 55 (1992), pp. 293–318, https://
doi.org/10.1007/bf01581204.

25

https://doi.org/10.1007/s10107-016-1044-0
https://doi.org/10.1007/s10107-016-1044-0
https://doi.org/10.1137/140971233
https://doi.org/10.1137/140971233
https://doi.org/10.1137/15M1032600
https://doi.org/10.1007/bf01581204
https://doi.org/10.1007/bf01581204

[21] A. Fu, J. Zhang, and S. Boyd, Anderson accelerated Douglas–Rachford splitting, SIAM Journal on Scientific
Computing, 42 (2020), pp. A3560–A3583, https://doi.org/10.1137/19m1290097.

[22] A. Gramfort, G. Peyré, and M. Cuturi, Fast optimal transport averaging of neuroimaging data, in
Information Processing in Medical Imaging, S. Ourselin, D. C. Alexander, C.-F. Westin, and M. J. Cardoso,
eds., Cham, 2015, Springer International Publishing, pp. 261–272.

[23] T. Guillaume, P. Gabriel, and G. Yann, Wasserstein loss for image synthesis and restoration, SIAM
Journal on Imaging Sciences, 9 (2016), pp. 1726–1755.

[24] F. Heinemann, M. Klatt, and A. Munk, Kantorovich–Rubinstein distance and barycenter for finitely
supported measures: Foundations and algorithms, Applied Mathematics & Optimization, 87 (2022), p. 4,
https://doi.org/10.1007/s00245-022-09911-x.

[25] F. Iutzeler, P. Bianchi, P. Ciblat, and W. Hachem, Asynchronous distributed optimization using a
randomized alternating direction method of multipliers, in 52nd IEEE Conference on Decision and Control,
IEEE, dec 2013, https://doi.org/10.1109/cdc.2013.6760448.

[26] J. v. Lindheim, Simple approximative algorithms for free-support wasserstein barycenters, Computational
Optimization and Applications, 85 (2023), pp. 213–246, https://doi.org/10.1007/s10589-023-00458-3.

[27] G. Peyré, Bregmanot, 2014, https://github.com/gpeyre/2014-SISC-BregmanOT.

[28] G. Peyré and M. Cuturi, Computational optimal transport: With applications to data science, Foundations
and Trends in Machine Learning, 11 (2019), pp. 355–607, https://doi.org/10.1561/2200000073, http:
//dx.doi.org/10.1561/2200000073.

[29] G. C. Pflug and A. Pichler, Multistage Stochastic Optimization, Springer International Publishing, 2014,
https://doi.org/10.1007/978-3-319-08843-3.

[30] G. Puccetti, L. Rüschendorf, and S. Vanduffel, On the computation of wasserstein barycenters, Journal
of Multivariate Analysis, 176 (2020), https://doi.org/10.1016/j.jmva.2019.104581.

[31] Y. Rubner, C. Tomasi, and L. J. Guibas, The earth mover’s distance as a metric for image retrieval, Inter-
national Journal of Computer Vision, 40 (2000), pp. 99–121, https://doi.org/10.1023/A:1026543900054.

[32] T. Sejourne, G. Peyre, and F.-X. Vialard, Unbalanced optimal transport, from theory to numerics,
Handbook of Numerical Analysis, 24 (2023), pp. 407–471, https://doi.org/10.1016/bs.hna.2022.11.003.

[33] D. Simon and A. Aberdam, Barycenters of natural images constrained Wasserstein barycenters for image
morphing, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020,
pp. 7910–7919.

[34] R. Sinkhorn, Diagonal equivalence to matrices with prescribed row and column sums. ii, Proceedings of the
American Mathematical Society, 45 (1974), pp. 195–198.

[35] Tijmen, affnist, 2013, https://www.cs.toronto.edu/~tijmen/affNIST/.

[36] C. Villani, Optimal transport: onld and new, vol. 338, Springer Verlag, 2009.

[37] H. Wang and A. Banerjee, Bregman alternating direction method of multipliers, in Advances in Neural
Information Processing Systems, Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Weinberger,
eds., vol. 27, Curran Associates, Inc., 2014.

26

https://doi.org/10.1137/19m1290097
https://doi.org/10.1007/s00245-022-09911-x
https://doi.org/10.1109/cdc.2013.6760448
https://doi.org/10.1007/s10589-023-00458-3
https://github.com/gpeyre/2014-SISC-BregmanOT
https://doi.org/10.1561/2200000073
http://dx.doi.org/10.1561/2200000073
http://dx.doi.org/10.1561/2200000073
https://doi.org/10.1007/978-3-319-08843-3
https://doi.org/10.1016/j. jmva.2019.104581
https://doi.org/10.1023/A:1026543900054
https://doi.org/10.1016/bs.hna.2022.11.003
https://www.cs.toronto.edu/~tijmen/affNIST/

[38] J.-P. Watson and D. L. Woodruff, Progressive hedging innovations for a class of stochastic mixed-integer
resource allocation problems, Computational Management Science, 8 (2010), pp. 355–370, https://doi.org/
10.1007/s10287-010-0125-4.

[39] Z. Xu, M. Figueiredo, and T. Goldstein, Adaptive ADMM with Spectral Penalty Parameter Selection, in
Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, A. Singh and J. Zhu,
eds., vol. 54 of Proceedings of Machine Learning Research, PMLR, 20–22 Apr 2017, pp. 718–727.

[40] J. Ye and J. Li, Scaling up discrete distribution clustering using ADMM, in 2014 IEEE International Con-
ference on Image Processing (ICIP), 2014, pp. 5267–5271, https://doi.org/10.1109/ICIP.2014.7026066.

[41] J. Ye, P. Wu, J. Z. Wang, and J. Li, Fast discrete distribution clustering using Wasserstein barycenter
with sparse support, IEEE Transactions on Signal Processing, 65 (2017), pp. 2317–2332, https://doi.org/
10.1109/TSP.2017.2659647.

27

https://doi.org/10.1007/s10287-010-0125-4
https://doi.org/10.1007/s10287-010-0125-4
https://doi.org/10.1109/ICIP.2014.7026066
https://doi.org/10.1109/TSP.2017.2659647
https://doi.org/10.1109/TSP.2017.2659647

	Introduction
	Background on optimal transport and Wasserstein barycenter
	Discrete unbalanced Wasserstein Barycenter
	Problem reformulation and the DR algorithm
	The Method of Averaged Marginals
	Projecting onto the subspace of balanced plans
	Evaluating the Proximal Mapping of Transportation Costs
	The Method of Averaged Marginals (MAM)

	Numerical Experiments
	Study on data structure influence
	Fixed-support approach
	Comparison with IBP
	Qualitative comparison
	Quantitative comparison
	Influence of the support
	Comparison with B-ADMM

	Free-support approach
	Unbalanced Wasserstein Barycenter

