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Abstract

Median graphs form the class of graphs which is the most studied in metric graph theory.
Recently, Bénéteau et al. [2019] designed a linear-time algorithm computing both the Θ-classes
and the median set of median graphs. A natural question emerges: is there a linear-time algorithm
computing the diameter and the radius for median graphs?

We answer positively to this question for median graphs G with constant dimension d, i.e.
the dimension of the largest induced hypercube of G. We propose a combinatorial algorithm
computing all eccentricities of median graphs with running time O(2O(d log d)n). As a consequence,
this provides us with a linear-time algorithm determining both the diameter and the radius of
median graphs with d = O(1), such as cube-free median graphs. As the hypercube of dimension
4 is not planar, it shows also that all eccentricities of planar median graphs can be computed in
O(n).

1 Introduction

We study one of the most fundamental problems in algorithmic graph theory related to distances:
the diameter and the radius. Given an undirected graph G = (V,E), the diameter is the maximum
distance d(u, v), u, v ∈ V , where d(u, v) is the length of the shortest (u, v)-path. The eccentricity
of a vertex v is the maximum length of a shortest path starting from v: the diameter is thus the
maximum eccentricity and the radius is defined as the minimum eccentricity. Both the diameter
and the radius are basic parameters used to apprehend the structure of a graph.

Multiple Breadth First Search (BFS) suffice as a naive algorithm to compute the distances
between all pairs of vertices and, therefore, to obtain the diameter, the radius and all eccentricities
in O(n |E|) for a n-vertex graph. Unfortunately, no known algorithm is able to determine the
diameter much faster than all distances. Furthermore, it was shown [1] that both computing
the radius and all distances are equivalent problems under subcubic reductions. Very efficient
algorithms have been proposed for the diameter on certain classes of graphs, for example [2, 18,
25]. Many works have also been devoted to approximation algorithms for this parameter. In
particular, Chechik et al. [19] showed that the diameter can be approximated within a factor 3

2

in time O∗(m
3
2 ). On sparse graphs, a natural question is whether we can compute exactly the

diameter in subquadratic time. It was shown [38] that no O(n2−ε)-time algorithm can achieve
an approximation factor smaller than 3

2
for the diameter on sparse graphs unless the Strong

Exponential Time Hypothesis (SETH) fails.
Linear-time heuristics have been proposed to estimate the diameter in general graphs. The

2-sweep algorithm [33] consists in taking an arbitrary vertex r1 of the graph, computing the
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farthest-to-r1 vertex a1 with a BFS and eventually finding the farthest-to-a1 vertex b1 with another
BFS. The distance d(a1, b1) is returned. This method works well on some special classes of graphs.
It was shown that 2-sweep returns exactly the diameter on trees [28]. Moreover, it approximates
it with an additive error 1 on chordal graphs and an additive error 2 on AT-free graphs [23].
The 4-sweep algorithm [16] picks a vertex in the middle of a shortest (a1, b1)-path and computes
another 2-sweep. It performs well on real-world undirected graphs [16].

In this paper, we propose a linear time algorithm computing the diameter, the radius, and
all eccentricities of constant-dimension median graphs. Median graphs are the graphs such that
any triplet of vertices has a unique median. Put formally, given x, y, z ∈ V , there is a unique
vertex m(x, y, z) lying at the same time on some shortest (x, y), (y, z), and (z, x)-paths. Said
differently, m(x, y, z) is the unique vertex being metrically between x and y, y and z, z and x.
Median graphs are partial cubes, i.e. isometric subgraphs of hypercubes. However, partial cubes
are not necessarily median. The dimension d of a median graph is the dimension of its largest
induced hypercube. This parameter is upper-bounded by ⌊log n⌋.

Median graphs are related to numerous areas: universal algebra [4, 15], CAT(0) cube com-
plexes [8, 20], abstract models of concurrency [13, 39], and genetics [11, 12]. They have strong struc-
tural properties and admit many characterizations, such as the Mulder’s convex expansion [36, 37],
and are related to hypercubes retracts [6], Cartesian products and gated amalgams [8], but also
Helly hypergraphs [35]. Median graphs are bipartite and have at most dn ≤ n log n edges. They
do not contain induced K2,3, otherwise a triplet of vertices would admit at least two medians.
The cardinality function of hypercubes αi(G) - the number of induced hypercubes of dimension
0 ≤ i ≤ d in the median graph G - verifies nice formulas [17, 32]. A key concept to understand
the structure of median graphs is the equivalence relation Θ, which is the reflexive and transitive
closure of relation Θ0, where two edges are in Θ0 if they are opposite edges of a common 4-cycle.
An equivalence class of Θ is called a Θ-class. Each Θ-class of a median graph form a matching
cutset, splitting the graph into two connected components, called halfspaces. These halfspaces are
convex. The number q of Θ-classes is less than n and, moreover, it is exactly the dimension of the
hypercube in which the median graph G isometrically embeds. It was shown in [31] that value q
satisfies the Euler-type formula 2n − m − q ≤ 2. The Θ-classes can be identified in linear time
O(|E|) = O(dn), using a Lexicographic BFS [14].

To the best of our knowledge, there is no subquadratic algorithm for the diameter on median
graphs. Bénéteau et al. [14] and Ducoffe [24] recently formulated this open question. There exist
efficient algorithms for other metric parameters on median graphs. Thanks to the linear time
computation of Θ-classes, the median set and the Wiener index can be determined in O(|E|) [14].
The median set, i.e. the vertices u of G which minimize

∑
v∈V

d(u, v), satisfies the majority rule [5,
7]. Another challenging question is the recognition of median graphs. Two very efficient algorithms
have been proposed. Using convex characterizations of halfspaces, Hagauer et al. [26] showed that

median graphs can be recognized in O(n
3
2
√
n). In [29], a bijection between median graphs and

triangle-free graphs is identified. As a consequence, the recognition times of these two families are
the same, if we neglect poly-logarithmic factors. Taking a very efficient algorithm which detects
triangle-free graphs [3] produces a recognition of median graphs running in O((n log2 n)1.41).

Subfamilies of median graphs have also been studied in the literature. There is an algorithm
computing the diameter and the radius in linear time for squaregraphs, which are planar cube-free
median graphs where all inner vertices have degree at least four [10, 21]. Recently, distance and
routing labeling schemes [22] of size O(log3 n) were designed for cube-free median graphs, i.e.
median graphs verifying d ≤ 2.

In this paper, we construct an algorithm computing the diameter for median graphs which runs
in time O(n) when d = O(1). Concretely, our algorithm returns the exact value of the diameter
for all median graphs G in time O(f(d)n), where f(d) is an exponential fonction of d. It can be
naturally extended to provide us with all eccentricities of the median graph with the same running
time. Our contribution is summarized below.

Main result. There is a combinatorial algorithm which computes the diameter, the radius and
all eccentricities in time O∗(2d(log(d)+1)n) on median graphs.

Notation O∗ neglects polynomials of d, which are also poly-logarithmic factors of n. A conse-
quence of our main result is that, for any d = O(1), all eccentricities can be determined in linear
time O(n) on Qd-free median graphs. For example, this is the case for cube-free median graphs
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(d ≤ 2). Moreover, as Q4 is not planar, planar median graphs are Q4-free, so our algorithm is
linear for this family of graphs. Obviously, such an algorithm is not linear for all median graphs,
as parameter d can attain value log n.

Given that 2-sweep returns in linear time the diameter on trees, which are the median graphs
of dimension d = 1, one can wonder whether the heuristics 2-sweep and 4-sweep can compute
the diameter of median graphs for larger values of d. Another contribution in this paper is the
proof that it is not the case. We provide median graphs of dimension 2 on which 2-sweep and
4-sweep fail to determine the diameter.

The organization of the paper follows. In Section 2, we introduce the definitions and notions
related to median graphs. We describe in detail the properties of Θ-classes, in particular the
orthogonality, which is a key concept in this work. In Section 3, we show that 2-sweep and 4-
sweep do not allow us to determine the exact value of the diameter on median graphs. We provide
instances on which they are unsuccessful. In Section 4, we present a first version of our algorithm
which computes the diameter only. We proceed in two steps: the computation of labels for the
hypercubes of G (Section 4.1) and the reduction to an optimization problem we call maximum-
weighted disjoint sets (Section 4.2). In Section 5, we introduce an additional step in our
algorithm to determine the eccentricity of each vertex of G. We conclude this work in Section 6
by listing possible lines of future research on median graphs.

2 Preliminaries

In this section, we recall some basic notions related to graph theory, distances, and more par-
ticularly median graphs. The results listed are either reminded from the literature or direct
consequences of earlier works.

2.1 Graphs and distances

All graphs G = (V,E) considered in this paper are undirected, unweighted, simple, finite and
connected. Edges (u, v) ∈ E are sometimes denoted by uv to improve the readability of our
article. Given two vertices u, v ∈ V , we denote by d(u, v) the distance between u and v, i.e. the
length of the shortest (u, v)-path. The interval I(u, v) contains exactly the vertices which are on
shortest (u, v)-paths. Put formally,

I(u, v) = {x ∈ V : d(u, x) + d(x, v) = d(u, v)}

We denote by ecc(u) the eccentricity of a vertex u ∈ V , i.e. the maximum distance d(u, v) for
all v ∈ V : ecc(u) = maxv∈V d(u, v). The diameter diam(G) of graph G is its maximum eccentricity:
diam(G) = maxu∈V ecc(u). Concretely, the diameter is the length of the longest shortest path of
G. The radius rad(G) is the minimum eccentricity: rad(G) = minu∈V ecc(u).

Let H ⊆ V be a vertex set. We say that H (or the induced subgraph G [H ]) is convex if
I(u, v) ⊆ H for any pair u, v ∈ H . We say that H is gated if any vertex v /∈ H admits a gate
v′ ∈ H , i.e. a vertex that belongs to all intervals I(v, x), x ∈ H . In other words, for any x ∈ H ,
we have d(v, v′) + d(v′, x) = d(v, x).

Given an integer k ≥ 1, the k-dimensional hypercube Qk represents all the subsets of {1, . . . , k}
as the vertex set. Two subsets A and B are connected by an edge if they differ only by one element,
i.e. |A△ B| = 1. The hypercube Q2 is called a square.

2.2 Median graphs

A graph is median if, for any triplet x, y, z of distinct vertices, the set I(x, y) ∩ I(y, z) ∩ I(z, x)
contains exactly one vertex called the median m(x, y, z). A median graph is bipartite, triangle-free,
and does not contain an induced K2,3 [8, 27, 36]. Some well-known families of graphs are median:
trees, grids, squaregraphs [10], and hypercubes. The dimension d = dim(G) of a median graph G
is the dimension of the largest hypercube contained in G as an induced subgraph.

Figure 1 presents three examples of median graphs. One has dimension d = 1 and is (necessar-
ily) a tree. One has dimension d = 2, a cogwheel. Cogwheels are squaregraphs but certain median
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(a) A tree, d = 1 (b) A cogwheel, d = 2 (c) d = 3

Figure 1: Examples of median graphs

graphs of dimension 2 are not squaregraphs [10]. The last one has dimension d = 3 as it contains
an hypercube Q3.

We provide a list of properties satisfied by median graphs. In particular, we define the notion
of Θ-classes which is a key ingredient of several existing algorithms [14, 26, 29].

In general graphs, all gated subgraphs are convex. The reverse is true in median graphs.

Lemma 1 (Convex⇔Gated [8, 14]). Any convex subgraph of a median graph is gated.

We remind the notion of Θ-class, which is well explained in [14], and enumerate some properties
related to it. We say that the edges uv and xy are in relation Θ0 if they form a square uvyx, where
uv and xy are opposite edges. Then, Θ refers to the reflexive and transitive closure of relation
Θ0. The classes of the equivalence relation Θ are denoted by E1, . . . , Eq. We denote by E the
set of Θ-classes: E = {E1, . . . , Eq}. Parameter q is less than the number of vertices n. To avoid
confusions, let us highlight that parameter q is different from the dimension d: for example, on
trees, d = 1 whereas q = n− 1. Moreover, the dimension d is at most ⌊log n⌋.
Lemma 2 (Θ-classes in linear time [14]). There is an algorithm which computes the Θ-classes
E1, . . . , Eq of a median graph in linear time O(|E|).

In median graphs, each class Ei, 1 ≤ i ≤ q, is a perfect matching cutset and its two sides H ′
i

and H ′′
i verify nice properties, that are presented below.

Lemma 3 (Halfspaces of Ei [14, 26, 37]). For any 1 ≤ i ≤ q, the graph G deprived of edges of Ei,
i.e. G\Ei = (V,E\Ei), has two connected components H ′

i and H ′′
i , called halfspaces. Edges of Ei

form a matching: they have no endpoint in common. Halfspaces satisfy the following properties:

• Both H ′
i and H ′′

i are convex/gated.

• If uv is an edge of Ei with u ∈ H ′
i and v ∈ H ′′

i , then H
′
i =W (u, v) = {x ∈ V : d(x, u) < d(x, v)}

and H ′′
i =W (v, u) = {x ∈ V : d(x, v) < d(x, u)}.

H ′
i H ′′

i

∂H ′
i

∂H ′′
i

Ei

Figure 2: A class Ei with sets H ′
i, H

′′
i , ∂H

′
i, ∂H

′′
i

We denote by ∂H ′
i the subset of H ′

i containing the vertices which are adjacent to a vertex in
H ′′

i . Put differently, set ∂H ′
i is made up of vertices of H ′

i which are endpoints of edges in Ei.
Similarly, set ∂H ′′

i contains the vertices of H ′′
i which are adjacent to H ′

i. We say these sets are
the boundaries of halfspaces H ′

i and H ′′
i respectively.
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Lemma 4 (Boundaries [14, 26, 37]). Both ∂H ′
i and ∂H ′′

i are convex/gated. Moreover, the edges
of Ei define an isomorphism between ∂H ′

i and ∂H ′′
i .

As a consequence, suppose uv and u′v′ belong to Ei: if uu
′ is an edge and belongs to class Ej ,

then vv′ is an edge of Ej too. We terminate this list of lemmas with a last property dealing with
the orientation of edges from a canonical basepoint v0 ∈ V . The v0-orientation of the edges of G
according to v0 is such that, for any edge uv, the orientation is # »uv if d(v0, u) < d(v0, v). Indeed,
we cannot have d(v0, u) = d(v0, v) as G is bipartite.

Lemma 5 (Orientation [14]). All edges can be oriented according to any canonical basepoint v0.

From now on, we suppose that an arbitrary basepoint v0 ∈ V has been selected and we refer
automatically to the v0-orientation when we mention incoming or outgoing edges.

2.3 Orthogonal Θ-classes and hypercubes

We present now an important notion on median graphs. In [32], Kovse studied a relationship
between splits which refer to the halfspaces of Θ-classes. It says that two splits {H ′

i,H
′′
i } and{

H ′
j ,H

′′
j

}
are incompatible if the four sets H ′

i∩H ′
j , H

′′
i ∩H ′

j , H
′
i∩H ′′

j , and H
′′
i ∩H ′′

j are nonempty.
We use different notation to characterize this relationship which makes more sense in our context.

Definition 1 (Orthogonal classes). We say that classes Ei and Ej are orthogonal (Ei ⊥ Ej) if
there is a square uvyx in G, where uv, xy ∈ Ei and ux, vy ∈ Ej.

We observe that classes Ei and Ej are orthogonal if and only if the splits produced by their
halfspaces are incompatible.

Lemma 6 (Orthogonal⇔Incompatible). Ei and Ej are orthogonal if and only if {H ′
i,H

′′
i } and{

H ′
j ,H

′′
j

}
are incompatible.

Proof. First, if Ei and Ej are orthogonal, there is a square containing the edges of these two
classes. The four vertices belong respectively to the four sets H ′

i ∩ H ′
j , H

′′
i ∩ H ′

j , H
′
i ∩ H ′′

j , and
H ′′

i ∩H ′′
j . Consequently, these sets are nonempty and the splits are incompatible.

Second, suppose the four sets H ′
i∩H ′

j , H
′′
i ∩H ′

j , H
′
i∩H ′′

j , and H
′′
i ∩H ′′

j are nonempty. Consider
only the vertices in H ′

i. As H ′
i∩H ′

j and H ′
i∩H ′′

j are nonempty, we take arbitrarily one vertex x1 in
H ′

i ∩H ′
j and one vertex x2 in H ′

i ∩H ′′
j . By convexity of H ′

i (Lemma 3), any shortest (x1, x2)-path
passes through an edge of Ej with its two endpoints in H ′

i: this edge is denoted by y1y2, where
y1 ∈ H ′

i ∩ ∂H ′
j and y2 ∈ H ′

i ∩ ∂H ′′
j . If we consider now only the vertices in H ′′

i , we can point out
an edge y3y4 with the same method, where y3 ∈ H ′′

i ∩ ∂H ′
j and y4 ∈ H ′′

i ∩ ∂H ′′
j . By convexity of

∂H ′
j (Lemma 4), any shortest (y1, y3)-path passes through an edge of Ei with two endpoints in

∂H ′
j : we denote this edge by z1z3, where z1 ∈ ∂H ′

i ∩ ∂H ′
j and z3 ∈ ∂H ′′

i ∩ ∂H ′
j . Let z2 (resp. z4)

be the neighbor of z1 (resp. z3) in ∂H ′′
j . We have z1z2, z3z4 ∈ Ej and z1z3 ∈ Ei. As Ej defines

an isomorphism (Lemma 4) between ∂H ′
j and ∂H ′′

j , then z2z4 ∈ E. We obtain a square z1z2z4z3
with edges belonging to classes Ei and Ej .

This results proves implicitely that the splits {H ′
i,H

′′
i } and

{
H ′

j ,H
′′
j

}
are incompatible if and

only if the following four sets formed with boundaries ∂H ′
i ∩ ∂H ′

j , ∂H
′′
i ∩ ∂H ′

j , ∂H
′
i ∩ ∂H ′′

j , and
∂H ′′

i ∩ ∂H ′′
j are nonempty.

We pursue with a property on orthogonal classes: if two edges of two orthogonal classes Ei and
Ej are incident, they belong to a common square. Even if the result was already proposed in [13],
we present a different proof consistent with the notions evoked earlier.

Lemma 7 (Squares [13]). Let xu ∈ Ei and uy ∈ Ej. If Ei and Ej are orthogonal, then there is a
vertex v such that uyvx is a square.

Proof. We say w.l.o.g. that u ∈ H ′
i ∩ H ′

j . Then, x ∈ H ′′
i ∩ H ′

j and y ∈ H ′
i ∩ H ′′

j . Let z be an
arbitrary vertex of H ′′

i ∩H ′′
j which is nonempty (Lemma 6). We fix v = m(x, y, z). We prove that

vertex v is different from x, u, and y.
As H ′′

i is convex, I(x, z) ⊆ H ′′
i and v ∈ H ′′

i . Consequently, v 6= u, y. Similarly, as H ′′
j is convex,

I(y, z) ⊆ H ′′
j , so v 6= x. The median v = m(x, y, z) belongs to I(x, y) and the distance d(x, y) is

at most 2. As v 6= x, u, y, vertex v belongs to a shortest (x, y)-path of length 2 which does not
contain u. As a consequence, v is adjacent to x and y.
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Now, we focus on set of classes which are pairwise orthogonal.

Definition 2 (Pairwise Orthogonal Family). We say that a set of classes X ⊆ E is a Pairwise
Orthogonal Family (POF) if for any pair Ej , Eh ∈ X, we have Ej ⊥ Eh.

The empty set is considered as a POF. The notion of POF is strongly related to the induced
hypercubes in median graphs. First, observe that all Θ-classes of a median graph form a POF if
and only if the graph is an hypercube of dimension log n [32, 34]. Second, if all classes of a POF
X are adjacent to v ∈ V , there is an hypercube containing v and its edges belong to classes in X.

Lemma 8 (POFs adjacent to a vertex). Let X be a POF, v ∈ V , and assume that for each class
Ei ∈ X, there is an edge of Ei adjacent to v. There exists an hypercube Q containing vertex v and
all edges of X adjacent to v. Moreover, the Θ-classes of the edges of Q are the classes of X.

Proof. We proceed inductively. If |X| = 1, X = {Ei}, then the edge ei adjacent to v is an
hypercube of dimension 1 and v is one of its endpoints. If |X| = 2, X = {Ei, Ej}, Lemma 7 shows
that there is a square containing v and the two edges of X adjacent to v.

Assume that for a POF X adjacent to v, |X| ≤ k, there is an hypercube Q containing v and
such that its edges belong to the classes in X. Consider now a POF X, |X| = k + 1, say w.l.o.g.
X = {E1, . . . , Ek+1}, adjacent to v. We denote by e1, . . . , ek+1 the edges belonging respectively
to classes E1, . . . , Ek+1 which are adjacent to v. Indeed, we cannot have two edges of the same
class Ei adjacent to v as any Ei is a matching (Lemma 3). Let X ′ = {E1, . . . , Ek} and Q′ be the
hypercube containing v and admitting edges in X ′. We say w.l.o.g. that vertex v belongs to the
boundary ∂H ′

k+1 of class Ek+1.
We apply Lemma 7 to all pairs of edges (ei, ek+1) with 1 ≤ i ≤ k. They have a common

endpoint v. All these pairs belong in fact to a square of classes {Ei, Ek}. As a consequence, all
vertices in Q′ which are at distance 1 from v belong to ∂H ′

k+1. We can pursue this reasoning for
the vertices of Q′ at distance 2 from v: the edges of Q′ connecting vertices at distance 1 with
vertices at distance 2 from v belong to X ′. Moreover, the vertices at distance 1 are endpoints of
edges in Ek+1. According to Lemma 7, the vertices of Q′ at distance 2 from v belong to ∂H ′

k+1.
Finally, after multiple applications of Lemma 7, we prove that all vertices in Q′ belong to ∂H ′

k+1.
As class Ek+1 forms an isomorphism between ∂H ′

k+1 and ∂H ′′
k+1, the matching Ek+1 connects

a hypercube Q′ with a isomorphic hypercube Q′′ in ∂H ′′
k+1. The induced subgraph on Q′ and Q′′

is the Cartesian product between Qk and K2: it forms an hypercube Q of dimension k + 1. As
v ∈ Q′, then v ∈ Q. Moreover, the Θ-classes represented in Q are exactly X ′ ∪ {Ek+1} = X.

In fact, there is a bijection between the POFs and the vertices of a median graph. Given a POF
X, the vertex which is associated with it is the farthest-to-v0 vertex of the closest-to-v0 hypercube
formed with Θ-classes X.

E1

E2

E3

E4

v0

v1

v2

v3

v4

v5

v6

v7

Vertex v0 v1 v2 v3
POF ∅ {E3} {E1} {E1, E3}

Vertex v4 v5 v6 v7
POF {E4} {E2} {E2, E3} {E2, E4}

Figure 3: Illustration of the bijection between V and the set of POFs.

Lemma 9 (POFs and hypercubes [9, 11, 32]). Consider an arbitrary canonical basepoint v0 ∈ V
and the v0-orientation for the median graph G. Given a vertex v ∈ V , let N−(v) be the set of
edges going into v according to the v0-orientation. Let E−(v) be the classes of the edges in N−(v).
The following propositions are true:
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• For any vertex v ∈ V , E−(v) is a POF. Moreover, vertex v and the edges of N−(v) belong to
an induced hypercube formed by the classes E−(v).

• For any POF X, there is a unique vertex vX such that E−(vX) = X. Vertex vX is the
closest-to-v0 vertex v such that X ⊆ E−(v).

• The number of POFs in G is equal to the number n of vertices.

This result highlights a bijection between the vertices V and the POFs of G. An example is
given in Figure 3 with a graph of dimension d = 2. Edges are colored in function of their Θ-class.
Vertex v0 is the canonical basepoint. For example, v1v3 ∈ E1. We associate with any POF X
of G the vertex v satisfying E−(v) = X with the v0-orientation. Obviously, the empty POF is
associated with v0 which has no incoming edges.

This bijection can be used to enumerate the POFs of a median graph in linear time [11, 32].
Given a basepoint v0, we say that the basis (resp. anti-basis) of an induced hypercube Q is the
single vertex v such that all edges of the hypercube adjacent to v are outgoing (resp. ingoing) from
v. Said differently, the basis of Q is its closest-to-v0 vertex and its anti-basis is its farthest-to-v0
vertex. What Lemma 9 states is also that we can associate with any POF X an hypercube QX

which contains exactly the classes X and admits vX as its anti-basis. Moreover, the hypercube
QX is the closest-to-v0 hypercube formed with the classes in X. Figure 4 shows a vertex v with
its ingoing and outgoing edges with the v0-orientation. The dashed edges represent the hypercube
with anti-basis v and POF E−(v).

Ei

Ej Eh

v

Figure 4: Edges ingoing to a vertex v belong to an hypercube made up of their classes E−(v) =
{Ei, Ej , Eh} and with anti-basis v.

This observation implies that the number of POFs is less than the number of hypercubes in G.
We remind a formula establishing a relationship between the number of POFs and the number of
hypercubes in the literature. Let α(G) (resp. β(G)) be the number of hypercubes (resp. POFs)
in G. Let βi(G) be the number of POFs of cardinality i ≤ d in G. According to [11, 32], we have:

α(G) =
d∑

i=0

2iβi(G) (1)

Equation (1) produces a natural upper bound for the number of hypercubes.

Lemma 10 (Number of hypercubes). α(G) ≤ 2dn.

Proof. This is the consequence of β(G) =
∑d

i=0 βi(G) = n (Lemma 9).

Each hypercube in the median graph G can be defined with only its anti-basis v and the edges N̂
of the hypercube that are adjacent and going into v according the v0-orientation. These edges are
a subset of N−(v): N̂ ⊆ N−(v). Conversely, given a vertex v, each subset of N−(v) produces an
hypercube which admits v as an anti-basis (this hypercube is a sub-hypercube of the one obtained
with v and N−(v), Lemma 9). Another possible bijection is to consider an hypercube as a pair

composed of its anti-basis v and the Θ-classes Ê of the edges in N̂ .
From the previous results and Lemma 10, we deduce an algorithm enumerating the hypercubes

in G in time O(d2dn).
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Lemma 11 (Enumeration of hypercubes). We can enumerate all triplets (v, u, Ê), where v is the

anti-basis of an hypercube Q, u its basis, and Ê the Θ-classes of the edges of Q in time O(d2dn).
Moreover, the list obtained fulfils the following partial order: if d(v0, v) < d(v0, v

′), then any triplet

(v, u, Ê) containing v appears before any triplet (v′, u′, Ê ′) containing v′.

Proof. We run a BFS from a canonical v0 to obtain the v0-orientation. For any vertex v visited,
we list all subsets of N−(v). Each of these subsets N̂ correspond to an hypercube with anti-basis

v. For each N̂ , we determine the Θ-classes Ê of its edges. For any pair (v, Ê), we compute the

basis of this hypercube: we start a walk from v and we traverse once an edge for each class in Ê in
any order. The vertex we visit at the end of the walk is the basis u. At the end of the execution,
we have a list of triplets (v, u, Ê), where Ê ⊆ E−(v). The execution time is equal the number of
hypercubes multiplied by the size of the triplets representing them, which is upper-bounded by
d + 1. The partial order evoked in the statement of this lemma is due to the BFS which visits v
before v′ if d(v0, v) < d(v0, v

′).

The enumeration of hypercubes is executed in linear time for median graphs with d = O(1). It
will be used in the remainder to describe our algorithm computing the diameter.

3 Failure of BFS-based heuristics on median graphs

We prove in this section that 2-sweep and 4-sweep, two well-known linear time heuristics for the
diameter in general graphs, do not determine the exact value of diameter in median graphs. We
begin with a short introduction of these algorithms and then present two median graphs on which
they are unsuccessful.

The heuristic 2-sweep consists in two successive BFS returning a distance d(a1, b1) between
two vertices a1 and b1 which is supposed to estimate the diameter of the graph. First, it starts
from a random vertex of G denoted by r1. It computes a first BFS starting from r1 to determine
the farthest-to-r1 vertex a1. Formally, vertex a1 verifies d(r1, a1) = maxv∈V d(r1, v). Then, it
computes a second BFS, starting from a1 to determine the farthest-to-a1 vertex b1. Vertex b1
verifies d(a1, b1) = maxv∈V d(a1, v). Value d(a1, b1) is returned.

The heuristic 4-sweep consists in four successive BFS. We start with a first 2-sweep which
enables us to obtain vertices a1 and b1. Then, we determine vertex r2 which is the middle of a
shortest (a1, b1)-path. We compute a second 2-sweep starting from vertex r2 which gives vertices
a2 and b2. Value d(a2, b2) is returned.

Unfortunately, both of these fast and simple algorithms fail to determine the diameter on
median graphs.

Theorem 1. There are two median graphs G∗ and H∗ of dimension 2 such that 2-sweep does
not return the diameter on G∗ and 4-sweep does not return it on H∗.

Proof. We begin with graph G∗ and the execution of 2-sweep. Graph G∗ is a square with a
pendant vertex. Figure 5a represents G∗ and indicates the identity of r1, a1, and b1. We start
from the arbitrary vertex r1. Its eccentricity is ecc(r1) = 2. Vertex a1 verifies d(r1, a1) = 2 and is

r1

a1
b1

w

(a) Graph G∗

r1, r2

a1, a2

b1, b2

(b) Graph H∗

Figure 5: Different steps of 2-sweep and 4-sweep on graphs G∗ and H∗.
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selected as the start of the next BFS. Similarly, ecc(a1) = 2 and b1 is selected as the farthest-to-a1
vertex. The distance returned is d(a1, b1) = 2 whereas diam(G∗) = d(b1, w) = 3.

We focus now on graph H∗ and a possible execution of 4-sweep. Graph H∗ is a (3 × 3)-grid
with pendant vertices. Figure 5b represents H∗ and reveals the identity of r1, a1, b1, a2 and b2.
We start at vertex r1. Vertex a1 maximizes d(r1, v) and b1 maximizes d(a1, v). Then, vertex r2 is a
middle of a shortest (a1, b1)-path, but r2 = r1. Thus, pair a1 and b1 can be selected as a potential
diameter again and again. We have a1 = a2 and b1 = b2. In this case, the distance returned is
d(a2, b2) = 5 while diam(G) = 6.

This result convinces us that a more involved algorithm is needed is we aim at determining not
only the diameter of constant-dimension median graphs but also all its eccentricities.

4 Computing the diameter in linear time for dimension

d = O(1)

We proceed in two steps. First, we compute labels for each hypercube of G: they characterize the
shortest paths of G starting at the basis of the hypercube and passing through its anti-basis (Sec-
tion 4.1). Second, thanks to these labels, we reduce the diameter problem to maximum-weighted

disjoint sets (Section 4.2). We design an algorithm with running time O∗(2d(log(d)+1)n) which
identifies the diameter and a diametral pair for median graphs. It will be extended to obtain all
eccentricities with the same execution time in Section 5.

4.1 Labels on hypercubes

A naive approach consists, for each vertex v ∈ V , in computing a BFS to determine its distance
to all other vertices of G. In this way, we associate with any vertex v a label ϕ(v) of size O(n)
indicating all these distances. Such a method produces necessarily a quadratic running time.

To determine the diameter of constant-dimension median graphs in linear time, we propose
different labels which contain less information but enough for our problem. We label all pairs
which contain each a vertex and a POF outgoing from this vertex. We remind that these pairs
are in bijection with the set of hypercubes, according to Lemma 9: the vertex is the basis of the
hypercube and the POFs contains exactly the Θ-classes of the hypercube. The idea is that the
POFs indicate some “direction” in which we can go from the vertex. The label provides us with
the distance of the longest shortest path we can find starting from the input vertex (the basis of
the hypercube) and passing through the anti-basis of the hypercube. We will give more intuition
on these labels when certain notions will be presented formally in this section.

As announced above, we fix an arbitrary canonical basepoint v0 and for each class Ei, we say
that the halfspace containing v0 is H ′

i.
Signature. Given two vertices u, v ∈ V , we define the set which contains the Θ-classes

separating u from v.

Definition 3 (Signature σu,v). We say that the signature of the pair of vertices u, v, denoted by
σu,v, is the set of classes Ei such that u and v are separated in G\Ei. In other words, u and v are
in different halfspaces of Ei.

All shortest (u, v)-paths contain exactly one edge for each class in σu,v.

Theorem 2. For any shortest (u, v)-path P , the edges in P belong to classes in σu,v and, for any
Ei ∈ σu,v, there is exactly one edge of Ei in path P .

Proof. Each Θ-class in σu,v separates u from v. Consequently, a shortest (u, v)-path necessarily
passes through an edge of each of these classes. Let Ei ∈ σu,v. A shortest (u, v)-path passes
through Ei only once, otherwise we would come back to the first halfspace containing u (say H ′

i

w.l.o.g.) which is a contradiction with the convexity of H ′
i (Lemma 3). Finally, suppose there

is a class Ej /∈ σu,v represented in a shortest (u, v)-path. Vertices u and v are inside the same
halfspace of Ej which is a contradiction with the convexity of halfspaces again: the shortest
(u, v)-path cannot traverse an edge of Ej .
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The converse also holds: if a path contains at most one edge of each class, it is a shortest path.

Theorem 3. A path containing at most one edge of each Θ-class is a shortest path between its
departure and its arrival.

Proof. We proceed by induction on the length k of the path. If k = 1, the path consists in one
edge only, so it is obviously a shortest path. Suppose we have a path P of length k + 1 and that
all paths of length k having at most one edge of each class are shortest paths. Let u denote the
departure, v the arrival and w the vertex before the arrival. We know by induction that the section
P (u,w) of the path P between u and w is a shortest (u,w)-path. Let Ej denote the Θ-class of edge
wv. There is no edge of class Ej in path P (u,w), so all vertices in P (u,w) are in the same halfspace
of Ej , say H

′
j w.l.o.g.. Vertex w is the gate of v in H ′

j because d(v, w) = 1: no other vertex can
be the gate of v, otherwise d(v, w) ≥ 2. As w ∈ I(u, v), path P is a shortest (u, v)-path.

The concept of signature can be generalized: given a set of edges, its signature is the set of
Θ-classes represented in that set. For example, the signature of a path is the set of classes which
have at least one edge in this path. In this way, the signature σu,v is also the signature of any
shortest (u, v)-path. The signature of a hypercube is the set of Θ-classes represented in its edges.

Ladder sets. Our idea is now to use POFs to characterize, given two vertices u, v ∈ V , the
“direction” in which the shortest (u, v)-paths are oriented. We define the ladder set Lu,v, a subset
of σu,v which provides the hypercube you have to go through if you want to reach v from u with
a shortest path. We see u as the departure vertex, while v is the arrival. The notion of ladder
set is defined only for vertices u, v satisfying u ∈ I(v0, v). Another characterization involving two
ladder sets will follow for any pair of vertices.

Definition 4 (Ladder set Lu,v). Let u, v ∈ V such that u ∈ I(v0, v). The ladder set Lu,v is the
subset of σu,v which contains the classes admitting an edge adjacent to u.

E1 E2

E3

E4

E5
v0 u

v

Figure 6: An example with u ∈ I(v0, v) and the ladder set Lu,v = {E2, E3}

Observe that when u ∈ I(v0, v), all edges of any shortest (u, v)-path are oriented towards v
with the v0-orientation. The definition of the ladder set takes into account an order of the pair
(u, v) while it is not the case for the signature. Figure 6 shows a median graph G and a pair u, v of
vertices satisfying u ∈ I(v0, v). We color certain Θ-classes of this graph. The Θ-classes belonging
to σu,v and which are adjacent to u are E2 and E3: Lu,v = {E2, E3}. For example, E5 ∈ σu,v but
there is no edge of E5 adjacent to u. We show that any ladder set is a POF.

Theorem 4. Suppose u ∈ I(v0, v). Any ladder set Lu,v is a POF. Moreover, there exists a shortest
(u, v)-path, where its first edges belong to Lu,v.

Proof. If |Lu,v| = 1, then the proof is terminated. Suppose |Lu,v| ≥ 2. We denote by Ei and Ej

two arbitrary classes in Lu,v. We prove that they are orthogonal.
Let ei = (u, zi) be the edge of Ei adjacent to u. The one of class Ej is denoted by ej = (u, zj).

As zi is the gate of u in H ′′
i , we have d(zi, v) = d(u, v) − 1. Moreover, σzi,v = σu,v\ {Ei}. Any

shortest (zi, v)-path concatenated with edge (u, zi) produces a shortest (u, v)-path. Furthermore,
it contains an edge of Ej , so one of its vertex is in ∂H ′

j . In summary, we know that set ∂H ′
j is

convex (Lemma 4) and contains both u and a vertex of any shortest (zi, v)-path. Consequently,
zi ∈ ∂H ′

j: there is an edge (zi, w) ∈ Ej . As the edges of Ej define an isomorphism (Lemma 4),
(w, zj) ∈ E. We obtain a square made up of classes Ei and Ej , so Ei ⊥ Ej . As it is true for two
arbitrary classes Ei, Ej ∈ Lu,v, set Lu,v is a POF.
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According to Lemma 8, there is an hypercube Q containing u and with signature Lu,v. As
u ∈ ∂H ′

i for any Ei ∈ Lu,v, vertex u is the basis of hypercube Q. Let u+ be the opposite vertex
of u in Q. Consider the concatenation of a shortest (u, u+)-path P made up of edges in Q and of
a shortest (u+, v)-path P+. The signature of P is Lu,v. As Lu,v ⊆ σu,v, vertex u

+ is in I(u, v).
Consequently, the concatenation P · P+ is a shortest (u, v)-path and its first edges belong to the
Θ-classes in Lu,v.

More generally, for any ordering τ of the classes of Lu,v, we can identify a shortest (u, v)-path,
where its first part is made up with edges of the classes of Lu,v following the ordering τ . This
prefix is in fact a shortest path between u and its opposite vertex in the hypercube containing u
with signature Lu,v. However, several shortest (u, v)-paths may contain classes of σu,v\Lu,v before
certain classes of Lu,v.

The main principle of our algorithm is to label each pair made up of a vertex u ∈ V and a
POF L “outgoing” from u, i.e. such that, for each Ei ∈ L, there is an edge of Ei outgoing from
u. We know from Lemma 8 that it means there is an hypercube made up of edges in L and with
basis u. Then, the label associated with u and L is the maximum distance d(u, v) for a pair (u, v),
u ∈ I(v0, v), admitting L as its ladder set. There is one label for each hypercube of G.

We showed how the ladder sets characterize pairs of vertices u, v, where u, v, and v0 are aligned,
i.e. u ∈ I(v0, v). We focus now on the general case: we can characterize any pair u, v of vertices
with two ladder sets.

Definition 5 (Ladder pair (Lm,u, Lm,v)). Let m = m(u, v, v0). As m ∈ I(v0, u) and m ∈ I(v0, v),
pairs (m,u) and (m,v) admit a ladder set. The ladder pair of u and v is (Lm,u, Lm,v).

If u ∈ I(v0, v), then m = u. In this case, the ladder pair is the empty set with the ladder
set of u and v. Figure 7 represents a triplet u,m, v such that m = m(u, v, v0). The edges are
oriented according to the v0-orientation. In this example, the ladder pair of u, v is (Lm,u, Lm,v),
with Lm,u = {Ei, Ej} and Lm,v = {Er, Eℓ}.

Ej

Ei Er

Eℓ

v0

m

u

v

Figure 7: Ladder pairs Lm,u = {Ei, Ej} and Lm,v = {Er, Eℓ}.

A shortest (u, v)-path passing through m = m(u, v, v0) is refered as an “down-up” shortest
path in [30]. Indeed, its (u,m)-section is v0-oriented “downwards” - edges are oriented towards u
- while its (m, v)-section is oriented “upwards” - edges are oriented towards v. The ladder pair of
(u, v) indicates the ladder set of both the downwards and the upwards section. They contain the
Θ-classes adjacent to m which belong to σm,u and σm,v respectively.

Computation of the labels. We design an algorithm which computes the labels on our
median graph G. It determines for each pair (u,L), u ∈ V and L is a POF outgoing from u, the
length of the longest shortest path starting from u, with an arrival v ∈ V verifying u ∈ I(v0, v),
and such that its ladder set is L. We denote by ϕ(u,L) this variable. Put formally, ϕ(u,L) is the
maximum distance d(u, v), where u ∈ I(v0, v) and Lu,v = L.

The following theorem identifies a relationship between labels of different vertices.

Theorem 5. Let u ∈ V , L be a POF outgoing from u and Q be the hypercube with basis u and
signature L. We denote by u+ the opposite vertex of u in Q: u is the basis of Q and u+ its
anti-basis. A vertex v 6= u+ verifies u ∈ I(v0, v) and Lu,v = L if and only if (i) u+ ∈ I(v0, v) and
(ii) for each Ej ∈ Lu+,v, L ∪ {Ej} is not a POF.

Proof. Let Puu+ be a shortest (u, u+)-path made up of edges of the hypercube Q. Let Pu+v be
a shortest (u+, v)-path. All edges of path Puu+ are oriented towards u+. Similarly, path Pu+v is
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Algorithm 1: The computation of labels ϕ(u, L)

1: Input: graph G, Θ-classes E , list Q of hypercubes (triplets anti-basis, basis, and POF from
Lemma 11)

2: Output: Labels ϕ(u, L) for each vertex u ∈ V and POF L outgoing from u

3: Initialize ϕ(u, L)← 0 for each u ∈ V and L POF outgoing from u;
4: Q∗ ← reverse(Q);
5: for (u+, u, L) in list Q∗ do

6: if ϕ(u, L) = 0 then

7: ϕ(u, L)← |L|;

endif

8: for all X ⊆ E−(u), X 6= ∅ do
9: u− ← basis of the hypercube with anti-basis u and Θ-classes X ;

10: check
⊥ ← false;

11: for all Ej ∈ L do

12: if X ∪ {Ej} is a POF then check
⊥ ← true;

13: endfor

14: if not check⊥ then ϕ(u−, X)← max {ϕ(u−, X), |X |+ ϕ(u, L)};

15: endfor

16: endfor

oriented towards v as u+ ∈ I(v0, v). Consequently, the concatenation Puu+ ·Pu+v is an (u, v)-path
whose edges are all oriented towards v. According to Theorem 3, it is a shortest path, otherwise
it would pass twice through the same class and an edge of the path would be oriented towards u.
So, u+ ∈ I(u, v).

We can use the same argument with the triplet (v0, u, v), considering a shortest (v0, u)-path
and the shortest (u, v)-path Puu+ ·Pu+v which is oriented towards v. We obtain that u ∈ I(v0, v).

Finally, we prove that the ladder set of the pair (u, v) is exactly L. Suppose that a class Ej

of Lu+,v contains an edge adjacent to u. As u, u+ ∈ ∂H ′
j , the convexity of boundaries (Lemma 4)

implies that all vertices of Q are in ∂H ′
j because Q ⊆ I(u, u+). The class Ej defines an isomor-

phism, so Ej is orthogonal to all classes represented in Q, which corresponds to L. In other words,
L ∪ {Ej} is a POF, a contradiction.

The converse is also true. Let us consider a vertex v satisfying u ∈ I(v0, v) and Luv = L. We
have u+ ∈ I(u, v) ⊆ I(v0, v), therefore the pair (u+, v) admits a ladder set. Suppose by way a
contradiction that there is Ej ∈ Lu+,v such that L ∪ {Ej} is a POF. We know that u+ ∈ ∂H ′

j.
Lemma 7 implies that the neighbors of u+ in Q are also in ∂H ′

j . We can spread this reasoning:
the vertices at distance 2 from u+ in Q are in ∂H ′

j , etc. Finally, we have u ∈ ∂H ′
j . This is a

contradiction as the ladder set Luv is L, not L ∪ {Ej}.

Theorem 5 is illustrated in Figure 8. It shows a median graph with a basepoint v0. Some Θ-
classes are colored. Consider the POF L = {E2, E3} outgoing from u and the ladder set Lu+,x =
{E1}. As L ∪ {E1} is a POF, the ladder set Lu,x of pair u, x is not L, but Lu,x = {E1, E2, E3}.
However, if we consider the ladder set Lu+,v = {E4, E5}, then we observe that neither L ∪ {E4}
nor L∪ {E5} is a POF. So, Lu,v = L according to Theorem 5. Indeed, one can check that E2 and
E3 are the only Θ-classes of σu,v which are adjacent to u.

We initialize all labels ϕ(u, L) with 0. We consider the list of hypercubes obtained from
Lemma 11. We go through this list in the descending order, i.e. starting with hypercubes having
the farthest-to-v0 anti-basis. For each triplet treated, we pick up two of the three elements: the
basis u and the sets of Θ-classes of the hypercube that we denote by L. Set L is indeed a POF
outgoing from u. Suppose that we are treating the pair (u,L) corresponding to the hypercube Q:
all pairs (u+, L+), where u+ is the anti-basis of Q, have already been considered. Indeed, pairs
(u+, L+) admit an anti-basis which is farthest to v0 compared to the anti-basis u+ of (u,L).

We give the details of our procedure. Algorithm 1 presents it in pseudocode. First, we verify
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E1

E2

E3

E4

E5

v0 u

u+

vx

Figure 8: Two vertices u and u+ respectively basis and anti-basis of an hypercube with classes L =
{E2, E3}. POF L is the ladder set of (u, v), not of (u, x). Indeed, Lu,x = {E1, E2, E3}.

the value we have for variable ϕ(u,L). If ϕ(u,L) = 0, then we put ϕ(u,L) ← |L| (line 7 in
Algorithm 1). This case occurs when the hypercube Q with basis u and POF L is “peripheral”,
i.e. when the anti-basis u+ of Q is the vertex v which is the farthest to u and such that Luv = L.
The distance d(u, u+) is equal to the dimension of hypercube Q, which is |L|. If ϕ(u,L) > 0,
then we consider that the label provides us with the distance from u to the farthest-to-u vertex
satisfying Luv = L. Indeed, the anti-basis u+ of Q has already been treated by the algorithm. We
know from Theorem 5 that the value ϕ(u, L) can be deduced from a pair (u+, L+), where L+ is a
POF outgoing from u+ which does not contain a class forming a POF with L.

Second, we list all subsets of E−(u). The idea is to communicate the value ϕ(u,L) to certain
vertices which are the bases of hypercubes with anti-basis u. Let us consider one subset, X ⊆
E−(u). We know from Lemma 9 that there is an hypercube Q− with anti-basis u formed by the
classes X. We denote by u− the basis of the hypercube Q− (line 9). We verify whether there is
a class Ej ∈ L such that X ∪ {Ej} is a POF (line 12). If the answer is no, then there is a vertex
v such that Lu−v = X which is at distance |X| + ϕ(u,L) from u, according to Theorem 5. We
update variable ϕ(u−, X) (line 14):

ϕ(u−, X)← max
{
ϕ(u−, X), |X|+ ϕ(u,L)

}
.

Theorem 6. The execution of Algorithm 1 produces labels ϕ(u,L) which are the maximum dis-
tances d(u, v), where v satisfying Lu,v = L.

Proof. The algorithm treats all pairs (u,L) such that u is a vertex and L is a POF outgoing from
u. The first action of the algorithm is to check the current value of ϕ(u,L).

If ϕ(u,L) = 0, it means that there is no edge outgoing from u+, the anti-basis of the hypercube
with basis u and signature L. In this case, u+ is the farthest-to-u vertex with ladder set L. So,
ϕ(u, L) = d(u, u+) = |L|.

If ϕ(u, L) > 0, there is an hypercube with basis u+ and signature L+, where L ∪ {Ei} is not a
POF for any Ei ∈ L+. According to Theorem 5, the algorithm ensures us that the label of (u, L)
is correctly computed as we consider all pairs (u+, L+) susceptible to influence value ϕ(u, L).

We focus now on the running time of Algorithm 1. For each pair (u,L) (said differently for any
hypercube of G), we list all subsets of set E−(u) which is of size at most d (Lemma 9). For each of
these subsets X, we verify whether X ∪{Ej} is a POF, where Ej ∈ L. The number of hypercubes
is upper-bounded by 2dn (Lemma 10) and the number of subsets X is at most 2d. Determining
whether X ∪ {Ej} is a POF can be done in O(1) by checking whether vertex u− is adjacent to
an edge of Ej . This argument comes from the convexity of boundaries, already used twice in the
proof of Theorem 5. So, the total running time is O(d22dn).

4.2 Maximum-weighted disjoint sets

In this section, we use the labels computed in Section 4.1 to determine the diameter diam(G) of the
median graph G. The idea is to explore ladder pairs (Lm,u, Lm,v) for all vertices m ∈ V and to find
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the one that maximizes the distance from a vertex u to a vertex v which satisfy m = m(u, v, v0).
A relationship between the diameter and ladder pairs. We begin with a theorem which

allows us to characterize the diametral pair regarding the ladder pairs.

Theorem 7. Let m ∈ V and L,L∗ be two POFs outgoing from m. Let u, v be two vertices such
that m belong to both I(v0, u) and I(v0, v). Suppose they fulfil Lm,u = L and Lm,v = L∗. Then,
m ∈ I(u, v) if and only if L ∩ L∗ = ∅.

Proof. First, suppose that L∩L∗ 6= ∅. Then σm,u ∩ σm,v 6= ∅. As a consequence, m /∈ I(u, v): the
concatenation of a shortest (u,m)-path with a shortest (m, v)-path does not produce a shortest
(u, v)-path because it contains two edges from the same class (Theorem 2).

Second, suppose that L ∩ L∗ = ∅. We prove that m ∈ I(u, v). Let Pm,u (resp. Pm,v) be an
arbitrary shortest (m,u)-path (resp. (m, v)-path). If σm,u ∩ σm,v = ∅, then the concatenation
of Pm,u and Pm,v produces a shortest (u, v)-path traversing m, so m ∈ I(u, v). This is why we
suppose, by way of contradiction, that there is a class Ei appearing both in Pm,u and Pm,v . There
is one edge (ui, u

∗
i ) of Ei in Pm,u and one edge (vi, v

∗
i ) of Ei in Pm,v . This notation will be used

for any class belonging to both paths, i.e. in σm,u ∩ σm,v.
Instead of considering an arbitrary class Ei admitting one edge in both paths, we denote by

Ej a class of σm,u ∩ σm,v satisfying a certain property: there is no other class Eh ∈ σm,u ∩ σm,v

with both (uh, u
∗
h) closer to m than (uj , u

∗
j ) in Pm,u and (vh, v

∗
h) closer to m than (vj , v

∗
j ) in Pm,v.

Said differently, we fix Ej such that another class of σm,u∩σm,v that would be closer to m in both
paths does not exist. Obviously, such a class Ej exists as set σm,u ∩ σm,v is finite.

Ej

∂H ′
j

v0

muj
vj

u∗
j

v∗j

Figure 9: Illustration of the convexity of ∂H ′
j

Let uj (resp. vj) be the vertex in ∂H ′
j of path Pm,u (resp. Pm,v). In other words, uj is the

vertex adjacent to the edge of Ej in Pm,u which is the closest to v0, so the closest to m. With the
definition of class Ej , we have m ∈ I(uj , vj). Indeed, the concatenation of the (m,uj)-section of
Pm,u and of the (m,vj)-section of Pm,v produces a shortest (uj , vj)-path passing through m as it
does not contain two edges of the same class. As uj , vj ∈ ∂H ′

j and ∂H ′
j is convex, then vertex m

is adjacent to an edge of Ej : m ∈ ∂H ′
j . Figure 9 illustrates the latter assertion: the edges of Ej

are drawn in blue, the vertices of ∂H ′
j in red. As Ej ∈ σm,u ∩ σm,v, we have Ej ∈ Lm,u ∩ Lm,v

which is a contradiction.

Thanks to Theorem 7, we establish a relationship between the diameter diam(G) and the
ladder pairs. For m ∈ V , let Υ(m) be the distance of the longest shortest (u, v)-path such that
m = m(u, v, v0). The maximum Υ(G) over all Υ(m), m ∈ V is naturally: Υ(G) = diam(G).

Corollary 1. For any m ∈ V , value Υ(m) is the maximum of ϕ(m,L) + ϕ(m,L∗) for two POFs
L and L∗ outgoing from m and with an empty intersection. Formally,

Υ(m) = max
L∩L∗=∅

outgoing from m

ϕ(m,L) + ϕ(m,L∗). (2)

The diameter of G can thus be written:

diam(G) = Υ(G) = max
m∈V

max
L∩L∗=∅

outgoing from m

ϕ(m,L) + ϕ(m,L∗). (3)
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Proof. Let m ∈ V and u, v be the pair of vertices satisfying m = m(u, v, v0) which maximizes
d(u, v). We know from Theorem 7 that the ladder sets Lm,u and Lm,v are outgoing from m
and have an empty intersection. We have ϕ(m,Lm,u) = d(m,u), otherwise there would exist
another vertex u∗, where d(m,u∗) > d(m,u) and Lm,u = Lm,u∗ , and we would obtain d(u∗, v) =
d(u∗,m) + d(m,v) > d(u, v), a contradiction. For the same reason, ϕ(m,Lm,v) = d(m,v). So,
we know that there is a pair Lm,u ∩ Lm,v = ∅ of POFs outgoing from m such that d(u, v) =
ϕ(m,Lm,u) + ϕ(m,Lm,v).

Now, suppose that there is another pair L ∩ L∗ = ∅ outgoing from m such that d(u, v) <
ϕ(m,L)+ϕ(m,L∗). Theorem 7 implies that there are two vertices x, y verifying d(m,x) = ϕ(m,L),
d(m, y) = ϕ(m,L∗), and m = m(x, y, v0). So, d(x, y) > d(u, v). As m = m(x, y, v0), we have a
contradiction with the definition of u, v. In brief, Lm,u, Lm,v is the pair of disjoint POFs outgoing
from m which maximizes the sum of labels. Equation (2) holds.

Equation (3) is a direct consequence of Equation (2) because the diameter is the maximum of
Υ(m) over all vertices m ∈ V by definition.

According to this corollary, a way to obtain the diameter is to find the triplet (m,L, L∗) which
maximizes ϕ(m,L) + ϕ(m,L∗), where L and L∗ are disjoint POFs outgoing from m. Our idea is
to determine Υ(m) for each m ∈ V and then to identifies the maximum of these values. We thus
propose an algorithm returning all values Υ(m) in linear time for constant d.

Computation of Υ(m). We fix some m ∈ V . Let Lm be the set of POFs outgoing from m.
Its cardinality is denoted by Nm. We know that Lm is closed under subsets and, for any L ∈ Lm,
|L| ≤ d. A positive integer ϕ(m,L) is associated with any of these sets. From now on, we denote
them by ω(L) to be concise: ω(L) = ϕ(m,L). The goal is to find the pair L,L∗ ∈ Lm, L∩L∗ = ∅
maximizing ω(L) + ω(L∗). We call this problem maximum-weighted disjoint sets (MWDS).

Definition 6 (Maximum-weighted disjoint sets).
Input: Elements E , collection Lm of sets of elements, weights ω : Lm → N

+, parameter d ∈ N.
For each L ∈ Lm, |L| ≤ d.

Output: Pair L, L∗ ∈ Lm, L ∩ L∗ = ∅ which maximizes ω(L) + ω(L∗).

We design an algorithm solving MWDS in time O(2d log dNm). Before describing it, we need
some notation. Given L ∈ Lm, we denote by op(L) the opposite of set L, i.e. the set in Lm

verifying L∩ op(L) = ∅ with maximum weight ω(op(L)). Our algorithm will consist in identifying
the opposite op(L) of each L ∈ Lm.

We construct a tree Tm which allows us to compute all opposites. To avoid confusions, the
vertices of Tm are called nodes. Nodes of Tm are indexed with POFs in Lm and edges of Tm are
indexed with Θ-classes. For any node a ∈ Tm, we denote by R(a) the union of indices of the edges
which are on the simple path from the root of Tm to node a. With our construction, we announce
that any set R(a) will be a POF.

We begin with an iterative presentation of our algorithm. We identify first the set L0 ∈ Lm

with the maximum weight. The running time of such step is O(Nm). The root of our tree is
indexed with L0 (line 17 of Algorithm 2). At this step, we know that all sets L ∈ Lm verifying
L0 ∩ L = ∅ admit L0 as their opposite: op(L) = L0. The remaining sets are the ones having a
nonempty intersection with L0.

For each class Ei0 ∈ L0, we add a child to L0 and the edge of Tm that connects the root with
this child is indexed with Ei0 . For example, suppose that L0 = {Ei, Ej}. Then, the root has two
children. The two edges connecting L0 to its children are respectively indexed with Ei and Ej

(Figure 10a). The idea is that if the intersection of a given set L with L0 is {Ei} for example,
then traverse the branch indexed with Ei to find the opposite of L. If the intersection is {Ei, Ej},
then traverse arbitrarily one of the two branches Ei and Ej .

The next step consists in indexing the children of L0. We consider one of them being connected
to L0 by a branch with index Ei0 ∈ L0. We denote this node by a1. We compute the set L1 ∈ Lm

of maximum weight which does not contain any class of R(a1) = {Ei0}. We fix L1 as the index
of a1. If we go back to our example, with Ei0 = Ei, then L1 is the maximum-weighted POF in
Lm that does not contain Ei. Suppose that L1 = {Ej , Eh, Er}. At this moment, we have treated
the sets L ∈ Lm such that L0 ∩ L = ∅: their opposite is L0. With this child a1, we aim at
finding the opposite of sets verifying Ei ∈ L. For example, for L = {Ei, Eℓ}, its opposite is indeed
op(L) = L1 = {Ej , Eh, Er} because L ∩ L1 = ∅ and L1 is the maximum-weighted set which does
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{Ei, Ej}

{Ej , Eh, Er}

{Eℓ}

a0

a1

a2

Ei

Eh

Ej

Ej

(a) Tree Tm

m

v0

mij

mjhr

Eℓ

Er

Ei

Ej

Eh

(b) Hypercubes with basis m

Figure 10: An example of tree Tm which allows us to compute all opposites in Lm.

not contain Ei. Unfortunately, if L = {Ei, Eh}, then L and L1 are not disjoint so we still have
to find the opposite of {Ei, Eh}. Put formally, we know that L0 is the opposite of any L ∈ Lm

satisying L ∩ L0 = ∅. Moreover, we know that a child L1 of L0, connected via a branch Ei0 ∈ L0,
is the opposite of L ∈ Lm satisying Ei0 ∈ L ∩ L0 and L ∩ L1 = ∅.

We pursue the construction of the tree Tm. The node a1 indexed by L1 admits one child for
each class Ei1 ∈ L1 whose union with R(a1) form a POF. In our example, R(a1) = {Ei} and
L1 = {Ej , Eh, Er}, so if for example {Ei, Eh} is POF, then we add a child (say a2) to a1 and the
index of the edge (a1, a2) is Eh. The index of node a2 is the POF of maximum weight which has
an empty intersection with R(a2). In our example, R(a2) = {Ei, Eh}, see Figure 10a.

Algorithm 2 presents a recursive view of the construction of the tree. Symbol # refers to
the comments, outside the pseudocode. Figure 10 shows an example of tree Tm and besides, an
example of median graph where only the hypercubes with basis m are represented. For each class,
its edge adjacent to m is colored and oriented in accordance with the v0-orientation. As the root
of Tm is indexed with {Ei, Ej}, then we can affirm that the vertex v satisfying m ∈ I(v0, v) which
maximizes d(m,v) verifies Lmv = {Ei, Ej}. Therefore, the longest shortest (m, v)-path, such that
m ∈ I(v0, v), passes through vertex mij . As an example, the opposite of {Ei} is {Ej , Eh, Er}. So,
if a diametral pair (u, v) is such that m = m(u, v, v0) and Lmu = {Ei}, then the diameter is given
by value ϕ(m, {Ei}) + ϕ(m, {Ej , Eh, Er}) and a diametral path passes through vertex mjhr.

Once the computation of the tree Tm is completed, the index La of node a ∈ Tm is the opposite
of any L ∈ Lm that contains all classes of R(a) but no class of La. Moreover, there is one child
of node a ∈ Tm for each class of its index La whose union with R(a) is a POF (line 7). Indeed, if
some L ∈ Lm contains R(a) but also certain classes of the index La of a, then we have to go down
the tree through a branch indexed by an arbitrary class Ei in La ∩ L to find the opposite of L.
The following lemma ensures us that all opposites in Lm can be identified in the tree Tm.

Lemma 12. Let a be a node of Tm, La its index, and L some POF in Lm. Assume that R(a) ⊆ L.
If La ∩L = ∅, then op(L) = La. Otherwise, there exists a child, denoted by a[Ei], where the index
Ei of edge (a, a[Ei]) belongs to La ∩ L.

Proof. By definition, the POF La is the maximum-weighted POF which has no intersection with
R(a). If La has no intersection with L, then we cannot find another POF disjoint from L ⊇ R(a)
with a greater weight than ω(La), so op(L) = La in this case. Otherwise, if there is some Ei ∈
La ∩ L, we can say that {Ei} ∪ R(a) ⊆ L is a POF as its superset L. Consequently, as Ei ∈ La,
there is an edge between a and one of its children which has index Ei.

We determine the opposite op(L) of each L ∈ Lm with a tree search in Tm. If L ∩ L0 = ∅,
then op(L) = L0, else traverse the branch with an index in L ∩ L0, etc. Each node a visited in
this descent verifies R(a) ⊆ L. If La ∩ L = ∅, then op(L) = La (Lemma 12). Otherwise, at least
one child of a can be visited to pursue the descent, via a branch Ei ∈ L which exists according to
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Algorithm 2: Construction of the tree Tm providing us with all opposites.

1: Input: Vertex m, Θ-classes E , set Lm of POFs and ω : Lm → N
+

2: Output: Tree Tm

3: def children(T, a) :
4: La ← index of node a;
5: for all Ei ∈ La do

6: if {Ei} ∪R(a) is a POF then

7: add a child a[Ei] of a in T ; Index (a, a[Ei]) with Ei;
8: La[Ei] ← argmax

L∈Lm

L∩R(a[Ei])=∅

ω(L); # here, R(a[Ei]) = {Ei} ∪R(a)

9: add index La[Ei] to node a[Ei];

10: endif

11: endfor

12: for all children a[Ei] of a in T do

13: children(T, a[Ei]);

14: endfor

15: enddef

16: L0 ← argmaxL∈Lm
ω(L);

17: a0 ← node with index L0; Tm ← single node a0; # here, R(a) = ∅
18: children(Tm, a0);

Lemma 12. The depth of Tm is at most d because R(a) is a POF for any a ∈ Tm and the cardinality
of any POF is at most d. The tree search for each L costs only O(d2) because we visit at most
d nodes (depth) and checking the intersections with all indices La costs O(d). The operation
consisting in finding all opposites in Lm takes thus O∗(Nm), where O∗ neglects polynomials of d.
The computation of Υ(m) is complete: we pick up the pair (L, op(L)) with maximum weight.

Running time and discussion. We provide an upper bound of the number of vertices of
Tm. First, the depth of Tm is at most d. Second, each node has at most d children. Therefore,
the number of nodes is at most d! = O(2d log d). Computing the index of each of its nodes (line 8
of Algorithm 2) takes O(Nm). The construction of tree Tm takes O∗(2d log dNm).

The running time for determining Υ(m) - construction of the tree and computation of the
opposites - is O∗(2d log dNm). Eventually, we pick up the vertex m maximizing Υ(m) and the
value obtained is diam(G) according to Corollary 1. The running time of the algorithm is thus
O∗(2d(log d+1)n) because

∑
m∈V

Nm = α(G) ≤ 2dn.
Our algorithm outputs the diameter. However, we may aim at returning a diametral pair. To

do so, we can simply add an extra label µ(u, L) in order to obtain a labeling pair (µ(u,L), ϕ(u,L)),
where µ(u,L) is a vertex which is at distance ϕ(u, L) from u ∈ I(v0, µ(u,L)) with ladder set L.
Two slight modifications must be done in Algorithm 1 presented in Sections 4.1. First, when
ϕ(u, L) = 0 (line 7), we initialize the vertex µ(u,L) with the anti-basis u+. Second, the update of
ϕ(u−, X) in line 14 is replaced by an update of both the vertex µ(u−, X) and the value ϕ(u−, X).
If |X|+ ϕ(u,L) > ϕ(u−, X), then µ(u−, X)← µ(u, L).

5 Computing all eccentricities in linear time for dimen-

sion d = O(1)

We use the computations of Section 4 to determine the eccentricity of each vertex of G. We remind
that, in time O(2O(d log d)n), we obtained the following labels for any pair (u, L), where u ∈ V and
L is a POF outgoing from u.

• ϕ(u,L): distance of the longest shortest path starting from vertex u with ladder set L,
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• opu(L): ladder set L
∗ outgoing from u which has an empty intersection with L and maximizes

ϕ(u,L∗).

We proceed in two steps in this section. First, we define the concept of milestones which consist
in particular vertices of any interval I(u, v) satisfying u ∈ I(v0, v). Second, we compute new labels
ψ(u,X), where u ∈ V and X is a POF arriving in u. Their definition depend on the notion of
milestone. Finally, we establish a relationship between the eccentricity ecc(u) of u ∈ V and both
labels ϕ(u,L) and ψ(u,X).

5.1 Milestones

We consider two vertices u, v such that u ∈ I(v0, v), said differently u = m(u, v, v0). The notion
of milestone is defined recursively.

Definition 7 (Milestones Π(u, v)). Let Lu,v be the ladder set of u, v and u+ be the anti-basis of
the hypercube with basis u and signature Lu,v. If u+ = v, then pair u, v admits two milestones:
Π(u, v) = {u, v}. Otherwise, the set Π(u, v) is the union of Π(u+, v) with vertex u: Π(u, v) =
{u} ∪ Π(u+, v).

Lu,v

Lu+,v

Lu++,v

v0 u

v

u+ u++

Figure 11: A pair u, v with u ∈ I(v0, v) and its milestones Π(u, v) in red.

The milestones are the successive anti-bases of the hypercubes formed by the vertices and ladder
sets traversed from u to v. Moreover, it contains both u and v. Concretely, the first milestone is
u, the second is the anti-basis u+ of the hypercube characterized by (u,Lu,v). The third one is
the anti-basis u++ of the hypercube with basis u+ and Θ-classes Lu+,v, etc. All milestones are in
the interval of u and v: Π(u, v) ⊆ I(u, v).

Figure 11 represents the same graph than in Figure 6 and shows the milestones Π(u, v) ={
u, u+, u++, v

}
. The hypercubes with the following pair basis-signature are highlighted with

dashed edges: (u,Lu,v), (u
+, Lu+,v), and (u++, Lu++,v).

We say that the milestone in Π(u, v) which is different from v but the closest to it is called the
penultimate milestone. We denote it by π(u, v). For example, u++ is the penultimate milestone of
Π(u, v) in Figure 11. Furthermore, we denote by Lu,v the Θ-classes of the hypercube with basis
π(u, v) and anti-basis v. In Figure 11, Lu,v = Lu++,v.

A consequence of Theorem 5 is that, for two consecutive milestones in Π(u, v), say u and
u+ w.l.o.g, then Lu,v and Lu+,v verify the following property: for any class Ei ∈ Lu+,v, then
Lu,v ∪ {Ei} is not a POF. We establish a property dealing with the penultimate milestone.

Theorem 8. Let u, v ∈ V and u ∈ I(v0, v). Let L be a POF outgoing from v and w the anti-basis
of hypercube (v, L). The following propositions are equivalent:

(i) vertex v is the penultimate milestone of (u, w): π(u,w) = v,

(ii) the milestones of (u,w) are the milestones of (u, v) with w: Π(u,w) = Π(u, v) ∪ {w},
(iii) for any class Ei ∈ L, then Lu,v ∪ {Ei} is not a POF.

Proof. Claim: σu,w = σu,v ∪ L. As u ∈ I(v0, v) and v ∈ I(v0, w), we have u ∈ I(v0, w) and
v ∈ I(u,w). The concatenation of a shortest (u, v)-path with a shortest (v, w)-path produces
a shortest (u,w)-path. According to Theorem 2, σu,w = σu,v ∪ σv,w. As w is the anti-basis of
hypercube (v, L), then σv,w = L, which proves the claim.
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(i) ⇔ (ii). Suppose that v is the penultimate milestone in Π(u,w). From the previous claim,
we know that σu,w = σu,v ∪ L. Consider a milestone in Π(u,w) arriving before v, i.e. p ∈
Π(u,w)\ {v, w}, and suppose that some class Ei ∈ L belongs to the ladder set Lp,w . The milestone
after p in Π(u,w) is thus in ∂H ′′

i . By convexity of ∂H ′′
i , all milestones arriving after p are in ∂H ′′

i .
This is a contradiction as an edge of Ei is outgoing from v, so v ∈ ∂H ′

i. So, no class of L appears
in the ladder sets Lp,w before milestone v. The milestones of pair (u, w) are built with the classes
in σu,v until we arrive at v: Π(u,w) = Π(u, v) ∪ {w}. Conversely, (ii)⇒ (i) is trivial.

(ii) ⇔ (iii). The direct side is a consequence of Theorem 5. As π(u, v) ∈ I(v0, v) and v ∈
I(v0, w), we have π(u, v) ∈ I(v0, w). Vertex π(u, v) belongs to Π(u,w), so the ladder set of π(u, v)
and w is Lu,v. We apply Theorem 5 to vertices π(u, v) and w: for any Ei ∈ Lv,w = L, set
Lu,v ∪ {Ei} is not a POF.

Suppose now that for any Ei ∈ L, set Lu,v∪{Ei} is not a POF. The Θ-classes in L are outgoing
from v. Assume a class Ei of L is outgoing from some milestone p in Π(u, v) different from v:
p ∈ Π(u, v)\ {v}. By convexity of ∂H ′

i, as {p, v} ⊆ ∂H ′
i, we have π(u, v) ∈ ∂H ′

i. More generally,
all vertices of the hypercube with basis π(u, v) and signature Lu,v are in ∂H ′

i for the same reason.
Class Ei form an isomorphism between ∂H ′

i and ∂H ′′
i : there is an hypercube with basis π(u, v)

and classes Lu,v ∪ {Ei}. This is a contradiction as Lu,v ∪ {Ei} is not a POF.
We just showed that no class of L is adjacent to a milestone in Π(u, v)\ {v}. As σu,w = σu,v∪L,

the milestones of Π(u,w) are exactly the milestones of Π(u, v) until we arrive at v. Indeed, the
ladder set Lp,w for any milestone p ∈ Π(u, v)\ {v} cannot contain a class of L. At vertex v, the
ladder set Lv,w is L, so the next milestone is w itself.

This result is the keystone to compute the labels ψ(u,X) and, finally, all eccentricities.

5.2 Labels ψ(u,X) and eccentricities

Let X be a POF ingoing to some vertex u and u− be the basis of the hypercube with anti-basis
u and classes X. The label ψ(u,X) is the maximum distance d(u, v) we can obtain with a vertex
v satisfying the following properties:

• m = m(u, v, v0) 6= u,

• vertex u− is the penultimate milestone of pair m,u: u− = π(m,u).

We present an inductive algorithm determining labels ψ(u,X). We list the hypercubes of G
in the order given by list Q computed in Lemma 11 and evoked in Algorithm 1. Concretely, the
hypercubes admitting v0 as their basis are listed first. The “peripheral” hypercubes are listed last.
For each of these hypercubes, we pick up their anti-basis u and their signature X and then we
determine ψ(u,X) as explained below.

Let Q0 ∈ Q be an hypercube with basis v0. This is the base case of our induction. We denote
its anti-basis by v+0 and its classes by X0. Figure 12 presents an example where X0 = {Ei, Ej} and
its opposite opv0(X0) = {Eℓ, Er}. We aim at finding the maximum distance d(v+0 , v) with a vertex

v verifying m = m(v+0 , v, v0) 6= v+0 and v0 = π(m,v+0 ). Necessarily, m = v0 as v0 ∈ I(v+0 , v).
Therefore, we seek the longest shortest path starting from v0 such that, concatenated with a
shortest (v0, v

+
0 ) path, it produces a shortest path with v+0 as an extremity. As the distance

between v0 and v+0 is |X0|, and according to Theorem 7, we have:

ψ(v+0 , X0) = |X0|+ ϕ
(
v0, opv0(X0)

)
(4)

Ej

Ei

Er

Eℓ

v0

v+0
v

Figure 12: The hypercubes with basis v0 and signature X0 = {Ei, Ej} and opv0(X0) = {Eℓ, Er}
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Let Q ∈ Q be an hypercube, with basis u−, anti-basis u and classes X. We suppose that the
labels ψ of vertex u− have already been computed. We are looking for the maximum distance
d(u, v) with a vertex v verifying m = m(u, v, v0) 6= u and u− = π(m,u). We distinguish two cases.

First, we assumem = u−. As for the base case (Equation (4)), ψ(u,X) = |X|+ϕ(u−, opu−(X)).
Second, we assume that m 6= u−. Set Π(m,u) admits at least three milestones: m, u−, and

u. Let X− be the POF ingoing to u− which is the ladder set in Π(m,u) of the milestone just
before u−. According to Theorem 8, vertex u− is the penultimate milestone of (m,u) if and only
if X− ∪ {Ei} is not a POF, for each Ei ∈ X. For this reason, value ψ(u,X) can be expressed as:

ψ(u,X) = max
X− POF ingoing to u−

∀Ei∈X,X−∪{Ei} not POF

|X|+ ψ(u−, X−)

Our algorithm consists in taking the maximum value between the two cases. In this way, we
obtain all labels ψ(u,X) in time O∗(2dα(G)) = O∗(22dn) because we consider each hypercube of
the graph and list the POFs ingoing to their basis.

Eventually, we show how to compute all eccentricities in function of labels ϕ(u,L) and ψ(u,X).

Theorem 9. The eccentricity of vertex u ∈ V is the maximum between all values ϕ(u, L) and also
all values ψ(u,X). Formally,

ecc(u) = max




 max
L POF

outgoing from u

ϕ(u,L), max
X POF

ingoing to u

ψ(u,X)






Proof. Let v be a vertex in G such that ecc(u) = d(u, v). If m = m(u, v, v0) = u, then u ∈ I(v0, v)
and value d(u, v) is given by the label ϕ(u,L), where L is the ladder set Lu,v. Conversely, each
ϕ(u, L′) is the distance between u and some vertex v′ satisfying u ∈ I(v0, v

′). Therefore, the
maximum value of ϕ(u, L) is the maximum distance d(u, v) such that m = u.

If m 6= u, let u− be the penultimate milestone in Π(m,u) and X be the classes of the hypercube
with basis u− and anti-basis u. In this case, distance d(u, v) is given by label ψ(u,X). So, the
maximum value ψ(u,X) is the maximum distance d(u, v) such that m 6= u.

There are as many labels ϕ(u, L) as hypercubes and the number of labels ψ(u,X) is upper-
bounded by 2dn. In brief, computing all eccentricities takes 2O(d log d)n: the most expensive
operation is still Algorithm 2 which determines the opposites of any pair (u,L).

6 Conclusion

The main contribution of this article is an algorithm determining the diameter, the radius, and all
eccentricities in median graphs in linear time when d = O(1). A natural question is whether the
techniques we used can be extended to propose an algorithm with a subquadratic running time
for all median graphs.

We believe some of the notions we proposed characterize shortest paths in median graphs and
are powerful tools to determine the diameter and, more generally, all eccentricities. Ladder sets,
ladder pairs but also milestones allow us to focus on certain distances instead of considering all
pairs of vertices, as with a multiple BFS. The dependence of distances between two “adjacent”
ladder sets (Theorem 5) and the characterization of the diameter via ladder pairs (Corollary 1)
are results which are likely to be used again in future research for median graphs.

The design of a linear-time algorithm for the diameter on median graphs seems compromised.
Indeed, in [25], the authors put in evidence the difficulty to design a linear-time algorithm comput-
ing the diameter for graphs with unbounded distance VC-dimension, which is at least d on median
graphs. Nevertheless, in our opinion, the design of a subquadratic algorithm is a challenging line
of research.
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