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Pollution in strategic multilateral exchange:
taxing emissions or trading on permit markets?

Ludovic A. Julien1 , Anicet Kabre2 , Louis de Mesnard3

Version: June, 29th 2022

We introduce polluting emissions in a sequential noncooperative oligopoly model of
bilateral exchange. In one sector a leader and a follower use polluting technologies which
create negative externalities on the payo¤s of strategic traders who belong to the other
sector. By modeling emissions as a negative externality, we show that the leader pollutes
more (less) than the follower when strategies are substitutes (complements). Then, we
consider the implementation of public policies to control the levels of emissions, namely two
taxation mechanisms and a permit market. We study the e¤ects of these public policies.
Moreover, we determine the conditions under which these public policies can implement
a Pareto-improving allocation.

Key Words: Stackelberg competition, pollution, �scal policy, permit market
Subject Classi�cation: C72, D43, Q50

1. INTRODUCTION

One can consider that there are two main types of pollution: (i) global pollution,
mainly the CO2 emissions, but also the GWP gases (high global warming poten-
tial gases) we can cite HFCs (hydro�uorocarbons), PFCs (per�uorocarbons), SF6
(sulfur hexa�uoride), NF3 (nitrogentri�uoride), CF4 (tetra�uoromethane or carbon
tetra�uoride), and so on-; and (ii) local pollution, where some �rms pollute some
consumers.4 In this paper, we consider the second type of pollution, which can be
composed of �ne particles, toxic products, all can be considered as fatal products of
the production process-, etc., and even acid rains in Germany some years ago. Lo-
cal pollution concerns one or more polluters (often �rms) and one or more polluted
(often consumers), all being well identi�ed, unlike global pollution. Pigou�s carbon
tax (Pigou 1932; Barnett 1980; Weisbach and Metcalf 2009; Metcalf and Weisbach
2013; Metcalf 2019) is considered as the main tool to regulate local pollution, even
if the carbon taxes are not as all taxes very well accepted by the �rms, but also by
the consumers who understand that the price charged by the �rms will necessarily
increase. Indeed, the principle of carbon tax is to raise by a tax the marginal cost
of the polluter to obtain the equalization of the marginal cost of polluters and of
polluted at equilibrium. It should be underlined that the new equilibrium does
not implies that pollution is eradicated: to the contrary, at equilibrium, both sides
polluters and consumers commonly agree to accept a non-zero level of pollution.

1EconomiX, UPL, Univ Paris Nanterre, CNRS, 200 avenue de la République, F92000 Nanterre,
France. E-mail: ludovic.julien@parisnanterre.fr

2EconomiX, UPL, Univ Paris Nanterre, CNRS. E-mail: kabre.anicet@yahoo.fr
3CREGO (EA 7317), univ. Bourgogne - Franche-Comté, 2 Bd Gabriel, 21000 Dijon, France.

E-mail: louis.de-mesnard@u-bourgogne.fr
4According to the Intergovernmental Panel on Climate Change (IPCC) report 2022, since IPCC

AR5, human in�uence on the Earth�s climate has become unequivocal.
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Most studies have examined the relation polluter-polluted, by using a partial
equilibrium approach (see Montero 2009; Lehmann 2010; de Vries and Hanley 2016;
and Hintermann 2017, for surveys). Because of the complementarities and substi-
tutabilities between commodities that exist through agents�preferences, it is nec-
essary to take into account the role played by the preferences of agents on the
e¤ectiveness of emission regulation policies. Thus, it would be interesting, instead,
to consider this relation in a framework which analyzes the strategic behavior of
agents in interrelated markets. Moreover, it turns out that positive and norma-
tive approaches to environmental pollution problems with strategic interactions
have been studied mainly in markets where the demand side is assumed to be
competitive and the supply side embodies a �nite number of �rms which have a
Cournotian behavior in a simultaneous-moves game (see, for instance, Hintermann
2017 for usual partial equilibrium approaches, and Crettez et al. 2021 for a general
equilibrium approach). In this paper, we consider a two-stage game with complete
information of a market exchange economy in which all traders behave strategically
to exploit the potential gains from trade on both the demand and the supply sides.
Overall, our main objective is to investigate whether public policy implementation
can a¤ect local polluting behavior in a sequential strategic multilateral exchange
model with production.

1.1. Motivations

The motivations are twofold. First, we consider polluting emission behaviors in
a sequential game in which all agents behave strategically. To this end, we consider
polluting emissions, such as those modeled by Crettez et al. (2021), in the sequential
bilateral oligopoly model of Julien and Tricou (2012), which extends the bilateral
oligopoly model with a �nite number of traders introduced by Gabszewicz and
Michel (1997), and explored by Bloch and Ghosal (1997), Dickson and Hartley
(2013), among others.5 In a �rst sector, one leader and one follower have inherited
a technology with which they produce one good. In a second sector, a good, which
is also used as a production factor, is initially held by a �nite number of followers.
The production activity generates polluting emissions, i.e., negative externalities
on traders�utility who belong to the other sector. The strategic traders compete
on quantities, and try to manipulate the relative price through their supplies. As
all agents behave strategically, there is no assumption of price-taking behavior and
the market demand is not given. Endogenous demands seem to be important for
pollution analysis insofar as the space over which traders�preferences are de�ned
includes the polluting commodity. Correlatively, polluting emissions are linked to
agents�strategies which are themselves partly determined by their preferences.

In addition, how we implement our strategic game will be critical. Therefore, our
model will allow us to de�ne a two-stage quantity setting game where the players
are the traders, the strategies are their supplies, and the payo¤s are the utility levels
they reach in the market outcome. We will get a subgame perfect Nash equilibrium
of the two-stage game, namely the Stackelberg-Nash equilibrium with emissions,

5The class of strategic bilateral exchange models represents a two-commodity version (a two-
sector model) with resource specialization (agents have corner endowments) of the strategic market
games models with a �nite number of traders introduced by Shubik (1973), and Shapley and
Shubik (1977). In bilateral oligopoly, each trader has corner endowment but wants to consume both
goods. There is a market price which aggregates the strategic supplies of all traders and allocates
the amounts traded to each trader. The noncooperative equilibrium concept is the Cournot-Nash
equilibrium (CNE henceforth). For a survey on bilateral oligopoly, see Dickson and Tonin (2021).
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which we will compute.6 In our bilateral oligopoly model with Stackelberg-Nash
competition, strategies could be either substitutes or complements, while if compe-
tition is of the Cournot-Nash type, strategies can only be complements. We will de-
termine whether the possibility for strategies to be complements or substitutes can
a¤ect the emission�s behavior. Thus, this will lead us to compare the Stackelberg-
Nash equilibrium with emissions with the Cournot-Nash equilibrium with emissions
which would have resulted if the game were instead a simultaneous move game.

Second, we analyze and compare three kinds of regulation to control the levels
of emissions in our sequential model: a competitive market of permits, and two
di¤erent kinds of taxation mechanisms, namely, a tax on emissions, and a per unit
tax on the strategic supplies when exchange takes place. We will determine whether
polluting emissions can be limited either by the permit market or by any taxation
mechanism. We focus on the e¤ects and the performance of these three kinds of
regulatory policies by comparing the e¤ects of these public policies, and we will
determine the conditions under which these public policies will be Pareto-improving.
To this end, we study whether the sequential strategic behavior setting a¤ects the
e¤ectiveness and the e¢ ciency of public policy. More speci�cally, we will wonder
whether the possibility for strategies to be complements or substitutes matters for
the e¤ectiveness and e¢ ciency of public policy. This will lead us to compare the
e¤ects of these public policies with the e¤ects which would have been obtained in the
simultaneous move game in which all traders had instead a Cournotian behavior.

1.2. Contribution

Our contribution to the literature is twofold. The �rst contribution concerns
the introduction of pollution in a sequential strategic market game with production.
The second contribution concerns the comparative statics exercises which relate to
public policies in our setting.

First, strategic interactions belong to Stackelberg competition. Thus, we would
like to determine whether the sequential strategic decisions will a¤ect the polluting
behavior in bilateral oligopoly. The strategic two-stage structure will capture some
speci�c features such as heterogeneity in market power. Indeed, the emissions will
di¤er across traders who produce the polluting commodity insofar as the game
can display either strategic complementarity or strategic substitutability within a
given sector. We will notably wonder whether the leader pollutes more (less) than
the follower when strategies are substitutes (complements). In addition, we will
compare the levels of polluting emissions at the Stackelberg-Nash equilibrium with
those obtained at the Cournot-Nash equilibrium.

Some strategic market games with environmental issues have already been stud-
ied under Cournot competition. For instance, Godal (2011) analyze various models
of non-cooperative pure exchange (without production), and consider how they
should be adapted to emission markets. By using a strategic bilateral pure ex-
change model with interior endowments, he shows that a strategic seller (resp.
buyer) had a marginal payo¤ that is below (resp. above) the equilibrium market
price. Here, we will rather consider a strategic bilateral exchange model in which

6 It is common knowledge that, in strategic market games, and thus in bilateral oligopoly games,
the trivial equilibrium is always a Nash equilibrium of the game (Cordella and Gabszewicz 1998;
Busetto and Codognato 2006). Therefore, a critical issue concerns the existence of an equilibrium
with trade. To simplify the analysis of the strategic equilibrium, and to perform some comparative
statics exercises, we will consider a simple model with non-trivial strategic equilibria.
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production generates pollution. Therefore, an important point is that pollution is
endogenous and the permit market is only one possible instrument among others
to reduce polluting emissions.

Second, our model is, to the best of our knowledge, the �rst strategic sequen-
tial model in interrelated markets that compares three kinds of regulations: two
taxation mechanisms along with a permit market. We will examine the e¤ects and
the performance of these three kinds of regulatory policies. We will consider �rst
two taxation mechanisms: an ad valorem tax on emissions, and a per unit tax on
the supplies when strategic exchange takes place. Taxation mechanisms have been
studied in pure exchange bilateral oligopolies under the assumption of Cournot com-
petition by Gabszewicz and Grazzini (1999, 2001), Grazzini (2006), and Elegbede
et al. (2021).7 Here, for each taxation mechanism, we will assume that the to-
tal product of the tax is used to �nance some given public expenditure. We will
compare the e¢ ciency of the two taxation mechanisms. Then, we will introduce
a competitive permit market, and we will determine the conditions under which
the polluting emissions of the leader and the follower decrease with the price of
permits. Additionally, we will study the e¤ect of an increase in the price of permits
on the payo¤s of traders who bear negative externalities due to pollution. Besides,
we will study the extent to which the e¤ectiveness and the e¢ ciency of these pub-
lic policies implemented to remedy market failures - indeed negative externalities
and ine¢ ciencies caused by imperfectly competitive behavior - are speci�c to the
sequential decision setting.

1.3. Literature review

There is a huge literature devoted to polluting emissions under strategic interac-
tions in a partial equilibrium framework (see Montero 2009 and Hintermann 2017
for surveys, and Hintermann 2017 for empirical evidence). The models consider
either that the supply side of the single commodity market embodies a dominant
�rm which interacts with a competitive fringe (Hahn 1984) or focus on market
power stemming from oligopolistic �rms that manipulate the allocation of emis-
sion rights for predatory purposes (Von der Fehr 1993; Eshel 2005), which opens
the possibility of making market power endogenous (Lange 2012). Moreover, the
welfare implications of permits markets are studied notably in Sartzadakis (1997,
2004) and Gersbach and Requate (2004).8 Christin et al. (2021) show that the

7Gabszewicz and Grazzini (2001) study three kinds of �scal policies with transfers: taxing trade
and endowments by subsidzing an outside agent who is deprived from any commodity; and taxing
endowments and subsidizing both the outside agent and the traders. By assuming that agents�
preferences are represented by the same Cobb-Douglas utility function, they show that the �rst
two kinds of lump-sum taxes with transfers can only reach a second-best, whilst the third one
leads to a �rst-best. Gabszewicz and Grazzini (1999) focus on endowment taxation with incentive
transfers in the linear, Cobb-Douglas, and CES bilateral oligopoly models. They show that such
a taxation mechanism with transfer can lead to a Pareto-optimal allocation. By using a Cournot-
Walras equilibrium model, Grazzini (2006) shows that per unit taxation welfare dominates ad
valorem taxation when the number of competitive traders is su¢ ciently high compared to the
number of strategic traders. Elegbede et al. (2021) consider a bilateral oligopoly model in which
the preferences of traders are represented by CES utility functions with non unitary shares on
consumption. They show that both �scal policies with transfers implement a �rst-best allocation
only when commodities are perfect complements or perfect substitutes.

8Gersbach and Requate (2004) study how refunding schemes should be designed to create
incentives for oligopolistic �rms to produce an e¢ cient level of output, to optimally abate emissions
and to invest in cleaner technologies.
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type of pollution abatement technology that is used in an industry has an impact
on the way the cap-and-trade system a¤ects the product market oligoplistic equi-
librium. The literature explores mainly the link between abatement technologies
and emissions (Haita 2014). Our model rather focuses on (sequential) emission�s
behavior and the e¤ects of regulatory policies such as taxation mechanisms and
trading emission rights in interrelated markets.

Taxation mechanisms in a strategic general equilibrium framework with envi-
ronmental issues have already been investigated. Crettez et al. (2021) consider a
two-sector model with pollution permits in which some traders behave a la Cournot
while a representative consumer behaves as a price-taker. Strategic traders have in-
herited some polluting technology which speci�es how to produce some amount of
one commodity with some amount of the other commodity which is initially held
by a competitive trader. The authors show that a supply subsidy can be Pareto im-
proving when the agents su¢ ciently value the produced good insofar as it enlarges
the size of trades. Our model di¤ers from the previous one in several ways. First,
here all agents behave strategically; the game includes one leader and several follow-
ers, which introduces heterogeneity in strategic behavior. Second, producers have
di¤erent technologies, which introduces a second source of heterogeneity. Third,
pollution creates negative externalities on the utility of some traders. Fourth, �scal
policies di¤er insofar as they consist either of taxing supplies when exchange takes
place or taxing emissions, and, no supply subsidy mechanism is proposed.

Our model also complements sequential games with a permit market (Godal
and Holtsmark 2010; Dickson and MacKenzie 2018). Godal and Holtsmark (2010)
consider a �nite set of jurisdictions, with a government and a �rm per jurisdiction.
In the �rst stage, each government determines an acceptable amount of emission
which is redistributed within its jurisdiction to �rms, and it levies tax on domestic
emissions. In the second stage, �rms determine emissions levels and pay taxes. They
show that the only major e¤ects of permits exchange are that taxes on domestic
emissions are reduced and some income is redistributed, so non-cooperative behav-
ior yields ine¢ cient outcomes. Here, in addition to taxation on emissions, we will
consider another mechanism of taxation, which consists of taxing supplies when
exchange takes place, which we want to compare with the tax on emissions. Dick-
son and MacKenzie (2018) consider the implications of strategic trade in pollution
permit markets in a two-stage game. In a �rst stage, the permit market is modeled
as a bilateral oligopoly with strategic �rms, and their roles as buyers or sellers of
permits are determined. In the second stage, �rms transact either competitively or
strategically in a commodity market. One point is that comparative statics exercises
are di¢ cult to handle when the �rms have a Cournotian behavior on the commodity
market as the market outcome depends on each �rm�s marginal cost in relation to
those of its rivals. As a consequence, the overall e¤ect of strategic behavior in the
product market cannot be ascertained. However, in our model, strategic behavior
only holds on the commodity markets, and we will rather focus on the e¤ects of
pollution as well as on the (comparative) e¢ ciency of the two taxation mechanisms
and the permit market.

The remainder of the paper unfolds as follows. In Section 2, we describe the
model. In Section 3, we compute the non-cooperative sequential equilibrium with
emissions. Section 4 is devoted to the implementation and the e¤ects of two taxation
mechanisms. In Section 5, we study the e¤ects of the implementation of a permit
market. In Section 6 we conclude. An Appendix collects some useful computations.
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2. THE MODEL

Consider an economy with two divisible homogeneous commodities labeled X
and Y . Let pX and pY be the corresponding unit prices. We assume that commodity
Y is the numeraire, so pY = 1. The economy embodies n + 2 agents of two types:
two agents of type I, who are consumers and producers, and n agents of type II,
with n > 2, who are pure consumers.9 Type I agents are indexed by i, i 2 f1; 2g,
and type II agents are indexed by j, j 2 f1; :::; ng.

2.1. Endowments, preferences and technologies

The endowments of the two agents of type I and the n agents of type II are
given by:

!i = (0; 0), i = 1; 2, (1)

!j = (0;
1

n
), j = 1; :::; n. (2)

Therefore, commodity X does not exist initially and must be produced. Thus,
we assume, like in Gabszewicz and Michel (1997), that type I traders have inherited
some technology which speci�es how to produce some amount zi of good X with
some amount ki of good Y . The production function Fi(ki) of agent i is given by
the linear technology:

zi = Fi(ki) =
1

�i
ki, �i > 1, i = 1; 2, (3)

where 1=�i measures the marginal productivity of the factor of production, so �i
measures the marginal cost (recall pY = 1).
Production is a polluting activity. Following Stockey (1998), Sanin and Zanaj

(2012), and Crettez et al. (2021), we assume that a quantity ki of input generates
a quantity ei of emissions, with ei 2 R+, given by:

ei =
1



ki, 
 > 1, i = 1; 2, (4)

where 
 measures the magnitude of pollution. Therefore, commodity X is a pollut-
ing consumption good. From (3) and (4), we can express the production zi of good
X by each agent i, i = 1; 2, in terms of the volume of emissions ei, namely:

zi =



�i
ei, i = 1; 2. (5)

The preferences of agents are represented by the following utility functions:

ui(xi; yi) = x
�
i :y

1��
i , � 2 (0; 1), i = 1; 2, (6)

uj(xj ; yj ; e1; e2) = x
�
j :y

1��
j � �(e1 + e2), �; � 2 (0; 1), j = 1; :::; n, (7)

9We could consider a game with several leaders and followers, but, to simplify, we consider a
duopoly in the productive sector.
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where x (resp. y) are the amount consumed of commodity X (resp. Y ), and � is the
disutility of pollution as emissions display negative externalities on the individual
welfare of agent j = 1; :::; n.

As benchmark cases, let us compute the competitive equilibria of this economy.
The competitive equilibrium supply is always equal to the amount produced z�i .
When �1 6= �2, the relative price is p�X = min(�1; �2). For instance, if �1 < �2, then
p�X = �1. Then, the only active producer is i = 1, and her vector of emission and
production levels is (e�1; z

�
1) = (

�

 ;

�
�1
), and her allocation is (x�1; y

�
1) = (0; 0), with

utility level u�1 = 0. For each j = 1; :::; n, the allocation is (x�j ; y
�
j ) = ( �

�1n
; 1��n ),

with utility level u�j = ( ��1
)�(1 � �)1�� 1n � �

�

 . Likewise, when �1 > �2, then

p�X = �2. Then, the only active producer is i = 2, and her vector of emission and
production levels is (e�1; z

�
1) = (

�

 ;

�
�2
), her allocation is (x�2; y

�
2) = (0; 0), with utility

level u�2 = 0. For each j = 1; :::; n, the allocation is (x�j ; y
�
j ) = ( �

�2n
; 1��n ), with

utility level u�j = (
�
�2
)�(1� �)1�� 1n � �

�

 . Finally, when �1 = �2 = �, the relative

price is p�X = �. There is a continuum of competitive equilibria parameterized by
the share �, 0 6 � 6 1. Indeed, the vectors of emission and production levels are
(e�1; z

�
1) = (��
 ; �

�
� ) and (e

�
2; z

�
2) = ((1 � �)�
 ; (1 � �)

�
� ), with (e

�
i ; z

�
i ) = ( 12

�

 ;

1
2
�
� ),

for each i = 1; 2, when � = 1
2 . In any case, the allocation is (x

�
i ; y

�
i ) = (0; 0), with

utility level u�i = 0. For each j = 1; :::; n, the allocation is (x
�
j ; y

�
j ) = (

�
�n ;

1��
n ), and

the utility level is u�j = (
�
� )
�(1 � �)1�� 1n � �

�

 . At each competitive equilibrium,

the total amount of emissions is given by e�1 + e
�
2 =

�

 .

2.2. The associated game

To this economy, we associate a two-stage non-cooperative game � in which the
players are the traders, the strategies are their supplies, and the payo¤s are the
utility levels. This �nite game is an extension of the bilateral oligopoly model with
a �nite number of traders introduced by Gabszewicz and Michel (1997), and which
introduces pollution in the sequential model of Julien and Tricou (2012).
The game � displays two stages of decisions and the timing of positions is given.

There is one leader, indeed trader 1 of type I, and the (n+1) other traders behave
as followers. No trader makes a choice in two subgames. In addition, traders meet
once and cannot make binding agreements. By precluding binding agreements, we
consider that each trader acts independently and without communication with any
of the others. We also assume there is no discounting. Finally, information is as-
sumed to be complete, but information is imperfect between the (n+1) followers.10

In each decision node, any follower will make an optimal choice, so sequential ratio-
nality prevails. As sequential rationality is common knowledge, the game is solved
by backward induction.

The strategy set of the leader is given by:

Q1 := fq1 2 R+ : q1 6 z1g, (8)

where qi represents the pure strategy of the leader. The strategy qi represents
the amount of commodity X the leader sells in exchange for commodity Y . The
strategy sets of followers are given by:

10Any leader perfectly knows the behavior of all followers, and followers perfectly know the
optimal strategy of the leader, but information is imperfect in the subgame between followers.
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Q2 := fq2(q1) : Q1 ! [0; z1]g, (9)

Bj := fbj(q1) : Q1 ! [0;
1

n
]g, j = 1; :::; n, (10)

where q2(q1) is the pure strategy of follower 2 of type I, and bj(q1) is the pure
strategy of follower j of type II, j = 1; :::; n. For all q1 2 Q1, the strategy q2(q1)
represents the amount of commodity X type I follower o¤ers in exchange for com-
modity Y , and the strategy bj(q1) represents the amount of commodity Y type II
follower j o¤ers in exchange for commodity X.

A strategy pro�le is a vector (q1; q2(q1);b(q1)) = (q1; q2(q1); b1(q1); :::; bn(q1)),
with (q1; q2(q1);b(q1)) 2

Q
iQi �

Q
j Bj , where

Q
iQi �

Q
j Bj = Q1 �Q2 �B1 �

::: � Bn. Let b�j(q1) denote the strategy pro�le of all followers of type II but j.
It is worth noting that, for each type I trader, the strategic decision relates to the
supply of goods and not to the quantity of emissions. Indeed, the level of emissions
ei, with ei 2 R+, for each i = 1; 2, is not a strategy like the supply qi, but merely
a decision variable which depends upon the technology of emissions (4), and which
is linked to the production technology (3).11 Therefore, the leader and her direct
follower behave, when they make their production choices, as if they would not take
into consideration the emissions made by her direct rival.

Given a price vector (pX ; 1) and a strategy pro�le (q1; q2(q1);b(q1)) 2
Q
iQi �Q

j Bj , the market clearing price pX(q1; q2(q1);b(q1)) is determined according to
the following price mechanism which aggregates the strategic supplies of all traders:

pX(q1; q2(q1);b(q1)) =

Pn
j=1 bj(q1)

q1 + q2(q1)
. (11)

To lighten notations, in what follows, let (:) for the vector (q1; q2(q1);b(q1)).
Agents behave strategically, and are aware of their in�uence on the relative price
pX(:).

Any agent i 2 f1; 2g has two decisions to make: which quantity qi of good X
to sell on the market; and, which quantity of good X to produce, which through
(3) and (4) determines the level of emissions ei. Thus, the income of the leader is
equal to her pro�t �1, where

�1(e1; (:)) := pX(:)q1 � 
1e1: (12)

With this income, the leader �nances her purchase of commodity Y which is
equal to �1. She ends up with the bundle of commodities (x1(e1; (:)); y1(:)) =
( 
�1

e1 � q1 ;�1(e1; (:)). Her corresponding utility level is u1( 
�1 e1 � q1;�1(e1; (:)).
Likewise, the income of type I follower is equal to his pro�t �2, where

�2(e2; (:)) := pX(:)q2(q1)� 
2e2: (13)

With this income, the follower �nances his purchase of commodity Y which
is equal to �2. He ends up with the bundle of commodities (x2(e2; (:)); y2(:)) =
( 
�2

e2�q2 ;�2(e2; (:)). Her corresponding utility level is u2( 
�2 e2�q2(q1);�2(e2; (:)).

11For each trader i 2 f1; 2g, emissions can be considered as consequences of their own supply
decisions, so each trader�s emissions can be written as function her equilibrium strategy (see
Remark 1 in Section 3).
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Any agent j 2 f1; :::; ng has one decision to make: which quantity bj of good Y
to sell on the market. Follower j 2 f1; :::; ng obtains in exchange for bj(q1) a share
bj(q1)
B of the aggregate supplyQ, i.e. a quantity of commodityX equal to 1

pX(:)
bj(q1)

(recall pY = 1), and ends up with the bundle of commodities (xj(:); yj(:)) =
( 1
pX(:)

bj(q1);
1
n � bj(q1)), with corresponding utility level uj(

1
p(:)bj(q1);

1
n � bj(q1)).

Finally, let us de�ne the payo¤s of traders. De�ne the function �1 : ! R+ �Q
iQi�

Q
j Bj , (e1; (:)) 7! �i(e1; (:)). Likewise, de�ne �2 : R+�

Q
iQi�

Q
j Bj ! R,

(e2; (:)) 7! �2(e1; (:))). Finally, for each j = 1; :::; n, de�ne �j : ! R2+ �
Q
iQi �Q

j Bj , (e1; e2; q1; q2(q1); bj(q1);b�j(q1)) 7! �j(e1; e2; q1; q2(q1); bj(q1);b�j(q1)). To
lighten notations, let �j(:) for �j(e1; e2; q1; q2(q1); bj(q1);b�j(q1)). Therefore, the
utility levels of agents may be written as payo¤s. For type I agents, we have:

�1(e1; (:)) =

�



�1
e1 � q1

�� Pn
j=1 bj(q1)

q1 + q2(q1)
q1 � 
e1

!1��
; (14)

�2(e2; (:)) =

�



�2
e2 � q2(q1)

�� Pn
j=1 bj(q1)

q1 + q2(q1)
q2(q1)� 
e2

!1��
, (15)

and, for each j 2 [1; :::; ng, we have:

�j(:) =

 
q1 + q2(q1)

bj(q1) +
P

�j b�j(q1)
bj(q1)

!��
1

n
� bj(q1)

�1��
� �(e1 + e2). (16)

A Stackelberg-Nash equilibrium (SNE hereafter) of � is given by a (n+2)-tuple
of strategies (~q1; ~q2(~q1); ~b(~q1)) and an emission pro�le (~e1; ~e2) such that:
�1(~e1; ~q1; ~q2(~q1); ~b(~q1)) > �1(e1; q1; q2(q1);b(q1)) 8b(q1) 2

Q
j Bj 8q2(q1) 2 Q2

8q1 2 Q1, 8e1 2 R+;
�2(~e2; ~q1; ~q2(~q1); ~b(~q1)) > �2(e2; ~q1; q2(~q1); ~b(~q1)) 8q2 2 Q2, 8e2 2 R+;
�j(~e1; ~e2; ~q1; ~q2(~q1); ~bj(~q1); ~b�j(~q1)) > �j(~e1; ~e2; ~q1; ~q2(~q1); bj(~q1); ~b�j(~q1)) 8bj 2

Bj , for each j = 1; :::; n.

3. NON-COOPERATIVE EQUILIBRIA WITH EMISSIONS

Let us now turn to the computation the SNE. We also determine the properties
of the equilibrium supplies and emissions, and we show that the SNE is not Pareto-
optimal. Then, we compute the Cournot-Nash equilibrium (CNE henceforth)) of �,
which we compare to the SNE.

3.1. SNE: computation

PROPOSITION 1. The Stackelberg-Nash equilibrium supplies and emissions of
� are given by :

(~q1; ~q2) =
�
�
4

�2
(�1)

2
n�1
n�� ;

�
2�1
(1� 1

2
�2
�1
) n�1n��

�
;

(~e1; ~e2) =
�
�(1+�)
4


�2
�1

n�1
n�� ;

�
2


2��1+(1��)�2
�1

(1� 1
2
�2
�1
) n�1n��

�
;

~bj =
�
n
n�1
n�� , j = 1; :::; n.

PROOF. See Appendix A.�
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From (11) and Proposition 1, the relative price is given by ~pX = 2�1.
The next proposition provides a result about the nature of strategic interactions

between the leader and the follower of type I, which will be useful later in studying
the implications of market power. The strategies of the leader and the follower are
said to be substitutes (resp. complements) when the best response of the follower
decreases (resp. increases) with the strategy of the leader.12 It transposes to our
sequential quantity setting game the analysis made by Bulow et al. (1985) for the
Cournot market.

PROPOSITION 2. The strategies of the leader and the follower are substitutes
(resp. complements) when �1 < �2 (resp. �1 > �2).

PROOF. Consider the equation of the best-response given by (A7), i.e., q2(q1;b) =

�q1 +
q

1
�2

Pn
j=1 bjq1. For all q1 > 0, we have that:

@q2(:)

@q1
= �1 + 1

2

�
1

�2

Pn
j=1 bj

� 1
2

q
� 1
2

1 .

By using Proposition 1, it is easy to check that, at a SNE, where ~q1 = �
4

�2
(�1)

2
n�1
n��

and ~bj = �
n
n�1
n�� , j = 1; :::; n, we have:

@q2(:)

@q1
jq1=~q1= �1 +

�2
�1
.

Then, we deduce @q2(:)
@q1

jq1=~q17 0 when �1 7 �2. So, the game displays strategic
substitutability (resp. complementarity) between the leader and her direct follower
when �1 < �2 (resp. �1 > �2).�
It is worth noting that the possibility for strategies to be substitutes or com-

plements is speci�c to our sequential setting insofar as if the two agents behave a
la Cournot, in this model where utility functions are such that goods are imper-
fectly substitutable, the strategies of type I agents are complements.13 Indeed, by
using the strategies at the CNE (see Proposition 4 thereafter), the best response
are increasing functions, i.e., we always have @q2(:)

@q1
jq1=q̂1> 0 and @q1(:)

@q2
jq2=q̂2> 0

as �1 + �2 >
p
�1�2.

Proposition 2 has a direct implication in terms of market power. Let the market
power of traders be measured by their market shares at the SNE. For the leader and
the follower, the market share at the SNE is given by the quantity ~qi

~q1+~q2
, i = 1; 2.

Indeed, as ~q1 � ~q2 = �
2
1
�1

n�1
n�� (

�2
�1
� 1), then, ~q1 ? ~q2 when �1 7 �2. Otherwise,

when �1 = �2, they have the same market power.

We now explore the issue of emissions in this two-stage quantity setting game.

REMARK 1. The emissions of the leader and the follower increase with their
supplies as ~e1 = 1+�


 �1~q1 and ~e2 =
2��1+(1��)�2


 ~q2.

12 Indeed, when the best response is decreasing (resp. increasing) there are strategic substi-
tutabilities (resp. complementarities).
13 In a two-commodity exchange economy in which preferences of traders are represented by a

CES utility function, Bloch and Ferrer (2001) showed that when commodities are substitutes (resp.
complements) then strategies between traders who belong to the same sector are complements
(resp. substitutes).
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REMARK 2. The emissions are lower at the SNE than at the competitive

equilibrium: we have ~e1 + ~e2 = �



h
1+�
4

�2
�1
+ (1� 1

2
�2
�1
) 2��1+(1��)�22�1

i
n�1
n�� <

�

 as

1+�
4

�2
�1
+ (1� 1

2
�2
�1
) 2��1+(1��)�22�1

< 1 and n�1
n�� < 1.

We are now able to state the following result which compares the leader and
follower emissions in the presence of strategic complementarities or substitutabili-
ties.

PROPOSITION 3. At the SNE, the leader�s emissions are higher (resp. lower)
than the follower�s emissions when their strategies are substitutes (resp. comple-
ments).

PROOF. From Remark 1, we have ~e1 = 1+�

 �1~q1 and ~e2 =

2��1+(1��)�2

 ~q2. Let

�2 = ��1, with 0 < � < 2 as
�2
�1
2 (0; 2). Then, we have that:

~e1 � ~e2 =
�1


f(1 + �)~q1 � [2�+ (1� �)�]~q2g.

From Proposition 2, we have that � ? 1 if and only if ~q1 7 ~q2. In addition,
as 1 < � < 2 and � 2 (0; 1), we have 1 + � 7 2� + (1 � �)� if and only if � ? 1.
Then, we have ~e1 7 ~e2 if and only if � ? 1.�
Proposition 3 may be interpreted as follows. The source of pollution comes from

the production of commodity X. Less marginal cost means higher production and
more emissions. When strategies are substitutes, the leader has higher market
power (her market share is higher because her marginal cost is lower). Therefore,
the leader produces more and pollutes more than her direct follower.

We determine now the allocations and the payo¤s at the SNE. The individual
allocations are given by:

(~x1; ~y1) =
�

4

�2
�21

n� 1
n� � (�; (1� �)�1) ; (17)

(~x2; ~y2) =
�

�2

�
1� 1

2

�2
�1

�2
n� 1
n� � (�; (1� �)�2) ; (18)

(~xj ; ~yj) =

�
1

2�1

�

n

n� 1
n� �;

1� �
n� �

�
, j = 1; :::; n. (19)

Then, we deduce the corresponding payo¤s for each type I trader:

~�1 =
��+1

4

�2
�1

�
1

�1

��
(1� �)1�� n� 1

n� � ; (20)

~�2 = �
�+1

�
1� 1

2

�2
�1

�2�
1

�2

��
(1� �)1�� n� 1

n� � ; (21)

and, for each type II trader:

~�j =
(�(n�1)2�1n

)�(1� �)1��

n� � � ��



�2
2 + (1�

1
2
�2
�1
)(2��1 + (1� �)�2)
2�1

n� 1
n� � . (22)
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Let us consider the welfare properties of the SNE. First, the SNE is not Pareto-
optimal. To see this, consider the marginal rate of substitution of trader k given
by MRSk(~xk; ~yk) =

@uk=@xk
@uk=@yk

, k = i; j. By using (17)-(19), we see that the marginal

rates of substitution di¤er accross traders, i.e., MRSi(~xi; ~yi) = �i, for i = 1; 2, and
MRSj(~xi; ~yi) =

2�1
n�1 , for j = 1; :::; n. The reason stems from the strategic behavior

of traders who restrict their supplies to increase the relative price. Second, it is easy
to see that the leader�s payo¤ is higher than her direct follower�s payo¤ as ~�1�~�2 =
��+1

4 ( 1
��1
)� (1� �)1�� n�1

n�� [�
�+1�(2��)2] > 0, as � 2 (0; 1) and 0 < � < 2. Third,

there is no Pareto domination between the SNE and competitive equilibria insofar
as, at a SNE (resp. competitive equilibirum), traders of type I have higher (resp.
lower) payo¤s but traders of type II have lower (resp. higher) payo¤s.

3.2. Comparison with the CNE

To underline the importance of the two-stage structure of the game �, let us
consider the simultaneous move version of the game. To this end, we determine
now the Cournot-Nash equilibrium (CNE) with emissions.

PROPOSITION 4. The Cournot-Nash equilibrium supplies and emissions are
given by :

(q̂1; q̂2) =
�
� �2
(�1+�2)

2
n�1
n�� ; �

�1
(�1+�2)

2
n�1
n��

�
;

(ê1; ê2) =
�
�


�2(�1+��2)
(�1+�2)

2
n�1
n�� ;

�


�1(�2+��1)
(�1+�2)

2
n�1
n��

�
;

b̂j =
�
n
n�1
n�� , j = 1; :::; n.

PROOF. See Appendix B.�
The next proposition compares the emissions at both strategic equilibria.

PROPOSITION 5. The level of emissions at the SNE is lower (resp. higher)
than at the CNE when the strategies of type I traders are substitutes (resp. com-
plements). Otherwise, when strategies are neither substitutes nor complements, the
SNE emission level coincides with the CNE emission level.

PROOF. At a SNE, we have:

~e1 + ~e2 =
�

4


4�(�1)
2 + 3(1� �)�1�2 � (1� �)(�2)2

(�1)
2

n� 1
n� �:

At a CNE, we have:

ê1 + ê2 =
�




�(�1)
2 + 2�1�2 + �(�2)

2

(�1 + �2)
2

n� 1
n� �:

Let �2 = ��1, with 0 < � < 2. We deduce:

(~e1 + ~e2)� (ê1 + ê2) =
�(1� �)�(� � 1)(5� �2)

4
(1 + �)2
n� 1
n� � > 0.

Recall from Proposition 2 that strategies are substitutes (resp. complements)
when �1 < �2 (resp. �1 > �2). Therefore, if � ? 1, i.e., �1 7 �2, then (~e1 + ~e2) ?
(ê1 + ê2). Finally, if � = 1, then (~e1 + ~e2) = (ê1 + ê2).
�
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Let us compare the individual polluting behavior at the SNE and at the CNE.
When strategies are substitutes (resp. complements), trader 1�s emissions are higher
(resp. lower) at the SNE than at the CNE, i.e., ~e1 > ê1 when �1 < �2 (resp. ~e1 < ê1
when �1 > �2). Indeed, as ~q1 ? q̂1 when � =

�2
�1
? 1, and by using (17) and (B12)

in Appendix B, we have ~x1 � x̂1 = �2

4�1

�(1��)(1+3�)
(1+�)2

n�1
n�� ? 0 when � ? 1 But then,

we have ~e1 ? ê1, whenever �1 7 �2. Therefore, trader 1 pollutes more when she
behaves as a leader at a SNE than when she has a Cournotian behavior at the
CNE. In addition, as we have, on the one hand ~q2 � q̂2 = � �

4�1

(��1)2(2+�)
(1+�)2

n�1
n�� 6 0

when 0 < � < 2, and, other other hand, ~x2 � x̂2 = �2

4�1

(��1)(�2���4)
(1+�)2

n�1
n�� 6 0 when

1 6 � < 2. But ~x2 � x̂2 = �2

4�1

(��1)(�2���4)
(1+�)2

n�1
n�� > 0 when 0 < � < 1. Therefore,

trader 2 pollutes less when she behaves as a follower at the SNE than when she
has a Cournotian behavior at the CNE provided 1 6 � < 2. Otherwise, the sign of
(~e2 � ê2) is undetermined.
REMARK 3. Some computations yield ~�1 > �̂1 and ~�2 6 �̂2, whenever �1 6 �2.
The problem is now to determine whether the pollution could be decreased,

either with a taxation mechanism or with a permit market.

4. NONCOOPERATIVE EQUILIBRIA WITH TAXATION

In this section, we introduce two �scal policies, namely, ad valorem taxation on
emissions, and per unit taxation.14 Taxation mechanisms have been introduced in
bilateral oligopoly under Cournot competition by Gabszewicz and Grazzini (1999),
Grazzini (2006), and Elegbede et al. (2021).15 To simplify, we assume that the total
tax product T is used to �nance some exogenous public expenditure, namely G,
subject to a balanced budget rule, i.e., such that T = G. The introduction of
taxation mechanisms modi�es the bilateral oligopoly game �.

4.1. Two taxation mechanisms

First, consider a tax t 2 (0; 1) is levied on the emissions of the leader and
the follower, with T (e1; e2) � t(e1 + e2) = G, and G > 0. Given an n + 2-tuple
of strategies (q1; q2(q1);b(q1)) 2

Q
iQi �

Q
j Bj , and a tax t 2 (0; 1), the resulting

post tax allocation is given by (x1; y1) = (


�1
(1�t)e1�q1;

Pn
j=1 bj(q1)

q1+q2(q1)
q1�
(1�t)e1)

for the leader, and by (x2; y2) = (


�2
(1� t)e2�q2(q1);

Pn
j=1 bj(q1)

q1+q2(q1)
q2(q1)�
(1� t)e2)

for the follower. With a slight abuse of notations, let �i(:) for �i(qi; ei). Then, their
payo¤s in � with taxation on emissions may be written:

�1(:) =

�



�1
(1� t)e1 � q1

�� Pn
j=1 bj(q1)

q1 + q2(q1)
q1 � 
(1� t)e1

!1��
, (23)

�2(:) =

�



�2
(1� t)e2 � q2(q1)

�� Pn
j=1 bj(q1)

q1 + q2(q1)
q2(q1)� 
(1� t)e2

!1��
. (24)

14Through numerical simulations in a Stackelberg duopoly model with linear demand, Zhou et
al. (2019) show that �at carbon tax and block carbon tax can control carbon emissions.
15Collie (2019) showed that �scal policies that correct market distortions caused by imperfectly

competitive behavior and are used for redistributive purposes can lead to a second-best allocation.
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Second, consider a tax � 2 (0; 1) is levied on the supply qi of commodity X,
with T (q1; q2) � �(q1 + q2) = G, and 0 < G < �

2
1

1+�1

n�1
n�� . Given an n + 2-tuple

of strategies (q1; q2(q1);b(q1)) 2
Q
iQi �

Q
j Bj , and a tax � 2 (0; 1), the resulting

post tax allocation is given by (x1; y1) = (


�1
e1 � q1; (

Pn
j=1 bj(q1)

q1+q2(q1)
� �)q1 � 
e1) for

the leader, and by (x2; y2) = (


�2
e2 � q2(q1); (

Pn
j=1 bj(q1)

q1+q2(q1)
� �)q2(q1) � 
e2) for the

follower. Then, their payo¤s in � with per unit taxation may be written:

�1(:) =

�



�1
e1 � q1

�� " Pn
j=1 bj(q1)

q1 + q2(q1)
� �
!
q1 � 
e1

#1��
, (25)

�2(:) =

�



�2
e2 � q2(q1)

�� " Pn
j=1 bj(q1)

q1 + q2(q1)
� �
!
q2(q1)� 
e2

#1��
. (26)

We now turn to the study of the e¤ects of these two taxation mechanisms.

4.2. The e¤ects of taxation

First, we compute the SNE with pollution for both taxation schemes. Second, we
study the e¤ect of taxation on the emissions. Third, we study the welfare properties
of the SNE with taxation. To introduce the SNE values for both taxation schemes,
with an abuse of notation, the terms ~qi(t; �) and ~ei(t; �) will respectively designate
the equilibrium strategy and emission of trader i, i = 1; 2.

PROPOSITION 6. Consider the two taxation mechanisms in �. The interior
SNE strategy pro�les and emissions pro�les of � are given by :

(~q1(t; �); ~q2(t; �)) =
�
�
4

�2+�
(�1+�)

2
n�1
n�� ;

�
2

1
�1+�

�
1� 1

2
�2+�
�1+�

�
n�1
n��

�
;

(~e1(t; �); ~e2(t; �)) =
�
(1+�)�1+��


(1�t) ~q1(t; �);
�(2�1+�)+(1��)�2


(1�t) ~q2(t; �)
�
;

~bj(t; �) =
�
n
n�1
n�� , j = 1; :::; n.

PROOF. See Appendix C.�
The next proposition provides two comparative exercises which measure the

e¤ect of a variation of the tax on emissions.

PROPOSITION 7. At the SNE with taxation the traders�emissions increase with
the tax on emissions.

PROOF. Immediate by letting � = 0 in (~e1(t; �); ~e2(t; �)).�
We can explain Proposition 7 as follows. Consider type I traders at the SNE, and

let � = 0. To the extent that traders�o¤ers (and therefore the relative price) are
not a¤ected by the tax, the revenue from the sale of commodity X, i.e., ~pX(t)~qi(t),
i = 1; 2, is not modi�ed. Then, the traders consume less of good X (resp. more
of good Y as trader i�s income �i increases). In order to restore their optimal
consumption (more goodX and less good Y ), the traders of type I therefore increase
their production, and consequently, they increase the quantity of the input they use.
The overall e¤ect is to increase emissions.

Therefore, taxing emissions may not be the appropriate tools to regulate the
pollution caused by the leader and her direct follower. This result leads us to
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consider some policy regulation via the implementation of a per unit tax. We are
able to state the following proposition.

PROPOSITION 8. At the SNE with taxation, the emissions of the leader (resp.
follower) decrease (resp. increase) with the per unit tax if the strategies are sub-
stitutes (resp. complements), i.e., �1 < �2 (resp. �1 > �2). Additionally, the
emissions of both traders decrease with the per unit tax if their strategies are nei-
ther substitutes nor complements, i.e., �1 = �2.

PROOF. See Appendix E.

The conditions under which the emissions decrease depend on whether strate-
gies are substitutes or complements. Indeed, by virtue of Proposition 2, when the
marginal cost of the leader is lower than the marginal cost of the follower, i.e.,
when �1 < �2, the best response of the follower is decreasing, re�ecting strate-
gic substitutability. In such a case, consider the revenue from sales of the leader,
i.e., R1(�) � ~pX(�)~q1(�). When �1 < �2, her revenue decreases with the tax, i.e.,
@R1(�)
@� j�=~�= �

4
n�1
n��

�1��2
(�1+~�)

2 < 0. Therefore, the leader consumes more of good X
and less of good Y . In order to restore her optimal consumption of good Y , she
decreases her demand for the input, i.e., she decreases her production of good X,
and consequently decreases her emissions. Likewise, consider the revenue from sales
of the follower R2(�) � ~pX(�)~q2(�). When �2 > �1, her revenue decreases with the
tax, i.e., @R2(�)

@� j�=~�= �
4
n�1
n��

�2��1
(�1+~�)

2 < 0. The reason stems from the fact that the
strategies are substitutes, so when the leader decreases her supply, the follower in-
creases his supply, i.e., @~q2(�)@� j�=~�> 0 (reason: by di¤erentiating (C5) at the SNE,
we have @~q2(:)

@~q1(�)
= 1 � �1+�

�2+�
> 0 when �1 < �2). Therefore, the follower consumes

more of good Y and less of good X. In order to restore his optimal consumption
of good X, the follower increases his demand for the input, i.e., he increases his
production of good X, and consequently increases his emissions.
Otherwise, when �1 = �2, from Proposition 7, we have that (~q1(�); ~q2(�)) =

(�4
1

�1+�
n�1
n�� ;

�
4

1
�1+�

n�1
n�� ). Then, we have Ri(�) =

�
4
n�1
n�� , i = 1; 2. In this case, the

only e¤ect of an increase in the per unit tax is to increase the consumption of good
X, which leads both traders to decrease their production of good X, and thus to
reduce their emissions.16

We compute now the post-tax equilibrium allocations. To this end, let ~� 2
(0; 1) be the unit tax which solves �(~e1(�) + ~e2(�)) = G, i.e., ~� = 2�1G

� n�1
n���2G

(see

(E6) in Appendix E). Therefore, the relative price is given by ~pX(~�) = 2(�1 +

~�) = 2�1
� n�1
n��

� n�1
n���2G

(see (C12) in Appendix C). The allocations to type I traders

are given by (~x1(~�); ~y1(~�)) = �
4�1

�2+~�
�1+~�

n�1
n�� (�; (1� �)�1), and (~x2(~�); ~y2(~�)) =

�
2�2

2�1��2+~�
�1+~�

�
1� 1

2
�2+~�
�1+~�

�
n�1
n�� (�; (1� �)�2), so we deduce:

(~x1(~�); ~y1(~�)) =

�2
�1
(� n�1n�� � 2G) + 2G

4�1
(�; (1� �)�1) ; (27)

(~x2(~�); ~y2(~�)) =
�

2�2

2�1 � �2 + ~�
�1 + ~�

�
1� 1

2

�2 + ~�

�1 + ~�

�
n� 1
n� � (�; (1� �)�2) , (28)

16The e¤ects of the per unit tax on emissions are computed in the supplement to Appendix E.
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and the allocation to trader j 2 f1; :::; ng is (~xj(~�); ~yj(~�)) =
�

1
2(�1+~�)

�
n
n�1
n�� ;

1��
n��

�
,

so we deduce:

(~xj(~�); ~yj(~�)) =

 
� n�1n�� � 2G
2�1n

;
1� �
n� �

!
, j = 1; :::; n. (29)

Therefore, the marginal rates of substitution are such that:

MRSi(~x1(~�); ~y1(~�)) = �i, i = 1; 2, (30)

and

MRSj(~xj(~�); ~yj(~�)) = 2��1
n

n� �
1

� n�1n�� � 2G
, j = 1; :::; n. (31)

Therefore, the taxation policy does not lead to a Pareto-optimal allocation.17

The reason stems from the fact that the per unit tax is not su¢ ciently strong enough
to resorb the ine¢ ciency caused by the strategic behavior of traders. Therefore, at
the SNE, as commodities are imperfectly substitutable, no �scal policy is su¢ ciently
powerful to eliminate the market ine¢ ciencies caused by the strategic interactions.
Proposition 8 extends the results of Gabszewicz and Grazzini (2001), and Elegbede
et al. (2021) in a sequential strategic market game with pollution.

Finally, the next result concerns the e¤ect of an increase of the per unit tax on
the payo¤s of traders who su¤er from the negative externality caused by pollution.

PROPOSITION 9. At the SNE, if the strategies of type I traders are neither
substitutes nor complements, then the payo¤s of type II traders increase under per
unit taxation whenever the negative e¤ect of the per unit tax on emissions dominates
the marginal decrease of indirect utility caused by the increase of the relative price.

PROOF. The payo¤ of trader j 2 f1; :::; ng is given by:

~�j(�) =

�
�

2(�1+�)
n�1
n

��
(1� �)1��

n� � � �� n� 1
n� � ,

where the term � � � [(1+�)�1+�� ](�2+�)+[�(2�1+�)+(1��)�2](2�1��2+�)4
(�1+�)
2 > 0 is derived

from the expressions (E1)-(E2) in Appendix E. Assume �1 = �2 = �. Then, the
preceding payo¤ may be written:

~�j(�) =

�
�

2(�+�)
n�1
n

��
(1� �)1��

n� � � �� (1 + �)� + ��
2
(� + �)

n� 1
n� � .

Therefore, as ~e1(�) + ~e2(�) =
(1+�)�+��
2
(�+�) , then, from (7), we deduce:

@~�j(�)

@�
j�=~�= �

( �
�+~� )

�+1(n�12n )
�(1� �)1��

n� � � �
�
@~e1(�)

@�
j�=~� +

@~e2(�)

@�
j�=~�

�
.

17For comparison, at the CNE, we have MRSi(x̂1(�̂); ŷ1(�̂)) = �i, i = 1; 2, and

MRSj(x̂j(�̂); ŷj(�̂)) =
n(�1+�2+2�̂)

n�1 , j = 1; :::; n.

16



If �1 = �2, then, by Proposition 8, we have
@~e1(�)
@� j�=~�< 0 and @~e2(�)

@� j�=~�< 0.
Then, we deduce @~�j(�)

@� j�=~�> 0 when

��
�
@~e1(�)

@�
j�=~� +

@~e2(�)

@�
j�=~�

�
>
( �
�+~� )

�+1(n�12n )
�(1� �)1��

n� � .

�
Proposition 9 suggests that a per unit tax is Pareto improving for the traders

who su¤er from the polluting emissions when the e¤ect of the tax on emissions is
stronger than the decrease in their utility caused by the strategic behavior of the
polluter traders who manipulate the relative price. Such a result holds provided
the leader has the same market power than her direct follower. Otherwise when
�1 6= �2 nothing can be asserted about the e¤ect of the tax on emissions. This
result di¤ers from Crettez et al. (2021) who consider a two-sector equilibrium
model with pollution permits in which some traders behave a la Cournot while a
representative consumer behaves as a price-taker. The competitive trader is taxed
and the product of the tax is transferred as a subsidy to the oligopolists. This supply
subsidy can be Pareto improving when the agents su¢ ciently value the polluting
commodity insofar as it enlarges the size of trades. Here, the tax policy is Pareto
improving whichever is the preference for the polluting commodity.
We now turn to the regulation of emissions with a permit market.

5. NONCOOPERATIVE EQUILIBRIA WITH A PERMIT MARKET

To control the pollution caused by production activities, we introduce a permit
market (see Montero 2009; Godal 2011; Lange 2012; De Feo et al. 2013; Schwartz
and Stahn 2013; Hintermann 2017; Dickson and MacKenzie 2018, Christin et al.
2021, among others). Let r be the permit price in terms of good Y . The price
vector is now given by (pX ; 1; r). To simplify, we assume perfect competition on the
permit market, so the price r is given (for a justi�cation, see notably Montero 2009;
Crettez et al. 2021). In this context, each trader i 2 f1; 2g is initially endowed
with an amount �ei of pollution permits.18

Given an n + 2-tuple of strategies (q1; q2(q1);b(q1)) 2
Q
iQi �

Q
j Bj , and

a vector of endowment of permits (�e1; �e2), the incomes of traders (12) and (13)
are now given by �1(e1; (:)) := pX(:)q1 � 
e1 + r(�e1 � e1)) and �2(e2; (:)) :=
pX(:)q2(q1) � 
2e2 + r(�e2 � e2)), where r(�ei � ei) represents trader i�s net pur-
chase of emission rights; i = 1; 2. The resulting allocation is given by (x1; y1) =

( 
�1
e1 � q1;

Pn
j=1 bj(q1)

q1+q2(q1)
q1 � 
e1 + r(�e1 � e1)) for the leader, and by (x2; y2) =

( 
�2
e2 � q2(q1);

Pn
j=1 bj(q1)

q1+q2(q1)
q2(q1)� 
e2 + r(�e2 � e2)) for the follower. With a slight

abuse of notations, let �i(:) for �i(qi; ei). Therefore, the payo¤s of trader i 2 f1; 2g
in � with a pemit market may be written:

�1(:) =

�



�1
e1 � q1

�� Pn
j=1 bj(q1)

q1 + q2(q1)
q1 � 
e1 + r(�e1 � e1)

!1��
, (32)

18 Indeed, we could write �e1 = �e and �e2 = (1 � �)e, � 2 [0; 1], with e as the legal maximum
aggregate level of pollution.
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�2(:) =

�



�2
e2 � q2(q1)

�� Pn
j=1 bj(q1)

q1 + q2(q1)
q2(q1)� 
e2 + r(�e2 � e2)

!1��
. (33)

With an abuse of notation, the terms ~e1(r) and ~e2(r) will respectively designate
the emission of the leader and the follower at the CNE with a permit market.19

Therefore, the market clearing condition on the permit market may be written as:

~e1(r) + ~e2(r) = �e1 + �e2. (34)

We will state three kinds of results. First, we compute the SNE with a pollution
permits market. Second, we study the e¤ect of an increase in the price of permits
on the emissions of traders. Third, we study the e¤ect of an increase in the price of
permits on the payo¤s of type II traders.

PROPOSITION 10. The interior SNE strategy pro�les and emissions pro�les of
� with a permit market are given by:

(~q1(r); ~q2(r)) =
�




+r ~q1;




+r ~q2

�
;

(~e1(r); ~e2(r)) =
�

�

+r r�e1 +




+r ~e1;

�

+r r�e2 +




+r ~e2

�
;

~bj(r) =
�
n
n�1
n�� , j = 1; :::; n.

PROOF. See Appendix F.�
REMARK 5. The net purchase of emissions, i.e., the quantity (~ei(r) � �ei), is

such that ~ei(r) � �ei T 0 whenever �ei S 


+(1��)r ~ei, with




+(1��)r < 1, where

(~ei(r)� �ei) = 


+r ~ei �


+(1��)r

+r �ei.20

We turn now to the e¤ect of an increase in the price of permits on trader i�s
emissions.

PROPOSITION 11. The emissions of trader i increases (resp. decreases) with
the price of permits whenever �ei > ~ei

� (resp. �ei < ~ei
� ). Moreover, the emissions do

not change with the price of permit when �ei = ~ei
� .

PROOF. Consider the leader�s emissions ~e1(r) = �

+r r�e1 +




+r ~e1 (a similar

reasoning may be handled for the follower). Some computations yield:

@~e1(r)

@r
=

�


(
 + r)2

�
�e1 �

1 + �

4


�2
�1

n� 1
n� �

�
.

As by Proposition 1 the leader�s emissions are given by ~e1 =
�(1+�)
4


�2
�1

n�1
n�� ,

then, we have:

@~e1(r)

@r
T 0 whenever �e1 T

1 + �

4


�2
�1

n� 1
n� � =

~e1
�
.

�
Emission behavior depends on the amount of the initial allocation of pollution

rights. The emissions of a single trader increase (resp. decrease) with the price of

19Recall that ~e1 and ~e2 represent the emissions without a permit market: no confusion will
arise.
20Obviously we have

P2
i=1(~ei(r)� �ei) = 0.
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permits when the endowment of permits is strictly higher (resp. lower) than the
level of emissions without the permits market. Indeed, by using Remark 5, trader
i�s net purchase of emissions increases (resp. decreases) with the price of permits
whenever �ei > ~ei

� (resp. �ei <
~ei
� ). Moreover, when the preference for commodity X

is low, i.e., when � is low, a rise in the price of permits cannot lead to an increase
of the emissions unless the endowment of permits is large enough. Finally, the
emission behavior is not modi�ed when the endowment of permits depends linearly
on the emissions without the permits market. Here the e¤ect of an increase in the
price of permits on polluting behavior does not pass through marginal costs, unlike
the two taxation mechanisms. Indeed, insofar as permit allocations are �xed, if
one trader, either the leader or the follower, increases her emissions, then the other
must decrease them. The same kind of results holds in the CNE with pollution
permits (see (G11) in Appendix G).

We determine now the SNE relative price, allocations, and the corresponding
payo¤s with a pollution permit market. The market price is given by:

~pX(r) = 2�1

 + r



. (35)

Therefore, the allocations to type I traders are given by:

(~x1(r); ~y1(r)) =

�
r�e1 +

�

4

�2
�1

n� 1
n� �

��
�

�1





 + r
; 1� �

�
; (36)

(~x2(r); ~y2(r)) =

 
r�e2 + �

�
1� 1

2

�2
�1

�2
n� 1
n� �

!�
�

�2





 + r
; 1� �

�
, (37)

and the allocation to type II traders are given by:

(~xj(r); ~yj(r)) =

�
1

2�1





 + r

�

n

n� 1
n� �;

1� �
n� �

�
, j = 1; :::; n. (38)

It is easy to see that the permits market does not lead to a Pareto-optimal
allocation. Indeed, the marginal rates of substitution are given by:

MRSi = �i

 + r



, i = 1; 2, (39)

MRSj = 2�1

 + r




n

n� 1 ; j = 1; :::; n, (40)

and, they di¤er across traders. The reason stems once again from the strategic
behavior of traders.

Finally, the next proposition considers the e¤ect of an increase in the price of
permits on the payo¤s of type II traders.

PROPOSITION 12. The payo¤s of type II traders decrease (resp. does not mod-
ify) with the price of permits (resp. either when the traders strongly prefer commod-
ity Y or when there is a large number of type II traders).

PROOF. Immediate. For each j = 1; :::n, we have that:

~�j(r) =

�
� 1
2�1

n�1
n




+r

��
(1� �)1��

n� � � �(~e1(r) + ~e2(r)).

19



By using the market clearing condition ~e1(r) + ~e2(r) = �e1 + �e2, we deduce:

8j 2 f1; :::; ng @~�j(r)
@r

= � �


 + r

�
� 1
2�1

n�1
n




+r

��
(1� �)1��

n� � < 0.

Otherwise, we have that

8j 2 f1; :::; ng lim
�!0

@~�j(r)

@r
= lim

n!+1

@~�j(r)

@r
= 0.

�
Therefore, the welfare of type II traders cannot be improved with a competitive

permit market when the polluting commodity is desirable. Besides, there are two
conditions under which trader j�s payo¤ does not decrease with the price of permit.
First, when the preference for commodity X is low, a rise in the price of permits
cannot lead to an increase of emissions (from a single trader) unless the endowment
of permits is large enough (by virtue of Proposition 11). Moreover, since consumers
of type II have a low preference for the polluting good, the increase in the price of
permits has little impact on their payo¤s. In addition, if there were a large number
of traders who compete for selling commodity Y , i.e., if this side of the market were
perfectly competitive, the increase in the price of permits were dominated by the
decrease in emissions. Finally, this result is not speci�c to Stackelberg competition
as it can also hold under Cournot competition (see Appendix G). Nevertheless,
Proposition 12 holds as soon as the permits market is competitive, but its conclusion
fails when strategic behavior a¤ects the price of permits as in Godal and Holtsmark
(2010), and Dickson and MacKenzie (2018).

6. CONCLUDING REMARKS

Our model introduces pollution in a two-stage strategic market game. It can �nd,
for instance, an echo in international trade with resource specialization. Indeed,
heterogeneous strategic agents whose market power di¤er, and who live in two
distinct countries would compete on quantity on the world market. The production
activity of one country pollutes the other country through a negative externality on
some traders. The problem is to determine whether emissions levels can be reduced
either via two taxation mechanisms or via a permit market when all traders behave
strategically.

The sequential strategic setting is critical. Indeed, with Stackelberg-Nash com-
petition, the strategies of the polluting traders can be either substitutes or comple-
ments, while with Cournot competition they are only complements. We show it has
some implications on emissions�behavior, through the di¤erence in costs, and also
on the e¤ects of regulatory policies. Two kinds of regulation are considered to limit
the emissions: two taxation mechanisms (ad valorem taxation on emissions and per
unit taxation on the relative price) and one permit market. The main conclusions
are as follows.

First, a per unit tax on strategies led to reduce the emissions of the leader (resp.
follower) whenever the strategies of the leader and of follower were substitutes
(through the di¤erence in marginal costs). In addition, a per unit tax reduced
the emissions provided the producers had the same marginal costs. Moreover, the
per unit tax was Pareto improving for the nonpolluting traders when the e¤ect of
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this tax on emissions was stronger than the decrease in their utility caused by the
strategic behavior of the polluting traders.
Second, agents�preferences played a critical role when we considered the e¤ect

of the price of permits on emissions�behavior. Indeed, the payo¤s type II traders
(those who are pure consumers, by respect to type I traders who are consumers and
producers at the same time) decreased with the price of permits unless either when
there was a large number of traders of type II, who are pure consumers, or when
the consumers strongly preferred the non-produced commodity. Thus, we showed
that the welfare could not be improved with a competitive permit market when the
polluting commodity was desirable.

To put in a nutshell: the performance of �scal policies merely depended on the
polluting traders�technologies through the parameters of productivity, while in the
case of a permit market, this performance merely depended on agents�preference
for the polluting commodity, and on the number of market participants, i.e., on the
degree of competition. Moreover, in the case of �scal policies, the sequentiality of
decisions matter, while it did not matter with a competitive permit market.

The model we study is based on certain assumptions whose relaxation could be
the subject of future research. Our model was linear in the production and the
polluting technologies, and without abatements costs. Nonlinearities in the tech-
nology and dynamic analysis such as in the introduction of time in the production
activity (with abatements costs) could also be considered.

7. APPENDIX

7.1. Appendix A: proof of Proposition 1

Let us solve the game � by backward induction. To this end, consider, in the
second stage of the game, the behavior of both types of followers. The problems of
follower of type I and of type II may be written:

max
(e2;q2)

�



�2
e2 � q2

�� Pn
j=1 bj

q1 + q2
q2 � 
e2

!1��
, (A1)

max
bj

 
q1 + q2

bj +
P

�j 6=j b�j
bj

!��
1

n
� bj

�1��
� �(e1 + e2), j = 1; :::; n. (A2)

The su¢ cient �rst-order conditions for an interior solution for the follower of
type I, i.e., @�2(q1;q2;b)@q2

= 0 and @�2(q1;q2;b)
@e2

= 0, may be written as:

"
��

 Pn
j=1 bj

q1 + q2
q2 � 
e2

!
+ (1� �)

Pn
j=1 bj

(q1 + q2)2
q1

�



�2
e2 � q2

�#
A = 0, (A3)

"
�



�2

 Pn
j=1 bj

q1 + q2
q2 � 
e2

!
� (1� �)


�



�2
e2 � q2

�#
A = 0, (A4)

where A �
�


�2
e2 � q2

���1 �Pn
j=1 bj

q1+q2
q2 � 
e2

���
. For the followers of type II, we

have @�j(e1;e2;q;bj ;b�j)
@bj

= 0, j 2 f1; :::; ng, which may be written as:
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"
�

P
�j;�j 6=j b�j

(bj +
P

�j;�j 6=j b�j)
2

�
1

n
� bj

�
� (1� �) bj

bj +
P

�j;�j 6=j b�j

#
A0 = 0, (A5)

where A0 �
�

q1+q2
bj+

P
�j;�j 6=j b�j

bj

���1 �
1
n � bj

���
.

From (A3) and (A4), we deduce:Pn
j=1 bj

(q1 + q2)2
q1 = �2. (A6)

The solution to (A5) and to (A6) yield the best responses, which we denote
with a slight abuse of notations as q2 = q2(q1;b) and bj = bj(q1; q2;b�j), with:

q2(q1;b) = �q1 +
s
1

�2

nP
j=1

bjq1, (A7)

bj(q1; q2;b�j) =
�
P

�j;�j 6=j b�j +
q
(
P

�j;�j 6=j b�j)
2 + 4�(1��)

n

P
�j;�j 6=j b�j

2(1� �) .

(A8)
As all traders of the same type (here of type II) have the same endowments and

utility functions, their payo¤s are symmetric in bj and b�j , for all j 6= �j. Then,
they must adopt the same strategy at equilibrium, i.e. bj = b�j , for all j 6= �j, we
have that:

bj =
�

n

n� 1
n� � , j = 1; :::; n; (A9)

Therefore, in the �rst stage of the game, the market price may be written as

a function of q1, with pX(q1) =
Pn

j=1 bj(q1)

q1+q2(q1)
=
q
��2

n�1
n��q1, so the problem of the

leader may be written:

(~e1; ~q1) 2 argmax
�



�1
e1 � q1

�� r
��2

n� 1
n� �q1 � 
e1

!1��
. (A10)

As the price function
q
��2

n�1
n��q1 is strictly concave in q1, the �rst-order con-

ditions , namely @�1(q1;q2(q1);b)
@q1

= 0 and @�1(q1;q2(q1);b)
@e1

= 0, are su¢ cient, and they
may be written as:

"
��

 r
�2�

n� 1
n� �q1 � 
e1

!
+
1� �
2

r
��2

n� 1
n� �q

� 1
2

1

�



�1
e1 � q1

�#
A00 = 0,

(A11)

"
�



�1

 r
��2

n� 1
n� �q1 � 
e1

!
� (1� �)


�



�1
e1 � q1

�#
A00 = 0, (A12)
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where A00 �
�

1
�1
e1 � q1

���1 �q
��2

n�1
n��q1 � 
1e1

���
.

By considering the terms in brackets in (A3) an (A4), and by equalizing and
cancelling, we have:

1

2

r
��2

n� 1
n� �q

� 1
2

1 = 
. (A13)

The solution to (A13) yields the equilibrium strategy of the leader:

~q1 =
�

4

�2
(�1)

2

n� 1
n� � . (A14)

From (A7) and (A9), we deduce the equilibrium strategies of the followers:

~q2 =
�

2�1

n� 1
n� � (1�

1

2

�2
�1
), (A15)

~bj =
�

n

n� 1
n� � , j = 1; :::; n. (A16)

Then, the equilibrium relative price is given by:

~pX = 2�1. (A17)

By using (A12), we can deduce the leader�s emissions at the SNE:

~e1 =
�(1 + �)

4


�2
�1

n� 1
n� � . (A18)

And, by using (A4), (A15), and (A17), we deduce the follower�s emissions:

~e2 =
�



(1� 1

2

�2
�1
)(
2��1 + (1� �)�2

2�1
)
n� 1
n� � . (A19)

The magnitudes given by (A14)-(16) and (A18)-(A19) correspond to the mag-
nitudes given in Proposition 1. Finally, by using (A14)-(A19) we can deduce (17)-
(22).�

7.2. Appendix B: proof of Proposition 4

Consider now the computation of the CNE in which all traders behave in a
simultaneous move game. The problems of all traders may be written:

max
(ei;qi)

�



�i
ei � qi

�� Pn
j=1 bj

q1 + q2
qi � 
ei

!1��
, i = 1; 2, (B1)

max
bj

 
q1 + q2

bj +
P

�j 6=j b�j
bj

!��
1

n
� bj

�1��
� �(e1 + e2), j = 1; :::; n. (B2)

The su¢ cient �rst-order conditions for an interior solution are given by (A5)
for j 2 f1; :::; ng, and by (B3)-(B4) for i 2 f1; 2g, with:
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"
��

 Pn
j=1 bj

qi + q�i
qi � 
ei

!
+ (1� �)

Pn
j=1 bj

(qi + q�i)2
q�i

�



�i
ei � qi

�#
B = 0, (B3)

"
�



�1

 Pn
j=1 bj

qi + q�i
qi � 
ei

!
� (1� �)


�



�i
ei � qi

�#
B = 0, i = 1; 2, (B4)

where B �
�


�i
ei � qi

���1 �Pn
j=1 bj

qi+q�i
qi � 
ei

���
.

The solutions to these equations are the best responses, which may be written:

q1(q2;b) = �q2 +
s
1

�1

nP
j=1

bjq2, (B5)

q2(q1;b) = �q1 +
s
1

�2

nP
j=1

bjq1, (B6)

bj(q1; q2;b�j) =
�

n

n� 1
n� � , j = 1; :::; n, (B7)

where all traders of the same type (here of type II) must adopt the same strategy
at equilibrium, i.e. bj = b�j , for all j 6= �j.
The solutions to (B5)-(B7) are given by:

(q̂1; q̂2) =

�
��2

(�1 + �2)
2

n� 1
n� �;

��1
(�1 + �2)

2

n� 1
n� �

�
, (B8)

b̂j =
�

n

n� 1
n� �; j = 1; :::; n. (B9)

Therefore, the equilibrium relative market price is given by:

p̂X = �1 + �2. (B10)

Then, we deduce the emissions:

(ê1; ê2) =

�
�




�2(�1 + ��2)

(�1 + �2)
2

n� 1
n� �;

�




�1(�2 + ��1)

(�1 + �2)
2

n� 1
n� �

�
. (B11)

The allocations are then:

(x̂1; ŷ1) =

 
1

�1

�
��2

�1 + �2

�2
n� 1
n� �; �(1� �)

�
�2

�1 + �2

�2
n� 1
n� �

!
, (B12)

(x̂2; ŷ2) =

 
1

�2

�
��1

�1 + �2

�2
n� 1
n� �; �(1� �)

�
�1

�1 + �2

�2
n� 1
n� �

!
, (B13)

(x̂j ; ŷj) =

�
�

�1 + �2

1

n

n� 1
n� �;

1� �
n� �

�
, j = 1; :::; n. (B14)
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Therefore, the CNE payo¤s of traders i = 1; 2 are given by:

�̂1 = �
�+1

�
�2

�1 + �2

�2�
1

�1

��
(1� �)1�� n� 1

n� � , (B15)

�̂2 = �
�+1

�
�1

�1 + �2

�2�
1

�2

��
(1� �)1�� n� 1

n� � , (B16)

and, the CNE payo¤s of traders j 2 f1; :::; ng are given by:

�̂j =

�
�

�1+�2

n�1
n

��
(1� �)1��

n� � � ���2(�1 + ��2) + �1(�2 + ��1)

(�1 + �2)

2

n� 1
n� � . (B17)

�

7.3. Appendix C: proof of Proposition 6

In this Appendix we determine the SNE emissions by encompassing the two
taxation mechanisms. To this end, let (t; �) 2 [0; 1]2, and let us rewrite the payo¤s
(23)-(26), with �i(:) � �i(ei; qi;q�i;b; t; �), i = 1; 2, as follows:

�1(:) =

�



�1
(1� t)e1 � q1

��  Pn
j=1 bj(q1)

q1 + q2(q1)
� �
!
q1 � 
(1� t)e1

!1��
, (C1)

�2(:) =

�



�2
(1� t)e2 � q2(q1)

��  Pn
j=1 bj(q1)

q1 + q2(q1)
� �
!
q2(q1)� 
(1� t)e2

!1��
.

(C2)
Consider the followers. The best response of trader j of type II is given by

(A9). Consider the follower of type I. Di¤erentiating the above expression (C2)
with respect to q2 and e2 leads to the su¢ cient �rst-order conditions:

@�2(:)
@q2

=
n
��

h�Pn
j=1 bj

q1+q2
� �
�
q2 � 
(1� t)e2

i
+

(1� �)
hPn

j=1 bjq1

(q1+q2)2
� �
i �



�2
(1� t)e2 � q2

�o
C = 0

(C3)

and

@�2(:)
@e2

=
n
� 

�2
(1� t)

h�Pn
j=1 bj

q1+q2
� �
�
q2 � 
(1� t)e2

i
�

(1� �)
(1� t)
�


�2
(1� t)e2 � q2

�o
C = 0,

(C4)

where C �
�


�2
(1� t)e2 � q2

���1 ��Pn
j=1 bj

q1+q2
� �
�
q2 � 
(1� t)e2

���
.

Therefore, from (C2)-(C4) and (A9), the best responses of followers may be
written:

q2(q1;b; �) = �q1 +

sPn
j=1 bjq1

�2 + �
, (C5)
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bj(q1; q2;b�j ; �) =
�

n

n� 1
n� � , j 2 f1; :::; ng. (C6)

Therefore, in the �rst stage of the game, the problem of the leader may be
written:

max
q1

�



�1
(1� t)e1 � q1

�� s
(�2 + �)

nP
j=1

bjq1 � �q1 � 
(1� t)e1

!1��
. (C7)

The �rst-order conditions, i.e., @�1(q1;q2(q1);b;t;�)@q1
= 0 and @�1(q1;q2(q1);b;t;�)

@e1
= 0,

may be written:

n
��

hq
(�2 + �)

Pn
j=1 bjq1 � �q1 � 
(1� t)e1

i
+

(1� �)
h
1
2

q
� n�1n�� (�2 + �)q

� 1
2

1 � �
i �



�1
(1� t)e1 � q1

�o
C 0 = 0,

(C8)

and n
� 

�1
(1� t)

hq
(�2 + �)

Pn
j=1 bjq1 � �q1 � 
(1� t)e1

i
�

(1� �)
(1� t)
�


�1
(1� t)e1 � q1

�o
C 0 = 0,

(C9)

where C 0 �
�


�1
(1� t)e1 � q1

���1 �q
(�2 + �)

Pn
j=1 bjq1 � �q1 � 
(1� t)e1

���
.

The solution to (C7)-(C8) is given by:

~q1(t; �) =
�

4

�2 + �

(�1 + �)
2

n� 1
n� � ; (C10)

Then, from (C4), we deduce:

~q2(t; �) =
�

2

1

�1 + �

�
1� 1

2

�2 + �

�1 + �

�
n� 1
n� � , (C11)

which by letting (~q01; ~q
0
2) � (~q1(t; �); ~q2(t; �)) yields the values of Proposition 5.

Indeed, the market price is:

~pX(t; �) = 2(�1 + �). (C12)

By using the �rst-order conditions (C3)-(C4) and (C8)-(C9), we deduce:

~e1(t; �) =
(1 + �)�1 + ��


(1� t) ~q1(t; �) (C13)

~e2(t; �) =
�[(2(�1 + �)� �)] + (1� �)�2(1� �)


(1� t) ~q2(t; �), (C14)

which by letting (~e01; ~e
0
2) � (~e1(t; �); ~e2(t; �)) yields the values of Proposition 5.�
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7.4. Appendix D: CNE with taxations

We determine the CNE emissions by encompassing the two taxation mecha-
nisms. To this end, consider the payo¤s given by:

�1(:) =

�



�1
(1� t)e1 � q1

��  Pn
j=1 bj

q1 + q2
� �
!
q1 � 
(1� t)e1

!1��
, (D1)

�2(:) =

�



�2
(1� t)e2 � q2

��  Pn
j=1 bj

q1 + q2
� �
!
q2 � 
(1� t)e2

!1��
. (D2)

�j(:) =

 
q1 + q2

bj +
P

�j 6=j b�j
bj

!��
1

n
� bj

�1��
� �(e1 + e2), j = 1; :::; n. (D3)

The su¢ cient �rst-order conditions for an interior solution are given by (A5)
for j 2 f1; :::; ng, and by (E4) and (E5) for each i 2 f1; 2g:n

��
h�Pn

j=1 bj

qi+q�i
� �
�
qi � 
(1� t)ei

i
+

(1� �)
�Pn

j=1 bjq�i
(qi+q�i)2

� �
��



�i
(1� t)ei � qi

�o
D = 0

(D4)

n
� 

�i
(1� t)

h�Pn
j=1 bj

qi+q�i
� �
�
qi � 
(1� t)ei

i
�

(1� �)
(1� t)
�


�i
(1� t)ei � qi

�o
D = 0,

(D5)

where D �
�


�i
(1� t)ei � qi

���1 ��Pn
j=1 bj

q1+q2
� �
�
qi � 
(1� t)ei

���
.

The solutions to these equations and to (A5) are given by:

q1(q2;b;�) = �q2 +
s

1

�1 + �

nP
j=1

bjq2, (D6)

q2(q1;b;�) = �q1 +
s

1

�2 + �

nP
j=1

bjq1, (D7)

bj(q1; q2;b�j ; �) =
�

n

n� 1
n� � , j = 1; :::; n, (D8)

where all traders of the same type (here of type II) must adopt the same strategy
at equilibrium, i.e. bj = b�j , for all j 6= �j.
The solution is given by:

q̂1(t; �) = �
�2 + �

(�1 + �2 + 2�)
2

n� 1
n� � , (D9)

q̂2(t; �) = �
�1 + �

(�1 + �2 + 2�)
2

n� 1
n� � , (D10)

b̂j(t; �) =
�

n

n� 1
n� �; j = 1; :::; n. (D11)
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Therefore, the equilibrium relative price is given by:

p̂X(t; �) = �1 + �2 + 2� . (D12)

By using the �rst-order conditions, we deduce the emissions:

ê1(t; �) = �
(�2 + �)[�(�2 + �) + �1]


(1� t)(�1 + �2 + 2�)2
n� 1
n� � , (D13)

ê2(t; �) = �
(�1 + �)[�(�1 + �) + �2]


(1� t)(�1 + �2 + 2�)2
n� 1
n� � . (D14)

�

7.5. Appendix E: proof of Proposition 8

Consider the SNE with emissions. By using the expressions of ~e1(t; �) and
~e2(t; �) given in Proposition 6, and by assuming t = 0, we deduce:

~e1(�) = �
[(1 + �)�1 + �� ](�2 + �)

4
(�1 + �)
2

n� 1
n� � ; (E1)

~e2(�) = �
[�(2�1 + �) + (1� �)�2]

�
1� 1

2
�2+�
�1+�

�
2
(�1 + �)

n� 1
n� � . (E2)

Let ~� be the solution to � ~q1(�) + � ~q2(�) = G. Some computations lead to:

~� =
2�1G

� n�1n�� � 2G
. (E3)

By using (E1) and (E2), we deduce:

@~e1(�)

@�
j�=~�= ��

[(1 + �)�1 + �~� ](�2 � �1) + �1(�2 + ~�)
4
(�1 + ~�)

3

n� 1
n� � . (E4)

@~e2(�)

@�
j�=~�= ��

2[�(2�1 + ~�) + (1� �)�2](�1 � �2) + �2(�1 + ~�)
4
(�1 + ~�)

3

n� 1
n� � . (E5)

Then, we have that:

@~e1(�)

@�
j�=~�= �Hf�(1 + �)

n� 1
n� � � 4G](�2 � �1) + ��2

n� 1
n� �g, (E6)

and

@~e2(�)

@�
j�=~�= �Hf2[2�(�

n� 1
n� ��G)+(1��)

�2
�1
(�
n� 1
n� ��2G)](�1��2)+��2

n� 1
n� �g,

(E7)

where H � 1



�
� n�1
n���2G
2��1

n�1
n��

�2
> 0.

Then, as 0 < G < �
2

1
1+�1

n�1
n�� , we have:
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and

@~e1(�)
@� j�=~�< 0 if �2 > �1;

@~e2(�)
@� j�=~�< 0 if �1 > �2.

(E8)

Finally, consider the emissions at the SNE when �1 = �2. Let �1 = �2 = � in
(E1) and (E2). Then, we have:

~e1(�) = �
[(1 + �)� + �� ]

4
(� + �)

n� 1
n� � ; (E1)

~e2(�) = �
[(1 + �)� + �� ]

4
(� + �)

n� 1
n� � . (E2)

Therefore, we have that:

@~ei(�)

@�
j�=~�= �

��

4


�
1

� + ~�

�2
< 0 if �1 = �2 = �, i = 1; 2, (E9)

where the equilibrium tax ~� is now given by ~� = (1+�)�
2 (

q
1 + 1

2


�
n��
n�1

1
((1+�)�)2G�

1).�

7.5.1. Supplement to Appendix E.

Consider the CNE with emissions. By using the expressions of ê1(� ; t) and
ê2(� ; t) given by (D13) and (D14) in Appendix D and by assuming t = 0, we
deduce:

ê1(�) =
�




(�2 + �)[�(�2 + �) + �1]

(�1 + �2 + 2�)
2

n� 1
n� � (E10)

ê2(�) =
�




(�1 + �)[�(�1 + �) + �2]

(�1 + �2 + 2�)
2

n� 1
n� � . (E11)

Then, we have that:

@ê1(�)

@�
j�=�̂= �

�




2�(�2 + �̂)(�2 � �1) + 2�1�̂ + �1�2(3�
�1
�2
)

(�1 + �2 + 2�̂)
3

n� 1
n� �; (E12)

@ê2(�)

@�
j�=�̂= �

�




2�(�1 + �̂)(�1 � �2) + 2�2�̂ + �1�2(3�
�2
�1
)

(�1 + �2 + 2�̂)
3

n� 1
n� � . (E13)

Then, if �1 = �2, then
@ê1(�)
@� j�=�̂< 0 and @ê2(�)

@� j�=�̂< 0. Otherwise, either
@ê1(�)
@� j�=�̂< 0 if �2 > �1, or @ê2(�)

@� j�=�̂< 0 if �1 > �2.�
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7.6. Appendix F: proof of Proposition 10

Consider, in the second stage of the game, the behavior of the follower of type
I (the problem of each follower of type II is not modi�ed), which may be written:

max
(e2;q2)

�



�2
e2 � q2

�� Pn
j=1 bj

q1 + q2
q2 � 
e2 + r(�e2 � e2)

!1��
. (F1)

Di¤erentiating (F1) with respect to q2 and e2 leads to the su¢ cient �rst-order
conditions:

@�2(:)
@q2

=
n
��

hPn
j=1 bj

q1+q2
q2 � 
e2 + r(�e2 � e2)

i
+

(1� �)
Pn

j=1 bj

(q1+q2)2
q1

�


�2
e2 � q2

�o
E = 0,

(F2)

and

@�2(:)
@e2

=
n
� 

�2

hPn
j=1 bj

q1+q2
q2 � 
e2 + r(�e2 � e2)

i
�

(1� �)(
 + r)
�


�2
e2 � q2

�o
E = 0,

(F3)

where E �
�


�2
e2 � q2

���1 �Pn
j=1 bj

q1+q2
q2 � 
e2 + r(�e2 � e2)

���
.

By following the same procedure as in Appendices A and C, the best response
of follower j is given by (A9), i.e., bj = �

n
n�1
n�� , j = 1; :::; n.

q2(q1;b; r) = �q1 +
s
1

�2





 + r

nP
j=1

bjq1. (F4)

Therefore, in the �rst stage of the game, the problem of the leader may be
written:

max
(e1;q1)

�



�1
e1 � q1

���r
��2


 + r




n� 1
n� �q1 � 
e1 + r(�e1 � e1)

�1��
. (F5)

The su¢ cient �rst-order conditions (the function
q
��2


+r



n�1
n��q1 is strictly

concave in q1), namely @�1
@q1

= 0 and @�1
@e1

= 0, may be written:

f��[
q
��2

n�1
n��q1 � 
e1 + r(�e1 � e1)] +

(1��)
q
��2


+r



n�1
n�� q

� 1
2

1 ( 

�1
e1�q1)

2 gE0 = 0
(F6)

and

[�


q
��2


+r



n�1
n�� q1�
e1+r(�e1�e1)

�1
� (1� �)(
 + r)( 
�1 e1 � q1)]E

0 = 0 (F7)

where E0 �
�


�1
e1 � q1

���1 �q
��2


+r



n�1
n��q1 � 
e1 + r(�e1 � e1)

���
.

By considering the terms in brackets in (F6) and (F7), and by equalizing and
cancelling, leads to:

30



1

2

r
��2


 + r




n� 1
n� �q

� 1
2

1 = �1

 + r



. (F8)

The solution of (F8) yields the equilibrium strategy of the leader:

~q1(r) = �
�2

4(�1)
2





 + r

n� 1
n� � . (F9)

From (F4), we deduce the equilibrium strategy of the follower of type I:

~q2 =
�

2�1

n� 1
n� �

�
1� 1

2

�2
�1

�
(F10)

We also have ~bj = �
n
n�1
n�� , j = 1; :::; n. Therefore, the market price is given by:

~pX(r) =

 + r



~pX . (F11)

From (F5) and (F9), we deduce the leader�s level of emissions:

~e1(r) =
�


 + r
r�e1 +

�(1 + �)


 + r

�2
4�1

n� 1
n� � , (F12)

and from (F3) and (F10), we deduce the follower�s level of emissions:

~e2(r) =
�


 + r
r�e2 +

�


 + r

�
1� 1

2

�2
�1

��
2��1 + (1� �)�2

2�1

�
n� 1
n� � , (F13)

which are the magnitudes of Proposition 10. Finally, we deduce (35)-(40).�

7.7. Appendix G: CNE with pollution permit market

The market clearing condition on the permit market may be written here ê1(r)+
ê2(r) = �e1 + �e2., where ê1(r) and ê2(r) will denote the emissions of tle leader and
the follower at the CNE.
The problems of all traders may be written:

max
(e1q1)

�



�i
ei � qi

�� Pn
j=1 bj

q1 + q2
qi � 
ei + r(�ei � ei)

!1��
, i = 1; 2, (G1)

max
bj

 
q1 + q2

bj +
P

�j 6=j b�j
bj

!��
1

n
� bj

�1��
� �(e1 + e2), j = 1; :::; n. (G2)

The su¢ cient �rst-order conditions for an interior solution are given by (A5)
for j 2 f1; :::; ng, and by (G3)-(G4) for i 2 f1; 2g, with:

f��[
Pn

j=1 bj

qi + q�i
qi�
ei+r(�ei�ei)]+(1��)

Pn
j=1 bj

(qi + q�i)2
q�i

�



�i
ei � qi

�
gF = 0, (G3)
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f� 

�1
[

Pn
j=1 bj

qi + q�i
qi � 
ei + r(�ei � ei)]� (1� �)


�



�i
ei � qi

�
gF = 0, i = 1; 2, (G4)

where F �
�


�i
ei � qi

���1 �Pn
j=1 bj

qi+q�i
qi � 
ei + r(�ei � ei)

���
.

The solutions to (G3)-(G4) are the followers�best responses, which are given
by:

q1(q2;b; r) = �q2 +
s
1

�1





 + r

nP
j=1

bjq2, (G5)

q2(q1;b; r) = �q1 +
s
1

�2





 + r

nP
j=1

bjq1, (G6)

bj(q1; q2;b�j ; r) =
�

n

n� 1
n� � , j = 1; :::; n, (G7)

where all traders of the same type (here of type II) must adopt the same strategy
at equilibrium, i.e. bj = b�j , for all j 6= �j.
The solutions to (G5)-(G7) are given by:

(q̂1(r); q̂2(r)) =

�
��2

(�1 + �2)
2





 + r

n� 1
n� �;

��1
(�1 + �2)

2





 + r

n� 1
n� �

�
, (G8)

b̂j(r) =
�

n

n� 1
n� �; j = 1; :::; n. (G9)

Therefore, the equilibrium relative market price is given by:

p̂X(r) = (�1 + �2)

 + r



. (G10)

Then, we deduce the emissions:

(ê1(r); ê2(r)) =

�
�

r


 + r
�e1 +





 + r
ê1; �

r


 + r
�e2 +





 + r
ê2

�
, (G11)

where ê1 and ê2 are given by (B11) in Appendix B.
The allocations are then:

(x̂1(r); ŷ1(r)) =

�
�



�1

r


 + r
�e1 +





 + r
x̂1; (1� �)r�e1 + ŷ1

�
, (G12)

(x̂2(r); ŷ2(r)) =

�
�



�2

r


 + r
�e2 +





 + r
x̂2; (1� �)r�e2 + ŷ2

�
, (G13)

(x̂j(r); ŷj(r)) =

�




 + r

�

�1 + �2

1

n

n� 1
n� �;

1� �
n� �

�
, j = 1; :::; n. (G14)

Therefore, the CNE payo¤s of type I traders are given by:
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�̂1(r) =

�
�



�1

r


 + r
�e1 +





 + r
x̂1

��
((1� �)r�e1 + ŷ1)1�� , (G15)

�̂2(r) =

�
�



�2

r


 + r
�e2 +





 + r
x̂2

��
((1� �)r�e2 + ŷ2)1�� , (G16)

and, from the market clearing condition on the permits market, i.e., ê1(r)+ ê2(r) =
�e1 + �e2, the payo¤s of type II traders are given by:

�̂j(r) =

�
�

�1+�2




+r

n�1
n

��
(1� �)1��

n� � � �
 + �r

 + r

(�e1 + �e2). (G17)

Finally, we have that:

@�̂j(r)

@r
= �� (1� �)


(
 + r)2

h
�

(1��)
1

�1+�2

n�1
n

i�
(
+r
 )1��

n� � < 0. (G18)

Therefore, we conclude:

@�̂j(r)

@r
= 0 either when �! 0 or when n! +1: (G19)

�
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