
HAL Id: hal-04159863
https://hal.science/hal-04159863v1

Preprint submitted on 12 Jul 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Making local algorithms efficiently self-stabilizing in
arbitrary asynchronous environments

Stéphane Devismes, David Ilcinkas, Colette Johnen, Frédéric Mazoit

To cite this version:
Stéphane Devismes, David Ilcinkas, Colette Johnen, Frédéric Mazoit. Making local algorithms effi-
ciently self-stabilizing in arbitrary asynchronous environments. 2023. �hal-04159863�

https://hal.science/hal-04159863v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Making local algorithms efficiently self-stabilizing in
arbitrary asynchronous environments

Stéphane Devismes
Laboratoire MIS, Université de Picardie,

33 rue Saint Leu - 80039 Amiens cedex 1, France

David Ilcinkas, Colette Johnen, Frédéric Mazoit
Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400 Talence, France

Abstract
This paper deals with the trade-off between time, workload, and versatil-
ity in self-stabilization, a general and lightweight fault-tolerant concept in
distributed computing.

In this context, we propose a transformer that provides an asynchronous
silent self-stabilizing version Trans(AlgI) of any terminating synchronous
algorithm AlgI. The transformed algorithm Trans(AlgI) works under the
distributed unfair daemon and is efficient both in moves and rounds.

Our transformer allows to easily obtain fully-polynomial silent self-stabili-
zing solutions that are also asymptotically optimal in rounds.

We illustrate the efficiency and versatility of our transformer with several
efficient (i.e., fully-polynomial) silent self-stabilizing instances solving major
distributed computing problems, namely vertex coloring, Breadth-First Search
(BFS) spanning tree construction, k-clustering, and leader election.

1 Introduction
Fault tolerance is a main concern in distributed computing, but is often hard to
achieve; see, e.g., [31]. Furthermore, when it can be achieved, it often comes at
the the price of sacrificing efficiency (in time, space, or workload) or versatility;
see, e.g., [16, 12]. In this paper, we tackle the trade-off between time, workload,
and versatility in self-stabilization [25], a general and lightweight fault-tolerant

Email Adresses: stephane.devismes@u-picardie.fr (Stéphane Devismes), david.
ilcinkas@labri.fr (David Ilcinkas), johnen@labri.fr (Colette Johnen), frederic.
mazoit@labri.fr (Frédéric Mazoit)

1

stephane.devismes@u-picardie.fr
david.ilcinkas@labri.fr
david.ilcinkas@labri.fr
johnen@labri.fr
frederic.mazoit@labri.fr
frederic.mazoit@labri.fr

concept in distributed computing [4]. Precisely, we consider a specialization
of self-stabilization called silent self-stabilization [28].

Starting from an arbitrary configuration, a self-stabilizing algorithm en-
ables the system to recover within finite time a so-called legitimate configura-
tion from which it satisfies an intended specification. Regardless its initial
configuration, a silent self-stabilizing algorithm [28] reaches within finite time
a configuration from which the values of the communication registers used by
the algorithm remain fixed. Notice that silent self-stabilization is particularly
suited for solving static problems1 such as leader election, coloring, or spanning
tree constructions. Moreover, as noted in [28], silence is a desirable property.
For example, it usually implies more simplicity in the algorithmic design since
silent algorithms can be easily composed with other algorithms to solve more
complex tasks [4].

Since the arbitrary initial configuration of a self-stabilizing system can
be seen as the result of a finite number of transient faults,2 self-stabilization
is commonly considered as a general approach for tolerating such faults in
a distributed system [27, 4]. Indeed, self-stabilization makes no hypotheses
on the nature (e.g., memory corruption or topological changes) or extent
of transient faults that could hit the system, and a self-stabilizing system
recovers from the effects of those faults in a unified manner.

However, such versatility comes at a price, e.g., after transient faults cease,
there is a finite period of time, called the stabilization phase, during which the
safety properties of the system are violated. Hence, self-stabilizing algorithms
are mainly compared according to their stabilization time, the worst-case
duration of the stabilization phase.

In the distributed computing community, the correctness and efficiency
of algorithms is usually established by paper-and-pencil proofs. Such proofs
require the formal definition of a computational model for which the dis-
tributed algorithm is dedicated. The atomic-state model [25] is the most
commonly used model in the self-stabilizing area. This model is actually a
shared memory model with composite atomicity: the state of each node is
stored into registers and these registers can be directly read by neighboring
nodes; moreover, in one atomic step, a node can read its state and that of

1As opposed to dynamic problems such as token circulation, a static problem defines a
task of calculating a function that depends on the system in which it is evaluated [42].

2A transient fault occurs at an unpredictable time, but does not result in a permanent
hardware damage. Moreover, as opposed to intermittent faults, the frequency of transient
faults is considered to be low.

2

its neighbors, perform some local computations, and update its state. Hence,
executions in this model proceed in atomic steps in which some enabled
nodes move, i.e., modify their local state. The asynchrony of the system
is materialized by the notion of daemon that restricts the set of possible
executions. The weakest (i.e., the most general) daemon is the distributed
unfair daemon. Hence, solutions stabilizing under such an assumption are
highly desirable, because they work under any daemon assumption.

The stabilization time of self-stabilizing algorithms is usually evaluated
in terms of rounds, which capture the execution time according to the speed
of the slowest nodes. However, another crucial issue is the number of local
state updates, i.e., the number of moves. By definition, the stabilization time
in moves captures the total amount of computations an algorithm needs in
order to recover a correct behavior. Hence, the move complexity is rather a
measure of work than a measure of time. Now, minimizing the number of state
modifications allows the algorithm to use less communication operations and
communication bandwidth. As explained in [28, 4], to implement an atomic-
state model solution in message passing, all nodes should permanently check
whether or not they should change their local state due to the modification of
some neighbors’ local states. Now, instead of regularly sending maybe heavy
messages containing the full node local state, one can adopt the lightweight
approach proposed in [28]: nodes regularly send a proof that the value of their
state has not changed; then, a node requests the full local state of a neighbor
only after a received proof shows a state modification. Such proof can be very
small compared to the real local state: the node can just randomly generate
a nonce3, salt the hash of its local state with this nonce, and finally send a
“small” message containing the hash value together with the nonce. In this
way, the number of “heavy” messages (i.e., those containing the current local
state of some node) depends on the number of moves, and the minimization
of the number of moves permits to drastically reduced the communication
bandwidth usage. This is especially true when the self-stabilizing solution
is silent [28], as in this case there is no more moves after the legitimacy is
reached, and from that point, only small proofs are regularly sent.

Until now, in the atomic-state model, techniques to design an algorithm
achieving a stabilization time polynomial in moves usually made its rounds
complexity inherently linear in n, the number of nodes; see, e.g., [14, 3,
23]. Now, the classical nontrivial lower bounds for many problems is Ω(D)

3Nonce stands for “number once”.

3

rounds [32], where D is the network diameter. Moreover, in many large-
scale networks, the diameter is rather logarithmic on n, so finding solutions
achieving round complexities linear in D is more desirable. Yet, only a
few asynchronous solutions (still in the atomic-state model) achieving such
an upper bound exist, e.g., the atomic-state version of the Dolev’s BFS
algorithm [26] given in [24]. Moreover, it has been shown that several of them
actually have a worst-case execution that is exponential in moves; see [24].
So, it seems that efficiency in rounds and moves are often incompatible goals.
In a best-effort spirit, Cournier et al. [15] have proposed to study what they
call fully-polynomial stabilizing solutions, i.e., stabilizing algorithms whose
round complexity is polynomial on the network diameter and move complexity
is polynomial on the network size.4 As an illustrative example, they have
proposed a silent self-stabilizing BFS spanning tree algorithm that stabilizes
in O(n6) moves and O(D2) rounds in a rooted connected network. Until
now, it was the only asynchronous self-stabilizing algorithm of the literature
achieving this property.

1.1 Contribution
In this paper, we address the issue of generalizing the fully-polynomial ap-
proach in the atomic-state model to obtain silent self-stabilizing solutions
that are efficient both in rounds and moves.

To that goal, we propose to exploit the links, highlighted in [40], between
the Local model [41] and self-stabilization in order to design an efficient
transformer, i.e., a meta-algorithm that transforms an input algorithm that
does not achieve a desired property (here, self-stabilization) into an algorithm
achieving that property.

Our transformer provides an asynchronous silent self-stabilizing version
Trans(AlgI) of any terminating synchronous algorithm AlgI which works
under the distributed unfair daemon and is efficient both in moves and rounds.
Precisely, our transformer has several inputs: the algorithm AlgI to transform,
a flag f indicating the used transformation mode, and optionally a bound B
on the execution time of AlgI.

4Actually, in [15], authors consider atomic steps instead of moves. However, these two
time units essentially measure the same thing: the workload. By the way, the number of
moves and the number of atomic steps are closely related: if an execution e contains x
steps, then the number y of moves in e satisfies x ≤ y ≤ n · x.

4

We have two modes for the transformation depending on whether the
transformation is lazy or greedy. In both modes, the number of moves of
Trans(AlgI) to reach a terminal configuration is polynomial, in n and the
synchronous execution time T of AlgI in the lazy mode, in n and B otherwise.
An overview of Trans(AlgI) properties (memory requirement, convergence in
rounds, convergence in moves) according to the both parameters is presented
in Table 1.

In the lazy mode, the output algorithm Trans(AlgI) stabilizes in O(D+T)
rounds where T is the actual execution time of AlgI. Moreover, if the upper
bound B is given, then the memory requirement of Trans(AlgI) is bounded
(precisely, we obtain a memory requirement in O(B ×M) bits per node, where
M is the memory requirement of AlgI) .

In the greedy mode, Trans(AlgI) stabilizes in O(B) rounds and its
memory requirement is also bounded (still O(B × M) bits per node).

Our transformer allows to drastically simplify the design of self-stabilizing
solutions since it reduces the initial problem to the implementation of an
algorithm just working in synchronous settings with a pre-defined initial con-
figuration. Moreover, this simplicity does not come at the price of sacrificing
efficiency since it allows to easily implement fully-polynomial solutions.

Finally, our method is versatile, because compatible with most of dis-
tributed computing models. Indeed, except when the computation of a state
of the input algorithm requires it, our transformer does not use node identifiers
nor local port numbers. More precisely, each move is made based on the state
of the node and the set of the neighbors’ states (if several neighbors have
the same state s, the number of occurrences of s is not used to manage the
simulation). Therefore, our transformer can be used in strong models with
node identifiers like the Local model [41], down to models almost as weak as
the stone age model [30].

Our solution is very efficient in terms of time and workload, but at
the price of multiplying the memory cost of the original algorithm by its
execution time. This time (and thus the multiplicative factor) is however
usually small in powerful models such as the Local model. As an illustrative
example, this multiplicative memory overhead can be as low as O(log∗ n) for
very fast algorithms such as the Cole and Vishkin’s coloring algorithm [13].
Furthermore, using nonces and hashes similarly as explained before, one can
reduce the communication cost to almost the one of the original algorithm.
Indeed, our transformer always modifies its state in a way which can be
described with limited information, linear in the time and memory complexity

5

of the simulated algorithm.
We illustrate the efficiency and versatility of our proposal with several

efficient (i.e., fully-polynomial) silent self-stabilizing solutions for major dis-
tributed computing problems, namely vertex coloring, Breadth-First Search
(BFS) spanning tree construction, k-clustering, and leader election. In partic-
ular, we positively answer to some open questions raised in the conclusion
of [15]: (1) there exists a fully-polynomial (silent) self-stabilizing solution
for the BFS spanning tree construction whose stabilization time in rounds is
asymptotically linear in D (and so asymptotically optimal in rounds), and (2)
there exists a fully-polynomial (silent) self-stabilizing solution for the leader
election (also with a stabilization time in rounds that is linear in D and so
asymptotically optimal in terms of rounds). Finally, we can also design for
the first time (to the best of our knowledge) asynchronous fully-polynomial
self-stabilizing algorithms with a stabilization time in rounds that can be
sublinear in D, as shown with our vertex coloring instance that can stabilize
in O(log∗ n) rounds in unidirectional rings using the right parameters.

Move complexity Round complexity

Lazy mode O(min(n3 + nT, n2B)) O(D + T)

Greedy mode O(min(n3 + nB, n2B)) O(B)

Common features

Error recovery O(min(n3, n2B)) O(min(D, B))

Space complexity B · M

• T and M are respectively the time and space complexities of AlgI.

• B is a parameter ∈ N ∪ {+∞}.

• The algorithm is always silent when B < +∞. Here, we assume that T ≤ B.

Table 1: Overview of the properties of Trans(AlgI).

1.2 Related Work
Proposing transformers (also called compilers) is a very popular generic ap-
proach in self-stabilization. Transformers are useful to establish expressiveness

6

of a given property: by giving a general construction, they allow to exhibit a
class of problems that can achieve a given property. An impossibility proof
should be then proposed to show that the property is not achievable out of the
class, giving thus a full characterization. For example, Katz and Perry [38]
have addressed the expressiveness of self-stabilization in message-passing
systems where links are reliable and have unbounded capacity, and nodes are
both identified and equipped of infinite local memories. Several transformers,
e.g., [11, 38], builds time-efficient self-stabilizing solutions yet working syn-
chronous systems only. Bold and Vigna [11] proposes a universal transformer
for synchronous networks. As in [38], the transformer allows to self-stabilize
any behavior for which there exists a self-stabilizing solution. The produced
output algorithm stabilizes in at most n+D rounds. However, the transformer
is costly in terms of local memories (basically, each node collects and stores
information about the whole network). In the same vein, Afek and Dolev [1]
propose to collect pyramids of views of the system to detect incoherences and
correct the behavior of a synchronous system. In [10], Blin et al. propose
two transformers in the atomic-state model to construct silent self-stabilizing
algorithms. The first one aims at optimizing space complexity: if a task
has a proof-labeling scheme that uses ℓ bits, then the output algorithm com-
putes the task in a silent and self-stabilizing manner using O(ℓ + log n) bits
per node. However, for some instances, it requires an exponential number
of rounds. The second one guarantees a stabilization time in O(n) rounds
using O(n2 + k · n) bits per node for every task that uses a k-bit output
at each node. Transformers have been also used to compare expressiveness
of computational models. Equivalence (in terms of computational power)
between the atomic-state model and the register one and between the register
model and message passing are discussed in [27]. In [43], Turau proposes a
general transformation procedure that allows to emulate any algorithm for the
distance-two atomic-state model in the (classical) distance-one atomic-state
model assuming that nodes have unique identifiers.

It is important to note that the versatility is often obtained at the price of
inefficiency: the aforementioned transformers use heavy (in terms of memory
and/or time) mechanisms such as global snapshots and resets in order to be
very generic. For example, the transformer proposed by Turau [43] increases
the move complexity of the input algorithm by a multiplicative factor of O(m)
where m is the number of links in the network. The transformer of Katz and
Perry [38] requires infinite local memories and endlessly computes (costly)
snapshots of the network even after the stabilization. Lighter transformers

7

have been proposed but at the price of reducing the class of problems they
can handle. For example, locally checkable problems are considered in the
message-passing model [2]. The proposed transformer constructs solutions
that stabilize in O(n2) rounds. The more restrictive class of locally checkable
and locally correctable problems is studied in [6], still in message-passing.
Cohen et al. [35] propose to transform synchronous distributed algorithms that
solve locally greedy and mendable problems into asynchronous self-stabilizing
algorithms in anonymous networks. However, the transformed algorithm
requires a strong fairness assumption called the Gouda fairness in their paper.
This property is also known as the strong global fairness in the literature.
Under such an assumption, move complexity cannot be bounded in general.
Finally, assuming the knowledge of the network diameter, Awerbuch and
Varghese [7] propose, in the message-passing model, to transform synchronous
terminating algorithms into self-stabilizing asynchronous algorithms. They
propose two methods: the rollback and the resynchronizer. The resynchronizer
additionally requires the input algorithm to be locally checkable. Using the
rollback (resp., resynchronizer) method, the output algorithm stabilizes in
O(T) rounds (resp., O(T +U) rounds) using O(T ×S) space (resp., O(S) space)
per node where U is an upper bound on the network diameter and T (resp.,
S) is the execution time (resp., the space complexity) of the input algorithm.
Notice however that the straightforward atomic-state model version of the
rollback compiler (the work closest to our contribution) achieves exponential
move complexities, as shown in Section 10.

1.3 Roadmap
The rest of the paper is organized as follows. In the next section, we define the
model of the input algorithm, the property the input algorithm should fulfill,
and the output model. In Section 3, we present our transformer. In Sections 4-
8, we establish the correctness and the complexity of our method. In Section 9,
we illustrate the versatility and the power of our approach by proposing several
efficient instances solving various benchmark problems. In Section 10, we
establish an exponential lower bound in moves for the straightforward atomic-
state model version of the rollback compiler of Awerbuch and Varghese [7]
(the closest related work). We make concluding remarks in Section 11.

8

2 Preliminaries

2.1 Networks
We consider distributed systems made of n ≥ 1 interconnected nodes. Each
node can directly communicate through channels with a subset of other nodes,
called its neighbors. We assume that the network is connected5 and that
communication is bidirectional.

More formally, we model the topology by a symmetric strongly-connected
simple directed graph G = (V, E), where V is the set of nodes and E is the
set of arcs, representing the communication channels. Each arc e goes from a
node p to a node q, and we respectively call p and q the source and destination
of e. The graph is symmetric, meaning that for every arc from p to q, there
exists an arc from q to p. We denote by N(p) the set of nodes such that there
exists an arc from p to q. The elements of N(p) are the neighbors of p. We
denote by C(p) the set of incoming arcs of node p. For any c ∈ C(p), we
denote by qc the neighbor of p at the opposite side of the arc.

A path is a finite sequence P = p0p1 · · · pl of nodes such that consecutive
nodes in P are neighbors. We say that P is from p0 to pl. The length of
the path P is the number l. Since we assume that G is connected, then for
every pair of nodes p and q, there exists a path from p to q. We can thus
define the distance between two nodes p and q to be the minimum length of
a path from p to q. The diameter D of G is the maximum distance between
nodes of G. Given a non-negative integer k, the ball of radius k around a
node p is the set Nk[p] of nodes at distance at most k from p. The closed
neighborhood of a node p is the set N [p] = N1[p]. Note that for every node p,
N(p) = N [p] − {p} and ND[p] = V .

2.2 Input Computational Model: Eventually Stable
Distributed Synchronous Algorithms

Since we want to transform algorithms operating on various settings, we first
define a general model that suits all these settings.

In this paper, we define a distributed synchronous algorithm by the follow-
ing four elements:

5If the network is not connected, then the algorithm runs independently in each connected
component and its analysis holds nevertheless.

9

• a datatype state to label nodes;

• a datatype label to label communication channels (i.e., arcs)); this
datatype can be reduced to a singleton {⊥};

• a computational function algo that returns a state of type state given
a state (in state) and a set of pairs (label, state) of type label ×
state;

• a predicate isValid which takes as input a labeled graph and returns
true if and only if the labeled graph constitutes a valid initial configu-
ration (this predicate a priori depends on the model and the problem).

Let us now describe the execution model for distributed synchronous
algorithms. First, each channel of the network has a fixed label in label
and each node has a pre-defined initial state in state, thus giving a labeled
graph, and this graph satisfies the isValid predicate.

Then, executions proceed in synchronous rounds where every node (1)
obtains information from all its neighbors by the mean of its incoming channels
and (2) computes its new state accordingly using the function algo.

At each round, p obtains a pair (lblc, stqc
) from each channel c ∈ C(p),

where lblc is the label of c and stqc
is the current state of qc. Hence, to

compute its new state, p knows its own state and the set {(lblc, stqc
) | c ∈

C(p)}, which constitute the inputs of algo. Notice that, in the case when
label is {⊥}, algo computes a new state according to the current state of
the node and the set {(⊥, stqc

) | c ∈ C(p)}. Hence, depending on the values
of channel labels, p may or may not be able to locally identify its neighbors,
or to have data about the channels such as their bandwidth, their cost, . . .

The state of a node p at the beginning of the round i is denoted sti
p. Thus,

at each round i, each node p computes its new state sti+1
p for the next round

as sti+1
p = algo(sti

p, {(lblc, sti
qc

) | c ∈ C(p)}).
We say that a distributed synchronous algorithm is eventually stable if,

for any labeled graph satisfying isValid, there exists a round number s such
that, for any node p and any i ≥ s, sti+1

p = sti
p. Note that if all states remain

stable in a round, then they remain stable forever when algo is deterministic.

Accommodating various cases As already stated, our model is deliber-
ately general in order to accommodate most standard distributed computing
models.

10

For example, if one considers identified networks, the state of each node
can contain an identifier, and isValid can check that these identifiers are
different for each node. It may also check that these identifiers are not too
large with respect to the size n of the network, in cases where we assume that
the identifiers use a number of bits polylogarithmic in n. Note that in the
case of identified networks, assigning labels to channels does not add anything
useful to the model, and thus label can be the singleton {⊥}.

If we do not need the full power of identified networks but only need that a
node can distinguish its neighbors, isValid can check that, locally, channels
have distinct labels.

In semi-uniform networks with a distinguished node (usually called the
root), a boolean may be used in state to designate this special node. The
fact that exactly one node is selected is checked by the isValid predicate.

If the synchronous algorithm that we want to simulate is explicitly ter-
minating, we can turn it into an eventually stable distributed synchronous
algorithm by keeping the same state forever instead of terminating.

Note that our formalism assumes that the whole state eventually stabilizes.
We made this choice to keep things simple. However, if this requirement is too
strong, our results can be easily extended to the case when there is a function
rst from state to some other datatype state’, and only the result of this
function is eventually stable (i.e., rst(sti+1

p) = rst(sti
p), for all sufficiently

large i).
To illustrate the versatility of our model and the power of our approach,

we will propose several examples of eventually stable distributed synchronous
algorithms solving benchmark problems in Section 9, page 39.

2.3 Output Computational Model: the Atomic-state
Model

Instances of our transformer run on the atomic-state model [4] in which nodes
communicate using a finite number of locally shared registers, called variables.
Some of these shared registers may be read-only: they cannot be modified by
the algorithm nor by faults. This is typically the case for unique identifiers, if
some are available. In one indivisible move, each node reads its own variables
and those of its neighbors, performs local computation, and may change only
its own variables. The state of a node is defined by the values of its local
variables. A configuration of the system is a vector consisting of the states of

11

each node.
To accommodate the same diversity of models as in the input computa-

tional model, we also describe an output algorithm by four elements:

• a datatype state to label nodes;

• a datatype label to label communication channels (i.e., arcs)); this
datatype can be reduced to a singleton {⊥};

• a computational function algo that returns a state s′ of type state
given a state s (in state) and a set of pairs (label, state) of type label
× state; in this case, the read-only registers must have the same value
in s and in s′;

• a predicate isValid which takes as input a labeled graph; in this case,
the nodes are only labeled with the read-only shared registers; this
predicate a priori depends on the model and the problem.

The program algo of each node is described as a finite set of rules of the
form label : guard → action. Labels are only used to identify rules in the
reasoning. A guard is a Boolean predicate involving the state of the node
and that of its neighbors. The action part of a rule updates the state of the
node. A rule can be executed only if its guard evaluates to true; in this case,
the rule is said to be enabled. By extension, a node is said to be enabled if
at least one of its rules is enabled. We denote by Enabled(γ) the subset of
nodes that are enabled in configuration γ.

In the model, executions proceed as follows. When the configuration is
γ and Enabled(γ) ̸= ∅, a non-empty set X ⊆ Enabled(γ) is selected by a
so-called daemon; then every node of X atomically executes one of its enabled
rules, leading to a new configuration γ′. The atomic transition from γ to γ′ is
called a step. We also say that each node of X executes an action or simply a
move during the step from γ to γ′. The possible steps induce a binary relation
over C, denoted by 7→. An execution is a maximal sequence of configurations
e = γ0γ1 · · · γi · · · such that γi−1 7→ γi for all i > 0. The term “maximal”
means that the execution is either infinite, or ends at a terminal configuration
in which no rule is enabled at any node.

As explained before, each step from a configuration to another is driven
by a daemon. We define a daemon as a predicate over executions. We say
that an execution e is an execution under the daemon S if S(e) holds. In this

12

paper we assume that the daemon is distributed and unfair. “Distributed”
means that while the configuration is not terminal, the daemon should select
at least one enabled node, maybe more. “Unfair” means that there is no
fairness constraint, i.e., the daemon might never select an enabled node unless
it is the only enabled node. In other words, the distributed unfair daemon
corresponds to the predicate true, i.e., this is the most general daemon.

In the atomic-state model, an algorithm is silent if all its possible exe-
cutions are finite. Hence, we can define silent self-stabilization as follows.
Let L be a non-empty subset of configurations, called the set of legitimate
configurations. A distributed system is silent and self-stabilizing under the
daemon S for L if and only if the following two conditions hold:

• all executions under S are finite, and

• all terminal configurations belong to L.

We use two units of measurement to evaluate the time complexity: moves
and rounds. The definition of a round uses the concept of neutralization: a
node p is neutralized during a step γi 7→ γi+1, if p is enabled in γi but not
in configuration γi+1, and does not execute any action in the step γi 7→ γi+1.
Then, the rounds are inductively defined as follows. The first round of an
execution e = γ0γ1 · · · is the minimal prefix e′ such that every node that is
enabled in γ0 either executes a rule or is neutralized during a step of e′. If e′

is finite, then let e′′ be the suffix of e that starts from the last configuration
of e′; the second round of e is the first round of e′′, and so on and so forth.

The stabilization time of a silent self-stabilizing algorithm is the maximum
time (in moves or rounds) over every execution possible under the consid-
ered daemon (starting from any initial configuration) to reach a terminal
(legitimate) configuration.

3 Compile synchronous algorithms into self-
stabilizing asynchronous ones

3.1 Algorithm overview
Before we give the actual algorithm, we give some general ideas on how the
algorithm operates. We do this in hope that it helps the reader get a better
understanding of the algorithm before getting into the proofs. Note that some

13

definitions that we give in this subsection are not the “real” definitions. Their
purpose is only to clarify how the algorithm works.

Our algorithm takes an eventually stable distributed synchronous al-
gorithm AlgI, a flag f ∈ {lazy, greedy}, and possibly a bound B on its
execution, as inputs. Its output is a self-stabilizing asynchronous algorithm
which simulates AlgI.

The first idea to turn AlgI into a self-stabilizing algorithm is to store the
whole execution of the algorithm. Every node p thus has a list L such that,
ultimately, p.L[i] = sti

p for each cell i. We also denote p.L[0] = st0
p, which

cannot be corrupted. Since the cells q.L[i] with q ∈ N [p] constitute part of
the input that the algorithm uses to compute p.L[i + 1], we say that p.L[i + 1]
depends on the cells q.L[i]. We extend this definition by taking its transitive
closure.

A possible algorithm could be the following. When p is activated, it finds
its faulty cells, and corrects all of them. Also if p.L[i] does not exist but all
its dependencies do, then it creates p.L[i]. This gives an algorithm which is
quite good, round-wise. Indeed, at the beginning, the cells p.L[0] are valid
by construction, and if all p.L[i] are valid, then after one round, so are all
p.L[i + 1]. Thus if the synchronous algorithm finishes in T steps, then its
simulation converges in T rounds.

The main problem is that this algorithm may use an exponential number
of steps. Indeed, such an algorithm tries to update the values in the list as
soon as possible, which may cause a lot of updates. If between two nodes
p and q, there exists two disjoint paths of different lengths, an update on p
may trigger two updates of q. However, these two updates of q may trigger
four updates on a further node r, by the same construction and argument.
Repeating this argument along a long chain of such gadgets leads to an
exponential number of updates (and thus of moves) caused by a single original
event. Section 10 proves this in detail.

To avoid this kind of problem, our algorithm uses a more conservative
approach. Whenever a node p detects a “major error”, it launches a node
which ensures that the buggy cell and all the cells which depend on it are
removed. Only then can p resume its computation. We refer to this process
as an error broadcast.

To achieve this, we add a variable p.s which can be either C or E and such
that p.s = E means that p has launched an error broadcast. This broadcast
can either be an initial one or a sub-broadcast launched to propagate an
initial one. Whenever p knows that its broadcast is finished, it sets p.s = C.

14

In the following, we denote the length of p.L by p.h, and note that p has a
cell which has a missing dependency in q.L if and only if p.h ≥ q.h + 2.

Our algorithm has the following four rules:

Rule RR: Whenever p encounters a major error, it applies the rule RR,
which empties the list p.L and sets p.s = E. We explain what a major
error is a bit later.

Rule RP : If p has a neighbor q ∈ N(p) such that both q.s = E and
p.h ≥ q.h+2, then p should apply the rule RP to remove the problematic
cells and propagate an error broadcast by setting p.s to E. A node can
apply the rule Rp as often as needed but, otherwise, it must wait for its
error broadcast to finish.

We can now explain more precisely when p has a major error, and we do
so before presenting the two other rules:

• p has a cell p.L[i] which has all its dependencies but the value p.L[i] is
incorrect.

• p.s = C and some neighbor q ∈ N(p) is such that q.h ≥ p.h + 2.
Note that the sole condition on the heights is not enough to create a
serious problem. Indeed, such a situation with p.s = E is bound to
happen during an error broadcast.

• The last major error relates to the error state. Indeed, a node p should
have two ways to set p.s = E. Either p has applied the rule RR and
p.h = 0, or p has applied the rule RP and it has a neighbor q ∈ N(p)
such that q.s = E and q.h < p.h. If none of these conditions are met
for a node p such that p.s = E, then this is a serious error.

Rule RC: If p knows that its error broadcast is finished, then it applies
the rule RC , which simply consists in switching p.s from E to C. To
give the precise conditions which allow the use of rule RC , it is easier
to see when p should not apply this rule. Indeed,

– if some neighbor q ∈ N(p) is such that |q.h − p.h| ≥ 2, then p
is involved in an error broadcast. Indeed, if p.h ≤ q.h − 2, then
p must wait for q to propagate its error broadcast. Otherwise,
if p.h ≥ q.h + 2 and q.s = E, then p must propagate the error

15

broadcast of q. Finally, if p.h ≥ q.h + 2 and q.s = C, then q has a
major error and p must wait for q to apply the rule RR after which
it will propagate the error broadcast of q.

– if some neighbor q ∈ N(p) is such that q.h = p.h + 1 and q.s = E,
then the broadcast of p still concerns q and thus is not finished,
and p must wait.

If neither conditions apply, then p can apply rule RC .

Rule RU : To finish our overview of the algorithm, we should talk about
the rule RU , which performs the actual computation, and about the
two functioning modes of our algorithm: greedy and lazy.
Obviously, to apply the rule RU and create the new cell p.L[p.h + 1],
we should have p.s = C and all the corresponding dependencies must
exist, thus q.h ≥ p.h for any neighbor q ∈ N(p) but q.h ≤ p.h + 1.

– In “greedy mode”, whenever this condition is met, p can apply the
rule RU .

– Now if stp.h+1
p = stp.h

p , it may be that the simulated algorithm has
finished. In lazy mode, by default, p thus does not apply the rule
RU . Nevertheless, if a neighbor q ∈ N(p) is such that q.h > p.h,
then it may be the sign that the computation may have locally
converged but not globally, and p does apply the rule RU in this
case.

3.2 Data structures
Let AlgI be an eventually stable distributed synchronous algorithm. Let T
be the number of synchronous rounds AlgI requires to become stable.

We now propose a transformer that takes this algorithm as input and
transforms it into an efficient fully asynchronous self-stabilizing algorithm.
Our algorithm can run in two modes: lazy and greedy. It thus takes two
additional parameters as inputs:

• a parameter f which can take 2 values: “lazy” or “greedy”.

• an upper bound B on T , which can be set to +∞ to simulate that such
a bound is not available to the transformer.

16

The shared variables of the node p are:

• p.init: an initial state of p in the simulated algorithm; it cannot be
modified and constitutes the read-only part of the state;

• p.s: the status of p; it can take two values, C or E;

• p.L: a list of at most B elements containing states of AlgI.

The channels (arcs) of the network have the same labels as in AlgI. The
predicate isValid is also the same in AlgI and in the transformed algorithm.

A node p such that p.s = C is said to be correct; otherwise it is an
erroneous node (in other words, a node in error). We use the following useful
notations and functions:

• We denote by p.hh the length of p.L in γh. If the configuration is clear
from the context, we simply denote this length by p.h.

• We denote by p.L[i] the element of p.L at index i (1 ≤ i ≤ p.h).

• Although it does not belong to p.L, we also denote by p.L[0] the initial
value p.init of p for AlgI (we also refer to p.init as st0

p).

• p.h := i is the truncation of p.L at its first i elements.

• push(p, val) is the addition of the value val at the end of the list p.L.

As already stated in the overview of the algorithm, ultimately, we want
p.L[i] = sti

p. We thus must be able to call the simulated algorithm on the
cells of p.L and those of its neighbors. To simplify notations, we set

âlgo(p, i) := algo
(
p.L[i], {(lblc, qc.L[i]) | c ∈ C(p)}

)
∃q ∈ N(p), P (st(q)) := ∃(lbl, st) ∈ {(lblc, stqc

) | c ∈ C(p)}, P (st)
∀q ∈ N(p), P (st(q)) := ∀(lbl, st) ∈ {(lblc, stqc

) | c ∈ C(p)}, P (st)

Recall that C(p) and qc respectively denote the set of incoming channels of p
and the source node of c. The last two notations are somewhat misleading
because, although they may suggest it, they do not rely on the fact that nodes
can individually access their neighbors.

If γ0γ1 · · · is an execution, we respectively denote by p.si, p.Li, p.hi and
âlgo(pi, j) the value of p.s, p.L, p.h and âlgo(p, j) in γi.

17

3.3 The predicates

algoError(p) := ∃i, 1 ≤ i ≤ p.h, (∀q ∈ N(p), q.h ≥ i − 1) ∧
p.L[i] ̸= âlgo(p, i − 1)

dependencyError(p) :=
(
p.s = E ∧ ¬(∃q ∈ N(p), q.s = E ∧ q.h < p.h)

)
∨

(
p.s = C ∧ ∃q ∈ N(p), (q.h ≥ p.h + 2)

)
root(p) := algoError(p) ∨ dependencyError(p)

errorPropag(p, i) := ∃q ∈ N(p), q.s = E ∧ q.h < i < p.h

canClearE(p) := p.s = E

∧ ∀q ∈ N(p),
(
|q.h − p.h| ≤ 1 ∧

(q.h ≤ p.h ∨ q.s = C)
)

updatable(p) := p.s = C ∧ p.h < B ∧(
∀q ∈ N(p), q.h ∈ {p.h, p.h + 1}

)
∧(

f = greedy ∨ (p.L[p.h] ̸= âlgo(p, p.h) ∨

∃q ∈ N(p), q.h > p.h)
)

3.4 The rules
• RR : (p.h > 0 ∨ p.s = C) ∧ root(p) −→ p.h := 0 ; p.s := E

• RP (i) : errorPropag(p, i) −→ p.h := i ; p.s := E

• RC : canClearE(p) −→ p.s := C

• RU : updatable(p) −→ push(p, âlgo(p, p.h))

We set the following priorities:

• RR has the highest priority.

18

• RP (i) has a higher priority than RP (i + l) for l > 0

• RC and RU have the lowest priority.

4 Preliminary results
Lemma 1. Let γa 7→ γb be a step. If p is a root in γb, then it also is in γa.

Proof. We split the study into the following three cases.

• Suppose that algoError(p) is true in γb. Let i be such that p.hb ≥ i,
for each q ∈ N(p), q.hb ≥ i − 1, and pb.L[i] ̸= âlgo(pb, i − 1)).
The key element of this case is that, if q.ha ≥ i and q.hb ≥ i, then
qa.L[i] = qb.L[i].

– If p.ha = i−1, then p applies the rule RU in γa 7→ γb. This implies
that for each q ∈ N [p], q.ha ≥ i − 1 and pb.L[i] = âlgo(pa, i − 1)).
But since each q ∈ N [p] is such that q.ha ≥ i − 1 and q.hb ≥ i − 1,
we have qa.L[i − 1] = qb.L[i − 1] which contradicts that pb.L[i] ̸=
âlgo(pb, i − 1)).

– If p.ha ≥ i, and all q ∈ N(p) are such that q.ha ≥ i − 1, then again,
qa.L|i − 1] = qb.L|i − 1]. And thus algoError(p) is true in γa.

– If p.ha ≥ i and some q ∈ N(p) is such that q.ha < i − 1, then q
cannot apply a rule RU in γa 7→ γb, and thus q.hb < i − 1 which is
a contradiction.

• Suppose that p.sb = E and there exist no q ∈ N(p) such that q.sb = E
and q.hb < p.hb.
If p.sa = E and no q ∈ N(p) is such that q.sa = E and q.ha < p.ha,
then p is a root in γa.
We claim that in all remaining cases, p applies an error rule in γa 7→ γb.
Indeed

– if p.sa = E and there exists q ∈ N(p) such that q.sa = E and
q.ha < p.ha, then q cannot apply a rule RU or RC , and thus
q.sb = E. Recall that in the current case, there exist no u ∈ N(p)
is such that u.sb = E and u.hb < p.hb. Thus q.hb ≥ p.hb, which
implies that p must apply an error rule in γa 7→ γb.

19

– if p.sa = C then p must also apply an error rule in γa 7→ γb.

Now 2 cases are possible.

– If p applies a rule RR, then p is a root in γa.
– If p applies a rule RP (i) in γa 7→ γb, then there exists q ∈ N(p)

such that q.ha = i − 1 and q.sa = E. But since q.sa = E, q cannot
apply the rule RU , and because of p, q cannot apply a rule RC .
Thus q.sb = E and q.hb < p.hb, which contradicts the hypothesis.

• Suppose that, p.sb = C and there exists q ∈ N(p) such that q.hb ≥
p.hb + 2.
Since p does not apply an error rule in γa 7→ γb, p.ha ≤ p.hb.

– If q.ha = q.hb − 1, q applies the rule RU in γa 7→ γb. But this is
impossible because q.ha > p.ha

– If q.ha ≥ q.hb, then q.ha ≥ p.ha + 2.
∗ If p.sa = E, then p applies the rule RC in γa 7→ γb, which is

impossible because q.ha ≥ p.ha + 2.
∗ If p.sa = C, then p is a root in γ.

Thus, in all possible cases, p is a root in γ.

Lemma 2. Let γa 7→ γb be a step, and let r be a root in γa which applies the
rule RC during γa 7→ γb. Then r.ha = 0 and r is not a root in γb.

Proof. Since RR has a higher priority than RC , the guard of RR is false at r
in γa. So, as r is a root in γa, we necessarily have r.ha = 0.

Then, since r applies RC during γa 7→ γb, we have r.sb = C. Moreover, to
allow r to execute RC , we should have every q ∈ N(r) that satisfies q.ha ≤ 1.
Now, as r.ha = 0, no q ∈ N(r) with q.ha = 1 can apply RU in γa 7→ γb. All
this implies that dependencyError(r) is false in γb.

Finally, since r applies the rule RC , we have r.hb = r.ha = 0, which implies
that algoError(r) is also false in γb. Hence, r is not a root in γb.

A node p is in error in γ if p.s = E and it is a root if root(p). RR and
each rule RP (i) are referred to as error rules in the following.

A path P = p0p1 · · · pl in G is decreasing in a configuration γ if for each
0 ≤ i < l, pi.h > pi+1.h. A path P is an E-path if it is decreasing, all its
nodes are in error, and its last node is a root.

20

Lemma 3. Let γ be a configuration. Any node p in error is the first node of
an E-path.

Proof. We prove our lemma by induction on p.h, if p.h = 0, then p is a root
and P = p0 satisfies the required conditions.

Suppose that p.h > 0. If p is a root, then P = p0 satisfies the required
conditions. Otherwise, there exists q ∈ N(v) such that q.h < p.h and
q.s = E. By induction, there exists an E-path P ′ starting a q. We can
add p at the beginning of P ′ to obtain a path P which satisfies all required
conditions.

Although this Lemma will have other important implications, it implies
that if there exists a node in error, then there exists a root in error.

5 Terminal configurations
A configuration γ is almost clean if

• every root r satisfies r.h = 0 and r.s = E, and

• every two neighbor p and q satisfies
∣∣∣p.h − q.h

∣∣∣ ≤ 1.

Lemma 4. A configuration is almost clean if and only if no node can apply
an error rule.

Proof. Suppose that γ is almost clean. Since every root r is such that r.h = 0
and r.s = E, no node can apply the rule RR, and since every neighbor p and
q are such that |p.h − q.h| ≤ 1, no node can apply a rule RP .

Conversely, suppose that γ is not almost clean. If a root r is such that
either r.h > 0 or r.s = C, then r can apply the rule RR. And if q.h ≥ p.h + 2,
then either p.s = C and r is a root which can apply the rule RR or p.s = E
and q can apply a rule RP .

Lemma 5. Let γa 7→ γb be a step. If γa is almost clean, then so is γb.

Proof. Assume, by the contradiction, that γa is almost clean and γb is not.
At least one of these following two cases occur:

21

• Some node p can apply the rule RP in γb. There are thus two neighbors
p and q such that p.hb ≥ q.hb + 2.
Since γa is almost clean,

∣∣∣p.ha − q.ha
∣∣∣ ≤ 1 and no error rule is executed

in the step γa 7→ γb. So, necessarily, p executes RU in γa 7→ γb, but not
q. Thus, p.ha = p.hb − 1 and q.ha = q.hb. Moreover, since p enabled
for RU in γa, we have p.ha ≤ q.ha, which implies p.hb ≤ q.hb + 1, a
contradiction.

• Some root r can apply the rule RR in γb (i.e., r.hb ̸= 0 or r.sb = C).
First, by Lemma 1, r is a root in γa, and since γa is almost clean,
r.ha = 0 and r.sa = E. Thus, by Lemma 2, either r applies no rule
in γa 7→ γb which is a contradiction because r.hb = 0 and r.sb = E,
or r applies the rule RC and r is not a root in γb, which is also a
contradiction.

Lemma 6. Let γ be an almost clean configuration. For any node p and
i ≤ p.h, p.L[i] = sti

p.

Proof. Since γ is almost clean, for any neighboring nodes p and q, |p.h−q.h| ≤
1. By induction on i ≥ 0, if i = 0 then we have set p.L[i] := p.init, thus
p.L[i] = sti

p. Suppose that the induction hypothesis holds for some i ≥ 0.
Let p be such that p.h ≥ i + 1. Now by Lemma 4, p cannot apply an error
rule, algoError(p) is false and thus p.L[i + 1] = âlgo(p, i). The induction
hypothesis thus implies that p.L[i + 1] = sti+1

p .

A configuration in clean if it contains no root. The following property
gives an alternative definition of being clean, and as a direct consequence, it
implies that clean configurations are also almost clean.

Lemma 7. A configuration is clean if and only if nodes can only apply the
rule RU .

Proof. Suppose that γ is clean. Since it contains no root, then no node can
apply the rule RR. Since there are no root, then, by Lemma 3, there are no
node in error, and thus no node can apply a rule RP or the rule RC .

Conversely, suppose that nodes can only apply the rule RU . Then by
Lemma 4, γ is almost clean therefore γ contains no correct root. To prove

22

that γ do not contain roots in error, it is enough to show that γ contain no
node in error. Suppose thus for a contradiction that p is in error. Since γ
is almost clean, every neighbor q of p is such that |p.h − q.h| ≤ 1. The only
condition which prevents a node p in error from applying the rule RC is thus
if p has a neighbor in error q such that q.h = p.h + 1. But then any node in
error of maximum height can apply the rule RC , a contradiction.

Lemma 1 implies that being clean is a stable property.
A terminal configuration is a configuration in which no node can be

activated. Clearly, by Lemma 7, terminal configurations are clean.

Lemma 8. Suppose that γ is a terminal configuration. There exists H such
that for any node p, p.h = H and p.s = C. Moreover, for any 1 ≤ i ≤ H,
p.L[i] = sti

p.
In greedy mode, every execution with B = ∞ is infinite, thus no terminal

configuration exist. Otherwise, H = B.
In lazy mode, if B < T , then H = B. Otherwise, H ≥ T .

Proof. Since γ is also clean, the fact that for any 1 ≤ i ≤ p.h, p.L[i] = sti
p

then follows from Lemma 6.
In greedy mode, if B = ∞, then every execution is infinite. Indeed, if γ is

not clean, then some node can apply an error rule or the rule RC , and if γ is
clean, then any node of minimum height can apply the rule RU . Otherwise, we
claim that all nodes have the same height. If not, there exists two neighboring
nodes p and q such that q.h = p.h + 1. Among those pairs, choose one with
p.h minimum. Since, p.s = C, q.h > p.h and for any neighbor r ∈ N(p),
r.h ≥ p.h, then regardless of f , p can apply the rule RU . Let H be this
common height.

In greedy mode, if B < ∞, then H = B. And in lazy mode, if H < T ,
then there exists p be such that stH

p ̸= stH+1
p , which is only possible if

H = B.

6 D-paths
Recall that a path P = p0p1 · · · pl in G is decreasing in a configuration γ if
for each 0 ≤ i < l, pi.h > pi+1.h and that P is an E-path if it is decreasing,
all its nodes are in error, and its last node is a root.

23

We extend these definition in the following way. A path P is gently
decreasing if, for each 0 ≤ i < l, pi.h = pi+1.h + 1, and it is a D-path if it is
decreasing and there exists 0 ≤ j ≤ l such that

• PC = p0 · · · pj−1 is a (possibly empty) gently decreasing path of nodes
in C,

• PE = pj · · · pl is an E-path.
We call PC and PE the correct and error parts of P .
Lemma 9. Let γa 7→ γb be a step, and let P be a D-path in γa. For any
p ∈ P , p.hb ≤ p.ha. Moreover, if p ∈ P is such that p.sb = C, then we have
equality.
Proof. Let p ∈ P . Recall that the height of a node p only increases if p applies
the rule RU .

• If p is the last node of P , then in γa, p is a root such that p.sa = E.
Thus p cannot apply the rule RU in γa 7→ γb.

• If p is not the last node of P , let q be the next node after p on P . Since
P is decreasing in γa, q.ha < p.ha, and p cannot apply the rule RU in
γa 7→ γb.

The first part of the lemma follows. Now if p.sb = C, then p does not apply an
error rule in γa 7→ γb, and thus p.hb ≥ p.ha, which complete the proof.
Lemma 10. Let γa 7→ γb be a step, let P = p0 · · · pl be a decreasing path
in γa such that

• apart from pl which satisfies pl.s
a = E and pl.s

b = C, all the nodes of
P are in C in both γa and γb;

• in γa, p0 · · · pl−1 is gently decreasing.
Then P is gently decreasing in γb.
Proof. The assumptions imply that pl applies the rule RC in the step γa 7→ γb.
Thus pl.h

b = pl.h
a. Moreover, by Lemma 9, for any 0 ≤ i < l, pi.h

b = pi.h
a.

Since pl applies the rule RC , we have pl−1.h
a ≤ pl.h

a+1. Together with the
fact that P is decreasing in γa, we obtain pl−1.h

a = pl.h
a + 1. The beginning

of the path is gently decreasing by hypothesis, so P is gently decreasing in
γa. Finally, since we have shown that the height of each of its nodes is the
same in γa and γb, the lemma follows.

24

Lemma 11. Let γa 7→ γb be a step, let p be the first node of a D-path P
in γa. If at least one node of P is in error in γb, then p is the first node of a
D-path in γb.

Proof. Let P = p0 · · · pl be a D-path in γa and let p = p0. Assume that P
contains at least one node in error in γb, and let 0 ≤ i ≤ l be minimal such
that pi.s

b = E.
Let P ′ be the possibly empty path p0 · · · pi−1. Since pi.s

b = E, there
exists a E-path Q = piq1 · · · qh in γb, by Lemma 3. We now claim that
P ′′ = p0 · · · piq1 · · · qh is a D-path in γb whose first node is p.

We first prove that P ′′ is decreasing. Indeed, by Lemma 9, pi.h
b ≤ pi.h

a

and, for 0 ≤ j < i, pj.h
b = pj.h

a. Since P is decreasing in γa, the subpath
p0 · · · pi is also decreasing in γb. Now piq1 · · · qh is an E-path and is thus also
decreasing which implies that so is P ′′.

To finish the proof, we must show that P ′ is gently decreasing in γb. First,
if P ′ is empty, we are done. Assume now that P ′ is not empty. In P , only
one node can apply the rule RC in γa 7→ γb: its first node in error in γa. Now,
since pi is the first node in error of P in γb, we have case: either pi−1.s

a = E
and pi−1 executes RC in γa 7→ γb, or pi−1.s

a = C and does not execute RC in
γa 7→ γb.

• Suppose that pi−1.s
a = E. The path P ′ is then gently decreasing in γb

by Lemma 10.

• Suppose that pi−1.s
a = C. Since P is a D-path in γa, P ′ is gently

decreasing in γa. Now, we have already shown that every correct node
q of P ′ satisfies q.ha = q.hb. The path P ′ is thus gently decreasing in
γb.

Lemma 12. Let γa 7→ γb be a step, let p be the first node of a D-path, and
let r be its root in γa. If r is a root in γb, then p is the first node of a D-path
in γb.

Proof. If r applies RC during γa 7→ γb, then Lemma 2 implies that r is not a
root in γb, which is a contradiction. Thus r is in error in γb, and the Lemma
follows from Lemma 11.

Lemma 13. Let γa 7→ γb be a step, and let p be the first node of a D-path
in γa. If no D-path in γb contains p, then p.hb ≤ n.

25

Proof. Let p be the first node of a D-path P , and let r be the root of P in γa.
We claim that, in γb, P contains no node in error. Indeed, otherwise

Lemma 11 implies that p is the first node of a D-path in γb, which is a
contradiction.

Since, in a D-path, at most one node can apply the rule RC during a
step then, in γa, all the nodes of P but r have status C. We can thus apply
Lemma 10, and obtain that P is gently decreasing in γb, and thus p.hb =
lenght(P) + r.hb. And since no node can appear twice in P , p.hb ≤ r.hb + n.

Now since r.sb = C, r applies the rule RC in γa 7→ γb. But then Lemma 2
implies that r.ha = 0, and thus r.hb = 0. The lemma follows.

7 Moves complexity
In this section, we analyze the move complexity of our algorithm. To that
goal, we fix an execution e = γ0γ1 · · · and study the rules a given node applies
in. Since, these rules do not appear explicitly in an execution, we propose to
use a proxy for them.

A pair (p, i) is a move if p applies a rule in γi 7→ γi+1. This move is a
U -move if the rule is RU , a C-move if the rule is RC , a R-move if the rule is
RR, and a P (i)-move if the rule is RP (i). Since a node p applies at most one
rule in a given step, the number of steps in which a given node applies a rule
is the number of its moves, and the number of steps is bounded by the total
number of moves.

7.1 R-moves
Lemma 14. During an execution, there are at most n R-moves.

Proof. Let p be a node. We claim that p can apply the rule RR at most once.
We have three cases.

• If p executes no R-move, it executes at most one R-move.

• If p executes a R-move and no move after the first R-move, then p
executes only one R-move.

• Otherwise, let (p, i) be the first R-move, and let (p, j) be the first move
which follows.

26

Since (p, i) is a R-move, p.si+1 = E and p.hi+1 = 0, and since p applies
no rule between γi+1 and γj, p.sj = E and p.hj = 0. Consequently,
(p, j) is necessarily a C-move, and thus, by Lemma 2, p is not a root
in γj+1. Lemma 1 then implies that p is a root in no γh for h > j,
and thus no (p, h) is an R-move for h > j. Hence, p executes only one
R-move in this case.

Hence, in all cases, p makes at most one R-move. The Lemma follows.

7.2 U-move
Let Si be the set of roots in γi. Lemma 1 states that for each i > 0, Si ⊆ Si−1.
Since γ0 contains at most n roots, there are l ≤ n steps γi−1 7→ γi for which
Si ⊂ Si−1. Let r1, r2, . . . , rl be the sequence of increasing indices such that
for all i ∈ [1..l], Sri

⊂ Sri−1. This sequence gives the following decomposition
of e into segments.

• The first segment is the sequence γ0 · · · γr1 .

• For 1 < i ≤ l the i-th segment is the sequence γri−1 · · · γri .

• The last segment is the sequence γrl · · · .

At this point in the proof, it is not obvious wether γri should be clean or
not. But what is clear is that because of Lemma 1, if some γri is clean, then
so are all the other configuration in the segment Moreover, there is at most
one clean segment, and if it exists, it must be the last segment.

The key Lemma to bound the number of U -moves is the following Lemma.

Lemma 15. In a segment, the number of times that a node applies the rule
RU is either infinite of is equal to the maximum of p.hj − p.hi with i < j in
the segment.

Proof. Since p.h increases by one each time that p applies the rule RU , if p
applies this rule a finite number of times, then the maximum of p.hj − p.hi

with i < j in the segment is bounded.
Now if p applies an error rule, then it becomes in error. By Lemma 3,

p is then the first node of an E-path, and thus of a D-path, by definition.
Lemma 12 then implies that p remains in a D-path until the end of the

27

segment. Lemma 9 finally implies that p does not apply the rule RU until
the end of the segment.

Since p.L decreases only when p executes an error rule, all this implies
that the number of times that p applies the rule RU is equal to the maximum
of p.hj − p.hi with i < j in the segment.

To bound the number of U -moves, it is thus enough to bound p.hj − p.hi

in a segment.

Lemma 16. If i < j and p satisfy p.hj > p.hi + 2D, then for any q, there
exists i ≤ h < j such that q.hh = p.hi + D and (q, h) is a U-move.

Proof. We prove by induction on d(q, p) that there exist i ≤ i′ < j′ ≤ j such
that q.hi′ ≤ p.hi + d(q, p) and p.hj − d(q, p) ≤ q.hj′ .

• If d(q, p) = 0, then q = p and i′ = i and j′ = j do the trick.

• If d(q, p) > 0 then let q′ ∈ N(q) be such that d(q′, p) = d(q, p) − 1. By
induction, there exists i ≤ i1 < j1 ≤ j such that q′.hi1 ≤ p.hi+d(q, p)−1
and p.hj − d(q, p) + 1 ≤ q′.hj1 .
Now q′.hj1 −q′.hi1 ≥ p.hj −p.hi −2(d(q, p)−1) > 2D−2(d(q, p)−1) > 2.
There thus exists i1 ≤ i′ < j1 such that q′.hi′ = q′.hi1 and (q′, i′) is a
U -move. In γi′ , every neighbor of q′ and thus q satisfy that q.hi′ ≤
q′.hi′ + 1 = q′.hi1 + 1 ≤ p.hi + d(q, p).
Now since q′.hi′+1 + 2 ≤ q′.hj1 , there exists i′ < j′ < j1 such that (q′, j′)
is a U -move and q′.hj′+1 = q′.hj1 . In γj′ , every neighbor of q′ and thus
q satisfy that q.hj′ ≥ q′.hj′ = q′.hj1 − 1 ≥ p.hj − d(q, p) which finishes
the proof of our induction.

Let q be any node. Let i ≤ i′ < j′ ≤ j such that q.hi′ ≤ p.hi + d(p, q) ≤
p.hi + D and q.hj′ ≥ p.hj − d(q, p) ≥ p.hj − D > p.hi + D. There exists
i′ ≤ h < j′ such that q.hh = p.hi + D and (q, h) is a U -move.

Lemma 17. If γh in not clean, then for any node p and any i < j ≤ h,
p.hj − p.hi ≤ 2D.

Proof. Let r be a root in γh and let i < j ≤ h. Since no root can apply the
rule RU , the lemma follows from Lemma 16.

Lemma 18. A node p executes at most min(nB, 2nD) U-moves before the
first clean configuration.

28

Proof. By Lemma 1, there are at most n non clean segments. By Lemma 15,
in each of these segments, the number of times that p applies the rule RU is
equal to the maximum of p.hj − p.hi with i < j in the segment.

We can bound p.hj − p.hi by B, which gives a total bound of nB. But
because of the roots, Lemma 17 allows us to bound p.hj − p.hi by 2D, giving
a total bound of 2nD.

By Lemma 1, there is at most 1 clean segment. Of course, we can also
bound the number of U -moves of a given node in this segment (if it exists)
by B, but when in lazy mode, we can do better.

Lemma 19. Let γh · · · be the clean segment (if it exists). If the algorithm
runs in lazy mode, then for any i, j such that h ≤ i ≤ j and any node p,
p.hj − p.hi ≤ max(T, D).

Proof. First note that Lemma 1 implies that all configuration are clean.
Let H = maxp(p.hh), and let H̄ = max(H, T). We claim that for any

j ≥ i and any node p, p.hj ≤ H̄. Indeed, by induction on j ≥ i, this is true
for i = j. Let us now suppose that the property is true for some j ≥ i, and
let p be any node.

• If p.hj < H̄, then p.hj+1 ≤ H̄.

• If p.hj = H̄ and at least one q ∈ N(p) is such that q.hj < H̄ then p
cannot apply the rule RU in γj 7→ γj+1. Thus p.hj+1 ≤ H.

• If p.hj = H̄ and all q ∈ N(p) are such that q.hj = H̄, then Lemma 6
and the fact that H ≥ T imply that p.Lj[H̄] = âlgo(pj, H̄). Hence, p
cannot apply the rule RU , and p.hj+1 ≤ H̄.

Our claim is thus valid. Obviously, if H̄ = T , then the Lemma is true. Let us
thus suppose that H̄ = H > T . In this case, it is enough to prove that for
any p, p.hi ≥ H − D.

Indeed, otherwise, if p.hi < H − D, a shortest path between any r such
that r.hi = H, and p is not gently decreasing. There thus exist neighboring
nodes q and q′ such that q′.hi ≥ q.hi + 2. If q.si = C, then q is a root, which
is a contradiction. And if q.si = E, then by lemma 3, q is the first node of an
E-path, which implies that γi contains a root, also a contradiction.

Lemma 20. During an execution, the number of U -moves that our algorithm
executes is infinite in greedy mode when B = ∞ and at most

29

• O(n2 min(B, D) + nB)) in greedy mode with B < ∞,

• O(n2 min(B, D) + nT)) in lazy mode.

Proof. The fact that this number is infinite when B = ∞ in greedy mode
follows from Lemma 8. Otherwise, we must add to the bound of Lemma 18,
the number of U -moves in the clean segment (if it exists).

In greedy mode, for a given node, we bound p.hj − p.hi by B which in now
assumed to be finite. In lazy mode, we using Lemma 19 while remembering
that p.hj − p.hi is always at most B.

7.3 P -move
To count the number of P -moves of a given node p, we need several definitions.

We say that a P -move (p, t) causes another P -move (p′, t′) if

• p′ ∈ N(p), t′ > t,

• for some l, (p′, t′) is a P (l)-move and (p, t) is a P (l − 1)-move, and

• for any t < k < t′, (p, k) is not a move.

If a node p is in error in some configuration γi, this often happens because
of some previous P -move (p, t). Moreover, what allowed (p, t) is some q ∈ N(p)
which is in error in γt−1. Finally, the reason why q is in error in γt−1 is because
of some previous move and so on. This motivates the following definition: a
causality chain is a sequence C = (p0, t0)(p1, t1) · · · (pl, tl) such that

• for each 0 ≤ i < l, (pi, ti) causes (pi+1, ti+1);

• no (p, t) causes (p0, t0).

By construction, any P -move is the last element of a causality chain but
the causality chain may not be unique.

We classify the P -move of p in 2 types.

• (p, i) is of Type 1 if there exists a P -move (p, j) with j > i such that
p.hi+1 = p.hj+1.

• (p, i) is of Type 2 otherwise.

30

Our goal is to separately bound the number of P -moves of each type that
a node can execute.

Lemma 21. There are at most as many P -moves of type 1 as there are
U-moves before the first clean configuration.

Proof. Suppose that (p, i) and (p, j) are both P (l)-moves with i < j, let thus
l := p.hi+1 (= p.hj+1). For (p, j) to be possible, p.h has to go from l in γi+1

to being strictly greater than l in γj . This implies that there exists i < k < j
such that (p, k) is a U -move with p.hk = l.

Thus, if we associate to each (p, i) of Type 1 the U -move (p, j) such that
p.hi+1 = p.hj with j > i minimum, then no 2 distinct P -moves correspond
to the same U -move. Moreover, since this U -move comes before a P -move,
by Lemma 4, this means that the corresponding configuration is not almost
clean, and thus not clean. All this implies that p executes at most as many
P -moves of Type 1 as U -moves before the first clean configuration.

Remark that, by definition, two P -moves (p, i) and (p, j) of Type 2 are
such that p.hi+1 ̸= p.hj+1. To bound the number of P -moves (p, i) of Type 2,
we thus count the number of values that p.hi+1 can take.

The following Lemma is a direct consequence of this remark.

Lemma 22. There are at most nB P -moves of type 2.

Since we also want a bound which does not rely on the value of B (which
can be ∞), we need to be more precise. To do so, we subdivide Type 2
P -moves in

• Type 2a. if at least one causality chain C = (p0, t0) · · · (pl, tl) ending
in (p, i) does not contain a repeated node. More formally, for any
0 ≤ i < j ≤ l, pi ̸= pj.

• Type 2b. otherwise.

Lemma 23. A node p executes at most n(n + 1) Type 2a P -moves.

Proof. Let (p, i) be a P -move of Type 2a, and let C = (p0, t0) · · · (pl, tl) be a
corresponding causality chain. We have

• (p, i) = (pl, tl)

• for any 0 ≤ i < j ≤ l, pi ̸= pj.

31

Clearly, l < n and pl.h
tl+1 = l+p0.h

t0+1. Let r ∈ N(p0) be such that r.st0 = E
and p0.h

t0+1 = r.ht0 + 1. Since no P -move causes (p0, t0), two cases arise:
• the last move of r before t0 is an R-move in which case r.ht0 = 0,

• r applies no rule before t0 in which case r.ht0 = r.h0.
Thus p0.h

t0+1 can have at most n + 1 distinct values. The lemma now follows
from the fact that l can also take at most n distinct values.
Lemma 24. A node p executes at most 2(n + D) Type 2b P -moves.
Proof. Let (p, h) be a P -move of Type 2b, and let C = (p0, t0) · · · (pl, tl) be a
causality chain such that (p, h) = (pl, tl).

By definition, there exists 0 ≤ i < j ≤ l such that pi = pj. Choose such a
i0 = i and j0 = j with j0 maximum. We thus have that for any j0 ≤ i < j ≤ l,
pi ̸= pj and thus l − j0 < n. Let q = pj0 = pi0 .

Now pl.h
l+1 = q.hj0+1 + (l − j0). To prove the lemma, it is thus enough

to show that q.hj0+1 ≤ n + 2D.
We have that q.si0+1 = E, thus, by Lemma 3, q is the first node of an

E-path, and thus of a D-path in γi0+1.
Since q.hj0+1 > q.hi0+1, q applies a U -move (q, k) for i0 < k < j0. By

Lemma 9, q belongs to no D-path in γk. There thus exists i0 ≤ k′ < k such
that q belongs to a D-path in γk′ and to no D-path in γk′+1. By Lemma 13,
q.hk′+1 ≤ n.

Since q is in error in γj0 , by Lemma 3, q belongs to an E-path in j0. There
thus exists a root r in γj0 . By Lemma 17, q.hj0+1 − q.hk′+1 ≤ 2D, and thus
q.hj0+1 ≤ n + 2D. The lemma follows.

Lemmas 21, 23, and 24 directly imply the following Lemma.
Lemma 25. There are at most O(n2 min(B, n)) P -moves during an execution
before the first clean configuration.

7.4 C-moves
Lemma 26. During an execution, the number of C-moves before the first
clean configuration is at most the number of P -moves plus n.
Proof. Between 2 C-moves, a node p must execute an error move.

But since, after a C-move, p is can no longer be a root (by Lemma 2 and
1), p cannot execute a C-move before an R-move. Thus p can execute at most
one more C-move than its number of P -moves.

32

7.5 The move complexity theorem
The following theorem is a direct corollary of Lemmas 8, 14, 20, 25 and 26.

Theorem 1. In any execution, our algorithm always reaches a clean configu-
ration in at most O(n2 min(B, n))moves.

It does not finish if B = ∞ in greedy mode and otherwise, it executes at
most:

• O(n2 min(B, n) + nB)) moves in greedy mode.

• O(n2 min(B, n) + nT)) moves in lazy mode.

8 Round complexity proof
Through out this section, we consider an arbitrary execution e = γ0 · · · . Let
γ0 · · · γh1 · · · γh2 · · · γf be a decomposition of e into non-empty rounds (n.b.,
e is finite, by Theorem 1). We also let γh0 = γ0.

8.1 The “error broadcast phase”
Lemma 27. Let r be a root in γh for h ≥ h1. Then r.hh = 0 and r.s = E.

Proof. We claim that there exists a configuration γi before the end of the
first round (i.e., i ≤ h1) such that r.hi = 0 and r.si = E.

If it is not the case in γ0, then by Lemma 1, r is a root which can apply
the rule RR in γ0 7→ γ1. Since r cannot be disabled, the claimed i exists.

Now for the state of r to change, it must apply the rule RC . But as soon
as r does so, by Lemma 2, it no longer is a root, and, by Lemma 1, will
never be a root again. Since r is a root in γh, the state of r does not change
between γi and γh.

Lemma 28. For any root r in γh with h ≥ hd+1, for any node p such that
d(p, r) ≤ d, we have p.hh ≤ d(p, r).

Proof. If γh contains no root, then the lemma is true. Otherwise, let r be a
root in γh. We prove the lemma by induction on i = d(p, r) in this case.

If i = 0, then p = r. The base case directly follows from Lemma 27.
Suppose now that i ≥ 1, and let p be a node such that d(r, p) = i. Let

q ∈ N(p) such that d(r, q) = i − 1.

33

We first show that there exists hi ≤ j ≤ hi+1 such that p.hj ≤ i. If
p.hhi ≤ i, then j = hi and we are done. Otherwise, p.hhi > i and assume,
by contradiction that p.hj > i for any hi ≤ j ≤ hi+1. Now, by induction
hypothesis, q.hj ≤ i − 1 for any j ≥ hi. So, p.hj ≥ q.hj + 2 for any
hi ≤ j ≤ hi+1. Lemma 1 and 27 implies that p is not a root, and cannot
apply the rule RR in any γj 7→ γj+1 for any hi ≤ j ≤ hi+1. Moreover, the
node q is in error in γj (for any hi ≤ j ≤ hi+1) as otherwise it would be a
root not in error, contradicting Lemma 27. Thus, p is enabled for rule RP

in γj for any hi ≤ j ≤ hi+1(recall that we already have proven that p cannot
apply the higher-priority rule RR). By definition of a round, p executes RP

during the i + 1-th round, which leads to a contradiction. Hence, there exists
hi ≤ j ≤ hi+1 such that p.hj ≤ i.

To finish, notice that, for any k ≥ j ≥ hi, q.hk ≤ i − 1 (by induction
hypothesis), which prevents p from applying the rule RU so that p.h > i, and
we are done.

Lemma 29. For any h ≥ hmin(B,D)+1, γh is almost clean.

Proof. Assume, by the contradiction, that γh is not almost clean if h ≥ hD+1
or h ≥ hB+1.

In either case, h ≥ h1. So, the first part of the almost clean definition holds
in the two considered cases, by Lemma 27. Thus, there are two neighbors p
and q such that p.hh ≥ q.hh + 2. The node q is in error in γh as otherwise
it would be a root not in error, contradicting Lemma 27. By Lemma 3, q
is the first node of an E-path P . By definition, P leads to some root r and
q.hh ≥ l + r.hh, where l is the length of P . Since r.hh ≥ 0 and l ≥ d(q, r) (by
definition), we have q.hh ≥ d(q, r). Moreover, by Lemma 1, r is already a
root in γ0.

We now consider each of the two cases:

• If h ≥ hD+1, then, by definition, d(q, r) ≤ D and d(p, r) ≤ D.

• If h ≥ hB+1, then, by definition and hypothesis, q.hh + 2 ≤ p.hh ≤ B.
So, d(q, r) + 2 ≤ B and d(p, r) + 1 ≤ d(q, r) + 2 ≤ B.

Hence, in each case, we can apply Lemma 28 with hd+1 = hD+1 and hd+1 =
hB+1, respectively. Thus q.hh ≤ d(q, r) and p.hh ≤ d(p, r) < d(q, r) +
2. But, this implies that q.hh = d(q, r) and p.hh < q.hh + 2 with is a
contradiction.

34

8.2 The “error cleaning phase”
Round complexity proofs are often tedious because if a node p can apply a
rule X at the beginning of a round, it can apply this rule before the end
of the round but it may end up applying another rule Y or be deactivated.
The following Lemma proves that, as soon as the system has converged to
almost clean configurations, only the first case happens. To avoid a lot of
technicalities, we will thus use it implicitly.

Lemma 30. Assume that for any h ≥ 0, γh is almost clean. If a node p can
apply a rule X ∈ {RC , RU} at the beginning of a round, then at the end of
this round, p will have executed X.

Proof. Since all γh are almost clean, no node can apply an error rule. So,
X = RC if and only if p.s = E, and X = RU if and only p.s = C. We thus
only have to prove that p cannot be deactivated.

By contradiction, let γi be the first configuration such that p has been
deactivated. We thus have that p can apply the rule X in γi−1, p.si−1 = p.si

and p.Li−1 = p.Li, and therefore p.hi−1 = p.hi.
If X = RC , then in γi, there exists q ∈ N(p) such that q.hi = p.hi + 1 and

q.si = E or there exists q ∈ N(p) such that q.hi ≥ p.hi + 2.

• In the first case, since q.si = E, then either q applies an error rule
(which is imposible) or q applies no rule in γi−1 7→ γi.
Thus p is already deactivated in γi−1, a contradiction.

• In the second case,
∣∣∣p.hi − q.hi

∣∣∣ ≥ 2, and thus γi is not almost clean, a
contradiction.

If X = RU , then in γi, there exists q ∈ N(p) such that q.hi /∈ {p.hi, p.hi+1}
or both for all q ∈ N(p), q.hi = p.hi, and p.Li[p.hi] = âlgo(pi, p.hi).

• In the first case, since γi is almost clean, q.hi cannot be greater than
p.hi + 1. Thus q.hi < p.hi. But since q.hi−1 ≤ q.hi (recall that no error
rule can be applied) and p.hi = p.hi−1, p cannot apply the rule RU in
γi−1, a contradiction.

• In the second case, let l = p.hi = p.hi−1.
If there exists q ∈ N(p) such that q.hi−1 < l, then p cannot apply RU

in γi−1, which is not the case.

35

We therefore have that for all q ∈ N(p), q.hi−1 = l (recall that no error
rule can be applied). We thus have that

p.Li−1[l] = p.Li[l]
= âlgo(pi, l)
= âlgo(pi−1, l)

and p cannot apply the rule RU in γi−1, a contradiction.

The lemma follows.

Lemma 31. If γ0 is almost clean, then for h ≥ hmin(B,D)+1, γh is clean.

Proof. First, since γ0 is almost clean, Lemma 5 implies that all γh wth h ≥ 0
are almost clean.

The key element of the proof is that, in an almost clean configuration,
what prevent a node p in error from applying the rule RC is a neighbor q also
in error which is above p (i.e., q.h > p.h). Thus nodes in error of maximum
height at the beginning of a round can apply the rule RC , and thus, will have
by the end of said round. This implies that, after each round, the maximum
height of a node in error decreases by at least one. Since γ0 is almost clean,
the height of a node is at most D. And, by construction, it is also at most
B. Therefore, γmin(B,D)+1 is clean, and by Lemma 1, so are all configuration
after.

8.3 The “algorithm phase”
Lemma 32. Assume that γ0 is clean. In greedy mode, our algorithm either
does not finish if B = ∞ or reaches a terminal configuration within at most
B rounds.

Proof. The case B follows from Lemma 8. Otherwise, by Lemma 5, all
configurations are almost clean, so, no error rule is executed during e. Since
γ0 contains no node in error, a node p can only apply the rule RU , which
increases its height by one each time.

Since any node p with the lowest p.h < B can apply the rule RU , the
Lemma the follows from the fact that the minimum height of a node increases
by at least one while the configuration is not terminal.

36

From now on, we assume that the algorithm runs in lazy mode. Theorem 1
thus ensures that a terminal configuration γf exists. By Lemma 8, there
exists H such that for each p, p.hf = H. We call H the height of the terminal
configuration.

Lemma 6 implies that, p.L[i] is the state that the synchronous algorithm
that we simulate assigns to p at round i. Thus if p.L[i + 1] ̸= p.L[i], it means
that the synchronous algorithm has not finished. Thus during our simulation,
if p.L[i] ̸= algo(p.L[i], N(p).L[i]), then p must apply the rule RU . This is the
“algorithm” condition to apply the rule RU . The other condition is the “catch
up” condition. If a node p has a neighbor q such that p.h < q.h, then p has
to assume that the synchronous algorithm has not finished, and therefore, it
must apply the rule RU . It is the catch up condition that ensures that for all
p, p.hf = H.

We do not know how the lists are filled during the “algorithm phase”. But
any node p such that p.L[i] ̸= p.L[i + 1] (0 ≤ i < H) may have been the first
node to fill up the value p.L[i + 1]. We say that p may have started line i + 1.
Now, since p.L[i + 1] only depends on the values q.L[i] for q ∈ N [p], if all
q ∈ N [p] are such that q.L[i] = q.L[i + 1], then no q ∈ N [p] may start line
i + 2. Therefore, if p may start line i + 1, then either i = 0 or there exists
q ∈ N [p] which may start line i.

This motivates the following definition. A starting sequence for γf is a
sequence of nodes s1s2 · · · sH such that each si starts line i, and si−1 ∈ N [si]
if i > 1. Note that a terminal configuration may not have a starting sequence.
Indeed, if γf is terminal and we set p.L[H + 1] := p.L[H], then the new
configuration is also terminal but contains no starting sequence. Also, if γf

contains a starting sequence, then H = T .

Lemma 33. If γ0 is clean and γf contains a starting sequence, then e reaches
a terminal configuration in at most D + 3T − 2 rounds in lazy mode.

Proof. According to the assumptions on γ0, nodes can only apply Rule RU

along the execution (Lemma 5). This also implies that p.h can only increase.
Let s1 · · · sT be a starting sequence of γf . We also let si = s1, for any i < 1.
For any node p and 0 ≤ i ≤ T , we let λ(p, i) = 3i − 2 + d(p, si). The lemma
is a direct consequence of the following induction.

We now prove by induction on 0 ≤ j ≤ 3T + D − 2 that for every p and i
such that λ(p, i) ≤ j, we have p.h ≥ i (forever) from γhj .

If j = 0, then i = 0 and the result is clear.

37

Suppose that j > 0. If no (p, i) such that λ(p, i) = j exists, then we are
done. Otherwise, let (p, i) be such a pair. For any q ∈ N [p], λ(p, i) − λ(q, i −
1) = 3 + d(p, si) − d(q, si−1), and thus λ(p, i) − λ(q, i − 1) ≥ 3 − |d(p, si) −
d(p, si−1)| − |(d(p, si−1) − d(q, si−1)|. Now |d(p, si) − d(p, si−1)| ≤ 1 because
si−1 ∈ N [si], and |(d(p, si−1) − d(q, si−1)| ≤ 1 because q ∈ N [p]. We thus
have λ(q, i − 1) < j. By induction hypothesis, for any q ∈ N [p], q.h ≥ i − 1
in γhj−1 .

Three cases now arise:

• If p.h ≥ i in γhj−1 , then we are done.

• If p.h = i − 1 in γhj−1 and p = si. Then, since si starts Line i, p can
apply the rule RU in γhj−1 , and thus will have done at last at γhj .

• If p.h = i − 1 in γhj−1 and p ̸= si. Then, let q ∈ N(p) be such
that d(q, si) < d(p, si). We have λ(q, i) < j, and thus, by induction
hypothesis, q.h ≥ i in γhj−1 . This implies that p can apply the rule RU

in γhj−1 , and thus will have done at last at γhj .

Lemma 34. If γ0 is clean and γf contains no starting sequence, then the
execution e reaches a terminal configuration within at most 2D rounds in lazy
mode.

Proof. According to the assumptions on γ0, nodes can only apply Rule RU

along the execution (Lemma 5). This also implies that p.h can only increase.
Let H be the height of γf .

We first claim that there exists a node s such that s.h = H in γ0. Indeed
otherwise, since such a node exists in γf , choose the smallest h ≤ f such that
s′.hh = H for some node s′. The node s′ starts line H, which implies the
existence of a starting sequence, contradicting then our assumptions.

We now let λ(p, i) = 2(i + D − H) − D + d(p, s).
The rest of the proof is now very similar to the proof of the previous

lemma. We prove by induction on 0 ≤ j ≤ 2D that if λ(p, i) ≤ j, then in γhj ,
p.h ≥ i.

Suppose that j = 0. We claim that if λ(p, i) ≤ 0, then i ≤ H − d(p, s).
Indeed, for all y, λ(p, y) < λ(p, y + 1) and λ(p, H − d(p, s)) = D − d(p, s) ≥ 0.
To prove the base case, it is enough to prove that for all p, p.h0 ≥ H − d(p, s)

38

which follows from the fact that γ0 contains no node in error and is almost
clean.

Suppose that j > 0. Let (p, i) be such that λ(p, i) = j. For any q ∈ N [p],
λ(p, i) − λ(q, i − 1) = 2 + d(p, s) − d(q, s) > 0. So λ(q, i − 1) < j and, by
induction hypothesis, q.h ≥ i − 1 in γhj−1 .

Two cases now arise:

• If p.h ≥ i in γhj−1 , then we are done.

• If p.h = i − 1 in γhj−1 , then p ̸= s. Then let q ∈ N(p) be such that
d(q, s) < d(p, s). We have λ(q, i) < j, and thus, by induction hypothesis,
q.h ≥ i in γhj−1 . This implies that p can apply Rule RU in γhj−1 , and
thus will have done at last at γhj .

8.4 The round complexity proof
The following Theorem is a direct consequence of Lemmas 8, 29, 31, 32, 33
and 34.

Theorem 2. Our algorithm reaches a clean configuration in at most 2 +
2 min(B, D) rounds. It does not end if B = ∞ in greedy mode, and it reaches
a terminal configuration in at most

• min(2B, 2D) + 2 + B rounds in greedy mode when B < ∞.

• min(2B, 2D) + max(2D + 2, D + 3T) round in lazy mode.

9 Instances
We now develop several examples to illustrate the versatility and the efficiency
of our approach. All of them solve classical distributed computing problems.

9.1 Leader Election
9.1.1 The Problem

Recall that leader election requires all nodes to eventually permanently
designate a single node of the network as the leader. To that goal, we assume
an identified network and nodes will compute the identifier of the leader.

39

9.1.2 The Algorithm

The network being identified, we do not need to distinguish channels. So,
label is the singleton {⊥}.

The state of each node p includes its own identifier ID (a non-modifiable
integer) and an integer variable Best where p will store the identifier of the
leader. This latter variable is initialized with p’s own identifier. Hence, the
predicate isValid just checks that (1) no two nodes have the same identifier
and (2) all Best variables are correctly initialized, i.e., the initial value of
each variable is equal the node identifier.

At each synchronous round, each node updates its variables Best with
the minimum value among the Best variables of its closed neighborhood, and
thus learns the minimum identifier of nodes one hop further. The function
algo is defined accordingly; see Algorithm 1. After at most D rounds, the
Best variable of each node is forever equal to the minimum identifier in the
network: the algorithm is eventually stable.

Algorithm 1: Function algo of node p for the leader election.
inputs:
stp : state, the state of p /* initially, stp.Best = stp.ID */

NeigSetp : set of pairs in label × state /* from the neighborhood */

begin
Let minID = min({stp.Best} ∪ {s.Best | (⊥, s) ∈ NeigSetp});
return (stp.ID, minID);

end

9.1.3 Contribution and Related Work

Using our transformer in the lazy mode, we obtain a fully-polynomial silent
self-stabilizing leader election algorithm that stabilizes in O(D) rounds and
O(n3) moves. Moreover, by giving an upper bound B on D as input of the
transformer, we obtain a bounded-memory solution achieving similar time
complexities. Precisely, if we made the usual assumption that identifiers are
stored in O(log n) bits, we obtain a memory requirement in O(B. log n) bits
per node.

40

To our knowledge, our solution is the first fully-polynomial asynchronous
silent self-stabilizing solution of the literature. Indeed, several self-stabilizing
leader election algorithms [21, 22, 3], written in the atomic-state model,
have been proposed for arbitrary connected and identified network assuming
a distributed unfair daemon. However, none of them is fully-polynomial.
Actually, they all achieve a stabilization time in Θ(n) rounds. Note that
the algorithm in [3] has a stabilization time in steps that is polynomial in
n, while [21, 22] have been proven to stabilize in a number of steps that is
at least exponential in n; see [3]. Notice also that the algorithm proposed
in [39] actually achieves a leader election in O(D) rounds, however it assumes
a synchronous scheduler.

9.2 Breadth-First Search Spanning Tree Construction
9.2.1 The Problem

We now consider the problem of distributedly computing a breadth-first search
(BFS) spanning tree in a rooted network. By “distributedly”, we mean that
every non-root node will eventually designate the channel toward its parent
in the computed spanning tree. Being BFS, the length of the unique path in
the tree from any node p to the root r should be equal to the distance from p
to r in the network.

This time, nodes are not assumed to be identified. Instead, we need to
distinguish channels using port numbers, for example.

9.2.2 The Algorithm

The state of each node p contains a non-modifiable boolean Root indicating
whether or not the node is the root and a parent pointer Par that takes
value in label ∪ {NULL}. Initially, each parent pointer is set to NULL.
So, the predicate isValid needs to check that (1) exactly one node has its
Root-variable equal to true, (2) each Par-variable is NULL, and (3) locally,
channels have distinct labels.

At each round, each non-root node p whose Par-pointer is NULL checks
whether a neighbor is the root or has a non-NULL Par-pointer; in this case
p (definitely) designates the channel to such a neighbor with its pointer. If
several neighbors satisfy the condition, p breaks ties using channel labels.
The function algo is defined accordingly; see Algorithm 2.

41

Algorithm 2: Function algo of node p for the BFS spanning tree
construction.

inputs:
stp : state, the state of p /* initially, stp.Par = NULL */

NeigSetp : set of pairs in label × state /* from the neighborhood */

begin
if stp.Root ∨ stp.Par ̸= NULL then

return stp;
else

if ∃(c, s) ∈ NeigSetp | s.Root ∨ s.Par ̸= NULL then
return (stp.Root, cmin), where
cmin = min({c | (c, s) ∈ NeigSetp∧(s.Root∨s.Par ̸= NULL)});

else
return stp;

end

After at most D synchronous rounds, all non-root nodes have a parent,
i.e., the BFS spanning tree is (definitely) defined and so the algorithm is
eventually stable.

9.2.3 Contribution and Related Work

Similarly to the leader election instance, using our transformer in the lazy
mode, we obtain a fully-polynomial silent self-stabilizing leader election
algorithm that stabilizes in O(D) rounds and O(n3) moves. Moreover, by
giving an upper bound B on D as input of the transformer, we obtain a
bounded-memory solution achieving similar time complexities. Precisely, its
memory requirement is O(B. log ∆) bits per node, where ∆ is the maximum
node degree in the network.

To our knowledge, our solution is the first fully-polynomial asynchronous
silent self-stabilizing solution of the literature that achieves a stabilization time
asymptotically linear in rounds. Indeed, several self-stabilizing algorithms
that construct BFS spanning trees in arbitrary connected and rooted networks
have been proposed in the atomic-state model [34, 14, 15, 18]. In [24], the
BFS spanning tree construction of Huang and Chen [34] is shown to be
exponential in steps. The algorithm in [14] is not silent and computes a BFS

42

spanning tree in O(∆ · n3) steps and O(D2 + n) rounds. The silent algorithm
given in [15] has a stabilization time in O(D2) rounds and O(n6) steps. The
algorithm given in [36] is not silent and is shown to stabilize in O(D · n2)
rounds in [18], however notice that its memory requirement is in O(log ∆) bit
per node.

Another self-stabilizing algorithm, implemented in the link-register model,
is given in [29]. It uses unbounded node local memories. However, it is shown
in [24] that a straightforward bounded-memory variant of this algorithm,
working in the atomic state model, achieves an asymptotically optimal stabi-
lization time in rounds, i.e., O(D) rounds where D is the network diameter;
however its step complexity is also shown to be at least exponential in n.

9.3 3-coloring in Rings
9.3.1 The Problem

The coloring problem consists in assigning a color (a natural integer) to every
node in such a way that no two neighbors have the same color. We now
present an adaptation of algorithm of Cole and Vishkin [13] that computes a
3-coloring in any oriented ring of n identified nodes. The algorithm further
assumes that node identifiers are chosen in [0..nc − 1], with c ∈ N∗. Under
such assumptions, the algorithm computes a vertex 3-coloring in log∗(nc) + 7
rounds.

9.3.2 The Algorithm

The orientation of the ring is given by the channel labels. A node should
distinguish the state of its clockwise neighbor from its counterclockwise one.
For instance, we can assume the channel number of the clockwise neighbor
is smaller than the one of counterclockwise neighbor. Without the loss of
generality, we use two channel labels: L (for Left) and R (for Right). A
consistent orientation is obtained by assigning different labels for the two
channels of each node and different labels to the incoming and outgoing
channels of each edge.

The state of each node p includes its own identifier ID and four variables:

1. ph ∈ {0, 1}, initialized to 0; ph indicates the current phase of the
algorithm.

43

2. maxColSize, a natural integer initialized to ⌈log2(nc)⌉; maxColSize is
an upper bound on the number of bits necessary to store the current
largest color.

3. nbRds ∈ {0, 1, 2, 3}, initialized to 3, indicates the number of remaining
rounds in Phase 1.

4. color ∈ [0..nc − 1], initialized to ID, is the current color of the node.

The predicate isValid should checks that (1) the ring orientation is
correct, (2) identifiers are taken in [0..nc − 1] and no two nodes have the same
identifier, and (3) all variables are correctly initialized.

algo is given in Algorithm 3. At the end of an arbitrary round of Phase
0, the correct coloring of the ring is maintained, yet the upper bound on the
number of bits necessary to store the largest color reduces from maxColSize
to ⌈log2 maxColSize⌉ + 1.

The node p detects that Phase 0 is over when the upper bound on the
number of bits necessary to store the largest color has not changed at the end
of the current round. In this case, Phase 1 can start: each node has a color
in {0, 1, 2, 3, 4, 5}.

The three rounds of Phase 1 allow to remove colors 5, 4, and 3; in that
order. In a round of Phase 1, any node having the color to remove takes the
first unused color in its neighborhood, this color belongs to the set {0, 1, 2}
as the network topology is a ring. After 3 rounds, all nodes has a color in {0,
1, 2}.

The synchronous algorithm terminated (no node changes its state) after
log∗(nc) + 7 rounds.

Using our transformer in the greedy mode with B ≥ log∗(nc)+7, we obtain
a silent self-stabilizing 3-coloring algorithm on oriented rings that stabilizes
in O(B) rounds and O(n2B) moves. Moreover, its memory requirement is in
O(B. log n) bits per node. If we carefully choose B to be in O(log∗(n)), then
we obtain a solution that stabilizes in O(log∗ n) rounds and O(log∗(n).n2)
moves using O(log∗ n. log n) bits per node.

9.3.3 Contribution and Related Work

To our knowledge, our solution is the first self-stabilizing 3-coloring ring
algorithm achieving such small complexities.

44

Algorithm 3: Function algo of node p for 3-coloring on oriented
rings

The type state is a record of five natural integers: ID, ph, maxColSize,
nbRds, color.

inputs:
stp : state, the state of p

/* initially, stp.ph = 0, stp.maxColSize = ⌈log2(nc)⌉, stp.nbRds = 3 */

/* stp.color = stp.ID; stp.ID is the node identifier */

NeigSetp : set of pairs in label × state /* from the neighborhood */

Macros:
bin(col) is col interpret as a little-endian bit strings;
col[i] is the value of ith bit of col interpret as a little-endian bit strings;
bitD(c1, c2) is the lowest index i such that bin(c1) and bin(c2) differ ;
posD(c1, c2) is 2 · bitD(c1, c2) + c1[bitD(c1, c2)];

begin
if stp.ph = 0 then

Let colSp = s.color such that (R, s) ∈ NeigSetp;
oldCp := stp.color;
oldMCSp := stp.maxColSize;
if 1 + ⌈log2(oldMCSp)⌉ = oldMCSp then

return (1, oldMCSp, stp.nbRds, posD(oldCp, colSp));
else

return (0, 1 + ⌈log2(oldMCSp)⌉, stp.nbRds,
posD(oldCp, colSp));

else
if stp.nbRds > 0 then

if stp.color = 2 + stp.nbRds then
nc := the first color not in {st.color | (−, st) ∈ NeigSetp};
return (1, stp.MaxColSize, stp.nbRds − 1, nc);

else
return (1, stp.MaxColSize, stp.nbRds − 1, stp.color);

else return stp;
end

45

Indeed, self-stabilizing node coloring has been almost exclusively inves-
tigated in the context of anonymous networks. Vertex coloring cannot be
deterministically solved in fully asynchronous settings [5]. This impossibil-
ity has been circumvented by considering central schedulers or probabilistic
settings [33, 9, 8].

In [40], a self-stabilizing version of the Cole and Vishkin algorithm is pro-
posed, but the solution (based on the rollback of Awerbuch and Varghese [7])
does not achieve a move complexity polynomial in n.

9.4 k-clustering
9.4.1 The Problem

The clustering problem consists in partitioning the nodes into clusters. Each
cluster is a BFS tree rooted at a so-called clusterhead. The k-clustering
specialization of the problem requires each node to be at a distance at most
k from the clusterhead of the cluster it belongs to.

9.4.2 The Algorithm

A silent self-stabilizing algorithm that computes a clustering of at most ⌈ n
k+1⌉

clusters in any identified and rooted networks is proposed in [17]. This
algorithm is a (hierarchical collateral [20]) composition of two layers. The
first one can be any silent self-stabilizing spanning tree construction, and
the second one is actually a silent self-stabilizing algorithm for oriented
tree networks. The correctness of the algorithm is established assuming a
distributed weakly-fair daemon. The stabilization time in rounds depends
on the used spanning tree constructions, indeed once the spanning tree is
available, the second layer stabilizes in at most 2H + 3 rounds, where H is the
height of the tree. So, using for example, the BFS spanning tree construction
given in [24], we obtain a stabilization time on O(D) rounds. However, since
the correctness of the algorithm is established under a daemon that is stronger
than the distributed unfair daemon, the move complexity of the solution
cannot be bounded.

We now propose to make this algorithm fully-polynomial using our trans-
former.

First, concerning the hypotheses, we only assume that nodes are identified.
We give up the root assumption, and we neither use any labeling on channels.

46

Actually, we will modify the synchronous eventually stable leader election
of Subsection 9.1 to compute a BFS spanning tree rooted at the leader node
in at most 2D − 1 synchronous rounds and then computes the k-clustering
along the tree in at most 2D + 3 additional synchronous rounds.

To that goal, we need the following constants and variables:

• ID, the node identifier (a non-modifiable integer stored in O(log n)
bits);

• Best, an integer variable (stored in O(log n) bits) initialized to ID, this
variable will eventually definitely contain the identifier of the leader;

• Dist, an integer variable (stored in O(log D) bits) initialized to 0 where
will be stored the distance between the node and the leader;

• Par, a pointer (stored in O(log n) bits) designating an identifier and
initialized to ID, this pointer aims at designating the parent of the
node in the tree (the parent of the leader will be itself); and

• the variables of the k-clustering for tree of [17] (stored in O(log k+log n)
bits). Those variables do not require initialization, since the algorithm
of [17] is self-stabilizing.

The predicate isValid is defined similarly to previous examples. We now
outline the definition of algo.

At each synchronous round, each node p performs the following actions in
sequence:

1. p update its Best variable to be the minimum value among the Best
variables of its closed neighborhood.

2. If Best is equal to the node identifier, then (Dist, Par) is set to (0, ID).
Otherwise, Dist is set to the minimum value among the Dist variables
of neighborhood plus one, and Par is updated to designate the neighbor
with the smallest Dist-value.

3. If necessary, p updates its k-clustering variables according to the algo-
rithm in [17].
Notice that for this latter action, we should define the following predicate
and macro: (1) Root(p) which is true if and only if the Best variable of

47

p is equal to its own identifier, (2) Children(p) that returns the children
of p in the tree, i.e., the identifiers associated to neighboring states
where the Par-variable designates p.

Like in the leader election example, the Best variable constantly designates
a unique leader after at most D synchronous rounds. Moreover, from that
point, the Dist and Par variables of the leader are forever equal to 0 and its
identifier, respectively. Hence, within at most D − 1 additional synchronous
rounds, the values of all Dist and Par become constant and define a BFS
spanning tree. From that point, the k-clustering variables stabilize in 2D + 3
additional synchronous rounds. Overall, we obtain the stability in at most
4D + 2 synchronous rounds.

9.4.3 Contribution and Related Work

Using our transformer in the lazy mode, we obtain a fully-polynomial solution
that constructs at most ⌈ n

k+1⌉ clusters and whose stabilization times in
rounds and moves are of the same order of magnitude as the two previous
examples, i.e., O(D) rounds and O(n3) moves. Moreover, by giving any value
B ≥ 4D + 2 as input of the transformer, we also obtain a bounded-memory
solution achieving similar time complexities. Precisely, we obtain a memory
requirement in O(B.(log k + log n)) bits per node.

Again, several asynchronous silent self-stabilizing k-clustering algorithms
have been proposed in the literature [20, 37, 17, 19], but none of them achieves
full polynomiality. Actually, they offers various structural guarantees such as
minimality by inclusion [37, 19], bounds on the number of clusters [20, 17],
or approximation ratio [17]. The stabilization time in rounds of [20, 17, 19]
is in O(n), while the one of [37] is unknown. Moreover, to the best of our
knowledge none of those algorithms have a proven bound on its stabilization
time in moves.

It is worth noting that a particular spanning tree construction, called
MIS tree, is proposed in [17]. Actually, a MIS tree is a spanning tree whose
nodes of even level form a maximal independent set of the network. Using
this spanning tree construction as the first layer of the k-clustering allows
to obtain interesting competitive ratios (related to the number of clusters)
in unit disk graphs and quasi-unit disk graphs. However, these desirable
properties are obtained are the price of augmenting the stabilization time in
rounds. Indeed, the MIS tree construction stabilizes in Θ(n) rounds and the

48

exact problem solved by this construction is shown to be P-complete [17].
The replacement of the BFS construction by a MIS tree construction (left as
an exercise) would allow to obtain those approximation ratios in O(n) rounds
and a number of moves polynomial in n.

10 The Rollback Compiler
Awerbuch and Varghese have proposed a transformer called Rollback to
self-stabilize synchronous algorithms dedicated to static tasks. Consider a
synchronous algorithm for some static task that terminates in T rounds. The
basic principle of the transformer consists for each node to keep a log of the
states it took along the T rounds. Assume each node stores its log into the
array p.t where

• p.t[0] is its initial state (p.t[0] is read-only, and so cannot be corrupted)
and

• p.t[i], with 0 < i ≤ T , is the state computed by p during the ith round.

Then, every node p just has to continuously checked and corrected p.t[i],
for every i ∈ [1..T]: every p.t[i] should be the state obtained by applying
the local algorithm of p on the states q.t[i − 1] of every q ∈ N [p] (its closed
neighborhood).

Consider now the following synchronous algorithm, A. The state of every
node p in A is made of a constant input p.I ∈ {0, 1} and a variable p.S ∈ {0, 1}.
The variable p.S is initialized to p.I. Then, the local algorithm of p, A(p),
consists of a single rule:

Rmin : p.S ̸= minq∈N [p]{q.S} → p.S := minq∈N [p]{q.S}

At each synchronous round, the rule Rmin allows any node p to compute
in p.S the minimum S value in its closed neighborhood. In the worst case
(e.g., all inputs except one are equal to 1), D rounds are required so that the
execution of A in a network G of diameter D reaches a terminal configuration.
Overall, A computes the minimum value among all the boolean inputs, i.e.,
A reaches in D rounds a terminal configuration where p.S = minq∈V (G){q.I}.

We now study the step complexity of the self-stabilization version of A
obtained with the rollback compiler; we denote the transformed algorithm by
RC(A). For fair comparison, we assume the fastest method to correct a node

49

state: when activated, in one atomic step the node recomputes all cells of
its array in increasing order according to the local configuration of its closed
neighborhood.

Let G1 be the path b1, a1, c1, d1, e1. For every x > 1, we construct Gx by
linking to Gx−1 the path bx, ax, cx, dx, ex as follows: bx and ex are linked to
cx−1. Figure 1 shows the network G3. In the following, we denote by Vx, with
x ≥ 1, the subset of nodes ⋃

i∈[1..x]{bi, ai, ci, di, ei}, i.e., the set of nodes of Gx.
Notice that for every x > 1, Gx contains 5x nodes (i.e., |Vx| = 5x) and its

diameter is 3x − 1. Hence, executing RC(A) on Gx with x > 1 requires that
each node p maintains an array p.t of 3x cells indexed from 0 to 3x − 1.

Given any positive number d, we denote by ī, with 0 ≤ i ≤ d, any array
t of size d such that t[j] = 1 for every j ∈ [0..i − 1] and t[j] = 0 for every
j ∈ [i..d − 1]. The index of an array ī is i. In the following, we simply refer
to the index of the array of some node p as the index of p.

Remark 1. Assume a configuration where arrays have size d and every node
p satisfies p.t = ip for some value ip. When activating some node q such that
iq > 0, if 0 < imin < d is the minimum index in the closed neighborhood of q
(N [q]), then q sets q.v to imin + 1.

1̄ 3̄

1̄

2̄ 3̄

a3 b3

c3

d3 e3

4̄ 6̄

4̄

5̄ 6̄

a2 b2

c2

d2 e2

7̄ 9̄

7̄

8̄ 9̄

a1 b1

c1

d1 e1

Figure 1: The network G3

Lemma 35. For every integer x > 1, there is an execution of RC(A) on Gx

that requires at least 2x − 1 steps to reach a terminal configuration.

Proof. Assume the following initial configuration γinit:

• All nodes have 1 as input.

• For every i ∈ [1..x],

50

– ai.t = ci.t = 3(x − i) + 1,
– di.t = 3(x − i) + 2, and
– bi.t = ei.t = 3(x − i) + 3.

Notice that the configuration is well-defined since all nodes has input 1 and
a positive index; moreover the maximum index is 3(x − 1) + 3 = 3x. (An
example of possible initial configuration is given in Figure 1.)

We now show by induction on i that for every i ∈ [1..x], there is a prefix
Pi of execution starting from γinit and containing at least 2i − 1 steps such
that

• no node in V (Gx) \ Vi ∪ {ci} moves in Pi and

• in the last configuration of Pi, noted γPi
, the index of all nodes aj with

j ∈ [1..i] have increased by 1 and no other index has changed.

For i = 1, activating a1 gives a prefix satisfying all requirements. Assume
now 1 < i ≤ x. We now explain how to expand the prefix Pi−1 given by the
induction hypothesis. Pi−1 contains at least 2i−1 − 1 steps. Moreover,

• no node in V (Gx) \ Vi−1 ∪ {ci−1} has ever moved in Pi−1 and

• the index of all nodes aj with j ∈ [1..i − 1] in γPi−1 have increased by 1
and no other index has changed.

So, we should extend Pi−1 to reach at least 2i − 1 steps while never activating
a node in V (Gx) \ Vi ∪ {ci}, moreover compared to γPi−1 , we should only
increase the index of ai by one.

Consider the path P = bici−1di−1ei−1 · · · c2d2e2c1d1e1 and the following
scheduling of activation starting from γPi−1 .

1. Because the difference of indexes in bi and ai is 2, when activating bi, its
index decreases by 1. But then the difference of indexes in ci−1 and bi

becomes 2 which allows us to decrease the index of ci−1. By activation
the vertices of P in order, all the indexes of the vertices of P decrease
by 1.

2. We can next activate all the vertices aj with 1 ≤ j < i which also
decrease their index by 1.

51

3. We increase by 1 the index of ai by activating it.

4. We now activate all nodes of P , in order, to increase their index by 1.

Let γhalf be the configuration reached after the previous scheduling. Compared
to γinit, only one index has changed: ai. So, we re-apply the scheduling that
has produced Pi−1. Let γfinal be the reached configuration after applying this
scheduling on γhalf. Compared to γinit, the index of all nodes aj with j ∈ [1..i]
have increased by 1 and no other index has changed. Moreover, no node in
V (Gx) \ Vi ∪ {ci} has moved in the prefix that led to γfinal. Finally, that prefix
has length at least (2i−1 − 1) + 1 + (2i−1 − 1) = 2i − 1. Thus, we can let
γPi

= γfinal and let Pi be the prefix from γinit to γPi
we have just exhibited.

Pi satisfies all requirements for i and the induction holds. Finally, by letting
i = x, the lemma holds.

Corollary 1. For every integer x > 1, there is an execution of RC(A) on Gx

that requires at least 2n
5 steps (resp. 2D+1

3) to reach a terminal configuration,
where n is the number of nodes in (resp. D is the diameter of) Gx.

Assume the known upper bound on the time complexity of A is not tight.
We can let x to obtain a network Gx and arrays of with Tx + 1 cells where Tx

is the known bound on the time complexity of A on Gx. Then, we can add
a node z linked to all other nodes so that the diameter becomes 2. Finally,
by considering a configuration identical to the previous construction, except
that z has a maximum index (i.e., 3x), we can built the same execution
(the presence of z has no impact due its index). Hence, we can obtain an
exponential lower bound that does not depend on the actual diameter but
rather on the known upper bound.

11 Conclusion
We have proposed a versatile transformer that builds efficient silent self-
stabilizing solutions. Precisely, our transformer achieves a good trade-off
between time and workload since it allows to obtain fully-polynomial solutions
with round complexities asymptotically linear in D or even better.

Our transformer can be seen as a powerful tool to simplify the design of
asynchronous self-stabilizing algorithms since it reduces the initial problem to
the implementation of an algorithm just working in synchronous settings. By

52

the way, all tasks, even non-self-stabilizing ones, that terminate in synchronous
settings can be made self-stabilizing using our transformer, regardless the
model in which they are written (atomic-state model, Local model, . . .).

Interestingly, the Local model which was initially devoted to prove lower
bounds, becomes an upper bound provider since we can extensively use
it to give inputs to our transformer that will, based on them, construct
asymptotically time-optimal self-stabilizing solutions.

Another interesting application of our transformer is the weakening of
fairness assumptions of silent self-stabilizing algorithms (e.g., asynchronous
algorithms assuming a distributed weakly fair or a synchronous daemon)
without compromising efficiency (actually, such algorithms can be provided
as input of the transformer).

The perspectives of this work concern the space overhead and the moves
complexity. The space overhead of our solution depends on the synchronous
execution time of the input algorithm. In the spirit of the resynchronizer
proposed by Awerbuch and Varghese [7], we may build another space-efficient
transformer that would assume more constraint on input algorithms. Con-
cerning the move complexity, for many problems, the trivial lower bound in
moves for the asynchronous (silent) self-stabilization is Ω(D × n); while we
usually obtain upper bounds in O(n3) moves with our transformer. Reduce
the gap between those two bounds is another challenging perspective of our
work.

References
[1] Y. Afek and S. Dolev. Local stabilizer. Journal of Parallel and Distributed

Computing, 62(5):745–765, 2002. doi:10.1006/jpdc.2001.1823.

[2] Y. Afek, S. Kutten, and M. Yung. The local detection paradigm and its
application to self-stabilization. Theoretical Computer Science, 186(1-
2):199–229, 1997. doi:10.1016/S0304-3975(96)00286-1.

[3] K. Altisen, A. Cournier, S. Devismes, A. Durand, and F. Petit. Self-
stabilizing leader election in polynomial steps. Information and Compu-
tation, 254(3):330 – 366, 2017. doi:10.1016/j.ic.2016.09.002.

[4] K. Altisen, S. Devismes, S. Dubois, and F. Petit. Introduction to
Distributed Self-Stabilizing Algorithms. Synthesis Lectures on Dis-

53

https://doi.org/10.1006/jpdc.2001.1823
https://doi.org/10.1016/S0304-3975(96)00286-1
https://doi.org/10.1016/j.ic.2016.09.002

tributed Computing Theory. Morgan & Claypool, 2019. doi:10.2200/
S00908ED1V01Y201903DCT015.

[5] D. Angluin. Local and global properties in networks of processors. In
12th Annual Symposium on Theory of Computing (STOC’80), pages
82–93, 1980. doi:10.1145/800141.804655.

[6] B. Awerbuch, B. Patt-Shamir, and G. Varghese. Self-stabilization by
local checking and correction. In 32nd Annual Symposium of Foundations
of Computer Science (FOCS’91), pages 268–277, 1991. doi:10.1109/
SFCS.1991.185378.

[7] B. Awerbuch and G. Varghese. Distributed program checking: a paradigm
for building self-stabilizing distributed protocols. In 32nd Annual Sym-
posium on Foundations of Computer Science (FOCS’91), pages 258–267,
1991. doi:10.1109/SFCS.1991.185377.

[8] S. Bernard, S. Devismes, M. Gradinariu Potop-Butucaru, and S. Tixeuil.
Optimal deterministic self-stabilizing vertex coloring in unidirectional
anonymous networks. In 23rd International Symposium on Paral-
lel&Distributed Processing (IPDPS’09), pages 1–8, 2009. doi:10.1109/
IPDPS.2009.5161053.

[9] S. Bernard, S. Devismes, K. Paroux, M. Potop-Butucaru, and S. Tixeuil.
Probabilistic self-stabilizing vertex coloring in unidirectional anonymous
networks. In 11th International Conference on Distributed Comput-
ing and Networking (ICDCN’10), pages 167–177, 2010. doi:10.1007/
978-3-642-11322-2_19.

[10] L. Blin, P. Fraigniaud, and B. Patt-Shamir. On proof-labeling schemes
versus silent self-stabilizing algorithms. In 16th International Symposium
on Stabilization, Safety, and Security of Distributed Systems (SSS’14),
pages 18–32, 2014. doi:10.1007/978-3-319-11764-5_2.

[11] P. Boldi and S. Vigna. Universal dynamic synchronous self-stabi-
lization. Distributed Computing, 15:137–153, 2002. doi:10.1007/
s004460100062.

[12] B. Chen, H. Yu, Y. Zhao, and P. B. Gibbons. The cost of fault tolerance in
multi-party communication complexity. Journal of the ACM, 61(3):1–64,
2014. doi:10.1145/2597633.

54

https://doi.org/10.2200/S00908ED1V01Y201903DCT015
https://doi.org/10.2200/S00908ED1V01Y201903DCT015
https://doi.org/10.1145/800141.804655
https://doi.org/10.1109/SFCS.1991.185378
https://doi.org/10.1109/SFCS.1991.185378
https://doi.org/10.1109/SFCS.1991.185377
https://doi.org/10.1109/IPDPS.2009.5161053
https://doi.org/10.1109/IPDPS.2009.5161053
https://doi.org/10.1007/978-3-642-11322-2_19
https://doi.org/10.1007/978-3-642-11322-2_19
https://doi.org/10.1007/978-3-319-11764-5_2
https://doi.org/10.1007/s004460100062
https://doi.org/10.1007/s004460100062
https://doi.org/10.1145/2597633

[13] R. Cole and U. Vishkin. Approximate and exact parallel scheduling with
applications to list, tree and graph problems. In 27th Annual Symposium
on Foundations of Computer Science (FOCS’86), pages 478–491, 1986.
doi:10.1109/SFCS.1986.10.

[14] A. Cournier, S. Devismes, and V. Villain. Light enabling snap-
stabilization of fundamental protocols. ACM Transactions on Au-
tonomous and Adaptive Systems, 4(1):1–27, 2009. doi:10.1145/1462187.
1462193.

[15] A. Cournier, S. Rovedakis, and V. Villain. The first fully polynomial stabi-
lizing algorithm for bfs tree construction. Information and Computation,
265:26–56, 2019. doi:10.1016/j.ic.2019.01.005.

[16] Dolev D. and R. Reischuk. Bounds on information exchange for byzantine
agreement. In 1st Annual Symposium on Principles of Distributed Com-
puting (PODC’82), pages 132–140, 1982. doi:10.1145/800220.806690.

[17] A. K. Datta, S. Devismes, K. Heurtefeux, L. L. Larmore, and Y. Rivierre.
Competitive self-stabilizing k-clustering. Theoretical Computer Science,
626:110–133, 2016. doi:10.1016/j.tcs.2016.02.010.

[18] A. K. Datta, S. Devismes, C. Johnen, and L. L. Larmore. Brief an-
nouncement: Analysis of a memory-efficient self-stabilizing BFS spanning
tree construction. In 21th International Symposium on Stabilization,
Safety, and Security of Distributed Systems (SSS’19, pages 99–104, 2019.
doi:10.1007/978-3-030-34992-9_8.

[19] A. K Datta, S. Devismes, and L. L. Larmore. A silent self-stabilizing algo-
rithm for the generalized minimal k-dominating set problem. Theoretical
Computer Science, 753:35–63, 2019. doi:10.1016/j.tcs.2018.06.040.

[20] A. K. Datta, L. L. Larmore, S. Devismes, K. Heurtefeux, and Y. Riv-
ierre. Self-stabilizing small k-dominating sets. International Journal of
Networking and Computing, 3(1):116–136, 2013.

[21] A. K. Datta, L. L. Larmore, and P. Vemula. An o(n)-time self-stabilizing
leader election algorithm. Journal of Parallel and Distributed Computing,
71(11):1532–1544, 2011. doi:10.1016/j.jpdc.2011.05.008.

55

https://doi.org/10.1109/SFCS.1986.10
https://doi.org/10.1145/1462187.1462193
https://doi.org/10.1145/1462187.1462193
https://doi.org/10.1016/j.ic.2019.01.005
https://doi.org/10.1145/800220.806690
https://doi.org/10.1016/j.tcs.2016.02.010
https://doi.org/10.1007/978-3-030-34992-9_8
https://doi.org/10.1016/j.tcs.2018.06.040
https://doi.org/10.1016/j.jpdc.2011.05.008

[22] A. K. Datta, L. L. Larmore, and P. Vemula. Self-stabilizing leader election
in optimal space under an arbitrary scheduler. Theoretical Computer
Science, 412(40):5541–5561, 2011. doi:10.1016/j.tcs.2010.05.001.

[23] S. Devismes, D. Ilcinkas, and C. Johnen. Optimized silent self-stabilizing
scheme for tree-based constructions. Algorithmica, 84(1):85–123, 2022.
doi:10.1007/s00453-021-00878-9.

[24] S. Devismes and C. Johnen. Silent self-stabilizing bfs tree algorithms
revisited. Journal on Parallel Distributed Computing, 97:11–23, 2016.
doi:10.1016/j.jpdc.2016.06.003.

[25] E. W. Dijkstra. Self-stabilization in spite of distributed control. Com-
munications of the ACM, 17(11):643–644, 1974. doi:10.1145/361179.
361202.

[26] S. Dolev. Optimal time self stabilization in dynamic systems. In 7th
International Workshop on Distributed Algorithms (WDAG’93), pages
160–173, 1993. doi:10.1007/3-540-57271-6_34.

[27] S. Dolev. Self-Stabilization. MIT Press, 2000.

[28] S. Dolev, M. G. Gouda, and M. Schneider. Memory requirements for
silent stabilization. Acta Informatica, 36(6):447–462, 1999. doi:10.
1007/s002360050180.

[29] S. Dolev, A. Israeli, and S. Moran. Self-stabilization of dynamic systems
assuming only read/write atomicity. Distributed Computing, 7(1):3–16,
1993. doi:10.1007/BF02278851.

[30] Y. Emek and R. Wattenhofer. Stone age distributed computing. In 32nd
Symposium on Principles of Distributed Computing, (PODC’13), pages
137–146, 2013. doi:10.1145/2484239.2484244.

[31] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of
distributed consensus with one faulty process. Journal of the ACM,
32(2):374–382, 1985. doi:10.1145/3149.214121.

[32] C. Genolini and S. Tixeuil. A lower bound on dynamic k-stabilization
in asynchronous systems. In 21st Symposium on Reliable Distributed
Systems (SRDS’02), pages 211–221, 2002. doi:10.1109/RELDIS.2002.
1180190.

56

https://doi.org/10.1016/j.tcs.2010.05.001
https://doi.org/10.1007/s00453-021-00878-9
https://doi.org/10.1016/j.jpdc.2016.06.003
https://doi.org/10.1145/361179.361202
https://doi.org/10.1145/361179.361202
https://doi.org/10.1007/3-540-57271-6_34
https://doi.org/10.1007/s002360050180
https://doi.org/10.1007/s002360050180
https://doi.org/10.1007/BF02278851
https://doi.org/10.1145/2484239.2484244
https://doi.org/10.1145/3149.214121
https://doi.org/10.1109/RELDIS.2002.1180190
https://doi.org/10.1109/RELDIS.2002.1180190

[33] M. Gradinariu and S. Tixeuil. Self-stabilizing vertex coloration and
arbitrary graphs. In 4th International Conference on Principles of
Distributed Systems, (OPODIS’00), pages 55–70, 2000.

[34] S. Huang and N. Chen. A self-stabilizing algorithm for constructing
breadth-first trees. Information Processing Letters, 41(2):109–117, 1992.
doi:10.1016/0020-0190(92)90264-V.

[35] Cohen J., Pilard L., M. Rabie, and J. Sénizergues. Making self-stabilizing
algorithms for any locally greedy problem. In 2nd Symposium on Al-
gorithmic Foundations of Dynamic Networks, (SAND’23), volume 257,
pages 1–17, 2023. doi:10.4230/LIPIcs.SAND.2023.11.

[36] C. Johnen. Memory efficient, self-stabilizing algorithm to construct BFS
spanning trees. In 16th Annual Symposium on Principles of Distributed
Computing (PODC’97), page 288, 1997. doi:10.1145/259380.259508.

[37] C. Johnen. Memory efficient self-stabilizing distance-k independent
dominating set construction. In 3rd International Conference on Net-
worked Systems, NETYS 2015, volume 9466, pages 354–366, 2015.
doi:10.1007/978-3-319-26850-7_24.

[38] S. Katz and K. J. Perry. Self-stabilizing extensions for message-passing
systems. Distributed Computing, 7(1):17–26, 1993. doi:10.1007/
BF02278852.

[39] A. Kravchik and S. Kutten. Time optimal synchronous self stabilizing
spanning tree. In 27th International Symposium on Distributed Com-
puting, (DISC’13), volume 8205, pages 91–105, 2013. doi:10.1007/
978-3-642-41527-2_7.

[40] C. Lenzen, J. Suomela, and R. Wattenhofer. Local algorithms: Self-
stabilization on speed. In 11th International Symposium on Stabilization,
Safety, and Security of Distributed Systems (SSS’09), pages 17–34, 2009.
doi:10.1007/978-3-642-05118-0_2.

[41] N. Linial. Locality in distributed graph algorithms. SIAM Journal on
Computing, 21(1):193–201, 1992. doi:10.1137/0221015.

[42] S. Tixeuil. Vers l’auto-stabilisation des systèmes à grande échelle.
Habilitation à diriger des recherches, Université Paris Sud - Paris

57

https://doi.org/10.1016/0020-0190(92)90264-V
https://doi.org/10.4230/LIPIcs.SAND.2023.11
https://doi.org/10.1145/259380.259508
https://doi.org/10.1007/978-3-319-26850-7_24
https://doi.org/10.1007/BF02278852
https://doi.org/10.1007/BF02278852
https://doi.org/10.1007/978-3-642-41527-2_7
https://doi.org/10.1007/978-3-642-41527-2_7
https://doi.org/10.1007/978-3-642-05118-0_2
https://doi.org/10.1137/0221015

XI, 2006. URL: https://tel.archives-ouvertes.fr/tel-00124848/
file/hdr_final.pdf.

[43] V. Turau. Efficient transformation of distance-2 self-stabilizing algorithms.
Journal of Parallel and Distributed Computing, 72(4):603–612, 2012.
doi:10.1016/j.jpdc.2011.12.008.

58

https://tel.archives-ouvertes.fr/tel-00124848/file/hdr_final.pdf
https://tel.archives-ouvertes.fr/tel-00124848/file/hdr_final.pdf
https://doi.org/10.1016/j.jpdc.2011.12.008

	Introduction
	Contribution
	Related Work
	Roadmap

	Preliminaries
	Networks
	Input Computational Model: Eventually Stable Distributed Synchronous Algorithms
	Output Computational Model: the Atomic-state Model

	Compile synchronous algorithms into self-stabilizing asynchronous ones
	Algorithm overview
	Data structures
	The predicates
	The rules

	Preliminary results
	Terminal configurations
	D-paths
	Moves complexity
	R-moves
	U-move
	P-move
	C-moves
	The move complexity theorem

	Round complexity proof
	The ``error broadcast phase''
	The ``error cleaning phase''
	The ``algorithm phase''
	The round complexity proof

	Instances
	Leader Election
	The Problem
	The Algorithm
	Contribution and Related Work

	Breadth-First Search Spanning Tree Construction
	The Problem
	The Algorithm
	Contribution and Related Work

	3-coloring in Rings
	The Problem
	The Algorithm
	Contribution and Related Work

	k-clustering
	The Problem
	The Algorithm
	Contribution and Related Work

	The Rollback Compiler
	Conclusion

