

Graphite heat spreader for power component embedded in printed circuit boards (PCB)

IEEE EPS France, Journée technique

Ahmed Sabry AHMED, Rémi PERRIN and Guillaume LEFEVRE (Mitsubishi Electric)

Cyril BUTTAY (AMPERE) and Jacques JAY (CETHIL)

06/12/2022

MITSUBISHI ELECTRIC R&D CENTRE EUROPE

> Introduction to PCB embedding technology.

> Optimization of a graphite heat spreader for PCB.

➤ Experimental validation

➤ Conclusion

Introduction to PCB embedding technology

1

©Mitsubishi Electric R&D Centre Europe

Export Control: NLR

[A. Ostmann, 2016]

1.2

- **\diamond** Copper \rightarrow Conventional heat spreader \rightarrow Good thermal conductivity
- * **Diamond** \rightarrow **2000 W/(m K)** isotropic thermal conductivity.
 - \rightarrow Very expensive.
- ♦ Graphite → Orthotropic → 2000 W/(m K) (in-plane).
 → 15 W/(m K) (cross-plane).
 → Not expensive.

Optimization of a graphite heat spreader for PCB

2

Export Control: NLR

2.1 Graphite heat spreader for PCB: the concept

2.1 Graphite heat spreader for PCB: the concept

Simulations results of and comparison of micro vias patterns:

- Only an eighth was considered due to symmetry to reduce calculation time.
- $\mathbf{k} \mathbf{k} \mathbf{k} \mathbf{k} = \frac{Tav 22^{\circ}C}{Power}$

2.2

Several vias patterns on drain side were compared.

Experimental validation

Export Control: NLR

3.1 Experimental validation : fabrication

PCB stack :

Copper (35 µm) → 400 W/(mK)

- FR4 (80 μ m _lsola-PCL-FRP-370HR-106) \rightarrow 0.4 W/(mK)
- Graphite (50 µm Panasonic-PGS EYGS12181205) → 1300 W/(mK) (XY)

- The PCB is 45x45mm².
- The active part is 20x20 mm².

1st vias pattern
→ 0.7 mm diameter
and 1.4 mm spacing

2nd vias pattern → 0.7 mm diameter and 2.8 mm spacing

PCB stack-up

©Mitsubishi Electric R&D Centre Europe

Export Control: NLR

Drilling of mechanical vias

fabrication

3.1 Experimental validation : fabrication

Cross section microscopic images :

Microscopic cross-section pictures: electro-deposited copper of micro-vias in good contact with graphite layers, which is a key point for the proposed stack.

©Mitsubishi Electric R&D Centre Europe

Export Control: NLR

Diode and connectors soldering :

 Soldering temperature for reflow should be at or above 235°C for a minimal time of 20 seconds.

SiC diode chip (CPW5-1200-Z050B) is used (4.9x4.9 mm²)

Material	CTE-XY (ppm)	CTE-Z (ppm)	Young's Modulus (Gpa)
Isola-PCL-FRP-370HR-106 (FR4)	Pre Tg: 13/14 Post Tg: 14/17	Pre Tg: 45 Post Tg: 230	Grain direction: 25.8 Fill direction: 21.9
Copper (Cu)	16/17	16/17	130
Graphite (Gr) (Panasonic PGS EYGS121805)	0.93	32	~ 2

> Delamination :

- ✤ A delamination took place in graphite samples at places without distributed vias.
- ✤ The delaminate started at 200-220 °C.
- The active part of the sample is still functional because of distributed mechanical vias.

3.2 Experimental validation : experimental setup

- The sample is calibrated in calibration oven to obtain a relationship between junction temperature and diode voltage.
- The test setup measures
 junction-to-case thermal
 resistance (RthJC) using
 the transient dual
 interface method (TDIM).
- All test were performed at heating power of 10 W.

3.3

- Two heating curves are obtained by using a thermal interface material (TIM) of two different thermal resistances.
- The divergence point between the two curves indicates the thermal impedance at which RthJC of the package is considered.
- In this work, one type of TIM is used but with different number of layers to have two different thermal resistances.

3.3

Experimental validation : experimental results

4 Conclusion

Export Control: NLR

- A heat spreading solution compatible with PCB manufacturing process was proposed by embedding graphite layers in PCB.
- * Numerical simulations predict junction to ambient thermal resistance RthJA reduction of more than 50 %.
- ***** An initial prototype with was fabricated.
 - \rightarrow A delamination took place in samples with graphite following reflow. \rightarrow need for further investigations.
- Thermal experimental results showed a junction to case thermal resistance RthJC reduction of 16-31 % depending on distributed vias pattern.
- ◆ Next step → Tests on a new prototype with embedded chip.

MITSUBISH ELECTRIC Changes for the Better