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ABSTRACT

Scene understanding has made tremendous progress over the past few years, as data acquisition systems are now providing an
increasing amount of data of various modalities (point cloud, depth, RGB...). However, this improvement comes at a large cost on
computation resources and data annotation requirements. To analyze geometric information and images jointly, many approaches
rely on both a 2D loss and 3D loss, requiring not only 2D per pixel-labels but also 3D per-point labels. However, obtaining a 3D
groundtruth is challenging, time-consuming and error-prone. In this paper, we show that image segmentation can benefit from 3D
geometric information without requiring a 3D groundtruth, by training the geometric feature extraction and the 2D segmentation
network jointly, in an end-to-end fashion, using only the 2D segmentation loss. Our method starts by extracting a map of 3D features
directly from a provided point cloud by using a lightweight 3D neural network. The 3D feature map, merged with the RGB image,
is then used as an input to a classical image segmentation network. Our method can be applied to many 2D segmentation networks,
improving significantly their performance with only a marginal network weight increase and light input dataset requirements, since
no 3D groundtruth is required.

1. Introduction In this context, we introduce a segmentation method exploit-
ing both 2D and 3D information, able to remove all dependency
on a 3D groundtruth, only relying on 2D labels. A lightweight
encoder extracts features from a 3D point set which are used
to improve 2D segmentation results. Since it works on a single
view, our method can also be applied to RGBD data by triv-
ially reconstructing a point cloud from the single view depth by
discarding pixels with no depth information. El

Today’s 3D LiDAR scanners are often equipped with cam-
eras acquiring RGB pictures alongside a point cloud : 2D im-
ages provide colors and texture of the objects, while 3D data
provides geometric relationships between objects in the scene,
beyond their differences in color and texture. Hence, adequately
combining both types of data can leverage their respective ad-
vantages and help overcome their limitations (3DMV [1]], BP-
Net [2]). While initial scene datasets provided only RGBD
information and 2D groundtruth data (NYU-V2 dataset [3])),
many recent datasets (ScanNet [4]],2D-3DS [5]]) provide RGBD
images and depth-reconstructed point clouds. The KITTI-360
dataset [6] directly provides 3D data laser scans and RGB im-
ages captured dynamically.

More importantly these datasets also come with both 2D and
3D groundtruth labels, these datasets being usually prepared
and labelled manually. For the ScanNet dataset, the 3D instance
segmentation was crowd-sourced to more than 500 cowork-
ers [4], using a specifically designed labelling interface, with
CAD model alignments. This shows that the 3D groundtruth
labelling task is highly non trivial to set up and work-intensive. Fig. 1. Taking an RGB image and.the points falling inside the viewing'co‘ne

i R R . X of the camera (red and green points), our method encodes geometric in-
On the contrary labelling 2D images is much simpler, as it can formation and projects the visible points (green points) to the image plane
rely on traditional image segmentation techniques with a user  before processing it with a 2D segmentation network.
possibly merging or correcting the segmented parts and naming
them.

e-mail: olivier.pradelle@hexagon.com (Corresponding Author) 1Our code is available at https://github.com/OPradelle/2DGuidedLight3D.



2. Related Work

2D image segmentation. 2D semantic segmentation has known
several improvements over the last decade. Long et al. [7] re-
placed the last layers of a convolutional classification network
[8] with fully connected layers to produce per pixel segmen-
tation. Ronneberger et al. [9] alternatively proposed U-Net,
an architecture that shares information between coarsest and
finest representation layers, making it more robust to missing
groundtruth data. Some approaches exploited even deeper net-
works [[10] while others worked on the receptive fields of the
convolution operation in order to achieve better context under-
standing. In particular, Yu and Koltun [11] and Chen et al.
[12] used dilated convolution (also called atrous convolution)
to gain contextual information. Dai et al. [13] introduced a de-
formable convolution to allow the network to be more accurate
in the area of interest. Recent approaches by Xie et al. [14],
or Liu et al. [15]] introduce attention mechanisms to learn long
range dependencies in the images for segmentation tasks.

Deep Learning for 3D point cloud segmentation. The main
challenge of such sparse and unstructured data lies in the def-
inition of a convolution operator working on points’ neighbor-
hoods, robust to point permutation, sampling changes and geo-
metric transformations. To overcome the lack of structure and
define a convolution operation in 3D, some methods discretize
the point cloud on a voxel grid and use 3D convolutional neural
networks [[16}[17] on such grids, while others rely on a nearest
neighbor graph [18]] or use ball neighborhood queries [19].

To alleviate the need for a well-defined neighborhood, Point-
Net [20] relies on per point convolutions with shared weights
and symmetric aggregation operators to work on the raw point
cloud directly. The network is then robust to sampling changes
and point permutation, but at the cost of losing the locality of
the computations. PointNet++ [21]] re-introduced some locality
to the network, by using a multiscale computation. Other spe-
cific convolutions include defining the convolution weights as a
continuous function on the local coordinates of 3D points [22],
or centering a convolution kernel around each point and defin-
ing the kernel features by summing the point features lying in
the kernel’s domain [23]. Another way of handling 3D data
is by projecting it to several 2D grids in a multi-view setting.
Boulch et al. [24] and Kundu et al. [25] use a reconstructed
mesh and render it from a free viewpoint. The rendered im-
age is fed to a 2D semantic segmentation network and the pre-
dicted labels are projected back to the 3D points and merged
across views. However, the mesh reconstruction process can be
a costly step for large scenes.

Merging 2D and 2.5-3D data for scene segmentation. Com-
bining 2D and 2.5-3D data can improve scene segmentation re-
sults by overcoming the limitation of each type of data. Gupta
et al. [26] encode depth with RGB images and feed it to a seg-
mentation network. But depth maps are view-dependent, and
cannot account for the whole geometry of the scene, because of
occlusions.

Another way to add 2.5D information to the 2D segmentation
network is to weight the convolution operator by local depth ad-
equately [27]]. Similarly, Cao et al. [28]] redefine a convolution

operator for RGBD images to embed the shape variation in the
image. CMX [29] uses a transformer network for RGB and
depth images, merging both modalities between each encoder
layer and using it during the decoding step as residual informa-
tion.

To add 3D information to 2D images, Liu et al. [30] use a 3d
network to extract features from point clouds and use them as
cues to train the 2D network to emulate those 3D features. This
allows the 2D network to produce more informative features for
the 2D segmentation. A crucial question when merging 2D and
3D features lies in where this merging should take place. One
can either feed a combination of 2D and 3D information to a
network (early merge), or combine features in deeper layers,
such as the bottleneck (late merge). For 3D point cloud seg-
mentation, Jaritz et al. [31]], Dai and NieBner [1]] use 2D fea-
tures extracted by a 2D network working on multiple views as
additional features to enhance a point set before feeding it to
a segmentation network. They showed that this early merge
gives better result than a late merging strategy, as it improves
the propagation of the information from the images to the 3D
data.

Merging information at several layer’s depths has also been
explored. Su et al. [32] reconstruct a point set by multiview
stereo, encode it in a voxel grid through a 3D CNN and project
the encoded point set on a 2D grid. Because of the multiview
reconstruction, each 3D point projects on a pixel and a stan-
dard 2D convolution can then be applied to the merged features
at several depth in the 2D segmentation network. This method
produces good results for object part segmentation, but does
not scale well to large scenes. For more generic input point
sets, BPNet [2] similarly encodes 2D pixel and 3D voxel data
independently, then merges the representations at several layer
depths during the decoding process. However, in that case, in-
terleaving voxel with pixel representations is not so straightfor-
ward. Indeed, the area of a voxel projected in an image depends
on its distance to the image, hence no exact correspondence can
be found.

All these 2D-3D combined approaches require a large
amount of memory during training, and many require a 3D
groundtruth [30L 31} 1,132} 2l]. We propose a lightweight method
to tackle the 2D segmentation task, using both image and geo-
metric information.

3. Overview

Given a dataset containing a 3D point cloud and 2D images,
we propose a network architecture to segment these images into
semantic classes. Since the point cloud may come from a Li-
DAR device or simply be reconstructed from one or more depth
images, we chose to work on the single view case.

We use a lightweight image segmentation network whose 2D
input is enhanced by the output of a 3D point set encoder only
supervised by 2D images segmentation groundtruth.

To summarize, our main contributions are:

e A simple framework that takes a single image registered
with a 3D point cloud and produces the image semantic



segmentation in an end-to-end manner, improving the seg-
mentation performance of several state-of-the-art image
classifiers.

e A method to extract per view geometric information as a
2D map, much more informative than depthmaps.

o A method to exploit 3D information without requiring any
3D groundtruth.

N
(b)Groundtruth (c)U-Net34 (d)U-Net34 +
LPointNet
floor wall .tnh\ bed chair .sel table .deer ‘window .beokshe\l picture
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Fig. 2. Segmentation result on the ScanNet validation dataset. Merging the
images with 3D information allows the network to predict more accurate
object boundaries compared to the 2D baseline (U-Net34.)

Figure [2illustrates some results of our method on the Scan-
Net [4] dataset.

4. Approach

The goal of our method is to predict a semantic segmenta-
tion of a real-world RGB image with known pose and camera
parameters by exploiting both RGB and 3D geometric informa-
tion provided by an additional point cloud P.

First, a 3D encoder network processes the points located in
the camera’s viewing cone P,,,. and extracts 3D features for
the set of visible points P,;; C P ope-

The advantage of having a point cloud of the scene, rather
than just a depth image, is that the geometric information is
not only computed from points in P,;, but also from the points
occluded in the view P, as they give valuable context infor-
mation (see the ablation study [Appendix _E)). Pcone and P, are
represented in Figure [T] with red and green points respectively.
We then project the 3D features from the P,;; points onto the
image plane using the camera parameters, creating a sparse 61-
channel feature map. This feature map is view-dependent and
can be thought of as an alternative to a depth map, encoding
much richer geometric information. We then proceed to merge
this feature map with the RGB image. The final step is to feed
the combined image to a standard 2D image segmentation net-
work to predict per pixel segmentation.

To train our network we use a cross entropy loss between the
predicted labels and the ground truth image pixel labels. During
training, we optimize not only the weights of the 2D segmen-
tation network but also the weights of the 3D encoder network
and the weights of the merging operation, guided solely by the
2D ground truth. This allows the 3D network to optimize the
features for the 2D segmentation task.

The architecture of our network can be seen in Figure ] It
outputs a label for every input pixel.

4.1. Data preprocessing

Given an image and a point cloud P, let P,,,. be the scene’s
points that fall within the camera’s viewing cone, and P,;; C
P, the set of points that are not occluded in the view.

(a) RGB

(b) Closest (c) With
projected points visibility filter

Fig. 3. Visibility filter effect. Points of the table that are occluded by the
chair are efficiently discarded. Pixels without geometric information are
black.

To construct the point set P,;, we start by selecting, for each
pixel, the point of P, (if any) that is closest to the camera
(Figure[3[b)). Points that should be occluded by an object might
still appear if the occluding object is too sparsely sampled (e.g.
the desk behind the chair in Fig. [3). To deal with these overlap-
ping surfaces in sparsely sampled areas, we apply the visibility
filter of Pintus et al. (Figure [3[c)). After these steps, only
few points remain per image. In practice, only a low proportion
of image pixels correspond to projected points (only 15% in
the ScanNet dataset). Thus, the geometric information is very
sparse.

At the end of the preprocessing, we obtain the camera’s view-
ing cone points P, and the selected subset of visible points
P vis-

In our framework, the 3D encoder uses all the points of P,
to compute features for a points of P,;;. Those features are then
merged with the RGB image.

4.2. Per view 3D feature map

To compute geometric features, we choose to work directly
on the raw point cloud to avoid any early discretization, as in-
duced for example by a voxel grid, and to avoid costly prepro-
cessing steps, such as mesh reconstruction.

The only transformation is that we work on the P,,,. subset
instead of the entire point cloud.

To extract 3D features, we can alternatively use approaches
that operate directly on raw point clouds such as PointNet [20),
[21] and KPConv-CNN [19]. However our experiments (section
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Fig. 4. The network takes as input a point cloud, an image and the cor-
responding projection matrix. The point cloud is processed using a 3D
encoder to extract per visible point features that are projected on the im-
age plane, yielding a 2D geometric feature map. The RGB image and the
geometric feature map are merged using a single layer MLP before feeding
it to a 2D segmentation network.

[6) show that KPConv-CNN is too memory-demanding due to
the sheer number of points in P, requiring to downsample
the input point cloud. On the contrary, as PointNet shares its
weights for all points, it is a very light network, which turned
out to produce better features and is more consistent with our
will to set up a lightweight structure. Hence we use PointNet
by default.

We make a substantial change to the PointNet architecture:
we remove the spatial transformers (t-nets) both in the 3D space
and in the feature space. Since we express the points coordi-
nates with respect to the camera coordinate system, which is
relevant in our case, we do not want to find an optimal global
coordinate system for the points. The relevance of this mod-
ification is demonstrated in our ablation study (Section [6.4).
Furthermore, since these t-nets are in fact reduced PointNet in-
stances, we obtain a lighter version of this architecture that can
be seen in Figure [5] and we refer to it as LPointNet (for light
PointNet) in the remainder of the paper.
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Fig. 5. LPointNet is a modified PointNet encoder. The spatial transformers
are removed from the original architecture, as the points in P, are ex-
pressed in the coordinate system of the camera.

LPointNet is fed with all the points in P, to produce a
global vector at pooling. This vector is further concatenated
with the intermediate representation of each point in P,;;. The
output of our view-specific 3D encoder is a 61-channel feature
vector per point of P,;, that we store in an image at the corre-
sponding pixel.

In practice, we do not rely on any pretrained weights for the
3D backbone (LPointNet or KPConv) and train it from scratch
in an end-to-end manner. The ablation study also assesses the
impact of this choice.

4.3. Combining the 3D features and RGB values
We locally merge the feature map with the color values pix-
elwise by concatenating the channels from the features map and

the RGB image. The resulting 64 channel image is then fed to a
1D convolution layer, with batchnorm and ReL U activation. In
case no point projects on a pixel, we directly use a 1x1 convo-
Iution to map the 3-channel color information to 64 channels.
This yields a combined 64-channel image which is processed
by a standard 2D image segmentation network to predict per
pixel segmentation. This merging step is shown as the layer
between the 3D encoder and 2D encoder in Figure

4.4. 2D backbone

We use standard networks for the 2D segmentation neu-
ral network: U-Net [9] (with ResNet-34 [34], ResNet-
50 [134] or ResNet-101 [34] encoders), DeeplabV3 [12]] or Seg-
Former [14]. Among all these variant, we favor ResNet-34
which is lighter and well performing (see Table [6). The only
difference with the vanilla versions of these networks is that
they are adapted to take 64-channel images instead of classical
RGB images as input. In practice, the 2D encoders were pre-
trained on the ImageNet dataset [35]], with the exception of the
first convolution layer, since it takes a 64-channel input instead
of a 3-channel input. These first layer weights are initialized
randomly.

5. Training

We trained and evaluated our segmentation method on 3 in-
door datasets providing 2D images and geometric information
either as a point cloud (ScanNet [4], 2D-3D-S [5]])) or as sepa-
rate depth information for all views (NYU-V2 [3]).

For the ScanNet dataset, we follow the setup described in
BPNet [2]] and MVPtnet [31]] which uses an image resolution of
320x240 during the training. For the NYU-V2 and 2D-3D-S,
we follow the setup from CMX [29]] and use an image resolu-
tion of 640x480 and 480x480 respectively at train time and test
time.

For each dataset, we follow the train and validation split pro-
posed by the original authors. ScanNet and 2D-3D-S datasets
define the split depending on the scene digitized, while the
NYU-V2 provide a per image split with no overlap between
image to avoid the risk of overfitting.

All these datasets provide the camera’s intrinsic parameters,
and its various poses along with the point cloud. They also
provide groundtruth per pixel labels. More details on the pre-
processing steps of these datasets can be found in[Appendix A]

The network was trained with a Stochastic Gradient Descent
(SGD) optimizer for 40 epochs. To stabilize the learning, we
divide the learning rate by 2 every 5 epochs, which we have
found to give satisfactory results. We use an initial learning
rate of 0.01 with a weight decay of 0.0001 and a momentum of
0.9.

6. Experiments

All our experiments were run on a computer with an Nvidia
RTX quadro 6000 GPU.



Table 1. Comparison on the ScanNet validation set, with state-of-the-art single view methods. Methods with a * indicates that we retrained the networks

using the code given by the original authors.

Methods | InputType | GT NbParam | 2D backbone mloU
CMX* [29] RGB + Depth (HHA) 2D 66 M SegFormer-B2 51.3
RFBNet [36]] RGB + Depth (HHA) 2D No info ResNet-50 62.6
Ours (LPointNet + U-Net34) RGB + Point cloud from Depth 2D 26 M ResNet-34 63.2
SSMA [37]] RGB + Depth (HHA) 2D 56 M AdaptNet++ 66.3
ShapeConv [28] RGB + Depth (HHA) 2D 58 M Deeplabv3+ 66.6
3D-to-2D distil [30] RGB + Point cloud 2D 66M ResNet-50 58.2
Ours (KPConv + U-Net34) RGB + Point cloud 2D 49 M ResNet-34 63.8
BPNet* [2]] RGB + Point cloud 2D/3D 96 M ResNet-34 64.4
Ours (LPointNet + U-Net34) RGB + Point cloud 2D 26 M ResNet-34 66.1
VirtualMVFusion [25]] (single view) | RGB + Normals + Coordinates 3D No info xcpetion65 67.0
Ours (LPointNet + SegFormer-B2) RGB + Point cloud 2D 30M SegFormer-B2 69.0

6.1. ScanNet validation dataset

We tested our method on the validation set of the ScanNet
dataset [4]] and compare our results with state of the art methods
(Table[I)). These methods may not take the same kind of input
as our approach.

To fairly compare with methods that take depth images as
input, we also made experiments where we fed our networks
with a point cloud generated from the single view raw depth
information with no occluded points.

The scores for SSMA [37]], RFBNet [36] and VirtualM VFu-
sion [25]] were taken from the papers, as they do not provide
the network weights nor the implementation. We reproduced
the result given by 3D-to-2D distil using the code and weight
available. CMX does not provide results on the ScanNet vali-
dation set, but the authors provide the code and weights for this
dataset. Using these, we obtained a mloU score of only 51.3
on the validation set, even after retraining the network by fol-
lowing the procedure given by the authors. However, CMX still
performs well on the test set, with a mloU score of 61.3, which
is the most efficient among the RGBD methods. Table (1| the
number of parameters of each method, taken from the official
github repositories when they are available.

The first part of Table [I| compares methods working on
RGBD or depth generated point clouds. In this setting,
our approach gives better results than single view RGBD
based method RFBNet [36], even with a lighter 2D encoder
(ResNet34 in our case compared to ResNet50 for RFB-Net).
This indicates that combining 3D and 2D features is more pow-
erful than 2.5D features, even without explicit 3D supervision.
SSMA [37] gets better result than our method on the validation
set for RGBD methods. This performance comes from their
training procedure : they first train two dedicated 2D segmenta-
tion network on depth and RGB images on the ScanNet dataset,
before running a second training where the network learns to
integrate the new features and then run a third training to best
fit the segmentation head. Nevertheless, when taking the scene
point cloud, our approach exhibits even better segmentation re-
sults (+4%), since it gives a finer geometric context which helps
the network to extract meaningful 3D features. ShapeConv [28]
shows the best result on RGBD data. This result comes from the

voting procedure, which aggregates multiple scale prediction.
In addition, ShapeConv is twice as big as ours.

Comparisons with other methods closer to ours (using point
cloud and images) are represented on the second part of Table[T}
All of these methods require camera’s intrinsic and pose either
to create ground truth (such as BPNet [25]) or to create pixel-
points correspondence at training time to exchange information
between 2D and 3D data(BPNet [2], 3D-to-2D distil [30]). To
achieve a high performance, VirtualMVFusion [25] requires a
very specific and heavy data preparation step, where the scene
is reconstructed by multiview stereo and mesh reconstruction
allowing to render new views during training. On the contrary
our lightweight modification of a 2D backbone (SegFormer-B2
in that case) yields better performances with a much lighter data
preprocessing step.

In the case of BPNet [2], the final prediction is obtained by
aggregating multiple predictions for an image. We trained the
network provided by the official github repository on 2 GPU
for the comparison to be meaningful. Compared to BPNet, our
method does not require 3D groundtruth. It also avoids any
discretization step, since we process the point cloud directly
instead of a set of voxels.

Using a stronger 2D backbone, such as Segformer-B2 further
pushes our network performance at a reasonable cost (30M of
parameters). However, since the images need to have a higher
resolution (640x480), the training time almost doubles for a
gain of 2.9% compared to the gain obtained on the U-net34
architecture.

Adding either 3D backbones (LPointNet or KP-Conv) to a
standard 2D backbone still keeps the number of parameters be-
low other state of the art methods. It is particularly visible on
the methods using point clouds and images, with our method
having at least twice less parameters. As a result, our approach
requires less memory, both during training and at inference time
while being as or more efficient than the state of the art meth-
ods. The proposed method can thus run on a single low-end
GPU. Table 2] presents the number of parameters and the train-
ing times of some of the most efficient methods, with available
codes, on the ScanNet dataset. The number of parameters was
obtained using the official repositories on github.



Table 2. Memory consumption of the training step on the ScanNet dataset.
‘We could not report the information for Virtual MV fusion since there is
no official code available.

Methods Nb GPU Memory Training
Param time
CMX 66M | 2080Ti (4x11Gb) 3 days
BPNet 96M | RTX6000 (4x48Gb) | 2 days
Ours(U- 26M | RTXQuadro6000 1.5 days
Net34) (24Gb)
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Fig. 6. Segmentation results on the ScanNet validation set.

Figure [6] illustrates the improvement of the segmentation re-
sults compared to the 2D baseline. As it can be seen on the im-
age, the 3D features extracted from the point clouds allow the
network to add consistency between the predicted pixel class
and the object on the image. It also tends to better preserve the
object’s boundaries, as the 3D data allows to capture the object
shape.

3D features contribution. To assess the contribution of our op-
timized 3D features, we compare our results with the same 2D
backbone segmentation network applied on RGB, RGBD and
RGBXYZ data. RGBXYZ images correspond to 6-channels
images concatenating RGB channels with the coordinates cor-
responding to points in P, padded with 0, if no point projects
on the pixel. Table [3] shows that using RGBXYZ images in-
creases the performance of the network compared to depth im-
ages. This indicates that the full spatial coordinates (in the cam-
era coordinate system) information is more relevant than depth
images for the task of 2D semantic segmentation, as it gives
more information than simply the distance to the camera at each
pixel. Still, encoding the geometric information following our
approach is far more efficient than using RGBDXYZ images,
since adding 3D features significantly improves the segmenta-
tion (+10% mloU)

The fact that using our feature map instead of an RGBD im-
age improves the segmentation by a large margin is particularly
informative since depth images are often denser than our feature

maps.

Despite our sparser geometric information, the final segmen-
tation is quantitatively improved, illustrating that our 3D feature
extraction is more relevant than depth.

Finally, we experiment a different way of merging 2D and
3D information, by processing RGB and depth independently,
using two dedicated U-Nets and merging the information at
the bottleneck only. Even compared to this configuration, our
approach achieves significant improvement in terms of mloU
scores, with a very reasonable memory impact. Adding LPoint-
Net to a U-Net approach only costs 1M parameters (26M pa-
rameters in total), while the dedicated U-Net almost doubles
the total number of parameters (46M parameters). In all these
experiments, we used a ResNet-34 encoder for U-Net, which
provides good results while being comparatively small and fast
to train.

Table 3. 2D mIoU on the validation set of the ScanNet dataset, for 2D U-Net
segmentation networks based either on RGB images, RGBD images or for
our method (* denote the addition of data augmentation).

Methods mloU | mloU
gain
U-Net34 [9] (RGB) 55.5
U-Net34 (RGBD) 59.3 | +3.8
U-Net34 (RGB + HHA) 61.1 | +5.6
U-Net34 (RGB) + U-Net34 (Depth) 61.2 | +5.7
U-Net34 (RGB) + U-Net34 (XYZ) 623 | +6.8
KPConv [19] + U-Net34 (Ours) 63.8 | +8.3
KPConv + U-Net34 (Ours)* 64.2 | +8.7
LPointNet + U-Net34 (Ours) 654 | +9.9
LPointNet + U-Net34 (Ours)* 66.1 | +10.6

6.2. 2D-3D-S dataset

Following the procedure recommended by the 2D-3D-S [5]
dataset, we use the images from Area_5 as validation data, while
the other areas are used to train the network. The data was
preprocessed following the approach described in appendix. As
the 3D pointset covers the whole building floor and does not
restrict to a single room, we use the provided depth map to filter
out points belonging to other rooms, to reduce memory usage,
as they are not relevant to the RGB image. We used the same set
of hyperparameters as for the ScanNet dataset during training.
We compare our 2D segmentation result with other methods on
Table [

Compared to the 2D baseline (U-Net34 or SegFormer-B2),
our approach improves the mloU scores of the 2D baseline by
more than 10% for the U-Net34. This shows that using 3D data
significantly helps the network to produce better segmentation
result. Among the methods which processes point clouds with
RGB images, our approach outperforms 3D-to-2D distil [30]
even when using a smaller 2D architecture. Our improvement
can be explained by the fact that we use real 3D data, while
3D-to-2D distil [30]] only mimics 3D features. We compare our
approach with RGB-D state of the art method using a similar
approach as the one used for the ScanNet [4]] dataset. We use
the depth map and the camera’s parameter to create a per single



Table 4. Comparison of the 2D-3D-S dataset. The first line of each block corresponds to the 2D backbone for the methods of the block (except for CMX,

which does not provide results on their 2D backbone).

Methods InputType NbParam 2D baseline ‘ mloU
U-Net34 [9] RGB 25M ResNet-34 41.2
SegFormer-B2 [14] RGB 29M SegFormer-B2 51.2
3D-to-2D distil [30] RGB + Point cloud 66M ResNet-50 46.42
U-Net34 + LPointNet (Ours) RGB + Point cloud 26M ResNet-34 53.5
Deeplabv3+ [38] RGB + Depth (HHA) 5T™M ResNet-101 54.6
CMX [29] RGB + Depth (HHA) 66M SegFormer-B2 58.1
Segformer-B2 + LPointNet (Ours) | RGB + Point cloud from Depth 30M SegFormer-B2 58.5
ShapeConv [28]] RGB + Depth (HHA) 58M Deeplabv3+ 60.6

view point cloud which is used as input for our approach.
CMX [29] yields a better score than ours, but at the price of
a much heavier 2D backbone (SegFormer-B4 [[14]]), with six
times more parameters. Using the SegFormer-B2 architecture,
CMX achieves a mloU score of 61.2. At test time, CMX aggre-
gate multiscale prediction to compute the final score. To be fair
with our approach, we trained CMX using the code provided by
the authors on their github repositories and removed the multi-
scale prediction at test time. In this configuration, CMX ob-
tains a mloU score of 58.1, while our approach reaches a score
of 58.5. Our approach can thus improve the 2D network at a
small cost using the geometric information without aggregating
multiscale prediction. ShapeConv [28] is the best performing
method on the 2D-3D-S dataset due to their training procedure
: they apply heavy data augmentation technique and use the ini-
tial resolution of the image (1080x1080), allowing the network
to capture finer details. However, this comes at a large training
time cost compared to our approach.

From these observations, we can conclude that our ap-
proach offers competitive performances compared to RGBD
approaches (Deeplabv3+, ResNet-101 on RGBD (HHA)) with
half the number of parameters. However, replacing U-Net34
with new heavier 2D backbone (such as SegFormer) in our ar-
chitecture yields even better results.

Several reasons explain the relative under-performance of our
method on the 2D-3D-S dataset, where heavier architectures
are more powerful. Firstly, the image resolution taken during
training makes the U-Net34 light 2D-backbone weaker com-
pared to heavier architecture : methods with a larger receptive
field, such as SegFormer, will give better result. Secondly, for
this dataset, we down-sampled the point set to keep 60% of the
points. The feature map is thus sparser than the depth image
used in ShapeConv [28] or CMX [29]. It is even sparser than
the feature maps obtained in the ScanNet dataset. On average,
15% of the pixels have a corresponding point on the ScanNet
against 10% in our experiments with 2D-3D-S. However, com-
pared to the 2D baseline, our approach obtains significant mloU
score gain, highlighting the 3D contribution for the image seg-
mentation task.

Similarly to the U-Net34, a much stronger 2D backbone -

such as the SegFormer-B2 architecture- also benefits from the
3D features encoded by the LPointNet network, as can be seen

in Figurd7]
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Fig. 7. Segmentation results on the 2D-3D-S validation set using
SegFormer-B2 as 2D segmentation network.

6.3. NYU-V2 dataset

In contrast with the other datasets, NYU-V2[3]] does not pro-
vide a standalone registered point cloud. But the dataset pro-
vides depth images either raw or in-painted and we can gener-
ate a point cloud for each camera using the camera’s intrinsic
parameter. We take the raw depth images given by the dataset,
as the in-painted version produces a noisy cloud once projected.
As a side effect of the per-camera point cloud, the visible point
set of P, directly corresponds to the depth map, and no visi-
bility filter is needed. However, we no longer benefit from 3D
information provided by hidden points and we can observe a
drop in the quality of the results.

The NYU-V2 dataset provides 795 training images, and 654
validation of indoors scenes annotated with 40 classes. The
results are reported in Table[5]

Compared to the 2D baseline, adding depth point cloud in-
formation improves the segmentation result. However, the re-
sults are far less interesting than when considering a point
cloud, as it allows the network to process more contextual in-
formation around the points. Compared to ShapeConv [28]
and CMX [29], we used the raw depth coming from the sen-
sor. For a fair comparison, we trained CMX [29]] using the raw



Table 5. 2D mlIoU on the validation subset of the NYU-V2 dataset using
single view.

Methods mloU
U-Net50 (RGB) 30.5
LPointNet + U-Net50 (Ours) 36.5
SegFormer-B2 46.7
CMX(B2) [29] (Raw Depth) 48.0
CMX(B2) [29]] (Raw Depth HHA) 48.2
ShapeConv [28] (Inpainted Depth HHA) 50.2
SegFormer-B2 + LPointNet (Ours) 50.2

depth, with and without the HHA encoding, and replaced our
2D encoder by SegFormer-B2 [14]. We used the code given
by the authors and followed their training procedure using a
single GPU. We removed the multi-scale prediction at testing
time, to obtain the real performance of the network. Table E]
shows that our method gives better result than the CMX [29]
method, highlighting our interest in the geometric data rather
than the depth map. Our approach thus obtain similar result
with ShapeConv [28]], with a lighter network and without rely-
ing on heavy data augmentation technique during training.

6.4. Ablation study

To validate our architecture choices, we perform an ablation
study using the validation set of the ScanNet [4] dataset, by
changing the 3D point feature extraction network or the 2D net-
work. We further test several modification of the PointNet ar-
chitecture (see also the supplementary).

Changing the 2D network. Table [6] reports the performances
obtained when using different 2D backbones. Our experi-
ments show that 3D feature information improves the perfor-
mance of all U-Net34, U-Net50, U-Net101, SegFormer-B2 and
DeeplabV3 networks. The performance improvement is partic-
ularly significant for U-Net34. For DeeplabV3 it is less obvious
because the network is efficient on images with a better resolu-
tion: the images used are 320x240 pixels, while DeeplabV3
preferentially uses 513x513 images during training, to alleviate
the effect of image padding on dilated convolution. In order
to train the SegFormer architecture, we set the image size as
640x480 since the Transformer needs larger images to be ef-
ficient. This combination obtains the best score on the Scan-
Net [4] dataset, however it needs twice the time for the model
to train for a light gain compared to the 2D baseline. Since
LPointNet gives better results than KPConv, we choose to only
test LPointNet with SegFormer-B2 and Deeplab as these meth-
ods take time to be trained and combining them with KPConv
would be intractable. These variations demonstrate the modu-
larity of our approach on different kinds of architecture, and the
contribution of the 3D features on the 2D segmentation task.

Changing the 3D network. Our approach preferentially relies
on PointNet, but it can straightforwardly be adapted with a
different 3D neural network. For example one can switch to
KPConv-CNN [19] which uses a ball centered at a query point,

Table 6. 2D mloU on the validation subset of the ScanNet dataset, for our
method using ResNet-34, ResNet-50 encoder for U-Net, SegFormer-B2 or
DeeplabV3 ResNet-50 architecture, using KP-Conv or LPointNet.

Methods NbParam | mloU | mloU
gain
U-Net34 25M 55.5
LPointNet + U-Net-34 26M 66.1 +10.6
KPConv + U-Net-34 49M 64.2 +8.7
U-Net50 86M 58.2
LPointNet + U-Net50 8™ 64.7 +6.5
KPConv + U-Net50 110M 64.0 +5.8
U-Net101 105M 58.4
LPointNet + U-Net101 106M 65.3 +6.9
KPConv + U-Net101 129M 64.1 +5.7
SegFormer-B2 29M 65.8
LPointNet + SegFormer-B2 30M 69.0 +3.2
DeeplabV3 39M 60.1
LPointNet + DeeplabV3 40M 64.5 +4.4

a constant sample distribution in this ball and a special convo-
lution on these samples. Since KPConv is memory intensive,
we were only able to use a downsampled version of the Scan-
Net point cloud using Poisson sampling [39] with a query ball
of 3cm. On the validation dataset, we obtained a mIoU of 64.2
(see Table. [6). We followed the architecture and data process-
ing given by the KPConv authors without fine tuning it for our
case. We set the starting learning rate at 0.001 and add dropout
before using the KPConv operation in each encoder layers.

Despite the need of a 3D subsampling, we observe that KP-
Conv improves the performance of 2D segmentation network.
However compared to the LPointNet variation, the number of
parameters is twice as much (49M against 26M). The heavy
memory consumption of KPConv goes against our search for a
lightweight architecture and this is why we defaulted to LPoint-
Net in all other tests.

PointNet Architecture choices. In our approach, we chose to re-
move the spatial transformers (t-net) from the original PointNet
architecture as we observe the cloud from the camera point of
view. This 3D orientation is relevant in the scene analysis case,
since a floor is likely to be lower than a ceiling, and cannot
be vertical. Moreover, it also reduces the weight of the Point-
net structure. To validate this experimentally, we compared the
performances with and without these t-nets, the network being
retrained in each case. Table[/| shows that using the t-nets de-
grades the mIoU scores.

Pretraining LPointNet. We test whether pretraining LPointNet
can improve the segmentation performance, using a network
trained on point sets of 2D-3D-S for 3D semantic segmenta-
tion. Table[§|shows that this does not improve the performance.
It tends to suggest that the features needed for 3D segmentation
might be slightly different than the ones used for helping a 2D
segmentation. In the same way, we test the effect of pretraining
the 2D encoder on the ImageNet [35]] Dataset. We observe that



Table 7. Effect of using or removing spatial transformers (t-net) on the
validation set of the ScanNet Dataset (* denote the addition of data aug-
mentation).

Methods mloU
PointNet [20] + U-Net34 [9] 62.8
PointNet (w/o spatial’s t-net) + U-Net34 62.9
PointNet (w/o feature’s t-net) + U-Net34 62.6
LPointNet + U-Net34 (Ours) 65.4
LPointNet + U-Net34 (Ours)* 66.1

using a pretrained 2D segmentation network provides a better
starting point for the network, allowing it to extract more rele-
vant features on combined feature maps.

Table 8. Effect of using pretrained networks on the validation set of the
ScanNet Dataset (* denote the addition of data augmentation).

Methods mloU
LPointNet + U-Net34 [9] 62.5
LPointNet + U-Net34 (pretrained) (Ours) 65.4
LPointNet + U-Net34 (pretrained) (Ours) * 66.1
LPointNet (pretrained) + U-Net34 (pretrained) 64.7

Since the transformer based architectures need a lot of data
and time to be trained efficiently from scratch, we did not test
the effect of pretraining the SegFormer architecture by our-
selves and directly use the pretrained model given by the au-
thors (pretrained on ADE20K dataset [40]).

6.5. LPointNet feature maps

To illustrate the 3D features extracted by our 2D segmen-
tation driven LPointNet, we show some channels of the fea-
tures projected on the image plane (Figure [8). Some chan-
nels highlight the background (a), other channels highlight flat
nearby object surfaces (b) or the floor (c), which hints at the
fact that they provide important information for object segmen-
tation. For visibility purpose, we upsample the feature map in
Figure[8and O] using a 2x2 dilatation kernel

(a)RGB

(b)25th
channel

(c)35th
channel

(d)24th
channel

Fig. 8. LPointNet Feature Maps. The different channels of the feature maps
highlight various object properties, which explains why they help the 2D
semantic segmentation.

To improve the feature map visualization, we use a PCA on
the 61 channel feature maps to extract the 3 most significant

channels. Figure [9] shows the RGB, depth images and corre-
sponding PCA feature maps. In the image obtained, we can
see that the pixel colors highlight interesting cues such as the
distance to the camera, the relative orientation and position of
the objects in the scene. It also shows interesting segmentation
cues, giving a same color to an object.

(c)LPointNet
Features

(a)RGB (b)DepthImage

Fig. 9. LPointNet Feature Maps with PCA reduction on the number of
channels for illustration purpose.

Figure [I0] shows some closeups in areas with multiple edges
and depth transition between objects. Importantly enough for
the segmentation task, one can see that the LPointNet extracted
features capture and highlight such transitions when projected
on the image plane. Therefore the projection preserves the ob-
jects’ boundaries.

Fig. 10. Closeups on the extracted features. LPointNet extracts relevant
features on the relative position and orientation of objects.

7. Discussion

While our framework consistently improves 2D segmen-
tation network performances without requiring additional
groundtruth labels, some much heavier methods (VirtualM VFu-
sion [25]) yield better mIoU performances, at the cost of requir-
ing either 3D labels, multi-view images, synthetic data augmen-
tation or a heavier network. Overall, our network exhibits good
quantitative performances measured by the mloU metric (mean
Intersection over Union) which is the standard quality measure
for segmentation tasks. However, Figure [2] illustrates that this
ground truth segmentation is sometimes wrong. For example,
some parts have no labels while they should. Our method, aided
by 3D geometric features, can better recover the labels in these
missing areas, which is good in terms of real performance but
is not always reflected in the measured mloU.



8. Conclusion

In this paper we introduced a 2D segmentation method tak-
ing advantage of 3D geometric data without needing explicit 3D
network supervision. Our method yields competitive segmen-
tation results, outperforming other segmentation methods, with
a relatively small cost compared to recent approaches. While
we have used our approach for the segmentation of individual
images, it is clear that the performances would be further im-
proved by using multiple images, as cross-image label consis-
tency could provide a way to discard wrong labels, a direction
we will explore in a future work.
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Appendix A. Data preparation

Appendix A.l. ScanNet dataset

The ScanNet dataset [4] provides images of various scenes,
acquired by a RGBD capture system, together with camera
poses and the scene’s point cloud. In our case, we use only the
RGB frames and the point cloud consolidated from the depth
images.

The color images are shot as a video, and are therefore re-
dundant. The amount of images is also expensive in memory
which has a strong impact on the training time. To alleviate this
issue, we take only an image every 20 frames, resulting in a 95k
images subset for the training set.

In addition, some camera poses given in the dataset are cor-
rupted, with invalid values of camera’s parameters, we removed
the corresponding frames because our network relies on the cor-
rect setting of the camera’s field of view to merge pixels and
points features. The ScanNet dataset provides two pointclouds,
one dense and one sparse. In order to reduce the training time
and memory consumption, we trained the network using the
sparse version of the point cloud.

Appendix A.2. 2D-3D-S dataset

The 2D-3D-S dataset [3]] provides images of offices and ed-
ucational buildings for a total of 6 scenes. This dataset contains
2D, 2.5D and 3D data captured with RGBD device (Matterport
camera). We followed the guideline proposed by the authors
and selected the area 1,2,3,4,6 for training, and the area 5 for
testing. Due to the number of point present in each area, and to
avoid memory overflow, we downsampled the point cloud using
Poisson sampling [39] with a ball query of 3 cm. As the scene
covers the whole floor, we truncated the camera’s viewing cone
using the max distance present in the depth image to avoid irrel-
evant point compared to RGB information (points coming from
another room, etc.).

Appendix A.3. NYU-V2 dataset

The NYU-V2 dataset [3] provides RGBD images coming
from video captured with the Microsoft Kinect from various
indoor scene. As this dataset does not provide any 3D data,
we use the camera’s parameters and the depth to produce depth
point cloud per image. We use directly the raw depth, as the
in-painted one create 3D artifact when projected.

Appendix B. Visibility threshold

We analyze the effect of the visibility angle parameter in the
method of Pintus et al. [33]]. All these experiments are run with-
out any data augmentation.

Table B.9] shows that using the visibility filter impact signif-
icantly the performance of our approach when constructing the
2D geometric feature map.

11

Table B.9. Visibility angle comparison on the ScanNet [4] dataset. A lower
angle value mean that more point will be kept by the filter. An angle with a
0 value mean that the nearest point at each pixel will be kept, independently
from their 3D position in the scene.

Visibility angle value (sr) ‘ Point-Pixel coverage mloU
angle =0 21.5% 62.3
angle =2 15% 65.4
angle =3 11.8% 65.1
angle =4 8.3% 64.8
angle =5 6.2% 64.3

Appendix C. 3D coordinate system

PointNet [20] use spatial transformers to set the points in a
canonical position, these spatial transformers being themselves
PointNet instances. In our case, we use the camera’s parame-
ters to set the points in the camera’s coordinate system. Table
shows that defining the points coordinates from the cam-
era viewpoint helps the network to extract more relevant fea-
tures compared to the world coordinate system. We remove the
data augmentation used during training to measure the validity
of this choice.

Table C.10. Variation on the point’s coordinate system on the ScanNet val-
idation set.

Coordinate system | mloU
World’s system per scene 63.8
Camera’s system 65.4

Appendix D. Merging strategy

We analyse the efficiency of our procedure for merging the
3D features in the 2D image analysis network. We first compare
merging such features before the 2D encoder or at the end of
the 2D decoder. As illustrated in Table we found that
merging the 3D features at an early stage allows the 2D network
to better integrate 3D features. Since our 3D network’s weights
update comes from the 2D groundtruth, the early merge also
helps the 3D network to produce more relevant features for the
2D segmentation task. In these experiments, we remove the
data augmentation techniques.

To merge the RGB images and the point features images we
use two different convolutional layers depending on the avail-
ability of a projected 3D information on the pixel. If no point
projects on the pixel, we us a 1x1 convolution to transform it
from 3 channels to 64 channels. Otherwise, we concatenate the
61-channel geometric feature with the 3-channel RGB feature
and then use a 1x1 convolution to recombine the 64 channels in
an optimal way. Another option is to use a single 1x1 convo-
lution operator, independently of the availability of a projected
3D point. In that case we use 0-padding for building a 64 chan-
nel descriptor of the projection-less pixels. We call this second
option "Merge with padding”. Table shows that this sec-
ond option is slightly less efficient.



Table D.11. Merging 3D to 2D features using our PointNet variation and a
2D ResNet-34 U-Net network on the ScanNet [4] validation set.

Methods | mloU
Late merge (after 2D decoder) 58.1
Early merge (before 2D encoder) (Ours) 65.4
Merge with padding 65.2
Local merge (Ours) 65.4

Appendix E. Point cloud visibility

To test the importance of taking into account the visibility,
we trained and tested our network on the visible point cloud,
containing only the points visible from the camera (remov-
ing occluded points), and then the viewing cone of the cam-
era, containing all points in the camera’s field of view. Impor-
tantly enough, even if LPointNet takes as input the field of view
points, when projecting the features onto an image at the end of
the LPointNet feature extraction, we only retain the features of
the visible points, to create the features map.

Table [E.12] shows that using the field of view points instead
of the visible points allows to improve the performance of the
network. A reason for this increased performance is that using
the field of view point cloud gives stronger characteristics since
the points represent the more global context of the images in the
3D scene, rather than just the visible part.

Table E.12. Visibility comparison. Using the camera’s viewing cone point
cloud clearly improves the performances compared to restricting to the
visible point cloud. The mIoUs are given for the ScanNet [4] validation set.

3D input | mloU
Visible point cloud 63.2
FoV point cloud (Ours) 65.4

Appendix F. Kitti-360

We test our approach on an outdoor dataset, which poses dif-
ferent challenges than indoor scenes, since the field of view can
be much larger (possibly infinite). We used the Kitti-360 [6]
dataset. This dataset presents outdoors data captured using fish-
eye cameras alongside a laser scanning device mounted on a
car. The dataset covers a driving distance of 73km with manu-
ally annotated images (19 classes). The fisheye images are then
rectified yielding a set of registered perspective images. We
train and evaluate our approach using the set of perspective im-
ages and the point cloud captured at the same time. The dataset
is split into a training set of 49k images and a validation set
of 12k images. The training and validation set cover different
areas of the town.

As the field of view is much larger, capturing a far larger
amount of points, we adapt our projection strategy. We first
compute the visible points using the camera parameters and
the visibility filter similarly to the data preparation procedure
of Section We then use a K-NN radius search to gather
contextual points around the visible ones. In practice, we first
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downsample the point cloud using Poisson sampling [39] with
a ball query of 20cm. The K-NN radius search takes points at 1
meter around the visible points.

Table [F13] presents the results of our approach compared to
our 2D baseline.

Table F.13. 2D mloU on the KITTI-360 validation set. Following the rec-
ommended procedure we removed two classes for the evaluation.

Methods | mloU
U-Net34 [9] 534
LPointNet + U-Net34 (Ours) 57.5

Compared to the indoor datasets, the mloU is still clearly im-
proved but the gain is smaller. Indeed, the large field of view
combined with visibility and neighborhood selection yield a
point set which is much more disconnected than the ones for
the indoor scenes. More precisely, it gives a set of clusters of
points distant from each other. This difference in point distribu-
tion might require some network adaptation, but this deserves
further investigations.

The Kitti360 is a relatively new dataset, the associated bench-
mark shows two 2D-only methods giving good performances,
including a VGG16-FCN [7]] with a mIoU score of 54%, the
other network is attention-based (PSPNet [41]]) and reaches
64% as mloU. These scores are only given as a guide since
they are provided on the test set, while we performed our ex-
periments on the validation set (access to the test set requiring
a heavy procedure). VGG16-FCN seems to yield a comparable
(or a little smaller) score to our method, but it is much heavier
(134M vs 26M parameters in our case).

The attention-based network clearly outperforms our
method, but this result was expected. Networks using attention
mechanisms give better results on outdoor datasets due to the
object scales. A same object can indeed appear at very different
scales in outdoor datasets as a consequence of the large depth
field captured by the RGB images, a scale discrepancy that is
very well handled by attention mechanisms.
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