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Abstract: This paper studies the nonlinear systems obtained by considering a wave equation
in closed loop with a nonlinear dynamical boundary controller. The controller is subject to a
magnitude limitation and modeled by a linear ordinary differential equation with a saturation
map in the input. The well-posedness of the obtained infinite-dimensional system is first studied
and then two stability results are given. These two stability results apply for two cascade cases
and give sufficient conditions for the asymptotic stability of the equilibrium. The well-posedness
is proven by using nonlinear semigroups techniques, whereas the global asymptotic stability
results are obtained by Lyapunov-based arguments in infinite-dimensional state space.
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1. INTRODUCTION

Nonlinear control design is now very well developed for
finite-dimensional systems, in particular for the stabiliza-
tion of equilibrium by means of input with limited ampli-
tude. Such a limitation on the control input can reduce
the performance or even destabilize open-loop unstable
systems (see e.g., Zaccarian and Teel (2011); Tarbouriech
et al. (2011)). Lyapunov methods are fruitful techniques
to analyze the stability of linear control systems in closed
loop with saturating controls (see e.g., Dai et al. (2009)).
Such methods are also instrumental to derive numerical
techniques for the estimation of convergence speed or of
the performance (as studied in Gomes da Silva Jr and
Tarbouriech (2005)). In the context of infinite-dimensional
systems, less results are available, except for specific par-
tial differential equations as elastic systems (as consid-
ered in Lasiecka and Seidman (2003)), and some abstract
systems as considered in Slemrod (1989). More recently
estimation of the basin of attraction for reaction-diffusion
models in closed loop with saturating controllers has been
given in Mironchenko et al. (2021) (see also Lhachemi and
Prieur (2023)).

The goal of this paper is to consider another class of partial
differential equations, more specifically the wave equation
with a saturating boundary control. The dynamical sys-
tems under consideration in this paper may result from a
wave equation in closed loop with a dynamical boundary
controller. The stability of such infinite-dimensional model
has been already studied in Prieur et al. (2016) when
closing the loop with saturating static boundary controller.
The goal of this paper is to generalize this paper by consid-
ering dynamic feedback law. It asks to introduce specific

Hilbert state and to apply suitable abstract control theory
providing a well-posedness result, that is the existence
and the unicity of the solution to the nonlinear Cauchy
problem. To analyze the stability, Lyapunov approach is
developed and a LaSalle invariance principle is used in
the infinite-dimensional state space. To handle the non-
linearity due to the use of saturating controller, sector
conditions are used. Note that, in contrast to reaction-
diffusion equations studied in e.g., Sakawa (1983), the wave
equation is marginally stable in open loop, so that global
asymptotic stability of the equilibrium is derived (and not
only a local property). Such a coupling between infinite-
dimensional systems and ordinary differential equations is
quite usual in the linear case (see e.g., Baudouin et al.
(2019); Bajodek et al. (2022); Karafyllis and Krstic (2019);
Marx et al. (2021)), but not so well studied with non-
linearities in between (except in particular by the papers
Ramirez et al. (2017); Schmid and Zwart (2021)).

The well-posedness is derived for a wave equation coupled
at the boundary with an ordinary differential equation
with a saturation in between, under a natural assumption.
The asymptotic stability is given in this paper for two
particular cases of cascade systems, that is when the wave
equation is in cascade with the ODE, or vice-versa. Related
works for hyperbolic systems controlled by saturating
control inputs include the works Dus et al. (2020) and
Shreim et al. (2022).

This paper is organized as follows. First in Section 2
the model and the problem statement are presented,
together with the well-posedness results. The stability of
the cascade systems are given in Section 3. Concluding
remarks are collected in Section 4.



2. PROBLEM STATEMENT AND
WELL-POSEDNESS RESULT

We are interested in a partial differential equation coupled
at the boundary with an ordinary differential equation. To
be more specific, the model that is considered in this paper
is written as, for all 0 < x < 1 and for all t ≥ 0,

ztt(x, t) = zxx(x, t) , (1)

ẇ = Aw +Bzt(1, t) , (2)

z(0, t) = 0 , (3)

zx(1, t) + sat(Dzt(1, t) + Cw(t)) = 0 , (4)

where z(x, t) is the amplitude of the wave dynamics with
respect to the rest position, at point x in [0, 1] and at time
t ≥ 0, w(t) is a dynamical state (in Rn) solving a linear
finite-dimensional differential equation, and A, B and C
are matrices of appropriate dimensions. In (4), sat stands
for the usual saturation function defined, for all s in R, by

sat(s) = s if |s| ≤ u0
= u0 otherwise

where u0 > 0 is a given scalar modeling the saturation
level.

Let us use the following notation H1
(0)(0, 1) = {z ∈

H1(0, 1), z(0) = 0},H = H1
(0)(0, 1)×L2(0, 1) and H = H×

Rn. The linear system

ztt(x, t) = zxx(x, t) , (5)

ẇ = Aw +Bzt(1, t) , (6)

z(0, t) = 0 , (7)

zx(1, t) +Dzt(1, t) + Cw(t) = 0 , (8)

is well-posed if and only if D 6= −1. The proof of this well-
posedness result from the classical Lumer-Philips theorem
(see e.g., (Pazy, 1983, Chapter 1), and is not given in this
paper.

In this paper we focus on the nonlinear dynamics (1)-
(4), and let us first prove the well-posedness result of
the nonlinear dynamics (1)-(4). To do that, we need to
introduce the following nonlinear operator A defined on
the domain

D(A) =
{

(u, v, w) ∈ H, u ∈ H2(0, 1), v ∈ H1
(0)(0, 1),

u′(1) + sat(Dv(1) + Cw) = 0
}

defined by, for all (u, v, w) ∈ D(A),

A(u, v, w) = (v, u′′, Aw +Bv(1)) .

Given an initial condition (u0, v0, w0) in D(A), and T > 0,
we say that a function t 7→ (u, v, w) is a solution to the
Cauchy problem

d

dt
(u(t), v(t), w(t)) = A(u(t), v(t), w(t))

(u(t = 0), v(t = 0), w(t = 0)) = (u0, v0, w0)
(9)

on [0, T ), if (u, v, w) is in C1([0, T );H), and both lines
of this equation make sense in the classical sense. The
system (1)-(4) is said to be well-posed, if given any
initial condition (u0, v0, w0) in D(A), there exists a unique
solution to (9). The first main result is the following

Theorem 1. If D > −1, then the system (1)-(4) is well-
posed.

To prove this result, we first prove the following

Lemma 1. For all D in R, D(A) is dense in H, and for
any sufficiently large λ, it holds Ran(A− λI) = H.

Proof of Lemma 1. The density of D(A) follows from
classical arguments.

Let λ > 0 sufficiently large so that λ 6∈ σ(A), and let
(f, g, h) in H, and consider the map

F : H1
(0)(0, 1)→ H2(0, 1) ∩H1

(0)(0, 1)

defined by, for all y in H1
(0)(0, 1), F(y) = u where u is the

unique solution to u′′ − λ2u = g + λf
u(0) = u′(1)

+sat
(
C(A− λIn)−1f + F (λ)(λy(1) + f(1))

)
= 0

(10)
where F is defined, for all λ 6∈ σ(A), by F (λ) = D +
C(λIn −A)−1B. It could be proven that u is explicit and
given, for all x in (0, 1), by

u(x) = α
sh(λx)

λ
+

∫ x

0

sh(λ(x− t))
λ

(g(t) + λf(t))dt ,

where

α = − 1

ch(λ)

(∫ 1

0

ch(λ(1− t))(g(t) + λf(t))dt

+sat
(
C(A− λIp)−1h+ F (λ)(λy(1) + f(1))

))
The operator F is continuous from H1

(0)(0, 1) to H1
(0)(0, 1).

Moreover, we can prove that there exists M such that, for
all y in H1

(0)(0, 1),

‖F(y)‖L2 ≤M
‖F(y)′‖L2 ≤M
‖F(y)′′‖L2 ≤M

Therefore, there exists K (depending only on (f, g, h))
such that F(H1

(0)(0, 1)) ⊂ C where C is the convex set

defined by

C = {f ∈ H1
(0)(0, 1), f ∈ H2(0, 1), ‖f‖H2 ≤ K}

The set C is compact in H1
(0)(0, 1). Therefore, with the

Schauder fixed point theorem (see e.g., (Coron, 2007,
Theorem B.17)), there exists u in H2(0, 1) ∩ H1

(0)(0, 1)

solution to (10). Denoting v = λu + f and w = (A −
λIp)

−1(h − f(1) + λu(1))B), we have (u, v, w) in D(A)
and (A− λI)(u, v, w) = (f, g, h).

This concludes the proof of Lemma 1. 2

Let us now state the following

Lemma 2. If D > −1, then there exists a scalar product
on H such that the operator A is quasi-dissipative.

Proof of Lemma 2. Recall that H1
(0)(0, 1) is a Hilbert

space with the inner product defined by, for all u1 and u2
in H1

(0)(0, 1),

〈u, ũ〉H1
(0)

(0,1) =

∫ 1

0

u′1(x)u′2(x)dx.

Given a symmetric positive definite matrix P in Rn×n
(that will be determined later), let us consider the scalar
product 〈·, ·〉µ,P on H × H defined, for all (u1, v1, w1) and
(u2, v2, w2) in H, by



〈(u1, v1, w1), (u2, v2, w2)〉µ,P =∫ 1

0

eµx(v1 + u′1)(v2 + u′2)dx

+

∫ 1

0

e−µx(v1 − u′1)(v2 − u′2)dx

+w>1 Pw2

(11)

Denote by I the identity operator in H.

Given a positive α (that will be determined later) and
(ui, vi, wi) in H, for i = 1, 2. Let us denote (δu, δv, δw) =
(u1, v1, w1)− (u2, v2, w2). We compute

〈(u1, v1, w1)− (u2, v2, w2),
(A− αI)(u1, v1, w1)− (A− αI))(u2, v2, w2)〉µ,P

= 〈(δu, δv, δw),
(A− αI)(δu, δv, δw)〉µ,P

=

∫ 1

0

eµx(δv + δu′)(δu′′ − αδv + δv′ − αδu′)dx

+

∫ 1

0

e−µx(δv − δu′)(δu′′ − αδv − δv′ + αδu′)dx

+δw>P (A− αIn)δw + δw>Pδv(1)

=

∫ 1

0

eµx(δv + δu′)(δu′′ + δv′)dx

+

∫ 1

0

e−µx(δv − δu′)(δu′′ − δv′)dx

−α
∫ 1

0

eµx(δv + δu′)2dx− α
∫ 1

0

e−µx(δv − δu′)2dx

+δw>P (A− αIn)δw + δw>PBδv(1)

where δv(1) = v1(1) − v2(1), δu′ = u1 − u′2 and similarly
for δu′′ and δv′. To ease the reading, denote the previous
expression by ∆. Using an integration by parts in the
second integral and using the definition of D(A), we get

∆ = −(
µ

2
+ α)

∫ 1

0

eµx(δv + δu′)2dx

−(
µ

2
+ α)

∫ 1

0

e−µx(δv − δu′)2dx

+
1

2
[eµx(δv + δu′)2]10 −

1

2
[e−µx(δv − δu′)2]10

+δw>P (A− αIn)δw + δw>PBδv(1)

= −(
µ

2
+ α)

∫ 1

0

eµx(δv + δu′)2dx

−(
µ

2
+ α)

∫ 1

0

e−µx(δv − δu′)2dx
1

2
[eµx(δv + δu′)2]10 −

1

2
[e−µx(δv − δu′)2]10

+δw>P (A− αIn)δw + δw>PBδv(1)

= −(
µ

2
+ α)

∫ 1

0

eµx(δv + δu′)2dx

−(
µ

2
+ α)

∫ 1

0

e−µx(δv − δu′)2dx

+
1

2
eµ(δv(1) + δu′(1))2

−1

2
e−µ(δv(1)− δu′(1))2

+δw>P (A− αIn)δw + δw>PBδv(1)

where in the last equation δu′(1) is defined by

δu′(1) = −sat(Dv1(1) + Cw1) + sat(Dv1(1) + Cw1).

Denote the deadzone values ϕi = sat(Dvi(1) + Cwi) −
(Dvi(1) +Cwi), for i = 1, 2. By denoting δϕ = ϕ1 − ϕ2 it
holds

δu′(1) = −δϕ− (Dδv(1) + Cδw)

We will select α > 0 satisfying different conditions includ-
ing the following inequality:

α > −µ
2
. (12)

We deduce

∆ ≤

(
δw
δv(1)
δϕ

)>

×

 (A− αIn)>P + P (A− αIn) + 2 sh(µ)C>C
?
?

∣∣∣∣∣∣∣∣∣∣∣∣
PB + 2(D sh(µ)− ch(µ))C> 2 sh(µ)C>

(1−D)2eµ − (1 +D)2e−µ 2(sh(µ)D − ch(µ))
? 2 sh(µ)


×

(
δw
δv(1)
δϕ

)
(13)

Recall that the deadzone values satisfy the so-called global
sector condition (see (Tarbouriech et al., 2011, Lemma
1.4)), for all i = 1, 2:

ϕi(ϕi +Dvi(1) + Cwi) ≤ 0 .

In a similar way, denoting xi = Dvi(1) + Cwi, for all
i = 1, 2, it holds

δϕ(δϕ+Dδv(1) + Cδw)

= (ϕ(x1)− ϕ(x2))(ϕ(x1)− ϕ(x2) + x1 − x2)

≤ 0 , (14)

where to get this inequality we used that the deadline zone
function ϕ is non-increasing and that the saturation map
sat is non-decreasing.

Let η be a positive value that will be selected later. From
(13) and (14), it follows

∆ ≤

(
δw
δv(1)
δϕ

)>

×

 (A− αIn)>P + P (A− αIn) + 2 sh(µ)C>C
?
?

∣∣∣∣∣∣∣∣∣∣∣∣
PB + 2(D sh(µ)− ch(µ))C> (2 sh(µ)− η)C>

(1−D)2eµ − (1 +D)2e−µ 2(sh(µ)D − ch(µ))− ηD
? 2(sh(µ)− η)


×

(
δw
δv(1)
δϕ

)
Let us prove that there exist a symmetric definite matrix
P , positive values α, η, and a value µ such that (12) holds
and such that the matrix (A− αIn)>P + P (A− αIn) + 2 sh(µ)C>C

?
?

∣∣∣∣∣∣∣∣∣∣∣∣
PB + 2(D sh(µ)− ch(µ))C> (2 sh(µ)− η)C>

(1−D)2eµ − (1 +D)2e−µ 2(sh(µ)D − ch(µ))− ηD
? 2(sh(µ)− η)


(15)

is symmetric definite negative.



To do that we use the change of variables P = e−µQ
and η = e−µη̃ where Q and η̃ are to be determined
independently of µ. When µ goes to −∞, the matrix in
(15) is symmetric definite negative, if the matrix

e−µN(α,Q)

is symmetric definite negative where

N(α,Q) =

(
(A− αIn)>Q+Q(A− αIn)− C>

C

?

?

∣∣∣∣∣∣∣∣∣∣ QB + (D + 1)C
>

(1 + η̃)C
>

−(1 +D)
2 −D − 1− η̃D

? −(1 + 2η̃)

)
(by noting that 2 sh(µ) ∼ −e−µ and 2 ch(µ) ∼ e−µ as µ
goes to −∞).

Let us prove the inequality(
(1 +D)2 D + 1 + η̃D

? 1 + 2η̃

)
> 0 . (16)

To prove this inequality, it is sufficient to select η̃ > 0 and
to ensure that the determinant of the matrix is positive,
that is (1 + D)2(1 + 2η̃) − (D + 1 + η̃D)2 > 0. This

inequality is equivalent to (1+D)2(1+2η̃−(1+ η̃D
D+1 )2) > 0.

Now selecting η̃ positive and close to 0, we get that this
inequality holds as soon as 2η̃(1+D)2(1− D

D+1 ) > 0. Using
the assumption D > −1, this later inequality is equivalent
to η̃ > 0. Therefore if η̃ is selected positive and close to 0,
then the inequality (16) holds.

To ensure that the matrix N(α,Q) is symmetric definite
negative, it such sufficient to note that, for all β > 0, there
exists a positive value α satisfying (12) and a symmetric
definite matrix Q in Rn×n such that

(A− αIn)>Q+Q(A− αIn) < −βIn .
For any β > 0, such positive value α and matrix Q exist
because by selecting α large enough, the eigenvalues of
A− αIn could have a real part a negative as desired.

This concludes the proof of Lemma 2. 2

Proof of Theorem 1. Since A is dissipative (due to
Lemma 2), it follows, from (Miyadera, 1992, Thm 4.2)),
that A generates a semigroup of contractions. Moreover
due to (Miyadera, 1992, Thm 4.10), for all (u0, v0, w0)
in D(A), there is a unique solution to the Cauchy Prob-
lem (9). This concludes the proof of Theorem 1. 2

3. STABILITY RESULTS FOR THE CASCADE
CASES

In this section we analyze the stability of the nonlinear
system (1)-(4). Before doing that let us note that the
linear system (5)-(8) is exponentially stable if and only
if the spectrum of A is in the strict left part of the plane,
σ(A) ⊂ C−, and if D > 0. This result could be proven by a
spectral analysis of the linear operator describing (5)-(8).
This motivates the introduction of the following.

Assumption 1. It holds σ(A) ⊂ C− and D > 0.

Now let us state the main results of this paper that are
two stability results when the system (1)-(4) is in cascade
form, that is either B = 0 or C = 0.

3.1 PDE-to-ODE case

Let us first consider the case where the PDE and the ODE
are in cascade form in this order, that is when C = 0,
namely:

ztt(x, t) = zxx(x, t) , (17)

ẇ = Aw +Bzt(1, t) , (18)

z(0, t) = 0 , (19)

zx(1, t) + sat(Dzt(1, t)) = 0 , (20)

In that case the ODE dynamics do not have any impact
on the PDE, and we can show that the necessary and
sufficient condition for the asymptotic stability of the
linear system (5)-(8) is also a sufficient condition for the
asymptotic stability of the nonlinear system (17)-(20). To
be more specific, we can state the following result:

Theorem 2. Under Assumption 1 the system (17)-(20)
is globally asymptotically stable, that is, there exists a
symmetric definite positive matrix P in Rn×n such that
for all (u, v, w) in D(A), the following stability condition

‖z(., t)‖H1
0 (0,1)

+ ‖zt(., t)‖L2(0,1) + w(t)>Pw(t)

≤ ‖z0‖H1
0 (0,1)

+ ‖z1‖L2(0,1) + w(0)>Pw(0), ∀t ≥ 0 ,

(21)
holds, together with the attractivity property

‖z(., t)‖H1
0 (0,1)

+ ‖zt(., t)‖L2(0,1) + ‖w(t)‖ →t→∞ 0 . (22)

Due to space limitation of this conference paper, the proof
of this theorem is omitted. It is based on the following
Lyapunov function candidate

V0(u, v, w)

=
1

2
(

∫ 1

0

eµx(v + u′)2dx+

∫ 1

0

e−µx(v − u′)2dx) + w>Pw

with an appropriate choice of the positive scalar µ and of
the symmetric definite matrix P , being inspired by (Marx
et al., 2017, Proof of Theorem 2.2)) and (Prieur et al.,
2016, Proof of Theorem 2)).

3.2 ODE-to-PDE case

Let us now consider the case where the ODE and the PDE
are in cascade form in this order, that is when B = 0. In
this context we have to consider the following system

ztt(x, t) = zxx(x, t) , (23)

ẇ = Aw , (24)

z(0, t) = 0 , (25)

zx(1, t) + sat(Dzt(1, t) + Cw(t)) = 0 , (26)

for which we have the following result parallelling Theo-
rem 2.

Theorem 3. Under Assumption 1 the system (23)-(26)
is globally asymptotically stable.

Before proving Theorem 3, let us note that Assumption 1 is
necessary for the global asymptotically stability of the sys-
tem (23)-(26). Indeed, the global asymptotically stability
of the system (23)-(26) implies the global asymptotically
stability of ẇ = Aw. Therefore Assumption 1 is a necessary
condition for the conclusion of Theorem 3. Let us now
prove that it is also a sufficient condition.



Proof of Theorem 3. Under Assumption 1, let Q a
symmetric definite positive matrix in Rn×n, and P be a
symmetric definite positive matrix in Rn×n such that

A>P + PA+
D−1

2
C>C = −Q .

Inspired by Prieur et al. (2016), and using the norm
associated to the scalar product defined in (11), let us
consider the following function: (u, v, w) 7→ V (u, v, w)
defined by V (u, v, w) = ‖(u, v, w)‖2µ,P for all (u, v, w) in
H as a candidate Lyapunov function. We compute along
the solutions to (23)-(26) the following

V̇=

∫ 1

0

eµx(zt + zx)(ztt + zxt)dx

+

∫ 1

0

e−µx(zt − zx)(ztt − zxt)dx

+w>(A>P + PA)w

=

∫ 1

0

eµx(zt + zx)(zxx + zxt)dx

−
∫ 1

0

e−µx(zt − zx)(zxt − zxx)dx

+w>(A>P + PA)w

=−µ
2

∫ 1

0

eµx(zt + zx)2dx+
1

2
[eµx(zt + zx)2]x=1

x=0

−µ
2

∫ 1

0

e−µx(zt − zx)2dx− 1

2
[e−µx(zt − zx)2]x=1

x=0

+w>(A>P + PA)w

where the partial differential equation (23) has been used
in the first equality and two integrations by parts have
been performed in the second equality.

Now, note that the boundary conditions (25) and (26)
imply that, for all t ≥ 0,

[eµx(zt + zx)2](0, t)− [e−µx(zt − zx)2](0, t)
= z2x(0, t)− z2x(0, t) = 0

Therefore, with (26), it is deduced

V̇ =−µV +
eµ

2
(zt(1, t) + sat(Dzt(1, t) + Cw(t))2

−e
−µ

2
(zt(1, t)− sat(Dzt(1, t) + Cw(t)))2

+w>(A>P + PA)w (27)

and thus

V̇ =−µV +
eµ

2
(zt(1, t) +Dzt(1, t) + Cw(t) + φ2)2

−e
−µ

2
(zt(1, t)−Dzt(1, t)− Cw(t)− φ2)2

+w>(A>P + PA)w (28)

where the notation φ2 = sat(Dzt(1, t) + Cw(t)) −
(Dzt(1, t) + Cw(t)) has been used. It follows

V̇ = −µV +

(
w

zt(1, t)
φ2

)>

×

A>P + PA+ 2 sh(µ)C>C
?
?

∣∣∣∣∣∣∣∣∣∣∣∣
2(D sh(µ)− ch(µ))C> 2 sh(µ)C>

(1−D)2eµ − (1 +D)2e−µ 2(sh(µ)D − ch(µ))
? 2 sh(µ)


×

(
w

zt(1, t)
φ2

)
(29)

Due to the generalized sector condition (see e.g., (Tar-
bouriech et al., 2011, Lemma 1.5), for all 1 > ` > 0, and
for all η > 0, for any initial condition (u0, v0, w0) in D(A)
such that

(1− `)‖(u0, v0, w0)‖µ,P ≤ u0 , (30)

it holds

ηφ2(φ2 + `Dzt(1, t) + `Cw(t)) ≤ 0 .

Due to (29), in order to get an asymptotic stability, it is
sufficient to ensureA>P + PA+ 2 sh(µ)C>C

?
?

∣∣∣∣∣∣∣∣∣∣∣∣
2(D sh(µ)− ch(µ))C> 2 sh(µ)C> − η`C

(1−D)2eµ − (1 +D)2e−µ 2(sh(µ)D − ch(µ))− η`D
? 2 sh(µ)− 2η


≤ 0 (31)

Let us now prove that the matrix(
(1−D)2eµ − (1 +D)2e−µ 2(sh(µ)D − ch(µ))− η`D

? 2 sh(µ)− 2η

)
(32)

could be made definite negative by selecting suitable values
for µ, ` and η. By continuity of the eigenvalues with respect
to the matrix entries, and letting µ = 0 in the previous
matrix, it is sufficient to prove that there exist 0 < ` < 1
and 0 < η such that(

−4D −2− η`D
? −2η

)
< 0 (33)

Since by Assumption 1, D > 0, it is sufficient to select
0 < ` < 1 and 0 < η such that

8ηD − (2 + η`D)2 > 0

that is √
8ηD > 2 + η`D

A value ` in (0, 1) satisfying the previous inequality exists
if there exists η > 0 such that

0 <

√
8ηD − 2

ηD
< 1 (34)

First note that for any η > 0 satisfying η 6= 1
2D , it

holds

√
8ηD−2
ηD < 1. Indeed this inequality is equivalent to

8ηD < η2D2+4ηD+4, which is rewritten as (ηD−2)2 > 0

Therefore to ensure (34), it is sufficient to select a positive
η 6= 1

2D such that

0 <

√
8ηD − 2

ηD



which is equivalent to 1 < 2ηD. Therefore selecting η > 1
2D

implies (34), and the existence of l in (0, 1) satisfying (33).
It follows that there exists a positive µ close to 0 such that
the matrix in (32) is symmetric definite negative. By Schur
complement, we can prove the existence of a symmetric
definite positive matrix P in Rn×n such that (31) holds.

Therefore the system (23)-(26) is exponentially asymptot-
ically stable for all initial condition satisfying (30). The
remaining part of the proof is done as in the proof of
Theorem 2. 2

4. CONCLUSION

Nonlinear systems obtained by considering a wave equa-
tion in closed loop with a nonlinear dynamical boundary
controller have been considered in this paper. The con-
troller was subject to a magnitude limitation and mod-
eled by a linear ordinary differential equation in a sat-
uration map. The well-posedness of the obtained infinite-
dimensional system was first studied and then two stability
results were given. These two stability results have been
applied for two cascade cases and provided sufficient con-
ditions for the asymptotic stability of the equilibrium. The
well-posedness was proven by using nonlinear semigroups
techniques, whereas the global asymptotic stability results
were obtained by Lyapunov-based arguments in infinite-
dimensional state space.

This work lets some questions open. In particular other
performance criterion could be considered instead of the
stability analysis, as the disturbance rejection as done in
Shreim et al. (2022); Parada et al. (2022) for hyperbolic
systems. In addition, other coupled ODE-PDE models
could be considered as the beam equation controlled
through an electric circuit (see Mattioni et al. (2022)).
Finally the assumption B = 0 or C = 0, that has been
used in Section 3, could be removed in a future study.
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