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We present an implementation of excited-state analytic gradients within the Bethe-Salpeter

equation formalism using an adapted Lagrangian Z-vector approach with a cost indepen-

dent of the number of perturbations. We focus on excited-state electronic dipole moments

associated with the derivatives of the excited-state energy with respect to an electric field.

In this framework, we assess the accuracy of neglecting the screened Coulomb potential

derivatives, a common approximation in the Bethe-Salpeter community, as well as the im-

pact of replacing the GW quasiparticle gradients by their Kohn-Sham analogs. The pros

and cons of these approaches are benchmarked using both a set of small molecules for

which very accurate reference data are available, and the challenging case of increasingly-

extended push-pull oligomer chains. The resulting approximate Bethe-Salpeter analytic

gradients are shown to compare well with the most accurate TD-DFT data, curing in

particular most of the pathological cases encountered with TD-DFT when a non-optimal

exchange-correlation functional is used.
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I. INTRODUCTION

The wealth of phenomena associated with both photophysical and photochemical processes,

characterized by strong electronic and structural reorganizations away from the ground-state (GS),

offers a strong motivation for developing theoretical tools allowing to study the properties of con-

densed matter systems in their excited states (ES). Beyond the standard determination of ES en-

ergies, their gradients with respect to nuclear positions provide the forces needed to follow the

structural reorganisation associated with, e.g., a photoinduced chemical reaction. Likewise, an-

other gradient, the derivative of the ES total energy with respect to an applied electric field, gives

access to the ES electronic dipole moments, a key signature of the electronic rearrangement upon

excitation. Excited-state dipole moments are important properties from both an experimental point

of view, as they provide an hint at the charge-transfer character of the considered state, and from a

theoretical perspective, since they are likely the simplest property that can be directly related to the

ES density. The experimental characterization of ES dipoles through Stark effect measurements or

solvatofluorochromism is a difficult task,1,2 leaving theory as an important source of information

on the ES charge distribution. Indeed, Stark measurements use the deformation of the vibronic

bands under an external electric field to determine the ES dipole, an approach only applicable for

small gas phase molecules, whereas the measurements of the evolution of the fluorescence peak

position in solvents of different polarity provide estimates of the ES dipole of (large) solvated

molecules, but generally under a simplified physical model. In other words, both experimental

techniques produce data coming with significant incertitudes.

Besides numerical gradients relying on finite-field (or finite-difference) techniques, analytic

gradients of ES energies were introduced in quantum chemistry as an extension to Coupled-

Perturbed Hartree-Fock (CPHF) or Kohn-Sham (CPKS)3–5 calculations of the perturbed molecular

orbitals. Such direct techniques require solving the CPHF/CPKS equation as many times as there

are perturbations, namely 3Nat times in the case of nuclear gradients in a molecule containing

Nat atoms. It was early recognized, on the basis of the Handy-Schaeffer Z-vector technique,6

that in fact most of the needed operations could be factorized in such a way that all ES gradi-

ents can be obtained for the cost of a single CPHF/CPKS calculation. The Z-vector equation

formalism was further simplified using an elegant Lagrangian formalism allowing to bypass the

explicit calculation of the molecular orbitals gradients.7,8 Such a Lagrangian Z-vector approach

is now implemented in many codes for calculating ES gradients within time-dependent density-
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functional theory (TD-DFT),9 including extensions to polarizable environments,10,11 and as well

as many-body wavefunction approaches such as coupled-cluster (CC) techniques.12–14

In recent years, the Bethe-Salpeter equation (BSE)15–20 formalism has generated much interest

to study the optical properties of molecular organic systems with several benchmarks performed

on diverse molecular families,21–28 allowing comparison with both wavefunction theories and TD-

DFT approaches. The Bethe-Salpeter formalism to neutral electronic excitations, offering the same

cost as TD-DFT calculations, was in particular shown to offer an accuracy equivalent to TD-DFT

calculations performed with optimised (tuned) exchange-correlation functionals (XCFs), notably

addressing the difficulties associated with charge-transfer,23,29–35 Rydberg23 and cyanine36 ES.

Extension to dynamical kernels,37–41 GS total energies,42–44 core-level spectroscopies,45–47 are

examples of developments extending the applicability of BSE calculations to molecular systems.

Finally, and beyond the study of isolated gas phase molecular systems, standard techniques to

deal with systems embedded in a polarizable environment have been adapted to the BSE formal-

ism, including both continuum48,49 and discrete50,51 models of polarizable environments, together

with fragments or subsystem-based approaches allowing to treat large systems.52–54 However, a

strong limitation with the BSE approach is the lack of efficient formalisms to calculate ES energy

gradients.

In a pioneering study, the structural relaxation of the lowest ES of two small molecules (CO

and NH3) was studied with the BSE formalism,55 implementing a direct analytic formalism based

on Density Functional Perturbation Theory (DFPT)56 with a cost proportional to the number of

perturbations. In that study, analytic gradients were implemented relying on two simplifications:

i) the neglect of the gradient of the screened Coulomb potential W , an historical approximation

in the BSE community, and ii) the replacement of the GW quasiparticle energy gradients by their

KS analogs. These two approximations, that dramatically reduce the cost of calculating BSE gra-

dients, were shown to be accurate for these two model systems. Later, finite-field techniques

were used to study the BSE ES structural relaxation for carbon monoxide, acetone, acrolein,

and methylenecyclopropene.57 Further, the challenging evolution and crossing of ES potential

energy surfaces upon twist angle in retinal,58 dimethylaminobenzonitrile59 and N-phyenylpyrrole

molecules60 were explored, suggesting accurate BSE nuclear gradients in more complex organic

systems. Finally, the ES dipole moments of increasingly long pus-pull chains were calculated at

the finite-field BSE level with comparison to CC calculations,61 a work demonstrating the accu-

racy of BSE ES dipoles for a challenging case.
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In the present study, we explore a simplified BSE analytic gradients approach within a Z-vector

Lagrangian formalism focusing on ES dipole moments. In the standard Z-vector equation, that

we write symbolically (A+B)Z = R, we find that the (A+B) matrix is rigorously the same as in

TD-DFT calculations, provided that the preceding GW calculations are performed at a non-self-

consistent or partially self-consistent level preserving the one-body {φ KS
n } input KS molecular

orbitals used to calculate the GW operator and BSE electron-hole Hamiltonian. As such, the

two implemented approximations, namely i) neglecting the gradients of the screened Coulomb

potential, and ii) identifying the GW quasiparticle gradients to their KS analogs, only modify

the right-hand-side R vector. We illustrate the merits and limitations of these two simplifications

on a set of small molecules for which high-level reference quantum chemistry calculations are

available,62,63 as well as on the above-mentioned increasingly long push-pull oligomers.61,64 We

show in particular that the use in the R-vector of the screened-Coulomb potential W , mediating

non-local electron-hole interactions, can significantly correct the pathological gradients obtained

with TD-DFT calculations based on XC kernels containing an insufficient amount of exact ex-

change. Further, simplification i) is shown to be an excellent approximation, while approximation

ii) is found to be much less innocent, unless an optimally-tuned XC functional is used at the input

Kohn-Sham level. Overall, this simplified BSE Z-vector formalism is shown to provide results on

par with the best (tuned) TD-DFT calculations.

II. THEORY

We briefly review the Green’s function many-body perturbation GW 65–68 and Bethe-Salpeter

equation (BSE) formalisms,15–20 focusing on the aspects relevant to the subsequent ES gradients

calculations. Extensive reviews on the GW and BSE methods can be found in the literature.15,69–75

The basic equations associated with the Z-vector Lagrangian formulation of ES gradients8,11 are

then reviewed, focusing on the modifications and approximations underlying the use of the GW

quasiparticle energies and BSE excitonic Hamiltonian in place of their Kohn-Sham DFT and TD-

DFT analogs.
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A. The GW and Bethe-Salpeter equation formalisms

Stemming from many-body perturbation theory, the GW approximation to the exchange-

correlation potential, labeled a self-energy, reads:

ΣGW (r,r′;E) =
i

2π

∫

dω eiωηG(r,r′;E +ω)W (r,r′;ω) (1)

where η is a positive infinitesimal, G the one-body time-ordered Green’s function, and W the

dynamically screened Coulomb potential. Such a Green’s function formalism allows calculating

electronic energy levels that can be formally related to the output of a photoemission experiment,

namely to proper ionization potentials and electronic affinities. The GW self-energy is not exact

but stems from a lowest-order perturbation approach in terms of the random-phase-approximation

(RPA) screened Coulomb potential W . Further, in practice, the needed Green’s function G is taken

to be that associated with input Kohn-Sham one-body eigenstates and energy levels:

G(r,r′;ω) = ∑
n

φ KS
n (r)[φ KS

n (r′)]∗

ω − εKS
n + iη × sign(εKS

n −µ)
(2)

with µ the chemical potential. In the following, the wording KS eigenstates will include molec-

ular orbitals (MOs) and related energy levels stemming from DFT, Hartree-Fock or hybrid XCF

calculations. The dynamically screened Coulomb potential stems from the construction of the

Kohn-Sham independent-electron susceptibility χ0 within the (direct) RPA, namely:

W (r,r′;ω) =V (r,r′) (3)

+
∫

dr1dr2 V (r,r1)χ0(r1,r2;ω)W (r2,r
′;ω)

χ0(r,r
′;ω) = ∑

ia

[φ KS
a (r)]∗φ KS

i (r)[φ KS
i (r′)]∗φ KS

a (r′)

ω − (εKS
a − εKS

i )+ iη
+ c.c. (4)

adopting here and below quantum chemistry notations with (i, j) pointing to occupied orbitals,

(a,b) to virtual (unoccupied) ones, and (m,n, p,q,r,s) to any orbital. In practice, the most common

GW schemes assume that the Hamiltonian, or Fock operator, F̂GW built with the GW self-energy,

is diagonal in the Kohn-Sham molecular orbital basis, so that the input KS energy levels can be

corrected as follows:

εGW
n = εKS

n + 〈φ KS
n |ΣGW (r,r′;εGW

n )−V KS
XC |φ KS

n 〉 (5)

where V KS
XC is the Kohn-Sham exchange-correlation (XC) mean-field potential. The dynamical

self-energy ΣGW has to be calculated at the εGW
n targeted energy. Such a scheme, where input
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Kohn-Sham eigenstates are used to build the GW self-energy operator is called the single-shot or

G0W0 approach. From the corrected {εGW
n } electronic energy levels, labeled quasiparticle ener-

gies, an updated G and W can be calculated, while keeping input Kohn-Sham molecular orbitals

frozen. This is the so-called partially self-consistent approach with self-consistent update of the

energy levels, an approach labeled evGW . Such an approach has been shown to offer an excellent

accuracy at reduced cost as compared to fully self-consistent approaches where one-body molec-

ular orbitals are also updated.76

Concerning now the Bethe-Salpeter equation (BSE) formalism, the relation between the charge

density and the diagonal of the Green’s function: n(r, t)=−iG(rt,rt+), with t+=(t+η) in a time

representation, allows to generalize the standard TD-DFT electronic susceptibility by introducing

a four-point susceptibility as the derivative of the Green’s function by a non-local perturbation:

L(1,2,3,4) = ∂G(1,2)/∂U(3,4) with e.g. 1 = (r1t1) in space-time notations. The resulting BSE

excitation energies {Ωλ} and two-body (electron-hole) eigenstates ψλ (re,rh) :

ψBSE
λ (re,rh) = ∑

ia

[

XBSE
ia,λ φa(re)φi(rh)+Y BSE

ia,λ φa(rh)φi(re)
]

(6)

with (re,rh) electron and hole positions and where (λ ) indexes the excitations, can be obtained by

solving the following eigenvalue system in the product (occupied)×(virtual) transition space:

(

ΛBSE −Ω∆
)





X

Y



= 0 (7)

with ΛBSE the BSE Hamiltonian and ∆ the relevant metric to deal with the normalization of

excitation/de-excitation processes:

ΛBSE =





ABSE BBSE

BBSE ABSE



 ∆ =





1 0

0 −1



 (8)

For closed-shell systems:

ABSE
ia, jb = (εGW

a − εGW
i )δabδi j +κ(ia| jb)−Wi j,ab (9a)

BBSE
ia, jb = κ(ia|b j)−Wib,a j (9b)

with κ = 2 and 0 respectively for singlet and triplet excitations adopting the following Coulomb

integrals notations :

(ia| jb) =
∫

drdr′ φi(r)φa(r)V (r,r′)φ j(r
′)φb(r

′) (10)

Wia, jb =
∫

drdr′ φi(r)φa(r)W (r,r′;0)φ j(r
′)φb(r

′) (11)
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We use here real-valued MOs for finite size systems without applied magnetic field. In the standard

BSE formalism, the screened Coulomb potential is taken to be static, an approximation equivalent

to the adiabatic formulation of the TD-DFT kernel.

For what follows, it is worthwhile noticing that the BSE matrix formulation is formally close

to time-dependent Hartree-Fock (TD-HF) upon replacing the GW quasiparticle energies by the

Hartree-Fock ones and the screened Coulomb potential by its bare analog. Such a formal proxim-

ity allows to set up intermediate validation steps through the implementation of TD-HF analytic

gradients within the Lagrangian Z-vector formalism. This is described in the Supplementary Ma-

terial (SM) Table S1.

We further note that the BSE excited-state unrelaxed electron density, namely the probability of

finding an electron in re averaging over the hole degrees of freedom, and the related hole density,

reads:

ρe/h(re/h) =
∫

drh/e |ψ
BSE
λ (re,rh)|

2 (12)

leading through the orthogonality of the molecular orbitals to:

ρe(re) = ∑
iab

XiaXibφa(re)φb(re)−∑
i ja

YiaYjaφi(re)φ j(re) (13)

ρh(rh) =−∑
iab

YiaYibφa(rh)φb(rh)+∑
i ja

XiaX jaφi(rh)φ j(rh) (14)

with special care to the (-1) factor in the Y-coefficients multiplication associated with the normal-

ization of the BSE eigenstates. The unrelaxed electron density variation from the ground-state to

the excited-state can be obtained as the difference [ρe(r)−ρh(r)] leading in compact notations to

:

∆ρ(r)
unrlxd
= ∑

pq

Tpqφp(r)φq(r) (15)

Ti j =−∑
a

(

XiaX ja +YiaY ja

)

(16)

Tab = ∑
i

(XiaXib +YiaYib) (17)

a formulation identical to the standard TD-DFT definition with Tia = Tai = 0. The relaxation of

the molecular orbitals upon excitation yields a correction to the unrelaxed T difference density

matrix. Such a correction is precisely the Z-vector.
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B. Lagrangian Z-vector formalism

To briefly introduce the interest of the Lagrangian Z-vector approach, let us consider a pertur-

bation labeled (ζ ) and the gradient of an excitation energy Ωλ with respect to this perturbation:

Ω
ζ
λ
= 〈Xλ ,Yλ |Λ

ζ |XλYλ 〉 (18)

where the superscript (ζ ) indicates a derivative by the perturbation. The matrix Λ could be the TD-

DFT, TD-HF, or BSE one. The derivative of the {Xia,λ} coefficients vanish by orthonormalization

of the Λ-matrix eigenstates (Hellmann-Feynman theorem). In a standard approach, the expression

of the Λ-matrix elements as a function of the KS eigenstates and associated KS or GW energies,

leads to performing standard perturbation theory to obtain the gradients {φ
ζ
i/a

} and {ε
ζ
i/a

}. Such

MOs eigenstates derivatives can be obtained within the framework of DFPT,56,77,78 as done by

Ismail-Beigi and Louie for the calculation of the BSE ionic gradients of CO and NH3,55 or within

the CPHF/KS approach.3–5 DFPT, within its modern Green’s function formulation and its adapta-

tion to periodic systems, is more common in the physicist community, while CPKS is the method

typically implemented in quantum chemistry codes.

Independently of the approach used to perform perturbation theory, such calculations must be

performed for each external perturbation. This is the great advantage of the Lagrangian formal-

ism that requires only one system of that kind to be solved for all perturbations, the cost of the

remaining perturbation-dependent operations to be performed being marginal. Following Furche

and Ahlrichs,8 based on an idea by Helgaker and Jørgensen,7 we define a functional:

L[X ,Y,Ω,C,Z,W,ζ ] = G[X ,Y,Ω]+∑
ia

ZiaFia − ∑
rs,r≤s

W L
rs(Srs −δrs) (19)

where Fia = 〈i|F̂ |a〉 and Srs = 〈r|s〉 are the Hamiltonian and overlap matrix elements between MOs.

The {Zia} and {W L
rs} are Lagrange multipliers enforcing that Fia = 0 and Srs = δrs at the global

minimum of L. The functional G[X ,Y,Ω] is associated with the (vertical) excitation energies:

G[X ,Y,Ω] = 〈X ,Y |Λ|X ,Y 〉−Ω(〈X ,Y |∆|X ,Y 〉−1) (20)

where the operator Λ could be associated with TD-DFT, TD-HF, or BSE. To prevent confusion

with the Green’s function G, we chose to underline the G-functional generally introduced. Sim-

ilarly, we label the Lagrange parameters W L
rs - with the superscript L for Lagrange - to prevent

confusion with the screened Coulomb potential W . We also include the perturbation ζ in the list
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of variables since now the L functional bears an explicit functional of the perturbation through the

Hamiltonian F̂ , with, e.g., in the case of switching a uniform E-field along the x̂-direction:

Fia =⇒ Fia − eE〈i|x|a〉 (21)

The “C" variables in the definition of L point to the molecular orbital coefficients in the chosen

basis:

|n〉= ∑
µ

Cnµ |χµ〉 (22)

where the index (µ) runs over the atomic basis {χµ}. The key point now is that the minimization

of L with respect to the perturbation (ζ ) leads to:

Ωζ = 〈X ,Y |G(ζ )|X ,Y 〉−∑
ia

ZiaF
(ζ )
ia − ∑

rs,r≤s

W L
rsS

(ζ )
rs (23)

with the notation that G(ζ ),F
(ζ )
ia ,S

(ζ )
rs are derivatives taken at the frozen (X ,Y,Ω,C,Z) values that

minimize L. This is the great advantage of the present Lagrangian formalism that the derivative

of G can be taken at constant {Cµn} coefficients, without the need to perform DFPT or CPKS

calculations for each perturbation. The price to pay is the evaluation of the {Zia,W
L
rs} Lagrange

parameters. Since such parameters are obtained by the minimization of L with respect to the

{Cµn} coefficients at frozen ζ , namely in the absence of the perturbation, these coefficients are

perturbation-independent and can be obtained at the cost of a single CPKS-like resolution.

While the previous equations originate directly from the seminal TD-DFT treatment,8 we now

discuss the specificities introduced by the GW and BSE formalisms. As emphasized above, most

GW and BSE calculations, even partially self-consistent evGW calculations, are performed without

updating the input KS MOs. Only the electronic energy levels are updated by the GW correction.

Consequently, the ZiaFia constraint appearing in the L functional, enforcing that the MOs are the

proper solution of the F̂ Hamiltonian at the global minimum of L, should be constructed with the

F̂KS KS Hamiltonian. Further, the overlap matrix S and the MO coefficients {C} are the Kohn-

Sham ones as well. As such:

L[X ,Y,Ω,CKS,Z,W,ζ ]
evGW
= GBSE[X ,Y,Ω]+∑

ia

ZiaFKS
ia − ∑

rs,r≤s

W L
rs(S

KS
rs −δrs) (24)

for standard BSE calculations relying on G0W0 and evGW calculations. As shown now, this really

means that the left-hand-side operator acting on Z, in the Z-vector equation, is the one associated
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with the KS formalism used to provide the MOs needed to build the GW operator. The difference

between TD-DFT and BSE analytic Z-vector equations will only affect the right-hand-side R-

vector as discussed below. The Z-vector equation stems from the minimisation of L with respect

to the MO coefficients:

∂L

∂Cµ p
= 0 (25)

where we have removed the KS superscript from the {Cµ p} coefficients, or in a restricted fashion:

∑
µ

∂L

∂Cµ p
Cµq = 0 (26)

with (pq = ia) and (pq = ai) that yields sufficient conditions to obtain the needed Zia factors. This

can be rewritten as:

QBSE
pq +∑

ia

Zia ∑
µ

∂FKS
ia

∂Cµ p
Cµq = ∑

rs,r≤s

W L
rs ∑

µ

∂SKS
rs

∂Cµ p
Cµq (27)

with

QBSE
pq = ∑

µ

Cµq
∂GBSE

∂Cµ p
(28)

Straightforward derivation leads to :

∑
rs,r≤s

W L
rs ∑

µ

∂SKS
rs

∂Cµ p
Cµq =W L

pq(1+δpq) (29)

From the ZiaFKS
ia constraint built with the Kohn-Sham Hamiltonian, one obtains as in standard

TD-DFT8:

∑
ia

Zia ∑
µ

∂FKS
ia

∂Cµ p
Cµq = εKS

q Zpq ×| fq − fp|+H+,KS
pq [Z]×θ(µ − εKS

p ) (30)

with ( fq/p) occupation factors, µ the chemical potential, and the operators:

H
+,KS
ia [Z] = ∑

jb

H
+,KS
ia, jb Z jb (31a)

H
+,KS
ia, jb = 4(ia| jb)+4 f XC

ia, jb − cX [(i j|ab)+(ia| jb)] (31b)

where f KS is the DFT exchange-correlation kernel and cX the amount of (global) exact exchange.

We have adopted here the closed-shell expression with e.g. j = 1 → N/2. With the Kohn-Sham
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Hamiltonian only depending on occupied states, the H+,KS contribution stemming from the deriva-

tive 〈i|[∂ F̂KS/∂Cµ p]|a〉 only occurs for (p) pointing to an occupied state. With (pq = ia) and

(pq = ai) one obtains two equations:

QBSE
ia + εKS

a Zia +H
+,KS
ia [Z] =W L

ia (32a)

QBSE
ai + εKS

i Zia =W L
ia (32b)

accounting for the imposed equalities (Zia = Zai) and (W L
ia = W L

ai). The difference between

Eqs. 32a and 32b yields:

(εKS
a − εKS

i )Zia +H+,KS[Z] = RBSE
ia (33a)

RBSE
ia =−(QBSE

ia −QBSE
ai ) (33b)

As hinted above, the left-hand-side operator acting on the Z vector is identical to that used in

the CPKS equation, or CPHF for f XC = 0 and cX = 1. The present Z-vector equation, or the

CPHF/CPKS problem, can be solved iteratively, involving (matrix×vector) multiplications in tran-

sitions space, namely an O(N4) computational effort. As emphasized above, a key feature is that

the eigen-system from which the Z vector can be obtained is independent of whatever applied

perturbation.

C. The Bethe-Salpeter QBSE vectors

We now wish to calculate the derivatives of (∂GBSE/∂Cµ p) following eq. 28. Adapting an idea

introduced in the case of TD-DFT,8 we rewrite the diagonal part of the BSE functional composed

of the GW quasiparticle energies using the transformation:

(εGW
a − εGW

i )δi jδab =⇒ FGW
ab δi j −FGW

i j δab (34)

with FGW
rs the GW Hamiltonian matrix elements in the Kohn-Sham basis. Such a transforma-

tion allows to make the MOs and related {Cµ p} coefficients explicit, and leads to the following

expression:

GBSE[X ,Y,Ω] = ∑
rs

FGW
rs Trs −Ω

[(

∑
ia

(X2
ia −Y 2

ia

)

−1

]

+ ∑
ia, jb

KBSE
ia, jb

(

XiaX jb +YiaY jb

)

+ ∑
ia, jb

KBSE
ia,b j

(

XiaYjb +YiaX jb

)

(35)
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where the BSE kernel reads:

KBSE
ia, jb = 2(ia| jb)−Wi j,ab(ω = 0) (36a)

KBSE
ia,b j = 2(ia|b j)−Wib,a j(ω = 0) (36b)

for singlet excitations as considered in this study. Here the (X ,Y ) and resulting T coefficients are

the BSE ones for a given excitation. The derivatives have to be taken at constant (X ,Y,Ω). This

leads to evaluate the derivatives of the GW quasiparticle energies and BSE kernel matrix elements.

The BSE kernel written here above relies in particular on the neglect of the (∂W/∂G) variation

in the needed (∂GW/∂G) variation of the GW self-energy. This is a central approximation in the

large majority of BSE implementations. As such, and with W a functional W [G] of the Green’s

function, any derivative of W by some external perturbation may consistently be neglected follow-

ing the chain rule (∂W/∂ζ ) = (∂W/∂G) · (∂G/∂ζ ). In that approximation, the gradients of the

Kia, jb matrix elements only stem from that of the molecular orbitals, leading e.g. to:

∑
µ

Cµq

∂KBSE
ia, jb

∂Cµ p
= δpiK

BSE
qa, jb +δpaKBSE

iq, jb +δp jK
BSE
ia,qb +δpbKBSE

ia, jq (37)

Concerning now the derivative of the electronic energy levels through the FGW
rs matrix elements,

we obtain:

∑
µ

Cµq
FGW

rs

∂Cµ p
= εGW

q (δprδqs +δpsδqr)+∑
µ

Cµq〈r|
∂ F̂GW

∂Cµ p
|s〉 (38)

With (rs = ab/i j) and (pq = ia/ai), the εGW
q disappears and the distinction between using GW

or Kohn-Sham energy levels is irrelevant. Remains however the explicit derivation of the F̂GW

Hamiltonian that we can rewrite as:

〈r|
∂ F̂GW

∂Cµ p
|s〉= 〈r|

∂ F̂KS

∂Cµ p
|s〉+ 〈r|

∂ (ΣGW −V DFT
XC )

∂Cµ p
|s〉 (39)

In the case of a HF starting point, the difference (ΣGW −V DFT
XC ) is just the correlation part of the GW

operator. The derivation 〈r|[∂ΣGW/∂Cµ p]|s〉 can in principle be performed, even though involving

off-diagonal GW matrix elements in the KS basis. This is at odds with the diagonal approximation

on which the evGW scheme relies. The main approximation of the present study is thus to neglect

the gradients of the (ΣGW −V DFT
XC ) correction in the Ria vector. Such an approximation will be

explored here below by comparison with finite-field calculations.

At this stage, let us compare the present scheme to the calculations performed by Ismail-Beigi

and Louie using direct DFPT calculations for each perturbation,55 with the same approximation
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consisting in equating the {∂ ζ εGW
n } gradients with their {∂ ζ εKS

n } LDA Kohn-Sham analogs in the

case of the model CO and NH3 molecules. Such an approximation was shown to be accurate, even

though the LDA Kohn-Sham energy levels are known to differ by several electronvolts from the

GW quasiparticle energies for small molecular systems. This hinges on the idea that even though

the quasiparticle correction (εGW
n − εKS

n ) can be large, its gradient may be limited.

Overall, the gradients of the BSE kernel and of the diagonal KS (εa − εi) energy differences

allow building the Q and R vectors needed on the right-hand-side of the Z-vector equation, with:

Ria =−H
+,KS

ia [T ] (40)

+2∑
j

(KBSE

ji [X ]+KBSE

i j [Y ])X ja +(KBSE

ji [Y ]+KBSE

i j [X ])Yja

−2∑
b

(KBSE

ab [X ]+KBSE

ba [Y ])Xib +(KBSE

ab [Y ]+KBSE

ba [X ])Yib

with e.g. the notation:

KBSE

pq [X ] = ∑
jb

KBSE

jb,pqX jb (41)

where again the (X ,Y,T ) are the BSE ones for a given excitation, and only the H+ operator origi-

nates from Kohn-Sham calculations.

D. Excited-state dipole moments

We focus in the present paper on the (electronic) ES dipole moments that can be obtained as the

derivative of the ES energy with respect to an external electric field. More specifically, since the

BSE formalism provides the excitation energy, that is the difference of energy between a given ES

and the GS, the derivative of the excitation energy Ωλ yields the excess dipole, namely the change

of the dipole from the GS to a given (λ ) ES:

∂ΩBSE
λ

∂Ex
= µES

x,λ −µGS
x (42)

taking as an example an Ex field in the x̂-direction. The transformation of the Fockian under the

external electric field:

Fia =⇒ Fia − eE〈i|x|a〉 (43)
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leads to:

µES
x,λ −µGS

x = ∑
pq

〈p|− ex|q〉Ppq (44a)

Ppq = Tpq +Zpq (44b)

where the T and Z terms originates respectively from the 〈X ,Y |G(ζ )|X ,Y 〉 and ∑ia ZiaF
(ζ )
ia terms

in Eq. 23. The Zi j and Zab terms, that are not calculated nor needed, are set to zero. The sum P is

the relaxed difference density matrix expressed in the KS MO basis, namely the change in density

matrix upon excitation.

Equation 44 clearly shows that once the Z-vector is calculated, the cost of evaluating the change

of dipole along the 3 directions of space can be obtained with negligible effort. This is the sim-

plest illustration that, in the present Lagrangian Z-vector formalism, the cost of calculating the

response to several external perturbations is independent of the number of perturbations. Clearly,

evaluating iteratively the Zia vector components solution of the (A+B)Z = R system (see Eq. 33a)

offers the same complexity as the Bethe-Salpeter eigenvalue problem to determine the (Xia) exci-

tation resonant components for e.g. the lowest S1 excitation in the Tamm-Dancoff approximation,

namely an O(N4) process. As an important ingredient, and following standard strategies, we do

not precalculate the left-hand-side (A+B) matrix, as this would be too demanding in terms of

memory. Instead, we use an iterative approach that only requires the action of the (A+B) op-

erator on test vectors in a conjugate gradient approach with the Fletcher-Reeves update scheme.

This matrix×vector multiplication exploits the efficient resolution-of-identity approach used at the

BSE/GW level. An initial preconditioned Z0-vector can be obtained as Z0
ia = Ria/(εa−εi) leading

typically to 5-7 iterations to convergence. For sake of qualitative illustration, computing the two

lowest BSE excited states of the 86 atoms push-pull H42C40N2O2 oligomer considered below takes

about 24 mins wall-time on 256 cores (see machine characteristics in Note 79) with the cc-pVTZ

basis set, while obtaining the corresponding dipole vector change from the ground-state to a given

excited-state takes about 11 mins wall-time.

We conclude this Section by emphasizing that in the present BSE/evGW@XCF formalism

starting with a KS description of the GS, the ground-state (GS) dipole is that of the corresponding

XCF functional obtained by standard DFT. As such, the ES dipole moment can be obtained by

adding the DFT GS dipole to the excess dipole. Since we focus here on the BSE gradients, we will

not discuss the quality of the DFT GS dipoles here. As shown in Refs. 61–64 for the systems of

interest in the present study, the GS dipoles are much more stable from one formalism to another
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as compared to the excess dipole. Calculating ground-state energies at the BSE level within e.g.

an adiabatic-connection fluctuation–dissipation theorem (ACFDT) formalism has been explored

for very small atomic or dimer systems,43,44,80 and calculating the corresponding gradients stands

well beyond the present paper.

E. Technical details

The present BSE analytic-gradients Lagrangian Z-vector formalism has been implemented in

the beDeft (beyond-DFT) package, a rewriting and extension of the FIESTA code,23,49 with an

improved analytic continuation approach for the GW calculations,81 the implementation of a frag-

ment (or subsystem-based) many-body formalism,54 and the possibility to perform cubic-scaling

RPA and GW calculations within an accurate space-time approach.82,83 Our many-body GW and

BSE calculations are conducted within a Coulomb-fitting resolution-of-the-identity approach.84–86

The BSE calculations are performed beyond the Tamm-Dancoff approximation (TDA). All occu-

pied and virtual states are included in the construction of the Green’s function, the independent-

electron susceptibility used to build the screened Coulomb potential, and the BSE Hamiltonian in

transition-space. All occupied and virtual states within 10 eV of the gap are explicitly corrected

at the GW level, while lower occupied/higher virtual states are shifted rigidly following the low-

est/highest explicitly corrected levels. Such a scheme ensures excellent convergence of the GW

and BSE data. Further, GW calculations are performed at the partially self-consistent evGW level

with update of the quasiparticle energies, keeping frozen the input {φ KS
n } one-body wavefunctions.

Input HF ans KS molecular orbitals are generated with the ORCA package.87

We benchmark the BSE/GW analytical gradients on two different problems. First, we study a

set of 38 transitions in 14 small molecules for which very accurate many-body wavefunction quan-

tum chemistry ES dipoles are available.62,63 The considered molecules and transitions are given

in the SM Fig. S1. These reference calculations have been conducted at the aug-cc-pVTZ level to

calculate GS and ES dipoles and our BSE calculations are performed at the corresponding aug-

cc-pVTZ/aug-cc-pVTZ-RIFIT level. We adopt the same geometries as provided in the Supporting

Information of Ref. 63 for these calculations

Second, we study the α ,ω-amino,nitro-polyene oligomers containing between 1 and 20 double

bonds (N). To this end, we adopt the geometries provided in Refs. 61 and 64, and perform the

calculations with the cc-pVTZ/cc-pVTZ-RIFIT basis sets,88–90 the basis set that was used to obtain
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reference wavefunction data in previous studies.61,64

When needed, finite-field calculations are performed using a 5-point stencil formula for the

derivative of a given BSE excitation energy Ω by an explicit external uniform electric field Ei (i=x,

y, z):

∂Ω

∂Ei
=

−Ω(2∆Ei)+8Ω(∆Ei)−8Ω(−∆Ei)+Ω(2∆Ei)

12∆Ei
(45)

with ∆Ei electric field steps of the order of 10−3 a.u. following numerous numerical stability

tests. BSE calculations in the presence of an explicit electric field are standard BSE/evGW calcu-

lations achieved starting from KS eigenstates generated in the presence of this field. In the case of

small molecules, and in particular for high-energy transitions evaluated with a diffuse-containing

basis set, the proximity and crossing of numerous ES surfaces, renders the finite-field approach

extremely tedious.

III. RESULTS AND DISCUSSIONS

A. Small molecules benchmark

We first explore the case of small molecules for which reference high-level wavefunction cal-

culations exist.62,63 This benchmark gathers 38 transitions associated with 14 molecules (see SM

Fig. S1). Reference calculations, labeled below Theoretical Best Estimates (TBE), originate

mainly from high-level coupled-cluster calculations up to CCSDTQ, and were performed with

the aug-cc-pVTZ basis set. For all considered molecules, only the z-component of the excess

dipole (∆µ = µES
z,λ −µGS

z ) is non-zero, with a sign that corresponds to the geometries given in the

Supporting Information of Ref. 63. All values calculated and used to build the upcoming figures

are available in the SM (Table S2).

Let us start by providing in Fig. 1(a,b) histograms of the errors with respect to the TBE, of

∆µ associated with standard TD-B3LYP and TD-PBE0 calculations. While TD-B3LYP and TD-

PBE0 provide reasonably small errors for most transitions, with some advantage for TD-PBE0, a

large number of outliers, indicated with colors, dominate the statistics. We somehow arbitrarily

designate outliers states for which the TD-B3LYP error is larger than 1 Debye (D). These outliers

are mostly associated with Rydberg transitions, namely the highest Σ+ state of carbon monoxide,

the B2 state of diazirine, the B1 state of diazomethane, the B2 state of formaldehyde, the B1 and A2

states of ketene. Thioformaldehyde’s π → π∗ transition completes this set of challenging ES. For
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FIG. 1. Histogram for the error (Debye) associated with the excess dipole ∆µ of 38 transitions and 14

molecules. We compare (a) TD-B3LYP, (b) TD-PBE0 and (c) the analytic BSE/evGW@PBE0 to the TBE

reference. Outliers are indicated with a different color code. Mean absolute (MAE) and signed (MSE)

errors are indicated on the graph.

the latter case, this error of TD-B3LYP is likely due to state mixing with another close-lying state,

see Ref. 63.

Rydberg excitations are characterized by diffuse final states very sensitive to the erroneous ex-

ponential tail of pure DFT exchange-correlation potentials in the vacuum, and known to be hard

to describe with B3LYP.91 This is particularly true upon using augmented basis sets allowing

molecular orbitals to extend in the vacuum. Increasing the amount of exact exchange improves

the situation, contributing to the expected (−1/r) XCF tail stemming from exact exchange. This

is evidenced by the evolution between TD-B3LYP and TD-PBE0 data with a reduction of the

error associated with outliers, TD-PBE0 being known to be more suited to Rydberg ES.92 Fur-

ther, the transition from valence (localized) states to delocalized final states induces rather large
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FIG. 2. Histogram for the error (Debye) as compared to TBE associated with the excess dipole ∆µ of 38

transitions and 14 molecules. We compare in (a) TD-M06-2X with the (b) analytic BSE/evGW@PBEh

approach. Outliers are indicated with a different color code. The PBEh functional is the IP-tuned global

hybrid optimized for each molecule (see text).

electron-hole average distance and the problem of the wrong treatment of long-range electron-hole

interactions through XCF kernels with low ratio of exact exchange becomes a relevant issue.

Clearly, the analytic BSE/evGW@PBE0 approach in Fig. 1(c) significantly reduces the number

of outliers. We underline that within the partially self-consistent evGW scheme, the shape of the

delocalized orbitals inherited from DFT calculations are not corrected. However, the electron-hole

interaction is correctly described by the screened Coulomb potential matrix elements, significantly

contributing to alleviate the difficulties that plague TD-B3LYP and TD-PBE0 calculations. As a

result the mean absolute error (MAE) obtained with BSE/evGW@PBE0 is 0.49 D, smaller than

its TD-B3LYP (0.69 D) and TD-PBE0 (0.62 D) counterparts.

We now compare in Fig. 2(a,b) the results of TD-M06-2X calculations with BSE/evGW@PBEh(α0),

where PBEh(α0) is the optimally tuned (OT) functional93,94 obtained by equating the minus of

the KS HOMO energy to the ∆SCF ionization potential (see data and optimal α0 values in SM

Table S2). For the present set of molecules and transitions, TD-M06-2X was shown to provide,

amongst global hybrid XCF, the smallest mean absolute error, on par with CAM-B3LYP and

ωB97X-D range-separated hybrids.63 Concerning the BSE/evGW@PBEh(α0) approach, we rely
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on the idea that OT XCF may provide KS energy gradients in best agreement with evGW gradients.

This is verified below.

The M06-2X functional leads to a large reduction of the number of outliers, leaving only the

CO Σ+ as problematic. As a result, the MAE is reduced to 0.31 D. A very similar result, 0.34 D,

can be obtained with the BSE/evGW@PBEh(α0) data, even though, together with the same CO

Σ+ outlier, the diazirine, and to a lesser extent the thioformaldehyde B1 Rydberg states stand out

of the central ∼[−0.5,0.5] (D) main distribution. Overall, the MAE associated with the analytic

evGW@PBEh(α0) approach is very close to the best TD-DFT value.

While it cannot be said that the analytic BSE gradients outperforms the best TD-DFT calcula-

tions, the large reduction of the number of outliers in both BSE/evGW@PBE0 and BSE/evGW@PBEh

points to the much larger stability of BSE data as compared to XCF-dependent TD-DFT results.

The screened Coulomb non-local kernel greatly helps in reducing the occurrence of large errors,

very much independently of the starting functional. Such a conclusion was already drawn for

excitation energies: BSE/evGW provides good results that weakly depend on the starting XCF

and on the nature of the transition (Frenkel, charge-transfer, cynanines, etc.), but does not outclass

TD-DFT performed with an XCF appropriate to the state/molecule considered. The same conclu-

sions seem to apply to the present case of ES dipole moments, a quantity much more challenging

than excitation energies.

To conclude this exploration of BSE approximate analytic gradients, we compare our analytic

approach to finite-field BSE/evGW calculations. Our goal here is to assess the impact of the two

approximations affecting the right-hand-side Ria vector in the Z-vector equation scheme, namely:

(a) neglecting the gradients (∂W/∂ζ ) of the screened Coulomb potential, and (b) approximating

the evGW@XCF quasiparticle energy gradients by their KS XCF analogs. We emphasize at this

stage that finite-field calculations are not only much more expensive than the present analytic

calculations, but they are further extremely tedious in situations, often encountered when using

augmented basis sets, of a large number of closely lying ES that cross under the effect of an

explicit external electric field.

We first present in Fig. 3(a) the effect of freezing the screened Coulomb potential W in the BSE

kernel to its zero-field expression (WE=0) when performing our finite-field calculations. This is

compared to full finite-field calculations where the screened Coulomb potential used in the BSE

kernel is recalculated for each field strength value. The agreement between the two calculations

is excellent, indicating that the standard practice in the BSE community to neglect the derivatives
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FIG. 3. Comparison of finite-field BSE/evGW@XCF (XCF=PBE0, PBEh) ∆µ excess dipoles with (a)

the corresponding finite-field calculations keeping the screened Coulomb potential frozen to its zero field

WE=0 form, and (b) with the corresponding analytic calculations. The associated MAE, MSE and R values

are indicated. The abbreviations K, F and Diazo stand for ketene, formaldehyde and diazomethane. The

indicated CO-π outlier is the lowest lying one.

of the screened Coulomb potential is very accurate. Such results were already hinted in the explo-

ration of GW quasiparticle energy ionic gradients obtained by finite-field calculations,95 and the

quality of this approximation is therefore confirmed.

We finally address the second approximation, namely replacing in Ria the evGW@XCF quasi-

particle energy gradients by their Kohn-Sham XCF analogs. Clearly, as shown in Fig. 3(b), such

an approximation is much less innocent than freezing the screened Coulomb potential, in particu-

lar when using PBE0 as starting XCF (blue dots). One notices however that the largest deviations

are again associated with the most difficult cases, namely, carbon monoxide, formaldehyde, dia-

zomethane, and ketene.

20

   
    

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t. 

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I:

10
.10

63
/5.

01
56

68
7



Accepted to J. Chem. Phys. 10.1063/5.0156687

To illustrate the origin of these difficulties, we compare the evolution with respect to an ap-

plied electric field of the CO evGW@XCF quasiparticle energies starting from two very different

XCF, namely PBE0 and HF. As seen on Fig. 4, both the absolute energy and evolution with E-

field are highly similar for most unoccupied energy levels. The same stability is observed for the

occupied levels that are not shown in the Figure. However, two levels (thin lines) behave very

differently with significant differences between evGW@HF and evGW@PBE0 data. Besides sig-

nificant shifts in absolute values at zero-field, the electric-field gradients are also found to differ

by about 1.5 D for these two unoccupied states.

These significant differences invalidate the central assumption common to non-self-consistent

G0W0 or partially self-consistent evGW calculations that input KS {φ KS
n } wavefunctions are both

almost equivalent with all XCF, and close to the ones that may be obtained with fully self-

consistent quasiparticle qsGW calculations with full update of the MOs.96 As emphasized above,

this is not the case for diffuse orbitals with significant weight where the tail of the XC potential

dramatically differs from one XCF to another. For such orbitals, there is in fact a sizeable inconsis-

tency between the shape of the KS wavefunction and the tail of the GW self-energy away from the

molecule. Such a difficulty could only be resolved by using more expensive fully self-consistent

GW calculations or, as a pragmatic alternative, IP-tuned functionals. Along that line, molecular

orbitals generated with range-separated hybrids, presenting a correct potential tail in the vacuum,

may further improve the starting point as compared to the global hybrids tested here. An extensive

study of the best Kohn-Sham starting point stands however beyond the present work.

In Ref. 55, the replacement of the G0W0@LDA quasiparticle gradients by their LDA Kohn-

Sham analogs was found to be accurate for the study of the ionic gradients associated with the

lowest valence Π transition of CO.55 This is not the case for E-field gradients when using PBE0,

even though the small amount of exact exchange (25%) provides a XC tail in better agreement

with the correct (−1/r) analytic limit than LDA. This indicates that excited-state dipole moments

are much more sensitive to the presence and quality of unbound MOs than nuclear gradients. The

dramatic sensitivity with basis size for these problematic ES dipole moments, as demonstrated in

reference wavefunction calculations,62,63 comes as another signature of this difficulty.

Similar conclusions apply to the other transitions affected by significant differences between

analytic and finite-field BSE/evGW@PBE0 data. The most dramatic case is obtained for the H2S

A2 transition showing a difference of ∼ 11 D between analytic and finite-field ∆µ values. This

originates from a very large change between the (LUMO+2) PBE0 and evGW@PBE0 energy level
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FIG. 4. Evolution with E-field of the lowest unoccupied CO evGW@XCF energy levels with XCF=HF

(black) and XCF=PBE0 (blue) at the aug-cc-pVTZ level.

E-field gradients. The analytic value is much closer (within ∼0.3 D) to the TBE reference, indi-

cating that it is the evGW@PBE0 diffuse energy level that shows a pathological behaviour under

E-field. Removing the augmentation from the atomic basis reduces the error between analytic and

finite-field excess dipole to ∼0.3 D showing again that indeed the problem originates from very

diffuse molecular orbitals. Such a dramatic outlier has been excluded from Fig. 3(b).

The study of gradients within fully-self-consistent qsGW calculations stands beyond the scope

of the present paper focused on the assessment of simplified analytic techniques that can com-

pete with TD-DFT in terms of computational efficiency. We emphasize that the above-mentioned

difficulties are associated with the ES dipole moments of very small systems presenting unbound

diffuse unoccupied states at low energy. For such cases, we now show [Fig. 3(b) green dots] that

using input Kohn-Sham orbitals generated by the IP-tuned PBEh(α0) global hybrid dramatically

improves the situation, leading to a much reduced MAE of 0.37 D, a smaller -0.05 D MSE and

a large correlation coefficient (R=0.97). Outliers are reduced to the ketene and formaldehyde A2

transitions. The difference between the analytic and finite-field H2S A2 ∆µ values is reduced to

below 10 mD.

B. Push-pull oligomer chains

Let us now continue our exploration of the merits of the present approximated analytic BSE

gradients by considering the challenging case of increasingly long push-pull oligomers displayed
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FIG. 5. Excess dipole (Debye) for the S1 excited state of the push-pull oligomers (inset) as a function of

the chain length (N). TD-XCF and finite-field (FF) BSE/evGW@XCF data are compared with the present

hybrid analytic approach (Z-vector), with (a) XCF=PBE0, and (b) XCF=PBEh(0.54). Finite-field BSE

calculations in (a) are from Ref. 61.

in Fig. 5(a). The excess dipole moment associated with the lowest dipole-allowed ES, that is

∆µ =
√

∑
i=x,y,z

(µES
i −µGS

i )2

was shown61,64 to be characterized by dramatic changes from one theoretical approach to another,

providing a stringent test case for theoretical methods. ∆µ was already studied in a previous

paper61 at the BSE/evGW@XCF level (XCF = PBE,97 PBE0,98,99 CAM-B3LYP100) using the

numerical finite-field approach only. This procedure involves a large number of ES calculations

for each chain length as a function of explicit applied electric fields of various strengths, but

provides reference values to which our approximated analytic approach can be compared.

Our results are presented in Fig. 5 starting by (a) a comparison of the ∆µ as calculated

within TD-PBE0 (blue dots), finite-field BSE/evGW@PBE0 (black dots) and the present analytic

BSE/evGW@PBE0 (red dots) approach. The challenge of obtaining an accurate ∆µ evolution

with oligomeric length is obvious by looking at the TD-PBE0 data that present a diverging trend.
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This is related to the inability for TD-DFT calculations, with XCF presenting a too small percent-

age of exact exchange, to properly account for long-range electron-hole interactions.101,102 As

shown in Ref. 61 by comparison with wavefunction approaches [ADC(2), CC2, and CCSD] and

as reproduced in Fig. 5(a), the proper behavior is restored by the finite-field BSE/evGW@PBE0

calculations (black dots): ∆µ starts increasing with length before reaching a plateau and decaying

for long chains. The value of the maximum ∆µ was shown to vary from ∼23 D at the CC2 level

to ∼18 D at the less approximated CCSD level. BSE/evGW@XCF calculations yield a stable

value of ∼12 D with XCF=PBE, PBE0, and CAM-B3LYP.61 These rather large variations from

one approach to another confirm the challenging nature of this problem. However, both BSE and

wavefunction methods deliver the very same behavior.

The Z-vector analytic approach to BSE/evGW@PBE0 gradients [Fig. 5(a) red dots; data in the

SM Table S3] provides the correct behavior, a dramatic improvement as compared to TD-PBE0.

This stems from the replacement of the PBE0 kernel by the non-local screened Coulomb potential

that enforces physically-correct long-range electron-hole attractive interaction. Nevertheless, the

two approximations performed on the Ria term, namely freezing the screened Coulomb potential

to its zero-field value, and replacing the evGW@PBE0 quasiparticle energy gradients by their

PBE0 KS analogs, clearly induce some deviations with respect to the reference finite-field BSE

calculations. For the longest chains, the analytic scheme present features of both TD-PBE0 and

BSE approaches, with a slower decay of the excess dipole as a likely inheritance of the TD-PBE0

divergence. As discussed above, it is mainly the second approximation that is responsible for the

difference between the analytic and the finite-field BSE results.

Fig. 5(b) considers as a starting XCF the PBEh(0.54), a global hybrid containing 54% of exact

exchange, similar to what is used in M06-2X.103 This admixture represents some averaged value

of optimally-tuned (OT) exact exchange ratio obtained by tuning the XCF such that the negative

of the KS HOMO energy equals the ∆SCF ionisation potential. In fact, the OT amount of exact

exchange ranges from α = 59% for N=8, before the maximum ∆µ value, to α = 52% for the

longest N=20 chain, i.e., the 54% XCF is a reasonable and simple choice for all chain lengths. The

use of an IP-tuned functional is consistent with the present approach and the assumption that KS

gradients obtained with an OT functional may be closer to evGW gradients, as already hinted in the

study of small molecules. The improved agreement between the approximate analytic approach

and the finite-field reference data is another indication of the validity of this assumption. The

TD-PBEh(0.54) and BSE/evGW@PBEh(0.54) results are compiled in the SM Table S4.
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We conclude this Section by observing that the analytic BSE approach allows curing the patho-

logical behavior associated with TD-PBE0, or any TD-DFT calculation relying on an XCF with

a low exact exchange ratio, with a formalism offering the same cost as modern Z-vector imple-

mentations of TD-DFT analytic gradients. Further, the maximum ∆µ is stable, ca. 12.6-12.7 D,

starting with the very different PBE0 and PBEh(0.54) XCF, with a position for this maximum that

evolves from N=12 to N=15. The larger variations in maximum value between ADC(2), CC2

and CCSD calculations,61,64 notwithstanding the dramatic differences between various TD-DFT

calculations, indicate that the analytic BSE/evGW@XCF scheme ensures not only the correct be-

havior, but also offers a significant stability of the results as a function of the starting XCF, despite

the replacement of the quasiparticle energy gradients by their Kohn-Sham analogs.

IV. CONCLUSIONS

We have implemented and explored the pros and cons of a simple approach to Bethe-Salpeter

analytic gradients within a Lagrangian Z-vector formalism, taking, as a first application, the ES

dipole moments associated with the gradient of the ES energy with respect to an electric field. Such

an approach, similar to modern techniques implemented in TD-DFT codes, allows determining the

gradients with respect to several perturbations for a cost equivalent to a single BSE calculation on

the unperturbed system. Our approach has been benchmarked considering on the one hand a

family of very small molecules for which reference quantum chemistry data are available, and on

the other hand the challenging case of increasingly long push-pull oligomers.

The simplicity of the present approach relies on two approximations already advocated in a

pioneering study of the BSE nuclear gradients in CO and NH3.55 In the present formulation, such

approximations affect only the Ria right-hand-side term of the Z-vector equation. Indeed, when

BSE/GW calculation rely on standard non-self-consistent G0W0 or partially self-consistent evGW

techniques, keeping the input Kohn-Sham eigenstates frozen, the left hand-side (A+B) matrix

acting on the Z-vector is found to be rigorously the same as in the corresponding TD-DFT problem

where the same exchange-correlation functional is used.

The first simplification to the Ria term is the neglect of the screened Coulomb potential gradients

(∂W/∂ζ ). Such an approximation is found to be very accurate, dramatically simplifying the

implementation of the BSE analytic gradients. The second approximation is the replacement of

the quasiparticle energy gradients by their KS analogs. This latter simplification generally leads to
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quantitative differences between the approximated BSE analytic gradients and those obtained by

finite difference. Such differences are however significantly reduced upon adopting an IP-tuned

XCF as a starting point for BSE/GW calculations.

Independently of the deviations between the approximate analytic and exact BSE gradients

obtained by finite differences, the use of the approximate BSE analytic gradients dramatically

reduces the number of pathological cases encountered with TD-DFT when using standard global

hybrids such as B3LYP or PBE0, providing results that compare well with those obtained with

the “best" TD-DFT calculations, a statement especially true for Rydberg transitions. This is a

significant advantage of the BSE approach, already noticed for the calculation of vertical excitation

energies, that the impact of the starting XCF functional is dramatically reduced, providing reliable

results for local (Frenkel), charge-transfer, cyanine, Rydberg, etc. transitions for which TD-DFT

might fail, or at least, require various XCF to deliver reasonable results.

In the light of the encouraging present results, the impact of the second approximation, con-

sisting in adopting Kohn-Sham energy level gradients in the right-hand-side Ria term, could be

bypassed in the future by calculating GW energy level gradients. The derivatives of the indepen-

dent electron susceptibility has been worked out in the context of the RPA ground-state forces,104

paving the way to calculating the screened Coulomb potential gradients. However, the accuracy of

the approximation consisting in neglecting the W -gradients advocates a pragmatic approach where

only the Green’s function G in the GW self-energy needs to be differentiated. The possibility to

derive G efficiently at constant molecular orbitals {Cnµ} coefficients in a framework consistent

with the Lagrangian approach is currently under study. The use of such approximate GW quasi-

particle gradients may further reduce, at a reasonable cost, the impact of the choice of the input

DFT XCF.

Finally, the implementation of ionic gradients, and the verification on large molecular sets that

this second approximation is in that case more accurate than for excited-state dipole moments,

stands as a forthcoming extension of the present study. Following the arguments detailed above,

the Z-vector equation remains the same since independent of the applied perturbation. Further,

the derivatives F(ζ ) and S(ζ ) at constant {Cnµ} with respect to ionic degrees of freedom of the

one-body Hamiltonian and overlap matrix are the same as the one used in TD-DFT,8 and only

the G(ζ ) constrained derivative changes from its TD-DFT to its BSE expression. Here again, the

constant-W approximation is expected to be very accurate.
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SUPPLEMENTARY MATERIAL

See the Supplementary Material for the validation at the TD-HF level of our Z-vector imple-

mentation, a description of the small molecules and transitions involved in our benchmark, and all

data associated with the small molecules and long chains.
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