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This paper addresses the topic of global output feedback stabilization of semilinear reaction-diffusion PDEs. The semilinearity is assumed to be confined into a sector condition. We consider two different types of actuation configurations, namely: bounded control operator and right Robin boundary control. The measurement is selected as a left Dirichlet trace. The control strategy is finite dimensional and is designed based on a linear version of the plant. We derive a set of sufficient conditions ensuring the global exponential stabilization of the semilinear reaction-diffusion PDE. These conditions are shown to be feasible provided the order of the controller is large enough and the size of the sector condition in which the semilinearity is confined into is small enough.

INTRODUCTION

The topic of feedback stabilization of linear reactiondiffusion PDEs has been intensively studied in the literature [START_REF] Boskovic | Boundary control of an unstable heat equation via measurement of domain-averaged temperature[END_REF][START_REF] Liu | Boundary feedback stabilization of an unstable heat equation[END_REF] using different approaches such as backstepping [START_REF] Krstic | Boundary control of PDEs: A course on backstepping designs[END_REF] and spectral reduction methods [START_REF] Russell | Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions[END_REF][START_REF] Coron | Global steady-state controllability of one-dimensional semilinear heat equations[END_REF]. The extension of these approaches to the stabilization of semilinear reactiondiffusion PDEs remains challenging. Among the reported contributions, one can find the study of stability by means of strict Lyapunov functionals [START_REF] Mazenc | Strict Lyapunov functions for semilinear parabolic partial differential equations[END_REF], control using quasi-static deformations [START_REF] Coron | Global steady-state controllability of one-dimensional semilinear heat equations[END_REF], state-feedback (Karafyllis and Krstic, 2019a,b;[START_REF] Karafyllis | Lyapunov-based boundary feedback design for parabolic PDEs[END_REF] or network control [START_REF] Wu | Improved H ∞ sampled-data control for semilinear parabolic PDE systems[END_REF]. This paper addresses the topic of output feedback stabilization of 1-D semilinear reaction-diffusion PDEs. The case of a state-feedback was studied in (Karafyllis and Krstic, 2019a,b;[START_REF] Karafyllis | Lyapunov-based boundary feedback design for parabolic PDEs[END_REF]. Using spectral reduction methods and small gain arguments, the authors derived in these works sufficient conditions on the size of the sector condition (in which the nonlinearity is confined into) so that the proposed control strategy achieves the global exponential stabilization of the plant. However, the case of the output feedback, as considered in this work, remains challenging. In this context, we consider in this paper the global output feedback stabilization of 1-D semilinear reaction-diffusion PDEs with Dirichlet/Neumann/Robin boundary conditions. Two different configurations for the actuation scheme are investigated: bounded control oper-
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ator and right Robin boundary control. The measurement is selected as the left Dirichlet trace. The reported output feedback control strategy takes advantage of recent developments regarding the finite-dimensional control of parabolic PDEs [START_REF] Curtain | Finite-dimensional compensator design for parabolic distributed systems with point sensors and boundary input[END_REF][START_REF] Balas | Finite-dimensional controllers for linear distributed parameter systems: exponential stability using residual mode filters[END_REF][START_REF] Katz | Constructive method for finite-dimensional observer-based control of 1-D parabolic PDEs[END_REF] by leveraging control architectures introduced in [START_REF] Sakawa | Feedback stabilization of linear diffusion systems[END_REF]. In particular, we adopt the enhanced procedures reported in (Lhachemi and Prieur, 2022b,e) that allow the design in a generic and systematic manner of finite-dimensional observer-based control strategies for general 1-D reaction-diffusion PDEs with Dirichlet/Neumann/Robin boundary control and Dirichlet/Neumann boundary measurements; these systematic procedures have been successfully extended to delayed boundary control (Lhachemi and Prieur, 2022a,f) and local stabilization in the presence of a saturation (Lhachemi and Prieur, 2022c,d). Assuming that the nonlinearity satisfies a sector condition, we derive a set of sufficient LMI conditions ensuring the global output feedback stabilization of the plant. We show that the derived stability conditions are always feasible when selecting the order of the observer large enough and for a size of the sector condition small enough.

The rest of the paper is organized as follows. Notations and preliminary properties are summarized in Section 2. The control design for semilinear reaction-diffusion PDEs in the case of a bounded input operator and left Dirichlet measurement is addressed in Section 3. Then, Section 4 reports the case of right Robin boundary control and left Dirichlet measurement. Finally, concluding remarks are formulated in Section 6.

NOTATION AND PROPERTIES

Notation

Real spaces R n are equipped with the usual Euclidean norm denoted by • . The associated induced norms of matrices are also denoted by • . For any two vectors X and Y , col(X, Y ) represents the vector [X , Y ] . The space of square integrable functions on (0, 1) is denoted by L 2 (0, 1) and is endowed with the inner product f, g = 1 0 f (x)g(x) dx. The associated norm is denoted by • L 2 . For an integer m ≥ 1, H m (0, 1) stands for the morder Sobolev space and is endowed with its usual norm • H m . For any symmetric matrix P ∈ R n×n , P 0 (resp. P 0) means that P is positive semi-definite (resp. positive definite).

Properties of Sturm-Liouville operators

Let θ 1 , θ 2 ∈ [0, π/2], p ∈ C 1 ([0, 1]), and q ∈ C 0 ([0, 1]) with p > 0 and q ≥ 0. The Sturm-Liouville operator [START_REF] Renardy | An introduction to partial differential equations[END_REF] is defined by A = -(pf ) +qf on the domain D(A) = {f ∈ H 2 (0, 1) : cos(θ 1 )f (0)sin(θ 1 )f (0) = 0, cos(θ 2 )f (1) + sin(θ 2 )f (1) = 0}. The eigenvalues (λ n ) n≥1 of A are simple, non-negative, and form an increasing sequence with λ n → +∞ as n → +∞. The associated unit eigenvectors φ n ∈ L 2 (0, 1) form a Hilbert basis. Owing to these eigenstructures, A is a Riesz spectral operator [START_REF] Curtain | An introduction to infinite-dimensional linear systems theory[END_REF][START_REF] Delattre | Sturmliouville systems are riesz-spectral systems[END_REF]: the domain of the operator A is characterized by

D(A) = f ∈ L 2 (0, 1) : n≥1 |λ n | 2 | f, φ n | 2 < +∞ while Af = n≥1 λ n f, φ n φ n for all f ∈ D(A).
Introducing constants p * , p * , q * ∈ R such that 0 < p * ≤ p(x) ≤ p * and 0 ≤ q(x) ≤ q * for all x ∈ [0, 1], the eigenvalues λ n satisfy the estimates 0 ≤ π 2 (n -1) 2 p * ≤ λ n ≤ π 2 n 2 p * + q * for all n ≥ 1 [START_REF] Orlov | On general properties of eigenvalues and eigenfunctions of a Sturm-Liouville operator: comments on "ISS with respect to boundary disturbances for 1-D parabolic PDEs[END_REF]. If we further assume that q > 0, there exist constants

C 1 , C 2 > 0 such that C 1 f 2 H 1 ≤ n≥1 λ n f, φ n 2 = Af, f ≤ C 2 f 2 H 1 (1)
for all f ∈ D(A). We infer, in particular, from the latter inequalities and the Riesz spectral nature of A that f (0) = n≥1 f, φ n φ n (0) for all f ∈ D(A). Finally, if we further assume that p ∈ C 2 ([0, 1]), we have for any [START_REF] Orlov | On general properties of eigenvalues and eigenfunctions of a Sturm-Liouville operator: comments on "ISS with respect to boundary disturbances for 1-D parabolic PDEs[END_REF]. For an arbitrarily given integer N ≥ 1, we define

x ∈ [0, 1] that φ n (x) = O(1) and φ n (x) = O( √ λ n ) as n → +∞
R N f = n≥N +1 f, φ n φ n .

DISTRIBUTED COMMAND AND DIRICHLET BOUNDARY MEASUREMENT

Problem setting and spectral reduction

Consider the reaction-diffusion PDE described by

z t (t, x) = (p(x)z x (t, x)) x -q0 (x)z(t, x) + f (t, x, z(t, x)) + b(x)u(t) (2a) cos(θ 1 )z(t, 0) -sin(θ 1 )z x (t, 0) = 0 (2b) cos(θ 2 )z(t, 1) + sin(θ 2 )z x (t, 1) = 0 (2c) z(0, x) = z 0 (x). ( 2d 
)
for t > 0 and x ∈ (0, 1). Here we have θ

1 ∈ (0, π/2], θ 2 ∈ [0, π/2], p ∈ C 2 ([0, 1]) with p > 0, and q0 ∈ C 0 ([0, 1]).
The distributed control input is u(t) ∈ R and acts on the system via the shape function b ∈ L 2 (0, 1). The state of the reaction-diffusion PDE is z(t, •) ∈ L 2 (0, 1) while z 0 ∈ L 2 (0, 1) is the initial condition. The function

f : R + × [0, 1] × R → R is assumed to be globally Lipchitz continuous in z, uniformly in (t, x), so that f (•, •, 0) = 0. Let qf ∈ C 0 ([0, 1]) and k f > 0 be such that |f (t, x, z) -qf (x)z| ≤ k f |z|, ∀t ≥ 0, ∀x ∈ [0, 1], ∀z ∈ R.
(3) Inequality ( 3) is referred to as a sector type condition. Hence (2a) can be written as

z t (t, x) = (p(x)z x (t, x)) x -q(x)z(t, x) + g(t, x, z(t, x)) + b(x)u(t) where q = q0 -qf and g(t, x, z) = f (t, x, z) -qf (x)z with |g(t, x, z)| ≤ k f |z|, ∀t ≥ 0, ∀x ∈ [0, 1], ∀z ∈ R. (4)
The system output is selected as:

y(t) = z(t, 0). ( 5 
)
In perspective of control design, recalling that q = q0qf , and without loss of generality, we pick a function q ∈ C 0 ([0, 1]) and a constant q c ∈ R such that q = q -q c , q > 0.

(6) The projection of (2) into the Hilbert basis

(φ n ) n≥1 gives żn (t) = (-λ n + q c )z n (t) + b n u(t) + g n (t) (7) where z n (t) = z(t, •), φ n , b n = b, φ n , and g n (t) = g(t, •, z(t, •)), φ n .
Moreover, considering classical solutions, the system output ( 5) is expressed as:

y(t) = n≥1 φ n (0)z n (t). ( 8 
)

Control design and truncated model

Let δ > 0 be the desired exponential decay rate for the closed-loop system trajectories. Let an integer N 0 ≥ 1 be such that -λ n + q c < -δ < 0 for all n ≥ N 0 + 1. We introduce an arbitrary integer N ≥ N 0 + 1 that will be specified later. The control strategy is described by:

żn(t) = (-λn + qc)ẑn(t) + bnu(t) -ln N k=1 φ k (0)ẑ k (t) -y(t) , 1 ≤ n ≤ N 0 (9a) żn(t) = (-λn + qc)ẑn(t) + bnu(t), N 0 + 1 ≤ n ≤ N (9b) u(t) = N 0 n=1 kn ẑn(t) (9c)
where l n , k n ∈ R are the observer and feedback gains.

In preparation for stability analysis, we need to build a truncated model capturing the N first modes of the PDE (2) as well as the dynamics of the controller (9). To do so, let us define the error of observation e n = z nẑn , the scaled error of observation ẽn = √ λ n e n , and the vectors ẐN0

= [ẑ 1 . . . ẑN0 ] , E N0 = [e 1 . . . e N0 ] , ẐN-N0 = [ẑ N0+1 . . . ẑN ] , ẼN-N0 = [ẽ N0+1 . . . ẽN ] , R 1 = [g 1 . . . g N0 ] , R2 = λ N0+1 g N0+1 . . . λ N g N ,
and R = col(R 1 , R2 ). We also introduce the matrices defined by

A 0 = diag(-λ 1 + q c , . . . , -λ N0 + q c ), A 1 = diag(-λ N0+1 + q c , . . . , -λ N + q c ), B 0 = [b 1 . . . b N0 ] , B 1 = [b N0+1 . . . b N ] , C 0 = [φ 1 (0) . . . φ N0 (0)], C1 = φ N0+1 (0) λ N0+1 . . . φ N (0) √ λ N , K = [k 1 . . . k N0 ], and L = [l 1 . . . l N0 ] . With X = col ẐN0 , E N0 , ẐN-N0 , ẼN-N0 ,
we obtain from (7-8) and ( 9) that u = K = K ẐN0 and Ẋ = F X + Lζ + GR (10)

where ζ = n≥N +1 φ n (0)z n , F =     A 0 + B 0 K LC 0 0 L C1 0 A 0 -LC 0 0 -L C1 B 1 K 0 A 1 0 0 0 0 A 1     , G =    0 0 I 0 0 0 0 I   
and L = col(L, -L, 0, 0). Defining K = [K 0 0 0], we also have that u = KX.

(11) We finally define the matrices

Λ = diag(λ N0+1 , . . . , λ N ), Ω =     I I 0 0 I I 0 0 0 0 I Λ -1/2 0 0 Λ -1/2 Λ -1    
and Λ = diag(I, Λ). In particular, we have that Ω 2 max(1, 1/λ N0+1 )I and Λ-1 min(1, 1/λ N )I.

Stability result

Theorem 1. Let θ 1 ∈ (0, π/2], θ 2 ∈ [0, π/2], p ∈ C 2 ([0, 1]) with p > 0, q0 ∈ C 0 ([0, 1]), and b ∈ L 2 (0, 1). Let f : R + × [0, 1] × R → R be globally Lipchitz continuous in z, uniformly in (t, x), so that f (•, •, 0) = 0. Let qf ∈ C 0 ([0, 1])
and k f > 0 be so that (3) holds. Let q ∈ C 0 ([0, 1]) and q c ∈ R be such that (6) holds. Let δ > 0 and N 0 ≥ 1 be such that -λ n + q c < -δ for all n ≥ N 0 + 1. Assume that1 b n = 0 for all 1 ≤ n ≤ N 0 . Let K ∈ R 1×N0 and L ∈ R N0 be such that A 0 +B 0 K and A 0 -LC 0 are Hurwitz with eigenvalues that have a real part strictly less than -δ < 0. For a given N ≥ N 0 + 1, assume that there exist a symmetric positive definite P ∈ R 2N ×2N , positive real numbers α 1 , α 2 > 1 and β, γ > 0 such that Θ 1 0, Θ 2 ≤ 0 (12) where

Θ 1 = Θ 1,1,1 P L P G L P -β 0 G P 0 -α 2 γ Λ-1 Θ 1,1,1 = F P + P F + 2δP + α 1 γ R N b 2 L 2 K K + α 2 γk 2 f Ω Θ 2 = 2γ -1 - 1 2 1 α 1 + 1 α 2 λ N +1 + qc + δ + βM φ + α 2 γk 2 f λ N +1 with M φ = n≥N +1 φn(0) 2
λn . Then, considering the closedloop system composed of the plant (2) with the system output (5) and the controller (9), there exists M > 0 such that for any initial conditions z 0 ∈ H 2 (0, 1) and ẑn (0) ∈ R so that cos(θ 1 )z 0 (0) -sin(θ 1 )z 0 (0) = 0 and cos(θ 2 )z 0 (1) + sin(θ 2 )z 0 (1) = 0, the system trajectory satisfies

z(t, •) 2 H 1 + N n=1 ẑn (t) 2 ≤ M e -2δt z 0 2 H 1 + N n=1 ẑn (0) 2
for all t ≥ 0. Moreover, when selecting N to be sufficiently large, there exists k f > 0 (small enough) so that the constraints (12) are feasible.

Proof. Consider the Lyapunov functional defined for

X ∈ R 2N and z ∈ D(A) by V (X, z) = X P X + γ n≥N +1 λ n z 2 n .
The computation of the time derivative of V along the system trajectories ( 7) and (10) reads

V + 2δV = X {F P + P F + 2δP }X + 2X P Lζ + 2X P GR + 2γ n≥N +1 λn(-λn + qc + δ)z 2 n + 2γ n≥N +1
λn(bnu + gn)zn.

We define X = col(X, ζ, R). As ζ 2 ≤ M φ n≥N +1 λ n z 2 n and using Young's inequality and ( 11), we deduce that

V + 2δV ≤ X F P + P F + 2δP + α 1 γ R N b 2 L 2 K K P L P G L P -β 0 G P 0 0 X + 2γ n≥N +1 λn -λn + qc + δ + 1 2 1 α 1 + 1 α 2 λn z 2 n + βM φ n≥N +1 λnz 2 n + α 2 γ R N g(t, •, z) 2 L 2
for any α 1 , α 2 > 0. Owing to the sector condition (4), we infer that

R N g(t, •, z) 2 L 2 = g(t, •, z) 2 L 2 - N n=1 g 2 n ≤ k 2 f z 2 L 2 -R 1 2 - N n=N0+1 1 λ n λ n g n 2 ≤ k 2 f N n=1 z 2 n + k 2 f n≥N +1 z 2 n -R Λ-1 R. (13) 
Recalling that e n = z n -ẑn and ẽn = √ λ n e n , we deduce that

N0 n=1 z 2 n = N0 n=1 ẑ2 n + 2ẑ n e n + e 2 n and N n=N0+1 z 2 n = N n=N0+1 ẑ2 n + 2 √ λn ẑn ẽn + 1 λn ẽ2 n , hence N n=1 z 2 n = X ΩX. Putting everything together, this implies that V +2δV ≤ X Θ 1 X + n≥N +1 λ n Γ n z 2 n where Γ n = 2γ -1 -1 2 1 α1 + 1 α2 λ n + q c + δ + βM φ + α2γk 2 f λn ≤ Θ 2 for all n ≥ N + 1; we have used that 1 - 1 2 1 α1 + 1 α2 > 0 because α 1 , α 2 > 1.
Owing to (12), we infer that V + 2δV ≤ 0. Using the definition of V along with (1), we deduce that the claimed exponential stability estimate holds true.

It remains to show that the constraints (12) are feasible when N is large enough and k f > 0 is small enough. First, the application of the Lemma in appendix of [START_REF] Lhachemi | Finite-dimensional observer-based boundary stabilization of reactiondiffusion equations with either a Dirichlet or Neumann boundary measurement[END_REF] to the matrix F + δI shows that the unique solution P 0 to the Lyapunov equation F P + P F + 2δP = -I is such that P = O(1) as N → +∞. We fix α 1 > 1 and γ > 0 arbitrarily. We also fix β = N , α 2 = N 3 , and k f = 1/N 2 . Hence it can be seen that Θ 2 → -∞ as N → +∞. Moreover, since K = K , L = √ 2 L , and G = 1 are constants independent of N , P = O(1) as N → +∞, and Ω 2 max(1, 1/λ N0+1 )I and -Λ-1 -min(1, 1/λ N )I, the Schur complement shows that Θ 1 0 for N selected to be large enough. This completes the proof. Remark 2. For a fixed order N ≥ N 0 + 1, let us arbitrarily fix the value of the decision variable γ > 0 (following the last part of the proof of Theorem 1, the obtained constraints remain feasible for N large enough and k f > 0 small enough). Now Θ 1 0 takes the form of a LMI w.r.t. the decision variables P, α 1 , α 2 , β while, using Schur complement, Θ 2 ≤ 0 is equivalent to the LMI formulation:

  µ γλ N +1 γλ N +1 γλ N +1 -α 1 0 γλ N +1 0 -α 2   0 with µ = 2γ{-λ N +1 + q c + δ} + βM φ + α 2 γk 2 f /λ N +1 .
A similar remark applies to the constraints of Theorem 3.

ROBIN BOUNDARY CONTROL AND DIRICHLET BOUNDARY MEASUREMENT

Problem setting and spectral reduction

We now consider the boundary stabilization of the reaction-diffusion PDE described by

z t (t, x) = (p(x)z x (t, x)) x -q0 (x)z(t, x) + f (t, x, z(t, x)) (14a) cos(θ 1 )z(t, 0) -sin(θ 1 )z x (t, 0) = 0 (14b) cos(θ 2 )z(t, 1) + sin(θ 2 )z x (t, 1) = u(t) (14c) z(0, x) = z 0 (x). ( 14d 
)
for t > 0 and x ∈ (0, 1) where p ∈ C 2 ([0, 1]) and θ 1 ∈ (0, π/2]. The boundary measurement is selected as the left Dirichlet trace (5). We still assume that there exist qf ∈ C 0 ([0, 1]) and k f > 0 so that (3) holds. Hence we define q = q0 -qf and g(t, x, z) = f (t, x, z) -qf (x)z.

Consider the change of variable

w(t, x) = z(t, x) - x 2 cos θ 2 + 2 sin θ 2 u(t) (15) 
so that, introducing v = u, the PDE ( 14) is equivalently rewritten under the following homogeneous representation:

u(t) = v(t) (16a) w t (t, x) = (p(x)w x (t, x)) x -q(x)w(t, x) + g(t, x, z(t, x)) (16b) + a(x)u(t) + b(x)v(t) cos(θ 1 )w(t, 0) -sin(θ 1 )w x (t, 0) = 0 (16c) cos(θ 2 )w(t, 1) + sin(θ 2 )w x (t, 1) = 0 (16d) w(0, x) = w 0 (x). ( 16e 
)
where a(x) =

1 cos θ2+2 sin θ2 {2p(x) + 2xp (x) -x 2 q(x)}, b(x) = - x 2
cos θ2+2 sin θ2 , and w 0 (x) = z 0 (x)-

x 2 cos θ2+2 sin θ2 u(0). Note that we kept in (16b) the nonlinear term g(t, x, z(t, x)) expressed in original coordinate z. We introduce q ∈ C 0 ([0, 1]) and q c ∈ R so that (6) holds. Finally, we define the coefficients of projection z n (t) = z(t, •), φ n ,

w n (t) = w(t, •), φ n , a n = a, φ n , b n = b, φ n , and g n (t) = g(t, •, z(t, •)), φ n . From (15) we deduce that w n (t) = z n (t) + b n u(t), n ≥ 1.
(17) Moreover, the projection of ( 16) into the Hilbert basis (φ n ) n≥1 gives u = v and ẇn (t)= (-λ n + q c )w n (t) + a n u(t) + b n v(t) + g n (t) (18) with w(t, •) = n≥1 w n (t)φ n . Inserting ( 17) into ( 18), the projection of ( 14) gives żn (t) = (-

λ n + q c )z n (t) + β n u(t) + g n (t) (19) where β n = a n + (-λ n + q c )b n = p(1){-cos(θ 2 )φ n (1) + sin(θ 2 )φ n (1)} = O( √ λ n ).
Finally, considering classical solutions, the system output ( 5) is expressed as:

y(t) = z(t, 0) = w(t, 0) = n≥1 φ n (0)w n (t).
(20)

Control design and truncated model

Let δ > 0 be the desired exponential decay rate for the closed-loop system trajectories. Let an integer N 0 ≥ 1 be such that -λ n + q c < -δ < 0 for all n ≥ N 0 + 1. For an arbitrary integer N ≥ N 0 + 1, the control strategy reads:

ŵn(t) = ẑn(t) + bnu(t) (21a) żn(t) = (-λn + qc)ẑn(t) + βnu(t) -ln N k=1 φ k (0) ŵk (t) -y(t) , 1 ≤ n ≤ N 0 (21b) żn(t) = (-λn + qc)ẑn(t) + βnu(t), N 0 + 1 ≤ n ≤ N (21c) u(t) = N 0 n=1 kn ẑn(t) (21d) 
where l n , k n ∈ R are the observer and feedback gains, respectively.

To build the truncated model, we adopt the notations of Subsection 3.2 except that we introduce the notations zn = ẑn /λ n along with the vector ZN-N0 = [z N0+1 . . . zN ] and the matrices B 0 = [β 1 . . . β N0 ] and

B1 = β N0+1 λ N0+1 . . . β N λ N
. Hence, introducing the state vector X = col ẐN0 , E N0 , ZN-N0 , ẼN-N0 we deduce similarly to the developments of Subsection 3.2 that the following truncated dynamics holds:

Ẋ = F X + Lζ + GR (22) 
where

F =     A 0 + B 0 K LC 0 0 L C1 0 A 0 -LC 0 0 -L C1 B1 K 0 A 1 0 0 0 0 A 1     , G =    0 0 I 0 0 0 0 I   
and L = col(L, -L, 0, 0). We define the matrices

Λ = diag(λ N0+1 , . . . , λ N ), Ω =     I I 0 0 I I 0 0 0 0 Λ 2 Λ 1/2 0 0 Λ 1/2 Λ -1    
and Λ = diag(I, Λ). These matrices which are such that Ω 2 max(1, 1/λ N0+1 , λ 2 N )I and Λ-1 min(1, 1/λ N )I. Finally, introducing X = col(X, ζ, R), we have

v = u = K ŻN0 = E X ( 23 
)
where

E = K A 0 + B 0 K LC 0 0 L C1 L 0 . 4.3 Stability result Theorem 3. Let θ 1 ∈ (0, π/2], θ 2 ∈ [0, π/2], p ∈ C 2 ([0, 1]) with p > 0, and q0 ∈ C 0 ([0, 1]). Let f : R + × [0, 1] × R → R be globally Lipchitz continuous in z, uniformly in (t, x), so that f (•, •, 0) = 0. Let qf ∈ C 0 ([0, 1]
) and k f > 0 be so that (3) holds. Let q ∈ C 0 ([0, 1]) and q c ∈ R be such that (6) holds. Let δ > 0 and N 0 ≥ 1 be such that -λ n + q c < -δ for all n ≥ N 0 + 1. Let K ∈ R 1×N0 and L ∈ R N0 be such that2 A 0 + B 0 K and A 0 -LC 0 are Hurwitz with eigenvalues that have a real part strictly less than -δ < 0. For a given N ≥ N 0 + 1, assume that there exist a symmetric positive definite P ∈ R 2N ×2N , positive real numbers α 1 , α 2 , α 3 > 3/2 and β, γ > 0 such that Θ 1 0, Θ 2 ≤ 0 (24) where

Θ 1 = Θ 1,1,1 P L P G L P -β 0 G P 0 -α 3 γ Λ-1 + α 2 γ R N b 2 L 2 E E Θ 1,1,1 = F P + P F + 2δP + α 1 γ R N a 2 L 2 K K + 2α 3 γk 2 f R N b 2 L 2 K K + α 3 γk 2 f Ω Θ 2 = 2γ -1 - 1 2 3 i=1 1 α i λ N +1 + qc + δ + βM φ + 2α 3 γk 2 f λ N +1 with M φ = n≥N +1 φn(0) 2
λn . Then, considering the closedloop system composed of the plant (14) with the system output (5) and the controller (21), there exists M > 0 such that for any initial conditions z 0 ∈ H 2 (0, 1) and ẑn (0) ∈ R so that cos(θ 1 )z 0 (0) -sin(θ 1 )z 0 (0) = 0 and cos(θ 2 )z 0 (1) + sin(θ 2 )z 0 (1) = K ẐN0 (0), the system trajectory satisfies

z(t, •) 2 H 1 + N n=1 ẑn (t) 2 ≤ M e -2δt z 0 2 H 1 + N n=1 ẑn (0) 2
for all t ≥ 0. Moreover, when selecting N to be sufficiently large, there exists k f > 0 (small enough) so that the constraints (24) are feasible.

Proof. Consider the Lyapunov functional defined for X ∈ R 2N and w ∈ D(A) by V (X, w) = X P X + γ n≥N +1 λ n w 2 n . Note here that, following [START_REF] Lhachemi | Nonlinear boundary output feedback stabilization of reaction-diffusion equations[END_REF], the first term of the Lyapunov functional captures the N first modes of the PDE plant in original z coordinates (14) while the second term captures the residual modes (i.e., for n ≥ N + 1) in homogeneous w coordinates ( 16). The computation of the time derivative of V along the system trajectories ( 18) and ( 22) reads V + 2δV = X {F P + P F + 2δP }X + 2X P Lζ

+ 2X P GR + 2γ n≥N +1 λ n (-λ n + q c + δ)w 2 n + 2γ n≥N +1 λ n (a n u + b n v + g n )w n .
With X = col(X, ζ, R), noting that ζ 2 ≤ M φ n≥N +1 λ n z 2 n , and using Young's inequality, (11), and (23), we infer that

V + 2δV ≤ X F P + P F + 2δP + α 1 γ R N a 2 L 2 K K P L P G L P -β 0 G P 0 0 X + α 2 γ R N b 2 L 2 X E E X + βM φ n≥N +1 λnw 2 n + 2γ n≥N +1 λn -λn + qc + δ + 1 2 1 α 1 + 1 α 2 + 1 α 3 λn w 2 n + α 3 γ R N g(t, •, z) 2 L 2 .
for any α 1 , α 2 , α 3 > 0. Using the sector condition (4) we infer that (13) holds. Recalling that e n = z nẑn , ẽn = √ λ n e n , and zn = ẑn /λ n , we deduce that

N0 n=1 z 2 n = N0 n=1 ẑ2 n + 2ẑ n e n + e 2 n and N n=N0+1 z 2 n = N n=N0+1 λ 2 n z2 n + 2 √ λ n zn ẽn + 1 λn ẽ2 n , hence N n=1 z 2 n = X ΩX.
Moreover, we infer from (17) and using ( 11)

that n≥N +1 z 2 n ≤ 2 n≥N +1 w 2 n +2 R N b 2 L 2 X K KX. This implies that V + 2δV ≤ X Θ 1 X + n≥N +1 λ n Γ n w 2 n with Γ n = 2γ -1 -1 2 1 α1 + 1 α2 + 1 α3 λ n + q c + δ + βM φ + 2α3γk 2 f λn ≤ Θ 2 for all n ≥ N + 1 where we have used that 1 -1 2 1 α1 + 1 α2 + 1 α3 > 0 because α 1 , α 2 , α 3 > 3/2.
Owing to (24), we infer that V + 2δV ≤ 0. Using the definition of V and (1), we deduce that the claimed exponential stability estimate holds true.

It remains to show that the constraints (24) are feasible when N is large enough and k f > 0 is small enough. Since C1 = O(1) and B1 = O(1) as N → +∞, the same approach as in the proof of Theorem 1 shows that the unique solution P 0 to the Lyapunov equation F P + P F + 2δP = -I is such that P = O(1) as N → +∞. We fix α 1 , α 2 > 3/2 and γ > 0 arbitrarily. We also fix β = N , α 3 = N 3 , and k f = 1/N 4 . Hence it can be seen that Θ 2 → -∞ as N → +∞. Moreover, since K = K , L = √ 2 L , and G = 1 are constants independent of N , P = O(1) and E = O(1) as N → +∞, and Ω 2 max(1, 1/λ N0+1 , λ 2 N )I and -Λ-1 -min(1, 1/λ N )I, the Schur complement shows that Θ 1 0 for N selected to be large enough. This completes the proof.

NUMERICAL ILLUSTRATION

For numerical illustration, we consider p = 1, q0 = -2, qf = 3, θ 1 = π/5, and θ 2 = 0. Hence the openloop reaction diffusion PDEs (2) and ( 14) are unstable in the case of k f = 0, i.e. for f (t, x, z) = qf z = 3z. In the case of the reaction-diffusion PDE with bounded control input (2), we consider the shape function b(x) = cos(x)1| [1/10,3/10] .

The feedback gain K and the observer gain L are computed to achieve the same pole placement in the different studied settings. In the case of Theorem 1, corresponding to a bounded input operator and a left Dirichlet measurement, the gains are set as K = -25.9768 and L = 5.9341. In the case of Theorem 3, corresponding to a right boundary control and a left Dirichlet measurement, the gains are set as K = -2.3307 and L = 5.9341. Table 1. Maximum value of k f for the sector condition (3) obtained for different dimensions N of the observer.

The maximal value of k f > 0 (corresponding to the size of the sector condition (3) in which the nonlinearity f (t, x, z) is confined into) for which the stability of the closed-loop system is ensured by applying the theorems of this paper is detailed in Tab. 1 for the two studied configurations and for different values of the order of the observer.

CONCLUSION

This paper solved the problem of output feedback stabilization of semilinear reaction-diffusion PDEs for which the semilinearity is assumed to be confined into a sector condition. It is worth noting that even if the developments of this paper have been focused on a Dirichlet boundary measurement, the case of a Neumann boundary measurement can also be handled using the framework of this paper augmented with the procedure reported in Lhachemi and Prieur (2022b,e).

  f = 1.99 k f = 2.32 k f = 2.45 k f = 2.54 k f = 2.59 Theorem 3 k f = 1.93 k f = 2.14 k f = 2.21 k f = 2.25 k f = 2.27

This implies that (A 0 , B 0 ) satisfies the Kalman condition. Note that (A 0 , C 0 ) satisfies the Kalman condition by arguments from Lhachemi and Prieur (2022e).

Note that (A 0 , B 0 ) and (A 0 , C 0 ) satisfy the Kalman condition by arguments from[START_REF] Lhachemi | Nonlinear boundary output feedback stabilization of reaction-diffusion equations[END_REF].