
HAL Id: hal-04159840
https://hal.science/hal-04159840v1

Submitted on 12 Jul 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Global Output Feedback Stabilization of Semilinear
Reaction-Diffusion PDEs
Hugo Lhachemi, Christophe Prieur

To cite this version:
Hugo Lhachemi, Christophe Prieur. Global Output Feedback Stabilization of Semilinear Reaction-
Diffusion PDEs. CPDE - 4th IFAC Workshop on Control of Systems Governed by Partial Differential
Equations, Sep 2022, Kiel, Germany. pp.53-58, �10.1016/j.ifacol.2022.10.376�. �hal-04159840�

https://hal.science/hal-04159840v1
https://hal.archives-ouvertes.fr


Global Output Feedback Stabilization of
Semilinear Reaction-Diffusion PDEs ?

Hugo Lhachemi ∗ Christophe Prieur ∗∗
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Abstract: This paper addresses the topic of global output feedback stabilization of semilinear
reaction-diffusion PDEs. The semilinearity is assumed to be confined into a sector condition.
We consider two different types of actuation configurations, namely: bounded control operator
and right Robin boundary control. The measurement is selected as a left Dirichlet trace. The
control strategy is finite dimensional and is designed based on a linear version of the plant.
We derive a set of sufficient conditions ensuring the global exponential stabilization of the
semilinear reaction-diffusion PDE. These conditions are shown to be feasible provided the order
of the controller is large enough and the size of the sector condition in which the semilinearity
is confined into is small enough.
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1. INTRODUCTION

The topic of feedback stabilization of linear reaction-
diffusion PDEs has been intensively studied in the lit-
erature (Boskovic et al., 2001; Liu, 2003) using dif-
ferent approaches such as backstepping (Krstic and
Smyshlyaev, 2008) and spectral reduction methods (Rus-
sell, 1978; Coron and Trélat, 2004). The extension of these
approaches to the stabilization of semilinear reaction-
diffusion PDEs remains challenging. Among the reported
contributions, one can find the study of stability by means
of strict Lyapunov functionals (Mazenc and Prieur, 2011),
control using quasi-static deformations (Coron and Trélat,
2004), state-feedback (Karafyllis and Krstic, 2019a,b;
Karafyllis, 2021) or network control (Wu et al., 2019).

This paper addresses the topic of output feedback stabi-
lization of 1-D semilinear reaction-diffusion PDEs. The
case of a state-feedback was studied in (Karafyllis and
Krstic, 2019a,b; Karafyllis, 2021). Using spectral reduction
methods and small gain arguments, the authors derived in
these works sufficient conditions on the size of the sector
condition (in which the nonlinearity is confined into) so
that the proposed control strategy achieves the global
exponential stabilization of the plant. However, the case of
the output feedback, as considered in this work, remains
challenging. In this context, we consider in this paper
the global output feedback stabilization of 1-D semilinear
reaction-diffusion PDEs with Dirichlet/Neumann/Robin
boundary conditions. Two different configurations for the
actuation scheme are investigated: bounded control oper-
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ator and right Robin boundary control. The measurement
is selected as the left Dirichlet trace. The reported out-
put feedback control strategy takes advantage of recent
developments regarding the finite-dimensional control of
parabolic PDEs (Curtain, 1982; Balas, 1988; Katz and
Fridman, 2020) by leveraging control architectures in-
troduced in (Sakawa, 1983). In particular, we adopt the
enhanced procedures reported in (Lhachemi and Prieur,
2022b,e) that allow the design in a generic and system-
atic manner of finite-dimensional observer-based control
strategies for general 1-D reaction-diffusion PDEs with
Dirichlet/Neumann/Robin boundary control and Dirich-
let/Neumann boundary measurements; these systematic
procedures have been successfully extended to delayed
boundary control (Lhachemi and Prieur, 2022a,f) and local
stabilization in the presence of a saturation (Lhachemi and
Prieur, 2022c,d). Assuming that the nonlinearity satisfies
a sector condition, we derive a set of sufficient LMI condi-
tions ensuring the global output feedback stabilization of
the plant. We show that the derived stability conditions
are always feasible when selecting the order of the observer
large enough and for a size of the sector condition small
enough.

The rest of the paper is organized as follows. Notations
and preliminary properties are summarized in Section 2.
The control design for semilinear reaction-diffusion PDEs
in the case of a bounded input operator and left Dirichlet
measurement is addressed in Section 3. Then, Section 4
reports the case of right Robin boundary control and left
Dirichlet measurement. Finally, concluding remarks are
formulated in Section 6.



2. NOTATION AND PROPERTIES

2.1 Notation

Real spaces Rn are equipped with the usual Euclidean
norm denoted by ‖ · ‖. The associated induced norms of
matrices are also denoted by ‖ · ‖. For any two vectors
X and Y , col(X,Y ) represents the vector [X>, Y >]>. The
space of square integrable functions on (0, 1) is denoted by
L2(0, 1) and is endowed with the inner product 〈f, g〉 =∫ 1

0
f(x)g(x) dx. The associated norm is denoted by ‖ ·

‖L2 . For an integer m ≥ 1, Hm(0, 1) stands for the m-
order Sobolev space and is endowed with its usual norm
‖ · ‖Hm . For any symmetric matrix P ∈ Rn×n, P � 0
(resp. P � 0) means that P is positive semi-definite (resp.
positive definite).

2.2 Properties of Sturm-Liouville operators

Let θ1, θ2 ∈ [0, π/2], p ∈ C1([0, 1]), and q ∈ C0([0, 1])
with p > 0 and q ≥ 0. The Sturm-Liouville operator
(Renardy and Rogers, 2006) is defined by A = −(pf ′)′+qf
on the domain D(A) = {f ∈ H2(0, 1) : cos(θ1)f(0) −
sin(θ1)f ′(0) = 0, cos(θ2)f(1) + sin(θ2)f ′(1) = 0}. The
eigenvalues (λn)n≥1 of A are simple, non-negative, and
form an increasing sequence with λn → +∞ as n→ +∞.
The associated unit eigenvectors φn ∈ L2(0, 1) form a
Hilbert basis. Owing to these eigenstructures, A is a
Riesz spectral operator (Curtain and Zwart, 2012; Delattre
et al., 2003): the domain of the operator A is characterized

by D(A) =
{
f ∈ L2(0, 1) :

∑
n≥1 |λn|2| 〈f, φn〉 |2 < +∞

}
while Af =

∑
n≥1 λn 〈f, φn〉φn for all f ∈ D(A).

Introducing constants p∗, p
∗, q∗ ∈ R such that 0 < p∗ ≤

p(x) ≤ p∗ and 0 ≤ q(x) ≤ q∗ for all x ∈ [0, 1], the
eigenvalues λn satisfy the estimates 0 ≤ π2(n − 1)2p∗ ≤
λn ≤ π2n2p∗+ q∗ for all n ≥ 1 (Orlov, 2017). If we further
assume that q > 0, there exist constants C1, C2 > 0 such
that

C1‖f‖2H1 ≤
∑
n≥1

λn 〈f, φn〉2 = 〈Af, f〉 ≤ C2‖f‖2H1 (1)

for all f ∈ D(A). We infer, in particular, from the latter
inequalities and the Riesz spectral nature of A that f(0) =∑
n≥1 〈f, φn〉φn(0) for all f ∈ D(A). Finally, if we further

assume that p ∈ C2([0, 1]), we have for any x ∈ [0, 1] that
φn(x) = O(1) and φ′n(x) = O(

√
λn) as n → +∞ (Orlov,

2017). For an arbitrarily given integer N ≥ 1, we define
RNf =

∑
n≥N+1 〈f, φn〉φn.

3. DISTRIBUTED COMMAND AND DIRICHLET
BOUNDARY MEASUREMENT

3.1 Problem setting and spectral reduction

Consider the reaction-diffusion PDE described by

zt(t, x) = (p(x)zx(t, x))x − q̃0(x)z(t, x) + f(t, x, z(t, x))

+ b(x)u(t) (2a)

cos(θ1)z(t, 0)− sin(θ1)zx(t, 0) = 0 (2b)

cos(θ2)z(t, 1) + sin(θ2)zx(t, 1) = 0 (2c)

z(0, x) = z0(x). (2d)

for t > 0 and x ∈ (0, 1). Here we have θ1 ∈ (0, π/2],
θ2 ∈ [0, π/2], p ∈ C2([0, 1]) with p > 0, and q̃0 ∈ C0([0, 1]).
The distributed control input is u(t) ∈ R and acts on
the system via the shape function b ∈ L2(0, 1). The
state of the reaction-diffusion PDE is z(t, ·) ∈ L2(0, 1)
while z0 ∈ L2(0, 1) is the initial condition. The function
f : R+× [0, 1]×R→ R is assumed to be globally Lipchitz
continuous in z, uniformly in (t, x), so that f(·, ·, 0) = 0.
Let q̃f ∈ C0([0, 1]) and kf > 0 be such that

|f(t, x, z)− q̃f (x)z| ≤ kf |z|, ∀t ≥ 0, ∀x ∈ [0, 1], ∀z ∈ R.
(3)

Inequality (3) is referred to as a sector type condition.
Hence (2a) can be written as

zt(t, x) = (p(x)zx(t, x))x − q̃(x)z(t, x) + g(t, x, z(t, x))

+ b(x)u(t)

where q̃ = q̃0 − q̃f and g(t, x, z) = f(t, x, z)− q̃f (x)z with

|g(t, x, z)| ≤ kf |z|, ∀t ≥ 0, ∀x ∈ [0, 1], ∀z ∈ R. (4)

The system output is selected as:

y(t) = z(t, 0). (5)

In perspective of control design, recalling that q̃ = q̃0 −
q̃f , and without loss of generality, we pick a function
q ∈ C0([0, 1]) and a constant qc ∈ R such that

q̃ = q − qc, q > 0. (6)

The projection of (2) into the Hilbert basis (φn)n≥1 gives

żn(t) = (−λn + qc)zn(t) + bnu(t) + gn(t) (7)

where zn(t) = 〈z(t, ·), φn〉, bn = 〈b, φn〉, and gn(t) =
〈g(t, ·, z(t, ·)), φn〉. Moreover, considering classical solu-
tions, the system output (5) is expressed as:

y(t) =
∑
n≥1

φn(0)zn(t). (8)

3.2 Control design and truncated model

Let δ > 0 be the desired exponential decay rate for the
closed-loop system trajectories. Let an integer N0 ≥ 1 be
such that −λn + qc < −δ < 0 for all n ≥ N0 + 1. We
introduce an arbitrary integer N ≥ N0 + 1 that will be
specified later. The control strategy is described by:

˙̂zn(t) = (−λn + qc)ẑn(t) + bnu(t)

− ln

{
N∑
k=1

φk(0)ẑk(t)− y(t)

}
, 1 ≤ n ≤ N0 (9a)

˙̂zn(t) = (−λn + qc)ẑn(t) + bnu(t), N0 + 1 ≤ n ≤ N (9b)

u(t) =

N0∑
n=1

knẑn(t) (9c)

where ln, kn ∈ R are the observer and feedback gains.

In preparation for stability analysis, we need to build
a truncated model capturing the N first modes of the
PDE (2) as well as the dynamics of the controller (9). To
do so, let us define the error of observation en = zn −
ẑn, the scaled error of observation ẽn =

√
λnen, and

the vectors ẐN0 = [ẑ1 . . . ẑN0 ]
>

, EN0 = [e1 . . . eN0 ]
>

,

ẐN−N0 = [ẑN0+1 . . . ẑN ]
>

, ẼN−N0 = [ẽN0+1 . . . ẽN ]
>

,

R1 = [g1 . . . gN0 ]
>

, R̃2 =
[√

λN0+1gN0+1 . . .
√
λNgN

]>
,

and R = col(R1, R̃2). We also introduce the matrices
defined by A0 = diag(−λ1 + qc, . . . ,−λN0 + qc), A1 =



diag(−λN0+1 + qc, . . . ,−λN + qc), B0 = [b1 . . . bN0 ]
>

,

B1 = [bN0+1 . . . bN ]
>

, C0 = [φ1(0) . . . φN0(0)], C̃1 =[
φN0+1(0)√
λN0+1

. . .
φN (0)√
λN

]
, K = [k1 . . . kN0 ], and L =

[l1 . . . lN0 ]
>

. With X = col
(
ẐN0 , EN0 , ẐN−N0 , ẼN−N0

)
,

we obtain from (7-8) and (9) that u = K = KẐN0 and

Ẋ = FX + Lζ +GR (10)

where ζ =
∑
n≥N+1 φn(0)zn,

F =


A0 +B0K LC0 0 LC̃1

0 A0 − LC0 0 −LC̃1

B1K 0 A1 0
0 0 0 A1

 , G =

0 0
I 0
0 0
0 I


and L = col(L,−L, 0, 0). Defining K̃ = [K 0 0 0], we also
have that

u = K̃X. (11)

We finally define the matrices

Λ = diag(λN0+1, . . . , λN ), Ω =


I I 0 0
I I 0 0

0 0 I Λ−1/2

0 0 Λ−1/2 Λ−1


and Λ̃ = diag(I,Λ). In particular, we have that Ω �
2 max(1, 1/λN0+1)I and Λ̃−1 � min(1, 1/λN )I.

3.3 Stability result

Theorem 1. Let θ1 ∈ (0, π/2], θ2 ∈ [0, π/2], p ∈ C2([0, 1])
with p > 0, q̃0 ∈ C0([0, 1]), and b ∈ L2(0, 1). Let f : R+ ×
[0, 1] × R → R be globally Lipchitz continuous in z,
uniformly in (t, x), so that f(·, ·, 0) = 0. Let q̃f ∈ C0([0, 1])
and kf > 0 be so that (3) holds. Let q ∈ C0([0, 1]) and
qc ∈ R be such that (6) holds. Let δ > 0 and N0 ≥ 1
be such that −λn + qc < −δ for all n ≥ N0 + 1. Assume
that 1 bn 6= 0 for all 1 ≤ n ≤ N0. Let K ∈ R1×N0 and
L ∈ RN0 be such that A0+B0K and A0−LC0 are Hurwitz
with eigenvalues that have a real part strictly less than
−δ < 0. For a given N ≥ N0 + 1, assume that there exist
a symmetric positive definite P ∈ R2N×2N , positive real
numbers α1, α2 > 1 and β, γ > 0 such that

Θ1 � 0, Θ2 ≤ 0 (12)

where

Θ1 =

[
Θ1,1,1 PL PG

L>P −β 0

G>P 0 −α2γΛ̃−1

]
Θ1,1,1 = F>P + PF + 2δP + α1γ‖RN b‖2L2K̃

>K̃ + α2γk
2
fΩ

Θ2 = 2γ

{
−
[

1−
1

2

(
1

α1
+

1

α2

)]
λN+1 + qc + δ

}
+ βMφ +

α2γk2f

λN+1

with Mφ =
∑
n≥N+1

φn(0)
2

λn
. Then, considering the closed-

loop system composed of the plant (2) with the system
output (5) and the controller (9), there exists M > 0 such
that for any initial conditions z0 ∈ H2(0, 1) and ẑn(0) ∈ R

1 This implies that (A0, B0) satisfies the Kalman condition. Note
that (A0, C0) satisfies the Kalman condition by arguments from Lha-
chemi and Prieur (2022e).

so that cos(θ1)z0(0)− sin(θ1)z′0(0) = 0 and cos(θ2)z0(1) +
sin(θ2)z′0(1) = 0, the system trajectory satisfies

‖z(t, ·)‖2H1 +

N∑
n=1

ẑn(t)2 ≤Me−2δt

(
‖z0‖2H1 +

N∑
n=1

ẑn(0)2

)
for all t ≥ 0. Moreover, when selecting N to be sufficiently
large, there exists kf > 0 (small enough) so that the
constraints (12) are feasible.

Proof. Consider the Lyapunov functional defined for
X ∈ R2N and z ∈ D(A) by V (X, z) = X>PX +
γ
∑
n≥N+1 λnz

2
n. The computation of the time derivative

of V along the system trajectories (7) and (10) reads

V̇ + 2δV = X>{F>P + PF + 2δP}X + 2X>PLζ + 2X>PGR

+ 2γ
∑

n≥N+1

λn(−λn + qc + δ)z2n + 2γ
∑

n≥N+1

λn(bnu+ gn)zn.

We define X̃ = col(X, ζ,R). As ζ2 ≤ Mφ

∑
n≥N+1 λnz

2
n

and using Young’s inequality and (11), we deduce that

V̇ + 2δV ≤

X̃>

[
F>P + PF + 2δP + α1γ‖RN b‖2L2K̃

>K̃ PL PG

L>P −β 0

G>P 0 0

]
X̃

+ 2γ
∑

n≥N+1

λn

{
−λn + qc + δ +

1

2

(
1

α1
+

1

α2

)
λn

}
z2n

+ βMφ

∑
n≥N+1

λnz
2
n + α2γ‖RNg(t, ·, z)‖2L2

for any α1, α2 > 0. Owing to the sector condition (4), we
infer that

‖RNg(t, ·, z)‖2L2 = ‖g(t, ·, z)‖2L2 −
N∑
n=1

g2n

≤ k2f‖z‖2L2 − ‖R1‖2 −
N∑

n=N0+1

1

λn

(√
λngn

)2
≤ k2f

N∑
n=1

z2n + k2f
∑

n≥N+1

z2n −R>Λ̃−1R. (13)

Recalling that en = zn − ẑn and ẽn =
√
λnen, we

deduce that
∑N0

n=1 z
2
n =

∑N0

n=1

(
ẑ2n + 2ẑnen + e2n

)
and∑N

n=N0+1 z
2
n =

∑N
n=N0+1

(
ẑ2n + 2√

λn
ẑnẽn + 1

λn
ẽ2n

)
, hence∑N

n=1 z
2
n = X>ΩX. Putting everything together, this

implies that V̇ +2δV ≤ X̃>Θ1X̃+
∑
n≥N+1 λnΓnz

2
n where

Γn = 2γ
{
−
[
1− 1

2

(
1
α1

+ 1
α2

)]
λn + qc + δ

}
+ βMφ +

α2γk
2
f

λn
≤ Θ2 for all n ≥ N + 1; we have used that 1 −

1
2

(
1
α1

+ 1
α2

)
> 0 because α1, α2 > 1. Owing to (12), we

infer that V̇ + 2δV ≤ 0. Using the definition of V along
with (1), we deduce that the claimed exponential stability
estimate holds true.

It remains to show that the constraints (12) are feasible
when N is large enough and kf > 0 is small enough. First,
the application of the Lemma in appendix of Lhachemi
and Prieur (2022b) to the matrix F + δI shows that the
unique solution P � 0 to the Lyapunov equation F>P +
PF + 2δP = −I is such that ‖P‖ = O(1) as N → +∞.
We fix α1 > 1 and γ > 0 arbitrarily. We also fix β = N ,



α2 = N3, and kf = 1/N2. Hence it can be seen that

Θ2 → −∞ as N → +∞. Moreover, since ‖K̃‖ = ‖K‖,
‖L‖ =

√
2‖L‖, and ‖G‖ = 1 are constants independent of

N , ‖P‖ = O(1) as N → +∞, and Ω � 2 max(1, 1/λN0+1)I

and −Λ̃−1 � −min(1, 1/λN )I, the Schur complement
shows that Θ1 � 0 for N selected to be large enough.
This completes the proof.

Remark 2. For a fixed order N ≥ N0 +1, let us arbitrarily
fix the value of the decision variable γ > 0 (following
the last part of the proof of Theorem 1, the obtained
constraints remain feasible for N large enough and kf >
0 small enough). Now Θ1 � 0 takes the form of a
LMI w.r.t. the decision variables P, α1, α2, β while, using
Schur complement, Θ2 ≤ 0 is equivalent to the LMI

formulation:

 µ
√
γλN+1

√
γλN+1√

γλN+1 −α1 0√
γλN+1 0 −α2

 � 0 with

µ = 2γ{−λN+1 + qc + δ}+βMφ +α2γk
2
f/λN+1. A similar

remark applies to the constraints of Theorem 3.

4. ROBIN BOUNDARY CONTROL AND DIRICHLET
BOUNDARY MEASUREMENT

4.1 Problem setting and spectral reduction

We now consider the boundary stabilization of the
reaction-diffusion PDE described by

zt(t, x) = (p(x)zx(t, x))x − q̃0(x)z(t, x) + f(t, x, z(t, x))
(14a)

cos(θ1)z(t, 0)− sin(θ1)zx(t, 0) = 0 (14b)

cos(θ2)z(t, 1) + sin(θ2)zx(t, 1) = u(t) (14c)

z(0, x) = z0(x). (14d)

for t > 0 and x ∈ (0, 1) where p ∈ C2([0, 1]) and
θ1 ∈ (0, π/2]. The boundary measurement is selected as
the left Dirichlet trace (5). We still assume that there exist
q̃f ∈ C0([0, 1]) and kf > 0 so that (3) holds. Hence we
define q̃ = q̃0 − q̃f and g(t, x, z) = f(t, x, z)− q̃f (x)z.

Consider the change of variable

w(t, x) = z(t, x)− x2

cos θ2 + 2 sin θ2
u(t) (15)

so that, introducing v = u̇, the PDE (14) is equivalently
rewritten under the following homogeneous representation:

u̇(t) = v(t) (16a)

wt(t, x) = (p(x)wx(t, x))x − q̃(x)w(t, x) + g(t, x, z(t, x))
(16b)

+ a(x)u(t) + b(x)v(t)

cos(θ1)w(t, 0)− sin(θ1)wx(t, 0) = 0 (16c)

cos(θ2)w(t, 1) + sin(θ2)wx(t, 1) = 0 (16d)

w(0, x) = w0(x). (16e)

where a(x) = 1
cos θ2+2 sin θ2

{2p(x) + 2xp′(x) − x2q̃(x)},
b(x) = − x2

cos θ2+2 sin θ2
, and w0(x) = z0(x)− x2

cos θ2+2 sin θ2
u(0).

Note that we kept in (16b) the nonlinear term g(t, x, z(t, x))
expressed in original coordinate z. We introduce q ∈
C0([0, 1]) and qc ∈ R so that (6) holds. Finally, we de-
fine the coefficients of projection zn(t) = 〈z(t, ·), φn〉,

wn(t) = 〈w(t, ·), φn〉, an = 〈a, φn〉, bn = 〈b, φn〉, and
gn(t) = 〈g(t, ·, z(t, ·)), φn〉. From (15) we deduce that

wn(t) = zn(t) + bnu(t), n ≥ 1. (17)

Moreover, the projection of (16) into the Hilbert basis
(φn)n≥1 gives u̇ = v and

ẇn(t)= (−λn + qc)wn(t) + anu(t) + bnv(t) + gn(t) (18)

with w(t, ·) =
∑
n≥1 wn(t)φn. Inserting (17) into (18), the

projection of (14) gives

żn(t) = (−λn + qc)zn(t) + βnu(t) + gn(t) (19)

where βn = an + (−λn + qc)bn = p(1){− cos(θ2)φ′n(1) +
sin(θ2)φn(1)} = O(

√
λn). Finally, considering classical

solutions, the system output (5) is expressed as:

y(t) = z(t, 0) = w(t, 0) =
∑
n≥1

φn(0)wn(t). (20)

4.2 Control design and truncated model

Let δ > 0 be the desired exponential decay rate for the
closed-loop system trajectories. Let an integer N0 ≥ 1 be
such that −λn + qc < −δ < 0 for all n ≥ N0 + 1. For an
arbitrary integer N ≥ N0 + 1, the control strategy reads:

ŵn(t) = ẑn(t) + bnu(t) (21a)

˙̂zn(t) = (−λn + qc)ẑn(t) + βnu(t)

− ln

{
N∑
k=1

φk(0)ŵk(t)− y(t)

}
, 1 ≤ n ≤ N0 (21b)

˙̂zn(t) = (−λn + qc)ẑn(t) + βnu(t), N0 + 1 ≤ n ≤ N (21c)

u(t) =

N0∑
n=1

knẑn(t) (21d)

where ln, kn ∈ R are the observer and feedback gains,
respectively.

To build the truncated model, we adopt the notations
of Subsection 3.2 except that we introduce the nota-
tions z̃n = ẑn/λn along with the vector Z̃N−N0 =

[z̃N0+1 . . . z̃N ]
>

and the matrices B0 = [β1 . . . βN0 ]
>

and

B̃1 =

[
βN0+1

λN0+1
. . .

βN
λN

]>
. Hence, introducing the state

vector X = col
(
ẐN0 , EN0 , Z̃N−N0 , ẼN−N0

)
we deduce

similarly to the developments of Subsection 3.2 that the
following truncated dynamics holds:

Ẋ = FX + Lζ +GR (22)

where

F =


A0 + B0K LC0 0 LC̃1

0 A0 − LC0 0 −LC̃1

B̃1K 0 A1 0
0 0 0 A1

 , G =

0 0
I 0
0 0
0 I


and L = col(L,−L, 0, 0). We define the matrices

Λ = diag(λN0+1, . . . , λN ), Ω =


I I 0 0
I I 0 0

0 0 Λ2 Λ1/2

0 0 Λ1/2 Λ−1


and Λ̃ = diag(I,Λ). These matrices which are such that

Ω � 2 max(1, 1/λN0+1, λ
2
N )I and Λ̃−1 � min(1, 1/λN )I.

Finally, introducing X̃ = col(X, ζ,R), we have

v = u̇ = K
˙̂
ZN0 = EX̃ (23)



where E = K
[
A0 + B0K LC0 0 LC̃1 L 0

]
.

4.3 Stability result

Theorem 3. Let θ1 ∈ (0, π/2], θ2 ∈ [0, π/2], p ∈ C2([0, 1])
with p > 0, and q̃0 ∈ C0([0, 1]). Let f : R+× [0, 1]×R→ R
be globally Lipchitz continuous in z, uniformly in (t, x),
so that f(·, ·, 0) = 0. Let q̃f ∈ C0([0, 1]) and kf > 0
be so that (3) holds. Let q ∈ C0([0, 1]) and qc ∈ R be
such that (6) holds. Let δ > 0 and N0 ≥ 1 be such that
−λn + qc < −δ for all n ≥ N0 + 1. Let K ∈ R1×N0 and
L ∈ RN0 be such that 2 A0 + B0K and A0 − LC0 are
Hurwitz with eigenvalues that have a real part strictly less
than −δ < 0. For a given N ≥ N0 + 1, assume that there
exist a symmetric positive definite P ∈ R2N×2N , positive
real numbers α1, α2, α3 > 3/2 and β, γ > 0 such that

Θ1 � 0, Θ2 ≤ 0 (24)

where

Θ1 =

[
Θ1,1,1 PL PG

L>P −β 0

G>P 0 −α3γΛ̃−1

]
+ α2γ‖RN b‖2L2E

>E

Θ1,1,1 = F>P + PF + 2δP + α1γ‖RNa‖2L2K̃
>K̃

+ 2α3γk
2
f‖RN b‖

2
L2K̃

>K̃ + α3γk
2
fΩ

Θ2 = 2γ

{
−

[
1−

1

2

3∑
i=1

1

αi

]
λN+1 + qc + δ

}
+ βMφ +

2α3γk2f

λN+1

with Mφ =
∑
n≥N+1

φn(0)
2

λn
. Then, considering the closed-

loop system composed of the plant (14) with the system
output (5) and the controller (21), there exists M > 0 such
that for any initial conditions z0 ∈ H2(0, 1) and ẑn(0) ∈ R
so that cos(θ1)z0(0)− sin(θ1)z′0(0) = 0 and cos(θ2)z0(1) +

sin(θ2)z′0(1) = KẐN0(0), the system trajectory satisfies

‖z(t, ·)‖2H1 +

N∑
n=1

ẑn(t)2 ≤Me−2δt

(
‖z0‖2H1 +

N∑
n=1

ẑn(0)2

)
for all t ≥ 0. Moreover, when selecting N to be sufficiently
large, there exists kf > 0 (small enough) so that the
constraints (24) are feasible.

Proof. Consider the Lyapunov functional defined for
X ∈ R2N and w ∈ D(A) by V (X,w) = X>PX +
γ
∑
n≥N+1 λnw

2
n. Note here that, following (Lhachemi and

Prieur, 2022e), the first term of the Lyapunov functional
captures the N first modes of the PDE plant in original
z coordinates (14) while the second term captures the
residual modes (i.e., for n ≥ N + 1) in homogeneous w
coordinates (16). The computation of the time derivative
of V along the system trajectories (18) and (22) reads

V̇ + 2δV = X>{F>P + PF + 2δP}X + 2X>PLζ
+ 2X>PGR+ 2γ

∑
n≥N+1

λn(−λn + qc + δ)w2
n

+ 2γ
∑

n≥N+1

λn(anu+ bnv + gn)wn.

With X̃ = col(X, ζ,R), noting that ζ2 ≤Mφ

∑
n≥N+1 λnz

2
n,

and using Young’s inequality, (11), and (23), we infer that

2 Note that (A0,B0) and (A0, C0) satisfy the Kalman condition by
arguments from Lhachemi and Prieur (2022e).

V̇ + 2δV ≤

X̃>

[
F>P + PF + 2δP + α1γ‖RNa‖2L2K̃

>K̃ PL PG

L>P −β 0

G>P 0 0

]
X̃

+ α2γ‖RN b‖2L2X̃
>E>EX̃ + βMφ

∑
n≥N+1

λnw
2
n

+ 2γ
∑

n≥N+1

λn

{
−λn + qc + δ +

1

2

(
1

α1
+

1

α2
+

1

α3

)
λn

}
w2
n

+ α3γ‖RNg(t, ·, z)‖2L2 .

for any α1, α2, α3 > 0. Using the sector condition (4)
we infer that (13) holds. Recalling that en = zn −
ẑn, ẽn =

√
λnen, and z̃n = ẑn/λn, we deduce that∑N0

n=1 z
2
n =

∑N0

n=1

(
ẑ2n + 2ẑnen + e2n

)
and

∑N
n=N0+1 z

2
n =∑N

n=N0+1

(
λ2nz̃

2
n + 2

√
λnz̃nẽn + 1

λn
ẽ2n

)
, hence

∑N
n=1 z

2
n =

X>ΩX. Moreover, we infer from (17) and using (11)

that
∑
n≥N+1 z

2
n ≤ 2

∑
n≥N+1 w

2
n+2‖RNb‖2L2X>K̃>K̃X.

This implies that V̇ + 2δV ≤ X̃>Θ1X̃+
∑
n≥N+1 λnΓnw

2
n

with Γn = 2γ
{
−
[
1− 1

2

(
1
α1

+ 1
α2

+ 1
α3

)]
λn + qc + δ

}
+

βMφ +
2α3γk

2
f

λn
≤ Θ2 for all n ≥ N + 1 where we have

used that 1− 1
2

(
1
α1

+ 1
α2

+ 1
α3

)
> 0 because α1, α2, α3 >

3/2. Owing to (24), we infer that V̇ + 2δV ≤ 0. Using
the definition of V and (1), we deduce that the claimed
exponential stability estimate holds true.

It remains to show that the constraints (24) are feasible
when N is large enough and kf > 0 is small enough.

Since ‖C̃1‖ = O(1) and ‖B̃1‖ = O(1) as N → +∞,
the same approach as in the proof of Theorem 1 shows
that the unique solution P � 0 to the Lyapunov equation
F>P + PF + 2δP = −I is such that ‖P‖ = O(1) as
N → +∞. We fix α1, α2 > 3/2 and γ > 0 arbitrarily.
We also fix β = N , α3 = N3, and kf = 1/N4. Hence
it can be seen that Θ2 → −∞ as N → +∞. Moreover,
since ‖K̃‖ = ‖K‖, ‖L‖ =

√
2‖L‖, and ‖G‖ = 1 are

constants independent of N , ‖P‖ = O(1) and ‖E‖ = O(1)
as N → +∞, and Ω � 2 max(1, 1/λN0+1, λ

2
N )I and

−Λ̃−1 � −min(1, 1/λN )I, the Schur complement shows
that Θ1 � 0 for N selected to be large enough. This
completes the proof.

5. NUMERICAL ILLUSTRATION

For numerical illustration, we consider p = 1, q̃0 = −2,
q̃f = 3, θ1 = π/5, and θ2 = 0. Hence the open-
loop reaction diffusion PDEs (2) and (14) are unstable
in the case of kf = 0, i.e. for f(t, x, z) = q̃fz = 3z.
In the case of the reaction-diffusion PDE with bounded
control input (2), we consider the shape function b(x) =
cos(x)1|[1/10,3/10].
The feedback gain K and the observer gain L are com-
puted to achieve the same pole placement in the different
studied settings. In the case of Theorem 1, corresponding
to a bounded input operator and a left Dirichlet measure-
ment, the gains are set as K = −25.9768 and L = 5.9341.
In the case of Theorem 3, corresponding to a right bound-
ary control and a left Dirichlet measurement, the gains are
set as K = −2.3307 and L = 5.9341.



Dimension of the observer N = 2 N = 3 N = 4 N = 5 N = 6

Theorem 1 kf = 1.99 kf = 2.32 kf = 2.45 kf = 2.54 kf = 2.59

Theorem 3 kf = 1.93 kf = 2.14 kf = 2.21 kf = 2.25 kf = 2.27

Table 1. Maximum value of kf for the sector condition (3) obtained for different dimensions N
of the observer.

The maximal value of kf > 0 (corresponding to the size of
the sector condition (3) in which the nonlinearity f(t, x, z)
is confined into) for which the stability of the closed-loop
system is ensured by applying the theorems of this paper
is detailed in Tab. 1 for the two studied configurations and
for different values of the order of the observer.

6. CONCLUSION

This paper solved the problem of output feedback stabi-
lization of semilinear reaction-diffusion PDEs for which the
semilinearity is assumed to be confined into a sector con-
dition. It is worth noting that even if the developments of
this paper have been focused on a Dirichlet boundary mea-
surement, the case of a Neumann boundary measurement
can also be handled using the framework of this paper
augmented with the procedure reported in Lhachemi and
Prieur (2022b,e).
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