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1. Introduction

Accounting for respectively 19.9% and 16.4% of world oil consumption in 2021,1 the United
States and China are two key players in the oil market. While the major role of the United States
has been established for many years, that of China dates to the mid-2000s when the boom in oil
prices was mainly driven by growth in emerging markets and, primarily, China. This increasing
role of the Chinese economy has been accompanied by tensions between the two countries, with
significant impacts on the oil market. The US-China trade war provides an emblematic example
with a succession of threats and tariffs that have affected oil market fundamentals, such as oil
supply and demand. The present paper tackles this issue and aims to investigate the dynamics of
the oil market by accounting for the potential asymmetric effects of US-China political tensions on
oil prices depending on their level.

Identifying the factors contributing to the explanation of oil prices has been a long-standing
topic of study.2 Several contributions argue that exogenous political events, like terrorist attacks
or wars, are the primary cause of oil price fluctuations (see, e.g., Hamilton, 2003, 2009a). These
explanations are particularly interesting for analyzing oil price changes in the wake of the two oil
price shocks of the 1970s. However, the literature evolved towards a more nuanced view where
exogenous political events are only a part of the explanation. Various empirical studies have shown
that market forces (global demand, global supply, inventories, precaution demand, speculative
demand) also play an essential role in driving oil price fluctuations (Bodenstein et al., 2012; Lippi
and Nobili, 2012; Baumeister and Peersman, 2013; Kilian and Hicks, 2013; Kilian and Lee, 2014;
Kilian and Murphy, 2014; Cross, Nguyen and Tran, 2022).

Our paper falls into this strand of the literature by considering the role of both political tensions
between the US and China and global market forces in explaining oil price fluctuations. The
literature linking political tensions between the two countries and the oil market dynamics is
inexistent, apart from Cai et al. (2022) which is the study closest to ours. Relying on the structural
vector autoregressive (SVAR) methodology over the 1971-2019 period, the authors show that US-
China political tensions pull down oil demand and raise supply at medium- and long-run horizons.

We go further than Cai et al. (2022) by considering possible asymmetric impacts of political
tensions and market forces on the oil price dynamics, depending on both the level of real oil prices
and the period. The effect of the explanatory variables may indeed change over time—especially
if the period under study is long—but also according to the level reached by the oil price. As it is
well known, the role of China as an international key player mainly starts in the mid-2000s, making
it relevant to rely on time-varying schemes. Regarding asymmetric effects, it is worth mentioning
that oil demand may increase if prices are low but does not necessarily decrease in high oil price

1Source: BP Statistical Review of World Energy 2021.
2See Baumeister and Kilian (2016) for an overview of the evolution of the literature regarding the causes of

fluctuations in the real price of oil.
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regimes as there is no immediate substitution possibility. Similarly, the impact of political tensions
on the oil market may differ depending on the oil price level.

To account for such asymmetric effects, we rely on the quantile autoregressive distributed lag
model (QARDL) developed by Cho et al. (2015). This framework enables us to consider the
existence of long-term, cointegrating relationships between oil prices and their determinants that
can vary across quantiles, i.e., according to the level of oil prices. Furthermore, such a specification
allows for locational asymmetry because the estimated parameters can vary depending on the
location of oil prices within their conditional distribution. In other words, compared to the usual
ARDL method, the QARDL approach has the advantage of introducing potential asymmetries in
the various levels reached by oil prices. To go a step further, given that our period under study
covers more than 65 years, we extend the QARDL model to a time-varying QARDL specification
to account for the time-varying nature of the cointegrating relationship.

Our results show the existence of a quantile-dependent cointegrating relationship between oil
prices and their determinants, namely US-China political tensions, world oil demand, and global
oil supply over the period ranging from January 1958 to March 2022. In particular, the effect of
tensions between the two countries is exacerbated in times of high oil prices. Moreover, we find that
this quantile-dependent cointegrating relationship is time-varying across quantiles. This finding is
particularly interesting as it highlights the increased role played by China in the oil market since
the mid-2000s.

The rest of the paper is organized as follows. Section 2 reviews the related literature. Section
3 describes the QARDL methodology and data, and provides some preliminary analysis. The
estimation results are displayed and discussed in Section 4. Section 5 concludes the paper.

2. Literature review

In this literature review, we focus on studies that explore: (i) the relative importance of market
and political forces in driving the real oil price dynamics, (ii) the existence of time-varying patterns
in the oil market, and (iii) the consideration of asymmetric dynamics. The first set of studies
is directly linked to our work since it relies on a quantitative measure of political tensions to
estimate the influence of political events on the dynamics of the real price of oil. The second set of
investigations, which explores the existence of time-varying patterns in the oil market, is also worth
mentioning since the Chinese role on the international scene—and thus on the oil market—has
been primarily at play since the mid-2000s (Cross, Nguyen and Zhang, 2022). Turning to the third
set of studies dealing with asymmetries in the oil market, the underlying idea is that the impact of
political tensions could differ depending on the oil price quantiles. Overall, this section provides
an overview of studies that consider time-varying patterns and asymmetries in the relationship
between the real price of oil and political tensions.

Cai et al. (2022) is the first attempt to disentangle the causal effects of market forces (oil supply
and demand) and exogenous political events relying on a quantitative measure for political tensions
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between the US and China.3 Using an SVAR model with monthly data over the period spanning
from January 1971 to December 2019, they show that bilateral political tensions have a causal
impact on oil demand, supply, and prices . During the whole period, a deterioration of the political
relationship between the US and China induces a decrease in oil demand, an increase in oil supply,
and a rise in the real price of oil. The authors also show that these effects may change according
to the current state of the political relations, suggesting a time-varying pattern for these causal
mechanisms.

Before Cai et al. (2022), various contributions have explored the quantitative impact of political
tensions and geopolitical risks on the oil price dynamics.4 Chen et al. (2016) use the political risk
associated with OPEC countries as a measure of political tensions thanks to a transformation of
the well-known International Country Risk Guide (hereafter ICRG) index. Their SVAR analysis
shows that the two main contributors to oil price fluctuations are political risk shocks and demand
shocks over the January 1998-September 2014 period. Interestingly, they find that political risk
shocks in the Middle East positively influence oil prices, whereas political risk shocks in North
Africa and South America have no impact. Lee et al. (2017) extend Chen et al. (2016)’s paper
to the G7 countries and find that political risk shocks in the US have a different impact on the
world economy given the size of the US economy and the status of the dollar in the international
monetary system.

Beyond the use of the ICRG index, Miao et al. (2017) and Perifanis and Dagoumas (2019) proxy
the geopolitical risk factors with the number of terrorist attacks coming from the Global Terrorism
Database.5 Specifically, Miao et al. (2017) examine the predictability of crude oil prices using
daily data from January 04, 2002, to September 25, 2015. Relying on LASSO (Least Absolute
Shrinkage and Selection Operator) methods, they find that market (demand, supply, speculation)
and geopolitical (captured by the number of terrorist attacks in the MENA region) factors are the
most important determinants of oil prices. Perifanis and Dagoumas (2019) investigate the long-run
relations between various determinants of oil prices—demand, supply, speculation variables, US
shale oil production, and the number of terrorist attacks in the MENA region—over the 2008-2017
period with monthly data. They show that oil prices are mainly driven by fundamentals such as
consumption, OPEC production, or US shale oil production, but do not find a significant impact of
indicators measuring political instability such as the number of terrorist attacks in oil-producing
countries.

3This measure is the political relation index discussed in Yan and Qi (2009) and Yan et al. (2010). It fluctuates
between -9 and 9 according to the occurrence of “bad” or “good” political events, using a scale similar to the Goldstein
scale (Goldstein, 1992). It shows improved relationships between the US and China at the end of the 1970s and
the 1990s, when positive diplomatic developments occurred. Besides, it indicates that the relationship deteriorated
considerably during the Tiananmen Square event in 1989, after the bombing of the Chinese embassy in Belgrade in
1999, and during Trump’s administration. See Cai et al. (2022) for more details, as well as Yan (2010) who discusses
the instability of China-US political relations over the 1950-2009 period.

4See Chen et al. (2016), Lee et al. (2017), Miao et al. (2017), Perifanis and Dagoumas (2019), Abdel-Latif and
El-Gamal (2020), Qin et al. (2020), and Caldara and Iacoviello (2022).

5This open-source database can be accessed here: https://www.start.umd.edu/gtd/.
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Along with studies using quantitative measures of political tensions, Caldara and Iacoviello
(2022) introduce the geopolitical risk (hereafter GPR) in the empirical literature. GPR is a
monthly index generated by running automated text searches on the electronic archives of 11
North American and British newspapers, available since 1985.6 Assuming that the GPR index
only contemporaneously reacts to its own shocks, the authors offer an interesting distinction
between geopolitical acts and geopolitical threats. Indeed, they find that geopolitical acts reduce
uncertainty and produce minor economic effects. Besides, geopolitical threats increase uncertainty
(especially for firms) and may have larger economic consequences than the occurrence of conflicts,
as underlined by Bloom et al. (2007). In their empirical investigation, the authors show that an
increase in the GPR index leads to a short-lived decrease in oil prices of around 7% after 3 months
over the 1985-2016 period.

Abdel-Latif and El-Gamal (2020) use the GPR index to investigate the interactions between oil
prices, financial liquidity, and geopolitical risks. They estimate a quarterly Global VAR (hereafter
GVAR) over the 1979-2017 period for 53 countries, arguing that financial liquidity and geopolitical
risks are endogenous to the US. They show that one-standard-deviation shocks to the GPR index
(i) induce a persistent and significant increase in oil prices of around 4%, and (ii) harm investment,
especially in the MENA region for commodity exporters (like Saudi Arabia, Bahrain, or Qatar).
Besides, the impact on investment is more mixed for other countries which are not commodity
exporters.

Baumeister and Peersman (2013) explore the role of time-varying elasticities for oil demand
and supply in explaining the coexistence between reduced oil production volatility and larger
oil price volatility. They recall that several reasons may explain some gradual time variation in
the parameters. Firstly, spot markets have gradually become increasingly important relative to
long-term oil contracts (Hubbard, 1986). Secondly, investments in the oil sector require a long-
time span, and the response to price incentives may be gradual (Hamilton, 2009b; Smith, 2009).
Capacity constraints in oil production may thus exhibit some time-varying patterns depending on
the historical episode under scrutiny (Kilian, 2008). Thirdly, the quest for a substitute for oil
production took place over an extended time period (Dargay and Gately, 2010). Efforts towards
energy conservation are reflected in the slow variation in the energy share over time, and the effect
of oil prices on consumption varies smoothly (Edelstein and Kilian, 2009).

Along with studies that acknowledge time-varying schemes in the oil market (see, for example,
Herrera et al. (2019) for a brief survey), some authors find that the relationship between oil
prices and geopolitical events could also exhibit time-varying patterns (Noguera-Santaella, 2016;
Monge et al., 2017; Song et al., 2022). Using monthly data from September 1859 to March 2013,
Noguera-Santaella (2016) examines 32 major geopolitical events (from the 1861-1865 American
Civil War to the Arab Spring started in December 2010) to estimate their impact on oil prices
and their volatility. Relying on both AR(1) and GARCH(1,1) models along with dummy variables

6The Recent GPR index—which relies on 11 newspapers—and the Historical GPR index—which uses 3 newspapers
and starts in 1900—are available at: https://www.matteoiacoviello.com/gpr.htm.
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accounting for the geopolitical events, he found that 6 out of 32 geopolitical events have had an
impact on real oil prices, all of them occurring before 2000. Moreover, 20 out of 32 geopolitical
events have affected volatility, with 17 events occurring before 2000. During the 2000s, market
forces appear to be the main driver of oil price fluctuations.

Monge et al. (2017) investigate the statistical properties of real oil prices before and after
important geopolitical events. Using monthly data between January 1946 and November 2014,
they examine the unit root properties of six geopolitical events previously identified in the literature
(the 1973 Yom Kippur War followed by the Arab oil embargo in 1973/74, the 1978/79 Iranian
Revolution, the 1980-1988 Iran-Iraq War, the 1990/91 Persian Gulf War, the 2002 Venezuelan
crisis and the 2003 Iraq War, and the 2011 Libyan uprising). Using fractional unit root tests,
they show that the real price of oil is stationary, but follows a long-memory process (the order of
integration being equal to 𝑑 = 0.78 in the “best” model). After establishing the presence of two
structural breaks in the oil price series (in October 1973 and October 1990), they estimate the order
of integration for the three sub-periods and find that the null of mean reversion is rejected, even
when nonlinear time trends are accounted for. Considering a window size of 120 months centered
around each of the six major geopolitical events, they find some evidence of time-varying patterns
as the persistence in the series is stronger when the window size increases, as witnessed by the
monotonic increase in the integration order, 𝑑.

Following the contributions of Coleman (2012) and Miao et al. (2017), Song et al. (2022)
explore the time-varying interactions between oil prices and terrorist attacks. They distinguish
between the number of terrorist incidents per month and their brutality, proxied by the number
of fatalities per attack each month. Using time-varying causality tests based on a bi-variate VAR
over the January 1995-December 2018 period, they show that terrorist incidents Granger-caused
oil prices between (i) January 2001 and March 2003, (ii) October 2008 and September 2008, and
(iii) February 2015 and January 2016. During the first episode, the influence of terrorist incidents
on oil prices was negative, while being positive for the two following periods.

Finally, two contributions are worth mentioning as they rely on quantile regressions to explore
asymmetries and the heavy tail behavior of oil prices, together with the impact of geopolitical
risks and political uncertainty (Qin et al., 2020; Apergis et al., 2021).7 Using quantile regressions
with daily data over the period spanning from June 28, 1990 to October 31, 2018, Qin et al.
(2020) investigate the asymmetric effects of geopolitical risks on energy (including oil) returns and
volatility. They reject the stability of the impact of geopolitical risks on energy across quantiles,
with geopolitical risks harming crude oil returns in the case of a bearish market. They also show
that geopolitical threats positively impact crude oil volatility from the quantile 0.3, but have no
significant effect for lower quantiles. Unfortunately, they do not control for market forces (energy
demand and production) in their regressions.

Using monthly data between 2001 and 2019, Apergis et al. (2021) examine the existence of
asymmetries in the impact of US partisan political uncertainty on oil prices, thanks to a QARDL

7See Koenker (2017) for a survey on the use and development of quantile regressions in various economic domains.
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model and a partisan conflict index built by Azzimonti (2018). In their main regressions, they put
emphasis on the growth channel to explain such a potential asymmetric effect. Higher uncertainty
puts a strain on economic growth and reduces oil demand, which in turn provokes a decrease in oil
prices. The authors find (i) a cointegrating relationship only for quantiles greater than 0.5, and (ii)
a positive impact of US partisan political uncertainty on oil prices from the quantile 0.5 as well.
This result shows that political uncertainty matters only in a bullish oil market.

3. Methodology and data

3.1. Methodology
To assess whether asymmetric effects between oil prices and their determinants are at play, we

rely on the QARDL framework developed by Cho et al. (2015). Such a specification allows us to
estimate the coefficients at various quantile levels and, in turn, capture the asymmetric relationship
between integrated series at different quantiles.

The QARDL model is specified as follows:

𝑤𝑡𝑖𝑡 = 𝛼∗(𝜏) +
𝑝∑︁
𝑗=1

𝜙 𝑗∗(𝜏)𝑤𝑡𝑖𝑡− 𝑗 +
𝑞∑︁
𝑗=0

𝜽 𝑗∗(𝜏)′X𝑡− 𝑗 +𝑈𝑡 (𝜏) (1)

where 𝑤𝑡𝑖𝑡 denotes the real price of oil at time 𝑡, X𝑡 is the matrix of explanatory variables,
𝑈𝑡 (𝜏) is the error term, and 𝜏 ∈ (0, 1) stands for the quantile level.

Following Cho et al. (2015), Equation (1) can be rewritten in the error-correction form (that is,
the QARDL-ECM representation) as follows:

Δ𝑤𝑡𝑖𝑡 = 𝛼∗(𝜏) + 𝜁∗(𝜏) (𝑤𝑡𝑖𝑡−1 − 𝜷∗(𝜏)′X𝑡−1) +
𝑝−1∑︁
𝑗=1

𝜙∗𝑗 (𝜏)Δ𝑤𝑡𝑖𝑡− 𝑗 +
𝑞−1∑︁
𝑗=0

𝜽∗𝑗 (𝜏)′ΔX𝑡− 𝑗 +𝑈𝑡 (𝜏) (2)

where, for 𝑗 = 1, ..., 𝑝 − 1:

𝜙∗𝑗 (𝜏) = −
𝑝∑︁

ℎ= 𝑗+1
𝜙ℎ∗(𝜏) (3)

and:

𝜽∗𝑗 (𝜏) = −
𝑝∑︁

ℎ= 𝑗+1
𝜽ℎ∗(𝜏) (4)

with 𝜽∗0(𝜏) = 𝜽0∗(𝜏).
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𝜁∗(𝜏) is the quantile error-correction term given by:

𝜁∗(𝜏) =
𝑝∑︁
𝑗=1

𝜙 𝑗∗(𝜏) − 1 (5)

and 𝜷∗(𝜏) denotes the vector of quantile long-run parameters.

As shown by Equation (2), the short- and long-run parameters are quantile dependent, meaning
that the QARDL coefficients can be affected by the shock𝑈𝑡 (𝜏) at each point of time and, thus, can
vary across quantiles. Cho et al. (2015) derive the full asymptotic theory for this QARDL-ECM
specification, and show that the estimators of the short- and long-run coefficients asymptotically
follow a (mixture) normal distribution.

3.2. Data and preliminary analysis
We consider monthly data ranging from January 1958 to March 2022. For the oil-market-

related variables, we rely on the real price of oil (𝑤𝑡𝑖), world oil demand (wip), and global oil
supply (gop).8 Our dependent variable, 𝑤𝑡𝑖, is the WTI spot price deflated by the US consumer
price index. Turning to world oil demand, wip, we use the industrial production index measured
by Baumeister and Hamilton (2019) by considering 23 OECD countries and six major emerging
economies (Brazil, China, India, Indonesia, the Russian Federation, and South Africa). Finally,
gop is expressed in millions of barrels per day. All those variables are expressed in logarithmic
terms and retrieved from Christiane Baumeister’s website.9 We update the data until March 2022,
following the methodology presented in Baumeister and Hamilton (2019).

Our main variable of interest is the US-China political relation index (pri), which allows us to
assess the effects of US-China political tensions on the oil market.10 This index is divided into
six sections, ranging from -9 to 9, which classify political relations as confrontation (-9), rival,
disharmonious, common, harmonious, and friendly (9).

Table A.1 in Appendix reports some basic descriptive statistics for the four first-differenced
series. All variables exhibit high kurtosis levels and depart from Gaussianity, as shown by the
Jarque-Bera test. This property adds support for using quantile methods to provide robust inference.

Indeed, as recalled by Koenker and Xiao (2004), usual unit root tests may be characterized
by poor power performance under departures from the Gaussian case, especially for distributions
with heavy tails like ours. To overcome this limit, we apply Koenker and Xiao (2004)’s quantile
unit root tests, which consist in examining the unit root property in each quantile separately. By
providing a detailed look at the dynamics of the series, these tests allow us to detect possible

8See Figure A.1 in Appendix.
9https://sites.google.com/site/cjsbaumeister/research.

10The index is extracted from the Institute of International Relations’ website at Tsinghua University. For more
details on this index, see Cai et al. (2022).
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asymmetries, i.e., to consider different adjustment mechanisms toward the long-run equilibrium
value—mean-reverting behavior—at different quantiles.

Briefly speaking, Koenker and Xiao (2004)’s quantile unit root test consists in extending the
usual ADF-type regression:

𝑦𝑡 = 𝛼 + 𝜌𝑦𝑡−1 +
𝑝−1∑︁
𝑗=1

𝜙 𝑗Δ𝑦𝑡− 𝑗 + 𝑢𝑡 (6)

as follows:

𝑄𝑦 (𝜏 |𝐼𝑡−1) = 𝛼(𝜏) + 𝜌(𝜏)𝑦𝑡−1 +
𝑝−1∑︁
𝑗=1

𝜙 𝑗 (𝜏)Δ𝑦𝑡− 𝑗 +𝑄𝑢 (𝜏) (7)

where𝑄𝑦 (𝜏 |𝐼𝑡−1) denotes the 𝜏-th quantile of 𝑦𝑡 conditional on the past information, and𝑄𝑢 (𝜏)
is the 𝜏-th quantile of 𝑢𝑡 . 𝜌(𝜏) measures the speed of mean reversion of 𝑦𝑡 within each quantile 𝜏,
and the test consists of testing the unit root null hypothesis, i.e., 𝜌(𝜏) = 1.

The results displayed in Tables B.1 to B.4 in Appendix indicate that all series are not constant
unit root processes, i.e., there is an asymmetry in persistence. Specifically, the autoregressive
coefficient, 𝜌(𝜏), augments when we move from lower to higher quantiles for the real oil price and
the US-China political relation index. This result is particularly interesting as it shows that these
two series are more stationary during low oil price episodes and friendly relationships between
the two countries than during regimes of high prices and huge tensions. In other words, during
high oil price periods and conflicting relationship episodes, political tensions and the price of oil
itself tend to be more persistent. This finding is consistent with the fact that political tensions are
likely to be exacerbated in times of a bullish oil market. At the 5% significance level, the unit root
hypothesis is not rejected for quantiles higher than 0.4 for wti and 0.1 for pri contrary to lower
quantiles, illustrating asymmetric adjustment dynamics of both series.

Turning to oil demand and supply, the results in Tables B.2 and B.3 in Appendix indicate that
the unit root hypothesis is not rejected at lower quantiles, while it is the case at higher quantiles.
This result is logical as it suggests that when oil demand and supply are high, they tend to exhibit
a mean-reverting behavior.

Overall, this preliminary analysis illustrates the relevance of the quantile framework by high-
lighting asymmetry phenomena. Furthermore, the existence of different behaviors of the series
in terms of persistence depending on the quantiles justifies investigating the dynamics of their
relationship at various quantiles through the use of QARDL models.

4. Empirical results

4.1. Quantile ARDL error-correction model
Our preliminary analysis suggests that the dynamics and properties of the explanatory variables

may be heterogeneous across quantiles, i.e., may depend on the location of oil prices within
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their conditional distribution. To address this hypothesis and assess the stability of the long-
term relationship across the quantiles, we estimate the QARDL error-correction model given by
Equation (2) with X𝑡 = (wip𝑡 , gop𝑡 , pri𝑡).11

Table 1 and Figure 1 report the estimation results of the long-term part of the QARDL error-
correction model—i.e., the dynamic trends of the estimated coefficients associated with the error-
correction term and the variables in levels (long-run cointegrating coefficients). In addition to
the quantile estimates of the four parameters of interest, Figure 1 provides the 90% confidence
intervals against quantile indices ranging from 0.05 to 0.95.12

As shown, the error-correction term is significantly negative for quantiles greater than 0.4 and
increases in absolute terms when moving to higher quantiles. In other words, the higher the oil
price, the stronger the adjustment speed toward the long-term equilibrium. This result highlights
the existence of asymmetries as mean reversion is at play when oil prices are high, whereas
there is no cointegration at lower quantiles in line with Apergis et al. (2021)’s conclusions. Such
asymmetric behavior is consistent with the fact that the negative impact of an oil price increase on
the economy is stronger than the positive effect of a fall13—some authors (e.g., Mork, 1989) have
even shown that an oil price decrease has no impact on economic activity.

One usual explanation of this asymmetry relies on the time required to set up additional
production capacities: investment is not immediate, while the decline in the profitability of oil-
consuming firms is rapid. Furthermore, according to Hamilton (1988), adjustment costs—due
to sectoral imbalances, coordination failures between firms, etc.—may lead to an asymmetric
response to the oil price change. Indeed, a rise in the price of oil slows down economic activity
(directly and indirectly). In contrast, a fall can have both positive (direct) and negative (indirect)
effects, which tend to compensate for each other. It should be noted that the price of petroleum
products may also contribute to the asymmetric relationship between the price of oil and economic
activity, as gasoline prices increase more quickly when the price of oil rises than they fall when
the price decreases. Finally, Bernanke et al. (1997) put forward a possible role for monetary policy
in explaining the asymmetry phenomenon: while in the case of a rise in the oil price, monetary
authorities pursue a restrictive policy to fight inflation, they do not react when the price falls. This
difference in the reaction of monetary authorities to a rise and a fall in the oil price provides a way
to explain the asymmetry phenomenon.

Turning to oil demand, the associated coefficient decreases as the oil price rises but remains
significant all the time. When prices are high, the impact of demand on prices is smaller than for
the low quantiles, but the effect remains significant. This result is logical because the elasticity
of demand to oil prices is very low in the short run. Thus, even if prices are high, the economy’s
needs for oil are still present, and there is no possibility of—short-term—substitution.

11We retain 𝑝 = 3 and 𝑞 = 1 for the QARDL-ECM estimation. Similar results (available upon request to the
authors) are obtained for 𝑝 = 12 and 𝑞 = 1.

12The confidence intervals have been calculated using Feng et al. (2011)’s wild bootstrap method.
13See, e.g., Mork (1989), Mory (1993), Mork et al. (1994), Peter Ferderer (1996), Brown and Yücel (2002), and

Lardic and Mignon (2006, 2008).
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Regarding the coefficient related to global oil supply, it is always significant and increases when
moving to higher quantiles. It is negative for the low quantiles and becomes positive from the 0.6
quantile onwards. When prices are low, an increase in production tends to lower prices, leading
producers to generally decrease their production to raise prices. When prices are high, increased
production positively impacts prices, but the effect tends to decrease in the case of a strong bullish
market. Producers do not reduce their production when prices are high (but may do so when prices
reach very high levels), which is consistent with the low elasticity of demand and the fact that they
benefit from rising prices.

Finally, the impact of political tensions is always positive and augments with the price of oil:
the higher the quantiles, the greater the influence of political tensions. This finding is particularly
interesting as it indicates that the effect of political tensions between China and the US is exacerbated
in times of high oil prices—confirming the quantile unit root test conclusions. This result is also
in line with Qin et al. (2020) who have shown that the impact of geopolitical risks varies across
quantiles.

Overall, our findings show the existence of location asymmetries between lower and medium-to-
higher quantiles for the four key coefficients, with a quantile-dependent cointegrating relationship
between oil prices and their determinants. Following Xiao (2009) and Cho et al. (2015), such
quantile-dependent cointegration may come from the fact that the underlying relationship between
non-stationary series (for some quantiles) can vary over time because of heterogeneous shocks
arriving at different dates. As argued by Cho et al. (2015), the quantile cointegrating framework
is particularly suitable in such conditions as the quantile coefficients can be considered as random
parameters—randomness coming from a common shock arising at each point of time.

4.2. Time-varying quantile ARDL-ECM model
Given that our period under study covers more than 65 years and to account for the time-

varying nature of the cointegrating relationship, we extend our previous analysis by estimating a
time-varying quantile ARDL error-correction model. To this end, we re-estimate our specification
(Equation (2)) using the robust rolling estimation procedure proposed by Cho et al. (2015). The
corresponding results are displayed in Figure 2.14

Since our previous findings show evidence of cointegration for quantiles greater than 0.4,
we focus on the results for 𝜏 equal to 0.5 and 0.75. Figure 2 clearly shows that the rolling
quantile estimates of the four coefficients were not highly time-varying before the mid-2000s.
This is consistent with the fact that China was not a key player on the international scene before
that date, explaining its negligible impact on the oil market. Important time-varying patterns in
the parameters are observed after the mid-2000s due to the increasing role of China worldwide,
highlighting the relevance of the time-varying approach.

14As shown in Figure C.1 in Appendix, the Wald tests indicate that asymmetries occur at the higher quartiles for
demand, at all quartiles for supply, and at the lower quartiles for political tensions during the last period.
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Table 1: Quantile regressions for variables in levels

Quantile Coefficient Std. Error t-Statistic Prob.

wip 0.100 0.776064 0.094813 8.185224 0.0000
0.200 0.815416 0.084120 9.693486 0.0000
0.300 0.808494 0.091616 8.824809 0.0000
0.400 0.767398 0.107158 7.161381 0.0000
0.500 0.714708 0.160457 4.454218 0.0000
0.600 0.550065 0.113406 4.850411 0.0000
0.700 0.148907 0.047491 3.135480 0.0018
0.800 0.117502 0.036946 3.180347 0.0015
0.900 0.165771 0.032858 5.045026 0.0000

gop 0.100 −0.800276 0.088849 −9.007153 0.0000
0.200 −0.801699 0.086438 −9.274839 0.0000
0.300 −0.762415 0.098199 −7.764007 0.0000
0.400 −0.704797 0.116421 −6.053847 0.0000
0.500 −0.604502 0.179825 −3.361613 0.0008
0.600 −0.321607 0.151417 −2.123987 0.0340
0.700 0.353739 0.066024 5.357736 0.0000
0.800 0.429804 0.049226 8.731160 0.0000
0.900 0.377204 0.042341 8.908701 0.0000

pri 0.100 0.014987 0.005671 2.642531 0.0084
0.200 0.028649 0.005210 5.498696 0.0000
0.300 0.035453 0.005621 6.307362 0.0000
0.400 0.047474 0.006698 7.088210 0.0000
0.500 0.073317 0.010797 6.790593 0.0000
0.600 0.091656 0.005234 17.51134 0.0000
0.700 0.077452 0.005374 14.41162 0.0000
0.800 0.079716 0.004940 16.13752 0.0000
0.900 0.086424 0.004407 19.61079 0.0000

constant 0.100 2.482283 0.104608 23.72937 0.0000
0.200 2.459719 0.112834 21.79939 0.0000
0.300 2.406176 0.128315 18.75210 0.0000
0.400 2.439783 0.145586 16.75840 0.0000
0.500 2.469138 0.162724 15.17377 0.0000
0.600 2.203284 0.184212 11.96058 0.0000
0.700 1.262839 0.129958 9.717267 0.0000
0.800 1.153926 0.109468 10.54124 0.0000
0.900 1.245208 0.090217 13.80243 0.0000

Note: Wald tests for symmetric quantiles and slope equality strongly reject the null hypotheses of symmetry between
quantile and slope equality, respectively. Source: authors’ calculations.
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Figure 1: QARDL error-correction model
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Note: This figure reports the estimated parameters (solid middle line) using all available observations for different
quantile levels (0.05, 0.10, . . . , 0.95) with 90% confidence intervals (outer dotted lines). Source: authors’

calculations.

This is confirmed by the strong time-varying evolution of the error-correction term after the
mid-2000s. As shown, the speed of adjustment tends to increase after 2005, before stabilizing
and decreasing since the mid-2010s. The cointegrating relationship has been effective since the
2010s for 𝜏 = 0.5 and around 2005 for 𝜏 = 0.75. This is consistent with the fact that no long-term
equilibrium relationship was at play before China became a key player on the international scene
and, in turn, on the oil market.

From this period, the oil-demand effect on prices becomes positive, with the corresponding
coefficient following an upward trend. This clearly illustrates the major impact of Chinese demand
on the price of oil: the rise in oil prices was driven by Chinese growth—and, therefore, Chinese
demand. The demand effect on the oil price has increased over time, in line with China’s growing
weight. As expected, a decreasing trend is observed in 2020-2021 due to the Covid-19 pandemic
and the subsequent reduction in economic activity.

Turning to oil supply, its coefficient has followed a downward trend since the 2007-2008 global
financial crisis. This evolution can be explained by various factors, such as the spectacular shale oil
and gas boom since 2009 that profoundly disrupted the oil market and OPEC’s supremacy. During
the 2015-2020 period, prices sharply fell due to the battle for market share and global price-
fixing between key players such as Russia and Saudi Arabia. The negative estimated coefficients
associated with oil supply during that period are thus consistent with those important changes
affecting global oil production.

As shown in Figure 2, the impact of political tensions between China and the US was relatively
13



stable and positive before 2005, especially for 𝜏 = 0.75. The effect increased in the mid-2000s,
i.e., when China started to play a major role at the global level. The most interesting result is that
this impact strongly changed and became negative in 2015 during the trade war with the US. The
deterioration of political relations between the two countries created uncertainty that has strongly
affected the oil market, pulling prices down. At the end of the period, once the effect of the shock
has passed, the impact of political tensions recovers a “normal” pattern, illustrating a “new normal”
regime.

Overall, our findings show that the cointegrating relationship between the price of oil and
its determinants is both quantile-dependent and time-varying across quantiles. This result is
particularly interesting as it clearly highlights the increased role played by China in the oil market
since the mid-2000s.

5. Conclusion

This paper assesses the role of political tensions between the US and China and global market
forces (oil demand and supply) in explaining oil price fluctuations. We pay particular attention to
the potential existence of asymmetries between oil prices and their determinants depending on the
level reached by oil prices, as well as possible time-varying effects across the January 1958-March
2022 period.

We show that oil prices and their determinants are not constant unit root processes, meaning
there is an asymmetry in persistence. In particular, during periods of high oil prices and conflicting
relationships between China and the US, political tensions and the price of oil itself tend to be
more persistent.

We estimate a quantile autoregressive distributed lag (QARDL) error-correction model to
account for such asymmetric behavior. Our main findings show that (i) the higher the oil price,
the stronger the adjustment speed toward the long-term equilibrium, (ii) the effect of US-China
political tensions is exacerbated during high oil price periods, and (iii) significant time-varying
patterns in the parameters associated with oil prices’ determinants are observed.

Overall, our results highlight the increasing role of China in the oil market since the mid-2000s.
Given that US-China political tensions are accentuated during a bullish oil market, and due to their
significant impact on the oil market, special attention must be paid to the diplomatic relationships
between the two countries. Limiting conflictual relationships helps to mitigate high price pressures,
which is crucial in the current context of increased global inflation.
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Figure 2: Time-varying QARDL error-correction model
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Note: The parameters are estimated using the rolling window method, and each window has a size of 320 observations. The first date on the horizontal axis
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Appendix A. Descriptive statistics

Table A.1: Descriptive statistics on first-differenced series

wti wip gop pri

Mean 0.0016 0.0028 0.0019 −0.0026
Median −0.0023 0.0033 0.0030 0.0000
Maximum 0.8418 0.0477 0.0650 2.1000
Minimum −0.5601 −0.0915 −0.1457 −2.2000
Std. Dev. 0.0818 0.0077 0.0162 0.2286
Skewness 0.8099 −2.7499 −1.9796 −0.9828
Kurtosis 26.3085 36.8219 17.7130 37.7551

Jarque-Bera 17514.54 37671.24 7448.104 38877.88
Probability 0.000 0.000 0.000 0.000

Observations 770 770 770 770

Source: authors’ calculations.

18



Figure A.1: Series
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Note: This figure represents the evolution of the real price of oil (𝑤𝑡𝑖), world oil demand, global oil supply, and the
US-China political relation index (𝑝𝑟𝑖). Data sources: Christiane Baumeister’s website for oil-related variables, and

Institute of International Relations’ website for 𝑝𝑟𝑖.
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Appendix B. Quantile unit root tests

Table B.1: Quantile unit root tests for the oil price

Critical values

𝜏 �̂�(𝜏) �̂�(OLS) ADF(𝜏) 1% 5% 10%

0.1 0.955 0.988 -3.732 -3.312 -2.668 -2.319
0.2 0.961 0.988 -5.320 -3.377 -2.733 -2.386
0.3 0.981 0.988 -4.291 -3.374 -2.730 -2.383
0.4 0.994 0.988 -2.645 -3.361 -2.717 -2.369
0.5 0.999 0.988 -0.732 -3.364 -2.720 -2.372
0.6 1.009 0.988 2.765 -3.386 -2.743 -2.397
0.7 1.025 0.988 4.940 -3.404 -2.766 -2.421
0.8 1.035 0.988 3.896 -3.416 -2.780 -2.437
0.9 1.027 0.988 2.450 -3.379 -2.736 -2.388

Note: We use 12 lags in the quantile unit root tests. The null is the presence of a unit root for the specified quantile 𝜏.
�̂�(𝜏) is the estimate of the largest autoregressive root at each quantile, �̂�(OLS) is the usual OLS estimate of the

autoregressive root, and 𝐴𝐷𝐹 (𝜏) is the quantile unit root test statistic. Source: authors’ calculations.

Table B.2: Quantile unit root tests for the oil demand

Critical values

𝜏 �̂�(𝜏) �̂�(OLS) ADF(𝜏) 1% 5% 10%

0.1 0.999 0.999 1.087 -3.334 -2.689 -2.341
0.2 1.000 0.999 -0.569 -3.390 -2.749 -2.403
0.3 1.000 0.999 -0.138 -3.426 -2.791 -2.449
0.4 1.000 0.999 -0.883 -3.442 -2.809 -2.469
0.5 0.999 0.999 -2.058 -3.441 -2.808 -2.468
0.6 0.998 0.999 -4.395 -3.420 -2.784 -2.441
0.7 0.998 0.999 -4.314 -3.396 -2.756 -2.411
0.8 0.998 0.999 -3.060 -3.355 -2.362 -2.043
0.9 0.998 0.999 -2.305 -3.249 -2.605 -2.256

Note: We use 12 lags in the quantile unit root tests. The null is the presence of a unit root for the specified quantile 𝜏.
�̂�(𝜏) is the estimate of the largest autoregressive root at each quantile, �̂�(OLS) is the usual OLS estimate of the

autoregressive root, and 𝐴𝐷𝐹 (𝜏) is the quantile unit root test statistic. Source: authors’ calculations.
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Table B.3: Quantile unit root tests for the oil supply

Critical values

𝜏 �̂�(𝜏) �̂�(OLS) ADF(𝜏) 1% 5% 10%

0.1 1.002 0.992 0.739 -3.412 -2.775 -2.431
0.2 0.999 0.992 -0.543 -3.467 -2.839 -2.502
0.3 0.996 0.992 -2.064 -3.486 -2.861 -2.525
0.4 0.994 0.992 -4.348 -3.480 -2.854 -2.518
0.5 0.993 0.992 -4.483 -3.468 -2.840 -2.502
0.6 0.993 0.992 -4.865 -3.439 -2.807 -2.466
0.7 0.993 0.992 -5.835 -3.403 -2.764 -2.420
0.8 0.988 0.992 -4.807 -3.362 -2.718 -2.370
0.9 0.982 0.992 -6.179 -3.217 -2.573 -2.224

Note: We use 12 lags in the quantile unit root tests. The null is the presence of a unit root for the specified quantile 𝜏.
�̂�(𝜏) is the estimate of the largest autoregressive root at each quantile, �̂�(OLS) is the usual OLS estimate of the

autoregressive root, and 𝐴𝐷𝐹 (𝜏) is the quantile unit root test statistic. Source: authors’ calculations.

Table B.4: Quantile unit root tests for the political tensions

Critical values

𝜏 �̂�(𝜏) �̂�(OLS) ADF(𝜏) 1% 5% 10%

0.1 0.989 0.998 -2.155 -3.064 -2.401 -2.059
0.2 0.996 0.998 -1.512 -3.027 -2.371 -2.024
0.3 1.000 0.998 0.000 -2.967 -2.322 -1.967
0.4 1.000 0.998 0.503 -2.922 -2.286 -1.925
0.5 1.000 0.998 2.751 -2.905 -2.267 -1.905
0.6 1.000 0.998 2.665 -2.911 -2.276 -1.914
0.7 1.000 0.998 0.000 -2.951 -2.309 -1.952
0.8 1.011 0.998 3.699 -2.994 -2.344 -1.992
0.9 1.012 0.998 1.896 -3.037 -2.379 -2.033

Note: We use 12 lags in the quantile unit root tests. The null is the presence of a unit root for the specified quantile 𝜏.
�̂�(𝜏) is the estimate of the largest autoregressive root at each quantile, �̂�(OLS) is the usual OLS estimate of the

autoregressive root, and 𝐴𝐷𝐹 (𝜏) is the quantile unit root test statistic. Source: authors’ calculations.
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Appendix C. Symmetry tests

Figure C.1: 𝑝-values of Wald statistics using rolling estimation
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Note: 𝑝-values of 𝑾𝒏 (𝛽) test statistics. The figures show the estimated 𝑝-values of the Wald tests, where 𝑾(1)
𝒏 (𝛽)

tests 𝛽∗ (0.25) = 𝛽∗ (0.5); 𝑾(2)
𝒏 (𝛽) tests 𝛽∗ (0.5) = 𝛽∗ (0.75) ; 𝑾(3)

𝒏 (𝛽) tests 𝛽∗ (0.25) = 𝛽∗ (0.75); and 𝑾(4)
𝒏 (𝛽) tests

𝛽∗ (0.25) = 𝛽∗ (0.5) = 𝛽∗ (0.75). The coefficient 𝛽1 corresponds to the long-run elasticity of oil demand, 𝛽2 to the
long-run elasticity of oil supply, and 𝛽3 to the long-run elasticity of political tensions. The parameters are estimated
using the rolling window method, and each window has a size of 320 observations. The first date on the horizontal

axis is August 1984. The number of out-of-sample observations is 452. Source: authors’ calculations.
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