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A B S T R A C T

Implicit Neural Representations are powerful tools for representing 3D shapes. They encode an implicit field in the parameters of
a Neural Network, leveraging the power of auto-differentiation for optimizing the implicit function and avoiding the need for a
manually crafted function. So far, Implicit Neural Representations have been mainly designed to extract or render object surfaces
and methods primarily focus on improving the implicit function near the surface. In this paper we argue that implicit fields are
useful for other shape analysis tasks, in particular skeleton (medial axis) extraction. Indeed, a medial axis is defined through
distances to the surface, which can be provided by an implicit neural representation, making it robust to noise and missing data.
However this requires the implicit field to be reliable away from the surface, something most representations are not optimized for.
To achieve this, inspired by variational image denoising techniques, we propose to add a Total Variation term, to regularize the
implicit field. We further design a skeleton sampling method working directly on the GPU, and link the extracted points using a
coverage formulation. We show that our resulting neural skeleton is more robust to sample defects such as noise or missing data
compared to other medial axis extraction methods.

1. Introduction

Neural fields are a growing trend of today’s computer graph-
ics and computer vision research. They are used for a wide
variety of tasks, for scene reconstruction and novel viewpoint
rendering (see [1] for a comprehensive survey).

Implicit surface representation has been a part of the graph-
ics pipeline for decades, be it for geometric modeling [2] or for
surface reconstruction [3] with efficient methods for extracting
a mesh [4] or direct rendering using e.g. sphere tracing [5]. Re-
cently it has gained a lot of traction, by using a neural network
for the implicit function instead of a manually crafted one. This
de facto encodes the shape into the parameters of a neural net-
work, to be optimized over the input points, either from a single
shape, or over a latent shape space [6, 7]. This formalism has
proven to be very efficient for extracting object or scene sur-
faces from an input point set, possibly overcoming noise, out-
liers and missing data. So far, focus has been directed towards
improving the neural field near the surface, the ultimate goal
being to improve the surface rendering or mesh extraction.

In this paper, we instead propose to improve the neural field
away from the surface. By doing so, we aim at extracting topo-
logical information that is contained in the signed distance field
of the shape. The medial axis is one of such topological char-
acteristics. It is formally defined as the locus of points that
have at least two nearest points on the surface. From a signed
distance field perspective, it corresponds to distance gradient
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discontinuities. However this characterization requires a reli-
able signed distance estimation, especially near the medial axis,
where many implicit neural representations (INR) exhibit arte-
facts: the gradient norm changes, while it should remain con-
stant. To alleviate this, we propose to constrain the variations
of the norm of the gradient. We draw our inspiration from im-
age regularization techniques where the Total Variation (TV)
allows to get smooth color gradients [8]. By penalizing high to-
tal variation of the gradient’s norm, we constrain the norm to be
as-constant-as-possible which yields a much more stable signed
distance field.

In summary, our contributions are as follows:

• A TV regularization term yielding a smoother signed dis-
tance function away from the surface.

• A skeleton sampling method on the GPU.

• A complete pipeline to extract a medial complex from an
input point cloud.

2. Related Work

2.1. Implicit Neural Representations

Analyzing 3D data using machine learning techniques has
been a challenge tackled by many researchers in the past
decade. Center to this challenge is the question of shape repre-
sentation: how to represent geometric data, for it to be amenable
to deep learning [9, 10]. Recently, implicit representations have
gained a lot of traction, not only for surface reconstruction but
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Fig. 1: Neural Skeletons computed on several shapes with various topologies.
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Fig. 2: Overview of our method. An implicit neural representation is trained on the input point set, uniform surface points and skeletal points are extracted, and the
skeleton mesh is recovered using a cover-set formulation solved as a Mixed-Integer Linear Program (MILP).

also for novel view rendering. We focus here on the main meth-
ods for shape representation and refer the reader to [1] for a
broader state of the art of this very active research field.

Pioneering this representation, Park et al. [6] introduced an
auto-decoder able to optimize the latent code of a shape us-
ing MAP estimation and estimate the Signed Distance Function
(SDF) at any point in the ambient space, given the shape latent
code and the query point coordinates. Indicator functions have
also been used instead of SDF for shape reconstruction [7] or
for shape generation [11]. Indicator functions are interesting
for they allow to focus on the surface itself without learning
accurate distance values anywhere in the ambient space.

Following the neural novel view rendering trend [12] which
encodes a scene radiance field in the parameters of a multilayer
perceptron optimized in a self-supervised way, INRs have been
used for encoding a signed or unsigned distance field or an oc-
cupancy indicator, always with a view of reconstructing the sur-
face. These networks are trained per shape and do not rely on a
database. Atzmon and Lipman [13, 14] and Chibane et al. [15]
learn an SDF from raw data, point clouds or triangle soups,
without needing an oriented normal, hence alleviating the need
for a groundtruth sign or watertight surfaces. Gropp et al. [16]
proposed a new way of optimizing the SDF, with an eikonal
loss enforcing a unit norm for the SDF gradient and a surface

loss forcing the SDF to vanish at the input surface samples.
Many further developments were made: Peng et al. [17] mixed
a voxel-based convolutional encoder with an implicit decoder to
be able to handle large scale data. Alternatively, one can encode
a large scale shape through only local implicit fields instead of
a global one to handle details and remain light-weight [18, 19].
By changing the activation from ReLU to periodic functions,
Sitzman et al. [20] introduced SIREN which allowed to bet-
ter recover shape details and compute reliable gradients. Inter-
estingly, SIREN is a very general formulation, also useful for
solving a wide variety of partial differential equations. It was
later used in a multiscale way to decompose the shape into a
smooth shape and an implicit displacement field encoding the
details [21], yielding unparalleled detail recovery. Many im-
provements have later focused on levels of details [22], latent
space regularization [23]. For surface reconstruction or render-
ing, it is also possible to learn only a potential, Lipman [24] pro-
posed to borrow from fluids phase transition to learn an implicit
function converging to an occupancy function, and Williams et
al. proposed a kernel-based INR [25] to reconstruct a potential.
However all of these methods target shape surface extraction
and focus their quality effort around this level set.

INR being optimized per shape, speed can be an issue. To
alleviate this, Müller et al. introduced InstantNGP [26] which is
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able to compute an SDF in a few seconds. While this is crucial
for fast visualization, our analysis task does not require to be
real time, and we do not follow this path.

Dedicated methods for rendering implicit representations,
without going through a mesh extraction, have been proposed,
way before the rise of deep learning. The most standard render-
ing method remains sphere tracing [5] which casts rays along
a viewing direction and samples point on it depending on the
signed distance field local value.

Neural implicits have also been recently employed for other
tasks than visualization or shape reconstruction, for example to
perform guaranteed queries on shapes [27], but not for medial
axis extraction.

2.2. Skeleton extraction

Skeleton extraction from geometric data is a well researched
problem, we refer the reader to Tagliasacchi et al.’s survey [28]
for an extensive description of the different approaches and fo-
cus here on the main ones. In a nutshell, skeleton extraction
consists in extracting a graph-like structure able to summarize
the shape. Several mathematical definitions for the skeleton ex-
ist, including curve skeleton and medial axis. A curve skeleton
represents the shape through a set of curves. It has been for-
malized using medial geodesic functions [29], although most
methods do not use this definition and remain empirical. It has
gathered a lot of interest in particular due to its proximity to
animation skeleton. Curve skeletonization techniques include
mesh contraction [30], using the visual hull [31], or using a
Mean Curvature Flow [32]. It can also work directly from raw
point clouds [33], leveraging local symmetries and normal in-
formation to compensate for missing data. Using the L1 norm
also allows to be more robust to outliers in point cloud data [34].

Shapes often contain non-tubular parts, which curve
skeleton-based methods have trouble handling. In the latter
case, it may be more interesting to use the medial axis. The me-
dial axis is mathematically defined as the set of points having
more than one closest point on the surface [35]. It has been ex-
tensively studied in computational geometry [36, 37, 38]. Find-
ing compact medial axis representation has been tackled from
an error minimization perspective [39, 40], by minimizing the
reconstruction error from the medial axis and associated maxi-
mally inscribed sphere radii. Surrogates for medial axis trans-
form have also been studied such as Deep Point Consolidation
which optimize a set of inner points on a meso-skeleton [41],
however this method requires a heavy machinery. Yan et al. [42]
describes a medial axis extraction method based on shape vox-
elization and Voronoi diagram extraction of the boundary vox-
els. This method has the advantage to come with theoretical
guarantees. Our method avoids the voxelization step and relies
instead on the regularized signed distance field to extract the
medial axis.

Recently, Dou et al [43] proposed a method to extract the
medial axis of meshes or point clouds by formulating the prob-
lem as a cover-set problem. This allows to recover compact
and meaningful medial axes, very efficiently. This method re-
lies on a set of good candidate skeletal points which our method
can provide in a more robust way, as will be shown in the ex-

periments. We will compare our results to those classical ap-
proaches.

2.3. Deep learning and skeleton extraction

Animation skeleton computation has been tackled from a
deep learning perspective [44], but few methods have tackled
medial axis learning from a dataset. Point2Skeleton [45] uses
a PointNet encoder [9] to synthesize skeletal point, and predict
their links using a graph auto-encoder. However the skeletal
points are not mathematically defined and the losses only en-
courage a medial-axis like position. Furthermore it requires to
train on a shape database and is therefore limited to shapes that
fit in the learned latent space. P2MAT-NET [46] estimates the
set of medial points and medial spheres using a ground truth
skeleton-shape dataset and links the medial points using a De-
launay triangulation which is later pruned. Both these methods
are very different from our approach which works on a single
shape and does not require a training dataset. In a quite dif-
ferent direction, it has been argued that taking into account the
medial axis for shape recognition leads to better recognition re-
sults [47]. In practice it involves computing a set of medial
spheres, using a computational geometry technique, and feed-
ing it to a neural network.

Skeleton extraction from a neural implicit perspective, with-
out relying on a database, has not yet been tackled yet. Deep
Medial Fields [48] was the first paper to link neural fields and
medial axis transform, by estimating a medial field. For each
point in the ambient space, it evaluates the shape width (i.e. the
distance between the surface and the medial axis) in the ”slice”
containing the point. However this medial field is discontinuous
near the surface, and two neural networks are used for handling
this discontinuity. While it allows to design an adapted sphere
tracing algorithm, it is not applied to skeleton extraction.

3. Overview

Input to our method is a set of points, sampled on the sur-
face of an object, which we assume to be closed. The points
are supposed to be endowed with an oriented normal. If none
is provided, we compute the normals by local PCA and orient
them using a minimum spanning tree [3]. Our goal is to esti-
mate the medial axis of the object, defined as the set of inner
points which lie at equal distance from at least two points of the
surface. Our key insight is that leveraging the power of INR,
and regularizing them adequately, can help dealing with miss-
ing data and noise. Our method is summarized on Figure 2. We
proceed in three steps:

• First, we estimate a signed distance field by adding an ex-
tra total variation regularization term to a sine-activation
network.

• Then, we extract skeletal points by a dedicated skeleton
sampling method on the GPU.

• Finally, we construct the skeletal simplicial complex by
using a mixed integer programming solver, following the
Coverage Axis method [43].
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4. Mathematical background

4.1. The eikonal PDE

Signed distance functions and solutions of the eikonal equa-
tions are an intensively studied problem in image analysis, in
particular for their links with fast marching [49]. The signed
distance function is a solution to the eikonal equation with
mixed Dirichlet and Neumann conditions. For the sake of this
analysis, let us first assume we are dealing with an object Ω
with a C1 boundary (with normal nΩ) and positive reach.

The problem is to look for a continuous and almost every-
where differentiable function u such that:

∥∇u∥ = 1
u|∂Ω = 0
∇u|∂Ω] = n

(1)

From a partial differential equation point of view, this equa-
tion has an infinite number of weak solutions by adding gradi-
ent singularities. The viscosity theory allows to discriminate
between those solutions and shows that the unique viscosity
solution to the eikonal equation is the signed distance func-
tion [50]. Hence, finding u that minimizes only an eikonal loss
is not enough to recover a signed distance field [16].

Theoretically, the solution u to Equation 1 should be in
Sobolev space W1,p [50]. Interestingly Lipman [24] showed
that, under appropriate Lipschitz boundary constraints for the
subset of R3, the function resulting from a trained MultiLayer
Perceptron (MLP) with Rectified Linear Units (ReLU) activa-
tion functions is in this exact Sobolev space. However INRs
with ReLU activation functions are sometimes hard to optimize.
Furthermore, differentiation with respect to the input coordi-
nates is unstable due to the non-differentiability of ReLU. To al-
leviate this, Sitzmann et al. [20] introduced a periodic activation
function replacing ReLU in the MLP leading to infinitely differ-
entiable functions. While this is a desirable property for solving
regular PDEs, it theoretically cannot represent a function which
has gradient singularities, such as a SDF. Fortunately, the singu-
larities happen away from the surface ∂Ω, and have low impact
on the surface extraction itself. To improve the estimation far
from the surface, we propose to add a regularization term to the
loss.

4.2. Total Variation of the gradient norm

SDFs are not only useful for surface reconstruction they also
encompass a lot of topological information about the shape. In
particular the medial axis corresponds exactly to the gradient
singularities inside the shape. Since a sine-network gradient
cannot be discontinuous, by construction, discontinuities will
be replaced by 0 values for the gradients. Our goal is to make
this 0 gradient as localized as possible, to get an accurate medial
axis. Our insight is that if, in addition to being close to 1, we
encourage the norm of the gradient to remain as constant as
possible, we will get a better axis localization. Therefore, we
want to render the norm of the gradient as constant as possible.

Inspired by variational image regularization approaches, we
regularize the field by using the Total Variation of the norm of
the gradient. The Total Variation of a scalar field measures how

much this scalar field varies over the domain: a near constant
scalar field will have a Total Variation close to 0 [8]. We apply
this principle to the norm of the gradient which should remain
constant almost everywhere and formalize it as:∫

R3
∥∇∥∇u∥∥ = 0 (2)

Notice first that the true SDF naturally satisfies this condition
since the norm of its gradient is 1 almost everywhere (every-
where the gradient is defined), the R3-Lebesgue measure of the
skeleton being 0. Hence this regularization does not push us
away from the true solution, it just adds a term that is trivially
satisfied by the true SDF.

Theorem 4.1. The TV term favors that u has no order 2 differ-
ential content along its gradient lines.

Proof. Since ∇u = (ux, uy, uz), it follows:

∇∥∇u∥ = ∇
√

u2
x + u2

y + u2
z

=
1

2∥∇u∥

2uxuxx + 2uyuxy + 2uzuxz

2uxuxy + 2uyuyy + 2uzuyz

2uxuzx + 2uyuzy + 2uzuzz


= Hu

∇u
∥∇u∥

with Hu the Hessian matrix of u. Hu
∇u
∥∇u∥ corresponds to the

order 2 differential content of u in the gradient direction. In
other words gradient should remain constant along gradient
lines.

An intuitive way of looking at the TV regularization term is
by remembering that it provides a quantity which is roughly
proportional to the measure of the gradient’s discontinuities,
that we are trying to minimize. Although it is possible to build
solutions of the eikonal equation that have smaller set of discon-
tinuities in the Lebesgue sense than the medial axis, the hope is
that these solutions will be avoided by adding enough learning
points (points whose distance and gradient are roughly known).
In practice we see that the TV loss improves the distance and
gradient fields (see Section 10).

5. Total Variation Regularized Implicit Neural Representa-
tion

We implement the TV constraint by adding a term to the
loss of a Sine-activation based network [20], which, once op-
timized, takes an input 3D position p and outputs the SDF val-
ues at p. One of the advantage of using Sine-activation is that
the network produces infinitely differentiable functions. This
makes the computation of ∇u and ∇∥∇u∥ trivial using auto-
differentiation. On a side note, periodic functions also improve
the training convergence of the network. However, the down-
side is that we will not estimate the true SDF but an infinitely
differentiable surrogate for it. The optimization should make it
as close as possible to the true SDF.

In practice we use a network with 6 layers of size 64, and
train it using the following losses:
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Leikonal =

∫
R3

(1 − ∥∇u(p)∥)2 dp (3)

Lsurface =

∫
∂Ω

u(p)2dp +
∫
∂Ω

1 −
n(p) · ∇u(p)
∥n(p)∥ ∥∇u(p)∥

dp (4)

Llearning =
∑
p∈P

(u(p) − d(p))2 +
∑
p∈P

1 −
∇u(p) · ∇d(p)
∥∇u(p)∥ ∥∇d(p)∥

(5)

The eikonal loss (Equation 3) favors a solution to the eikonal
PDE. The surface loss (Equation 4) ensures that the estimated
signed distance function is 0 at the surface points, and that its
gradient aligns well to the surface normals. The learning points
loss (Equation 5) takes into account a setP of points sampled in
the ambient space for which we know the true signed distance
d(p) and its gradient ∇d(p). These points (1000 − 10000 de-
pending on the complexity of the shape) are sampled uniformly
in the bounding box. In practice, this ground truth value is ap-
proximated by the signed distance to the nearest point of the
input point cloud. This value can easily be wrong for partial
point sets, and, to alleviate this, we use this learning points loss
only in the first steps of our training iterations.

To these losses, we add our total variation regularization
term, explained above:

LTV =

∫
R3
∥∇∥∇u∥(p)∥dp (6)

The total loss writes:

L = λeLeikonal + λsLsur f ace + λlLlearning + λTVLTV (7)

The loss weighting parameters λe, λs, λl, λTV are set manually
to keep the ranges comparable. In our experiments we used the
following values:

λe = 100 λs = 100 λl = 100 λTV = 20.

While different weight scheduling (e.g. decreasing one of the
parameters over time) could be devised, we found experimen-
tally that keeping these weights constant provided good results,
except the learning points loss weight which is set to 0 after 20
epochs.

We use LBFGS [51] as an optimizer, which we found more
efficient than ADAM. We stop the training when the loss vari-
ation becomes negligible. It takes 50 iterations and 60 s with
LBFGS, against 20000 iterations and 500 s with Adam. While
LBFGS is more complex and each iteration costs more, it needs
fewer iterations and a lower overall computation time. Our net-
work is pre-trained on the SDF of a sphere with radius 0.5, as
advised by Gropp et al. [16], and all shapes are normalized in a
unit-length cube centered at 0. This pre-training speeds up the
convergence of the network.

Figure 3 shows some slices of the obtained signed distance
field with and without TV regularization. The TV regularized
SDF yields a norm of the gradient with less variations leading
to a better SDF.

IGR SIREN Ours

u
∥∇

u∥
∥∇
∥∇

u∥
∥

Fig. 3: Slices of the SDF, gradient’s norm and norm of the gradient’s norm,
using IGR, SIREN and our TV-regularized method on a cube. IGR using ReLU
activation function, the second order derivative is 0 almost everywhere.

Once our implicit neural representation is trained, we com-
pute the skeleton mesh in three steps: we first sample points
uniformly on the surface, we then recover skeletal points, and
finally solve a cover set problem [43] to build the final skeleton
simplicial complex.

6. Surface points

The next step consists in sampling the neural surface uni-
formly, which will enable us to both obtain skeletal points (Sec-
tion 7) and represent well the surface when selecting those
skeletal points using a coverage formulation (Section 8). We
follow the Iso-Points method [52]. First, we sample points uni-
formly in the object’s bounding box and move them towards
the 0 level set using Newton’s method. Starting with N random
points in the ambient space, we iterate, for each point:

p← p −
∇u(p)
∥∇u(p)∥2

u(p) (8)

Then p converges to a point on the 0 level set of the implicit
function, which – provided the implicit function was well con-
structed – should be the object’s surface.

However, at the end of this process, the distribution of these
projected points (pi)i=1···N is in general not uniform. To uni-
formize it, we iteratively take these points away from dense re-
gions:

p← p − αr (9)

where the step size α is set to
√

D/N with D the length of the
diagonal of the bounding box of the shape. The step direction ri

for a point pi is given by the weighted barycenter of the direc-
tions to its K nearest neighbors projected on the tangent plane
T :

ri =
∑

p j∈NK (pi)

w(pi, p j)ΠT

(
p j − pi

∥p j − pi∥

)
. (10)
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where ΠT is the orthogonal projection operator on the tangent
plane T . The weight function permits to decrease the influence
of further neighbors and is set to

w(pi, p j) = exp
(
−
∥pi − p j∥

2

σ

)
with σ = 16D/N. (11)

After this resampling, the points may have drifted away from
the surface, but this drift is limited by the restriction to the tan-
gent plane. Notice that the original Iso-Point method does not
restrict this motion to the tangent plane. To reduce this drift
further, we project the points back onto the surface using again
Newton iterations. By iterating projection and uniformization,
we converge to a uniform sampling of the surface.

7. Skeletal points

To extract the skeletal points, we make the simple observa-
tion that if we cast a ray from a surface point in the opposite
direction to the gradient, then this ray crosses the medial axis
before hitting the surface again. In addition, at the medial axis
crossing, the SDF should be minimum (assuming the SDF to be
positive outside and negative inside the object). This translates
into a simple skeleton tracing algorithm.

For each surface point p, obtained as described in section 6,
we compute its gradient ∇u(p) by auto-differentiation, and sam-
ple n points qi regularly on a line starting from p in the direction
of −∇u(p) until some fixed distance h. We extract the first point
qi0 with a positive SDF value along this line, meaning we have
crossed the surface and are again outside of the object. Then
we resample segment pqi0 regularly and take the point where
the gradient has the smallest norm. This sampling algorithm in-
volves only linear operations and SDF queries, hence it can be
done directly on the GPU, by dividing the initial random points
into batches to avoid memory issues. The method is summed
up in Algorithm 1.

In practice we take h = 0.5, since all shapes are normalized
within a cube with side 1. We also set N = 10000 initial points
and n = 50 ray subdivision.

Data: An estimated SDF u, N and n two integer
parameters, h maximum search distance.

Result: A set of skeletal points
Sample N points (pi) on the surface using Newton’s

method;
for i = 1 · · ·N do

Sample n points q j = pi − t h
n
∇u(pi)
∥∇u(pi)∥

(t = 1 · · · n);
Find i0 the smallest index such that u(qi0 ) > 0;
Sample n points r j between p and qi0 ;
Find r j with lowest ∥∇u(r j)∥ value;

end
Algorithm 1: Skeleton sampling

The skeletal points obtained with Algorithm 1 can be non-
uniform and uselessly dense in some areas. Therefore, in order
to speed up the resolution of the MILP in the next step, we
eventually subsample the skeletal points using a simple random

procedure: we iteratively randomly select a skeletal point and
remove all skeletal points within a given distance to it.

8. Skeleton mesh extraction

To extract the skeleton mesh from our skeleton points, we
follow the Coverage Axis method [43]. This method selects a
subset of our skeletal points by formulating the coverage prob-
lem as a mixed integer linear problem (MILP), and links them
using a weighted triangulation.

The coverage axis point selection method starts by consid-
ering a set S of M skeletal candidate points with their medial
sphere radius and a set P of N surface points. In our case we
take our (subsampled) skeletal points si along with their esti-
mated distance ri = u(si) and the uniformly sampled surface
points pi. We then build a MILP, whose goal is to select a sub-
set of the skeletal points with the constraint that their skeletal
ball should cover all the surface points.

Let v be a vector of size M such vi = 1 if the skeletal point
si is selected and 0 otherwise. We construct D a N × M matrix
such that Di j = 1 if ∥pi − s j∥ − r j ≤ δ and 0 otherwise. The
selection procedure writes as the following MILP:

min ∥v∥2
s.t. Dv ≥ 1 (12)

In practice we rely on a MILP solver with a time limit set to
1000 s. While it does not always allow to reach optimality for
complex models, we observe that the lower bound is very close
(a few vertices) to the solution, making it near-optimal. Impor-
tantly enough, each solve might give a slightly different solu-
tion.

Eventually, the selected skeletal points are meshed by com-
puting the regular triangulation of the union of the selected
skeletal points (with weight r j) and the surface points (with
weight δ), i.e. {(s j, r j), s j ∈ S | v j = 1} ∪ {(pi, δ), pi ∈ P}.
We then extract the edges and triangles between the selected
skeletal points that appear in this regular triangulation.

9. Experiments and Comparisons

Our code is available at https://github.com/MClemot/
SkeletonLearning. We run all our experiments with a Nvidia
RTX 3050 laptop GPU. We use the PyTorch library for our net-
work implementation, the Gudhi library [53] for the regular tri-
angulation and SciPy for the MILP solver [54].

We test our algorithm on shapes from Thingi10K [55] and
AIM@shape. We are interested in particular in shapes that ex-
hibit a high genus and a lot of topological details such as the
ones of Figures 1 and 5. When the input is a mesh, we sam-
ple 100k points uniformly on the mesh triangles, following the
method of Osada et al. [56]. We compare our skeleton with L1-
medial skeleton [34], and VoxelCores [42] using the authors’
code, Mean Curvature Skeleton [32] using the CGAL imple-
mentation, and reimplemented Coverage Axis [43].

Figure 4 compares our neural skeletons with several other
methods on standard shapes. On noiseless shapes, all methods
give good results. L1-medial skeleton works well on tubular
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Ours Coverage L1-medial VoxelCores
Axis skeleton

Fig. 4: Comparison with Coverage Axis, L1-medial skeleton and VoxelCores
on standard shapes.

shapes but is less efficient on shapes that are not tubular. Vox-
elCores provides a skeleton which has the right topology with-
out any regard for its compactness. As such it contains much
more mesh simplices. Figure 5 compares our Neural Skele-
ton with VoxelCores and Coverage Axis on high-genus, non-
tubular shapes. VoxelCores produces a non compact but correct
skeleton, Coverage Axis produces skeletons whose vertices are
sometimes outside of the shape boundary and the MILP solver
connects points that should not be connected (on the birdcage).
In contrast, our skeletal point extraction is much more accurate
and leads to less artifacts in the skeletons.

Figure 6 further shows the wrong connection issues that can
appear with the Coverage Axis initial candidate skeletal points.
The MILP will only select a subset from these skeletal points
but will not correct their positions, hence the importance of hav-
ing a good set of candidate skeletal points, as those provided by
our approach.

The VoxelCores pipeline uses a signed distance field built us-
ing PolyMender [57], which does not handle point clouds, MCS
also relies on a reconstruction step. On the contrary, Coverage
Axis, L1-medial skeleton and our method can work with partial
point sets, as shown on Figure 7. Our method is less sensitive
to missing data, and matches the shape feature better.

Figure 8 shows a point cloud with increasing noise and com-
pare our result with Coverage Axis and L1-medial skeleton.
While for low levels of noise all methods perform well, as noise
increases the performance of Coverage Axis degrades. Figure 9
shows how our method behaves with missing data. To a certain
extent our method is able to fix missing parts, which is due to
the constraints in the neural implicit optimization.

Apart from these traditional methods, we compare to base-
lines using other INR. We replace our TV-regularized INR in
our pipeline, by standard INR such as Implicit Geometric Reg-
ularization (IGR) [16] or SIREN [20]. Figure 12 shows the
different results on the fertility shape with increasing levels of
noise, while Figure 13 shows 2D slices of the SDF and its
derivatives, compared to other INRs, on the same fertility shape

Ours Coverage Axis VoxelCores

Fig. 5: Comparison with Coverage Axis and VoxelCores. Our method produces
more compact skeletons than VoxelCores with less artifacts (wrong connection
edges) as Coverage Axis.

Ours Coverage Axis

Fig. 6: Comparisons with Coverage Axis on some complex shapes

Ours Coverage Axis L1-medial skeleton

Fig. 7: Comparison with Coverage Axis and L1-medial skeleton on a partial
point set.
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Fig. 8: Comparison with Coverage Axis and L1-medial skeleton on a torus with
different levels of noise (no noise, 0.01% and 0.03% of the shape’s diagonal).

Ours Coverage Ours Coverage
Axis Axis

Fig. 9: Comparison with Coverage Axis on point clouds with missing data.

Shape Ours SIREN IGR MCS Voxel Cores
clean 0.42 7.9 1.2 2.4 0.41
crop1 1.04 1.1 1.4 2.5 1.3
crop2 1.9 2.0 1.5 2.6 2.0
crop3 0.77 7.9 1.2 2.6 1.15
crop4 0.46 1.5 2.7 2.5 1.5
sub 25% 0.35 8.3 0.86 2.6 0.42
sub 50% 0.38 8.1 1.2 2.5 0.37
var 0.05% 0.46 8.3 1.3 2.5 0.40
var 0.1% 0.45 7.9 1.1 2.6 0.39
var 1% 0.49 0.79 1.9 2 0.67
var 2% 0.57 0.97 3 0.84 1.3

Table 1: Quantitative comparisons on a synthetic sphere-mesh shape, cropped
or degraded with increasing noise. The Hausdorff distance is lower with our
method. IGR, Mean Curvature Skeleton and VoxelCores yield worse perfor-
mance. Percentage values for the noise correspond to the noise variance (per-
centage of the diagonal).

with increasing levels of noise. As expected, the slices of the
derivatives are much smoother and stabler with our method.
We also compare numerically all these methods on a synthetic
shape with noise and missing data in Table 1. The distances are
computed by sampling the ground truth skeleton and comput-
ing the Hausdorff distance with respect to the skeletal points.
While we could have computed the distance with respect to the
extracted skeleton, we found that it made the error dependent
on the last mesh extraction step (MILP), which varies more
and depends on a threshold δ, which has to be carefully chosen
for each INR. For this experiment, the input shape is built as a
sphere-mesh [58], for which the exact medial axis is known by
construction. We sample points on the sphere mesh surface, and
apply different noises and subsamplings. In terms of Hausdorff
distance our results are consistently better than the other neural
baselines, and traditional methods such as VoxelCores [42] or
Mean Curvature Skeleton (MCS [32]).

10. Ablation study

In this section we analyze several individual components of
our method and compare the results on Table 2. We then ablate
several components of our method: we change the activation
from Sine to ReLU or SoftPlus, remove the total variation loss,
remove the learning points loss, and remove the eikonal loss.
Notice that with ReLU, the TV term is useless since second
order derivatives are 0. In most cases, the full method yields a
lower Hausdorff distance. It can be explained by the fact that
TV enforces the locality of the skeleton, and no outlier skeletal
points cannot lie too far away from the true skeleton. While the
uniform resampling of the samples does not appear significant
in Table 2 on this, for more complex shapes we found that it
allowed to recover thin structures better.

We show the SDF, gradient norm field and gradient of the
gradient norm for a noisy torus point set on Figure 10. Interest-
ingly, the 0 level set remains almost the same for the full loss
(first row) or without TV regularization (second row), and the
surface can be reliably extracted from both. However the gra-
dient norm field is smooth for the full loss, whereas it is very
noisy without the TV regularization. The resulting skeleton is
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Shape Ours No TV ReLU SoftPlus SoftPlus No uniform No learn-
No TV No TV resampling ing loss

Torus 0.058 0.062 0.18 0.073 0.067 0.058 0.78
Noise 0.003 0.011 0.017 0.24 0.038 0.038 0.01 0.79
Noise 0.005 0.015 0.019 0.24 0.028 0.037 0.014 0.70
Noise 0.01 0.021 0.18 0.25 0.035 0.045 0.021 0.79
Noise 0.03 0.25 0.27 0.28 0.27 0.095 0.25 0.72
Truncated 1 0.13 0.30 0.28 0.15 0.15 0.29 0.72
Truncated 2 0.11 0.38 0.41 0.13 0.13 0.12 0.71
Truncated 3 0.12 0.27 0.27 0.18 0.14 0.12 0.72

Table 2: Ablation study on a torus with added noise and cropped parts (Haus-
dorff distance).

consequently way noisier without TV. This tends to prove em-
pirically that our initial hypothesis of adding a regularization
to deal with the SDF away from a surface was the right one.
Removing the eikonal loss degrades the resulting skeleton dras-
tically, the signed distance field does no grow linearly anymore
and the learning points are also critical to avoid creating wrong
bubble surfaces.

Figure 11 shows the convergence of the different terms of the
Loss. Since the network is pretrained on the SDF of a sphere,
the eikonal and TV losses are very low at the beginning of the
training, it then increases to adapt the input shape before de-
creasing again. The losses converge in a rather smooth way.

The computation time is divided as follows: INR training
takes between 55 s and 65 s (around 45 s for SIREN), the shape
sampling and skeletal extraction step takes 1 − 2 s. The cover-
age axis step is more unpredictable with respect to computation
time. The optimal solution can be found in 30 s to 60 s for
simple shapes, but it can take longer to reach optimality (up to
1200 s) for more complex shapes such as the birdcage of Fig-
ure 1. Fortunately we can set a time-out at 1000 s and check
by looking at the optimal bounds if the remaining gap is large
or not. In general after 1000 s, the gap is small and only a few
vertices (around 4 − 10) could be further removed.

Limitations. A limitation of our neural implicit formulation re-
mains the need for a normal, and more importantly consistently
oriented normals which are hard to obtain for complex shapes.
We believe this could be improved by working on unsigned dis-
tance fields [15], possibly yielding two skeletons, one inside
the shape and one outside. However this would also require
rethinking the skeleton extraction step, since both the surface
and the medial axis are singularities of the unsigned distance
gradient.

11. Conclusion

In this paper we presented a new TV-regularized neural im-
plicit, which allows to perform computations away from the
surface. While we introduced it in conjunction with a sine-
activation network, hence gaining a stable differentiation of the
implicit field, the regularization could be extended to other net-
works, including those that work on latent shape space such as
DeepSDF.
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Fig. 10: Slices of u, ∥∇u∥ and ∥∇∥∇u∥∥ obtained by removing different parts of
the loss.

0 10 20 30 40 50
Epochs

10 2

10 1

100

101 Point cloud loss (0.01)
Eikonal loss (0.01)
Learning points loss (0.00)
Total variation loss (1.07)

Fig. 11: Evolution of the different terms of the loss. After 20 epochs, we remove
the learning points loss (Equation 5) to allow for more flexibility since in case
of noise or missing data, the learning points might be inaccurate.
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Fig. 12: Skeleton of the fertility shape with increasing levels of noise (variances set to 0, 0.5, 1, and 2% of the shape diagonal)
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Fig. 13: Slices of the SDF and the gradient’s norm of the fertility shape with
increasing levels of noise for different INR (variances set to 0, 0.5, 1, and 2%
of the shape diagonal). Since IGR’s second order derivatives are 0, we do not
show ∥∇∥∇u∥∥ for this method.
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