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Portfolio construction for SME crowdloans is challenging. This market is illiquid, unlisted and with scarce historical data of asset development. Consequently, traditional portfolio optimization techniques cannot be applied as is since risks can only be assessed individually and covariance matrices are not available. We propose a new portfolio optimization framework based on estimated risk clustering rather than asset variance-covariance matrix. We first establish risk profiles for each company through SHAP-decomposing its estimated risk. We use correlation-like metrics to compare risk profiles to one another and group similar risk profiles together using hierarchical clustering. We then apply quadratic optimization on the generated groups to minimize risk variance. We simulate investments using real data to quantify our strategy's return, based on the SMEs market share neglected by banks. Our method overperforms traditional mean-variance optimization adapted at best on our sample, as well as 1/N naive investment strategy which has regularly proven its efficiency. Our method rewards any risk-averse investor profile with higher returns.

Introduction

Small and Medium-sized Enterprises (SMEs) constitute a large component of the global economy.

Their options to finance themselves are limited due to their size and young age, and limited information about their financial health. Applying for credit has frequently been the most obvious solution [START_REF] Kuntchev | What have we learned from the enterprise surveys regarding access to finance by smes[END_REF], however SMEs pose serious challenges to lenders who have to evaluate their creditworthiness without any credit track record [START_REF] Binks | Growing firms and the credit constraint[END_REF].

The asymmetry of information and anti-selection process result in the creation of a funding gap, as SMEs are charged with higher interest rates [START_REF] Beck | Bank financing for smes around the world: Drivers, obstacles, business models, and lending practices[END_REF][START_REF] Bell | Understanding the weakness of bank lending[END_REF][START_REF] Fraser | What do we know about entrepreneurial finance and its relationship with growth[END_REF][START_REF] Ziegler | Expanding horizons: The 3rd european alternative finance industry report[END_REF]. New entrants are therefore affected and face growth difficulties that deter banks from trusting their ability to repay, thus feeding the vicious circle [START_REF] Berger | The economics of small business finance: The roles of private equity and debt markets in the financial growth cycle[END_REF][START_REF] Carpenter | Capital market imperfections, high-tech investment, and new equity financing[END_REF][START_REF] Beck | Small and medium-size enterprises: Access to finance as a growth constraint[END_REF][START_REF] Brown | Working the crowd: Improvisational entrepreneurship and equity crowdfunding in nascent entrepreneurial ventures[END_REF].

The aftermaths of the financial crisis further disturbed the landscape faced by SMEs, leading researchers to consider the financing system as broken [START_REF] North | Funding the growth of uk technology-based small firms since the financial crash: are there breakages in the finance escalator[END_REF][START_REF] Mason | Business angel investment activity in the financial crisis: Uk evidence and policy implications[END_REF].

A decade later, crowdfunding has emerged as an alternative option for access to credit for SMEs. [START_REF] Hossain | Crowdfunding: Motives, definitions, typology and ethical challenges[END_REF] provided the following general definition : "Crowdfunding is an Internet-based funding method for the realization of an initiative [...] in the form of pledges of small monetary amounts by a large pool of people within a limited timeframe. [...] Through Web 2.0 technologies, funders can [...] invest based on their belief in an appeal, the promise of its founder, and/or the expectation of a return". Lending platforms facilitated access to crowdfunding services, functionning as intermediaries to match the needs of borrowers and lenders [START_REF] Belleflamme | Crowdfunding: Tapping the right crowd[END_REF][START_REF] Cumming | De-segmenting research in entrepreneurial finance[END_REF]. Originally a peer-to-peer service, crowdfunding then allowed to raise fundings to support entrepreneurial ideas, thus encompassing the SME sector [START_REF] Schwienbacher | Crowdfunding of small entrepreneurial ventures[END_REF][START_REF] Milne | The business models and economics of peer-to-peer lending[END_REF]. Ease of access, simplified application procedures and quick response time made those platforms attractive for entrepreneurs who were previously neglected by banks [START_REF] Burtch | An empirical examination of the antecedents and consequences of contribution patterns in crowd-funded markets[END_REF][START_REF] Moritz | Investor communication in equity-based crowdfunding: a qualitative-empirical study[END_REF][START_REF] Block | Which updates during an equity crowdfunding campaign increase crowd participation[END_REF]. Crowdfunding's growth has been exponential, averaging 93% annually from 2014 to 2018 [START_REF] Ziegler | Lending crowdfunding: Principles and market development[END_REF], and its interest in research has also grown accordingly [START_REF] Mollick | The dynamics of crowdfunding: An exploratory study[END_REF][START_REF] Vismara | Equity retention and social network theory in equity crowdfunding[END_REF][START_REF] Short | Research on crowdfunding: Reviewing the (very recent) past and celebrating the present[END_REF].

Investor behavior has recently received some attention in crowdfunding research [START_REF] Ahlers | Signaling in equity crowdfunding[END_REF][START_REF] Colombo | Internal social capital and the attraction of early contributions in crowdfunding[END_REF]. Indeed as a non-negligible proportion of crowdfunding platform users are nonprofessional investors, spreading finance knowledge and more specfically investment guidelines is deemed relevant. Diversification is a key concept that is particularly stressed upon, as it provides substancial protection against loss [START_REF] Klafft | Online peer-to-peer lending: a lenders' perspective[END_REF][START_REF] Milne | The business models and economics of peer-to-peer lending[END_REF].

However several studies highlighted that investors kept underdiversifying their portfolios (Goet-zmann and Kumar, 2008) due to their vulnerabilities to single negative events and constant influx of new loan campaigns [START_REF] Dorfleitner | Paralyzed by shock: The portfolio formation behavior of peer-to-business lending investors[END_REF]. Combined with the lack of investment tools to implement a robust diversification strategy, those effects lead to the deterioration of investors' risk-return profile over time. This paper's main objective is to propose a novel portfolio optimization technique, drawing on Modern Portfolio Theory (MPT) and applied to SME crowdlending. This field raises specific difficulties that have to be adressed : the market is unlisted, limited credit history is available from borrower firms, assets are fragmented, there is no standardization of transactions, and the complexity of estimating joint probabilities of default soars compared to the traditional use case.

We introduce the notion of risk profile and use it to rebuild an equivalent to MPT's variancecovariance matrix, which is an essential prerequisite for quadratic portfolio optimization. Several recent studies have already proposed methods for reconstructing the variance estimate of returns (see Section 2). To the best of our knowldege, we are the first to provide an alternative to the impractical Gaussian copula [START_REF] Malevergne | Testing the gaussian copula hypothesis for financial assets dependences[END_REF] to generate the joint -or covariance -component, which is crucial for monitoring joint default risk.

To meet these challenges, we use a sample of 2.500 random public balance sheet recordings from French SMEs that reports short-term borrowings. Our goal is to establish an optimization strategy that statistically overperforms naive strategies such as 1/N diversification on generating a 100-loans portfolio. We first use Light Gradient Boosting Machine (LGBM) to estimate the probability of failure of each firm, as the scoring capabilities of this algorithm have been proven effective on similar samples [START_REF] Lextrait | Scaling up smes' credit scoring scope with lightgbm[END_REF]. We then apply SHAP value decomposition [START_REF] Lundberg | A unified approach to interpreting model predictions[END_REF] to each probability to get the corresponding vector of failure contributions, which we consider to be the risk profile of the firm. For each pair of firms, risk profile similarity is quantified using Centered Cosine Similarity (CCS), and serves as a correlation proxy to inject in the mean-variance matrix. CCS has the triple advantage of being computationally inexpensive, scale-invariant and easily convertible to a distance. Due to technical limitations, quadratic optimization's polynomial complexity quickly becomes unmanageable when applied on samples of several thousand assets. To solve this issue, firms sharing similar risk profiles are grouped together in buckets through Ward hierarchical clustering, which has the benefit of producing equally-sized clusters at all steps of the procedure. Finally, traditional quadratic optimization is applied to the collection of buckets to provide optimal budget investments. The performances of the competing strategies are evaluated through 100 investment simulations based on actual failure events.

The results confirm the relevance of our SHAP-supported methodology. Its application on the study's sample allows to generate up to 7% of return, while the other competing 1/N strategy and traditional mean-variance optimization respectively generate 4% and 4.5% of return. When targeting a similar return, our strategy involves much less variance than that of 1/N strategy, which is beneficial for risk-averse investors. The bucketing based on risk profile similarities is already sufficient to generate higher returns. Considering risk correlations between the different buckets further consolidates the performances, and answers the needs of any risk-averse investor profile.

This paper proceeds as follows. Section 2 provides a survey of the most relevant literature about portfolio optimization in listed markets, as well as previous attempts made in unlisted markets. Section 3 describes our bucketting methodology based on SHAP decomposition of the failure probability, the investment strategies based on quadratic optimization as well as the data used in this study. Section 4 provides a vizualisation of the competing investments strategies and their performances over a random sample of 2.500 firms. Our conclusions are summarized in Section 5.

Review of literature

Modern portfolio theory was introduced by Markowitz [1952] in the context of liquid assets, and formalized the need for diversification when assembling portfolio of assets. Risk-averse, rational investors and the possibility to derive portfolio risk from the variability of its assets are its two fundamental assumptions. Markowitz's Mean-Variance (MV) optimization model mainly allows for the generation of the Efficient Frontier, which is the best set of portfolios in terms of risk/return trade-off. Several renowned applications emerged from later refinements [START_REF] Sharpe | A simplified model for portfolio analysis[END_REF][START_REF] Merton | An intertemporal capital asset pricing model[END_REF][START_REF] Black | Global portfolio optimization[END_REF].

However, quantitative asset allocation models still struggles to be largely adopted by practitioners. Indeed, critics regularly emerged as MV optimization did not yield returns as high as predicted by theory, and did not even manage to compete with simpler or naïve models. [START_REF] Michaud | The markowitz optimization enigma: Is 'optimized'optimal?[END_REF] argued that the mathematical sophistication of the optimization algorithm far exceeds the level of information used in its inputs. When not parametrically constrained enough, MV optimization tends to amplify errors or imprecisiveness in the data and produces extreme weights, causing more harm than good. Sharpe and Lintner's CAPM was found to be prone to the same bias, and often failed to accurately predict portfolio returns [START_REF] Fama | Common risk factors in the returns on stocks and bonds[END_REF].

More recently, 14 different variations of the MV model from the last decades of research were tested on seven datasets, and none managed to overperform the naive 1/N allocation model regardless of the chosen metric [START_REF] Demiguel | Optimal versus naive diversification: How inefficient is the 1/n portfolio strategy?[END_REF]. Those models are expected to perform well with in-depth knowledge of past variation of considered assets as well as a robust estimation of the variance-covariance matrix. In practice those requirements are difficult to meet and the application of simpler naive methods is often more cost-effective.

Over the years, a better knowledge of MV model pitfalls led to several useful technical refinements. Most models overweighted investments in a few specific stocks, while the debate was actually about how far to go with unrestricted diversification [START_REF] Statman | How many stocks make a diversified portfolio[END_REF]. Constraining the optimization weights was proposed as a first answer, and proved to be beneficial for the quality of the generated portfolios [START_REF] Frost | For better performance: Constrain portfolio weights[END_REF][START_REF] Chang | Heuristics for cardinality constrained portfolio optimisation[END_REF]. Shrinkage of the variance-covariance matrix also proved successful in mitigating the effects of its estimation imprecisiveness [START_REF] Jagannathan | Risk reduction in large portfolios: Why imposing the wrong constraints helps[END_REF][START_REF] Ledoit | Honey, i shrunk the sample covariance matrix[END_REF]). An important concern also emerged about the methodology used to estimate this very matrix, and is the motivation for our study. It has indeed been common practice to use asset correlation as a proxy value to estimate the joint component of the distribution of returns between considered investments. However, in the specific case of credit portfolios, alternate methods using actual default data produce different risk estimates, which could only be achieved by the asset-based Merton model by relaxing certain assumptions [START_REF] Frye | Correlation and asset correlation in the structural portfolio model[END_REF][START_REF] Chernih | Reconciling credit correlations[END_REF].

The emergence of online crowdlending activities further extended the scope of portfolio optimization applications with additional difficulties. The market is illiquid, businesses are often new and privately owned so there is no public market from which historic asset value can be obtained, and loans must be scored individually, making any traditional correlation-based strategy on stocks irrelevant. [START_REF] Guo | Instance-based credit risk assessment for investment decisions in p2p lending[END_REF] made a first proposal to adapt portfolio optimization to this new field and tested their instance-based strategy on historic datasets from two lending marketplaces. In search for a substitute to asset correlation, they introduced default likelihood distance as the difference between pairwise probabilities of defaults between loans. Using kernel regression, they extracted a replacement of variance-covariance matrix from those distances and used it in traditional quadratic optimization problem. From there, researchers focused on generating the most accurate substitute variance-covariance matrix by developing more refined distance metrics between individual assets. [START_REF] Byanjankar | Data-driven optimization of peer-to-peer lending portfolios based on the expected value framework[END_REF] mobilized modern machine learning models such as Random forest and XGBoost to estimate each loan's probability of default and expected return, before injecting the resuts in the variance-covariance matrix. We must note that these methods actually produce diagonal matrices, as the covariance components are neglected and left null.

The recent surge of SHAP values within the machine learning field opened new opportunities to further refine portfolio optimization strategies. Indeed, SHAP values have robust mathematical properties that make them ideally suited for use in importance attribution topics [START_REF] Lundberg | A unified approach to interpreting model predictions[END_REF]. By determining which elements of a given system play the most beneficial and important role in producing the system's output, it is possible to fine-tune that system with an unprecedented level of detail. This reasoning has already been applied in selecting the assets from a portfolio which are the most likely to generate the lowest joint probability of default [START_REF] Shalit | The shapley value decomposition of optimal portfolios[END_REF]. It has also been applied within the portfolio investment strategy itself, where selection rules -such as sector exposures or benchmark selection -are considered as SHAP contributors [START_REF] Moehle | Portfolio performance attribution via shapley value[END_REF]. We will show in this study that SHAP values can be used to attribute importance to risk factors for each asset, allowing us to gather individualized "risk profiles" together based on their similarities, and to optimize portfolio of loans.

Setup and methodology

Let's assume that we have a sample of N SMEs with known Probabilities of Failure

(p i ) i∈[ 1,N ] ,
willing to take credit. We consider default events (Y i ) as independant Bernoulli trials, such that Y i ∼ Ber(p i ). For the needs of the study, we assume all credits to have the same value 1.

Our objective is to optimize the constitution of a portfolio of size n ≤ N guaranteeing a return R varying in the possible value range [R min , R max ]. To that end, we need to classify firms into buckets (A k ) k∈[ 1,K ] of similar quality, then generate an investment strategy depending on risk appetite. All the methods introduced in the following sections will be compared to the 1 N strategy baseline. This strategy consists in splitting equitably and blindly the investments within all represented activity sectors, regardless of any return consideration.

Loan bucketing strategies

In this section we introduce official Banque de France (BoF)'s bucketing characteristics, as well as our own splitting strategy based on SHAP values.

Naive bucketing

We use historical bank credit rating data from 2017 to establish a traditional bucketing baseline.

According to BoF's available data, firms are internally classified into ten categories running from 3++ (the most likely to repay their loans) to 8 (the most unlikely to do so). On Figure 1 is displayed the distribution of the entire population of French companies within those categories in 2017, as well as the average observed default rate on 3 years.

We assume that the dataset we use in this study is randomly sampled from the national firm pool and can be split according to BoF's rating distribution. As we do not have access to 

that i ≤ j ⇒ p i ≤ p j , ∀(i, j) ∈ [ 1, N ] 2 , then
we can generate the following buckets A k :

A k = i ∈ [ 1, N ] b k-1 < i N ≤ b k ∀k ∈ [ 1, 10 ] (1) 
Each naive bucket A k is attributed an interest rate r k . Those interest rates will be used within each strategy we introduce in the following sections. BoF's public API2 publishes the interest rate of business loans granted by banks in 2017. They reached 0.5% on the 5 th percentile, 2% on the median and 4.2% on the 95 th percentile of the population. Those rates are quite low as they correspond to the favorised end of the funding gap phenomenon mentioned in the introduction. We know that simplified procedures and easiness of access to credit drive disappointed entrepreneurs to seek financing through crowdfunding, even though interest rates are much higher [START_REF] Lesur | Les défis posés par le crowdfunding[END_REF]. To fit our case study and reflect the crowdfunding offer in 2017, we multiply those rates by 3 according to data recorded from several platforms [START_REF] Slimane | Le financement participatif (ou le crowlending) aux pme et tpe: mythes et réalités d'une innovation financière[END_REF]. With no access to additional information, we have to interpolate the shape of the true interest rate Cumulative Distribution Function (CDF) from those three points, then adjust the CDF's x axis to fit the CDF of our probabilities of default (p i ). decomposing the risk in a vector of the influence of its contributors, which we denote as the risk profile of the individual. The second step consists in grouping together individuals with similar risk profiles in order to generate an alternative to BoF's buckets.

SHAP risk decomposition

Usually in most credit portfolio optimisation studies, firm asset time series are used to establish similarities and default correlation, however this data is not available for the SME population.

As an alternative we use the data in each firm's last available balance sheet, and more especially its contribution to individual probabilities of failure. Mapping balance sheet data to a final probability of failure is described thereafter.

Let us consider a dataset D = {x 1 , ..., x N } with each datum x i = {x 1 i , ..., x M i } being a feature vector of dimension M . A predictor f has been trained to approximate at best the true binary response vector Y = {y 1 , ..., y N } ∈ {0, 1} N , such that f (x i ) = p i . For simple models such as regressions, the explanation of f 's outputs from its inputs is immediate. An importance attribution method Φ -also called Explainer -is however required for more complex models. Its function is to provide for each datum a corresponding set of coefficients able to quantify the influence of each feature over the output. Its general form is the following :

Φ D,f ∶ R M → R M x i = {x 1 i , ..., x M i } → φ i = {φ 1 i , ..., φ M i } (2)
The discussion of the choice of Φ is beyond the scope of this study. Among available pos-sibilities, we choose to use Lundberg and Lee's SHAP attribution algorithm for its robustness and fulfillment of desirable properties [START_REF] Lundberg | Consistent individualized feature attribution for tree ensembles[END_REF], and whose use vastly expanded in recent years. From there we have the possibility to regroup the individuals of our population given the similarities shared by their explanation vector, comparably to what a correlation between assets accomplishes in a Merton approach. To that end, we use Centered Cosine Similarity (CCS) as it is equivalent to Pearson correlation coefficient :

CCS ∶ R M ×R M → [-1, 1] φ i ,φ j → < φ i -φ i φ j -φ j > φ i -φ i ⋅ φ j -φ j (3) 
with φ the constant vector of φ's mean value.

SHAP decomposition generates values whose sum equals the original value, which means that the decomposition preserves the magnitude of the studied risk. Without centering, simple Cosine Similarity would in turn let that amplitude propagate into the results. It is crucial to prevent that behavior, as we precisely want pairs of individuals to be grouped together even if their level of risk differ significantly, as long as their risk is of the same nature.

Risk profiles clustering

The final bucketing step consists in clustering the CCS-matrix of our population so that each resulting bucket presents high intra CCS-similarities and lower inter-similarities with other buckets. To that end, we apply agglomerative hierarchical clustering. The method consists in iteratively determining, among a population of existing clusters, which pair to merge into a cluster of higher order. The resulting construction can be visualized as a dendrogram whose root is one cluster holding the entire population, progressively splitting itself into smaller groups until reaching terminal leaves, each representing a single population element. The dendrogram structure allows for monitoring the number of desired clusters using the cophenetic distance as a cutoff value. This would not have been the case with simpler clustering algorithms such as k-means, where the number of desired clusters has to be specified prior to the procedure, while the random initialization step is a heavy undeterministic factor that impacts the resulting segmentation.

Agglomerative clustering is based on two decision rules applied at each step, both based on distance considerations. The first rule determines which pair of clusters gets the merging priority, corresponding to those who minimize a dissimilarity metric ∆. The second rule updates the dissimilarity metric to take into account the relationships between the newly generated cluster and all the remaining ones. Algorithm 1 summarizes the procedure, and Figure 2 illustrates it on a four-clusters example :

Algorithm 1 Hierarchical agglomerative clustering 1: procedure Clustering 2: 1963), which can only be evaluated during step 10 of the algorithm, and whose expression is the following :

C ← { {i} i ∈ [ 1, N ] } ▷ List of clusters 3: ∆ ← { {i, j ↦ CCS(i, j)} (i, j) ∈ [ 1, N ] 2 , i ≠ j} ▷ List of
d ∶ C×C → R + n = a ∪ b, u → u ∪ a u ∪ n ∆(u, a) 2 + u ∪ b u ∪ n ∆(u, b) 2 - u u ∪ n ∆(a, b) 2
Let us note that in the previous formula, we considered that sets a, b and u are always disjoint at any time of the procedure. The Ward linkage has a tendancy to generate equally sized clusters at all depths of the clustering dendrogram, which is a desirable property in our context. Indeed, other usual linkages would have tended to generate more unbalanced dendrograms, with singletons not being merged into segments until very late in the procedure. Any ensuing segmentation would only produce a few large clusters with weak statistical properties alongside swarms of lone elements. This type of scenario should be ruled out as it would negatively impact the efficiency of the quadratic optimization.

Portfolio optimization

Regardless of the bucketing strategy adopted (naive or SHAP-based), we can express the return variance for each bucket A k as the variance of each of its constituents' expected return :

σ 2 k = V[R i i ∈ A k ] = V[(1 -p i ) ⋅ r i + p i ⋅ (-1) i ∈ A k ] (4) 
where R i is the expected return of the loan i, whose value depends on the result of a Bernoulli trial of parameter p i . The return is equal to the interest rate r i of the loan in case of a success, and the loss -1 of the invested amount otherwise.

Traditional optimization techniques would then require to compute pairwise correlation coefficients between the different classes of assets, replaced here by the buckets we generated. The correlation formula would involve the Joint Probability of Default (JPD) of the two considered assets, whose relevance and estimation method are among the most controversial steps of the methodology. This step cannot be transposed as is in our methodology for several reasons, being mainly consequences of our context of study. First, contrary to asset classes, there is no risk magnitude homogeneity among the elements of our buckets, despite the homegeneity of their profiles.

This means that estimation of inter-bucket correlation has to be computed directly from JPDs between all their individual constitutive elements. Second and as a consequence, any attempt to estimate inter-bucket correlations by using Gaussian copulas between all individual elements of our dataset is computationally too expensive. Third, traditional JPD's mathematical form follows from an assumption of normality for the probability distribution of individual risk. This itself is a consequence of the "asset shortfall" assumption, stating that default occurs if and only if the borrower's assets fall below its liabilities. We cannot base our method over this assumption despite its relevance, as the SME population considered in this study cannot provide us with accessible, reliable and aggregable data about their assets. We consider that reasoning based on the historic evolution and prediction of SME assets would likely lead to imprecise -if not flawed -results. To formalize the optimization problem, we have to make our own assumptions about the presumed interdependance between the different buckets. We have two possibilities :

The first assumption assumes the independance of bucket risks. The SHAP-decomposition of the risk is our only replacement for MPT's asset evolution. Without it, it is impossible to approximate JPD between loans, and thus the correlations between buckets. In that case, we have no other choice but to assume independance between bucket returns, hence

Corr(A k , A m ) = ρ A k ,Am = 0, ∀(k, m) ∈ [ 1, K ] 2 . As a consequence, Σ = diag(σ 2 ).
The second assumption is that bucket risks are correlated. Following Morgan's reasoning (1997), we define the average correlation between buckets as the average absolute SHAP-CCS between their respective elements, as follows :

ρ A k ,Am = 1 A k ⋅ A m i∈A k j∈Am CCS(φ i , φ j ) ∀(k, m) ∈ [ 1, K ] 2 (5)
From there, it simply follows :

Σ = σ T ⋅ ρ ⋅ σ
It is now possible to express and solve the portfolio optimization problem. Our goal is to select n loans among the K buckets we generated, through the investment vector Z. We have to guarantee a mean pricing objective ∑ i z i r i , while minimizing the return variance z T ⋅ Σ ⋅ z. The quadratic optimization is expressed as follows :

Z = argmin z z T ⋅ Σ ⋅ z under constraints : k z k r k ≥ R k z k = 1 0 ≤ z k ≤ min(1, A k n ) ∀k ∈ [ 1, K ] (6) 
We will know from the results that we have to buy ⌊nZ k ⌋ loans in each bucket A k . These loans will be selected at random among the population of the bucket. There is a possibility for Σ to not be positive definite, thus not invertible and preventing the optimization problem to be solved. In this case, we apply a forced adjustment of its eigenvalues that preserves at best the values of the original matrix [START_REF] Higham | Computing the nearest correlation matrix-a problem from finance[END_REF].

4 Empirical applications

Data

Our data consists of French companies' balance sheets nonconfidential recordings, covering the closing of the financial years 2016 and 2017, available from the INPI opendata service3 . Balance sheet records come in two forms : the Complete report, which is the most detailed form of report as it includes 428 financial items, and the Simple report which is a more condensed form only including 190 financial items. We will only use the Complete reports in this study.

The default events are deduced from the public records of the SME's commercial court rulings

given between 2016/01/01 and 2020/12/31, also available at the INPI opendata service. For each balance sheet, we associate a positive event if we find any court-ordered liquidation or recovery procedure following the financial closure date, and a negative event otherwise.

Financial year 2016 and defaults observed from 2017 to 2019 are used as training set for the algorithm tasked to predict default probabilities (p i ). The portfolio optimization method is then evaluated on financial year 2017 and defaults observed from 2018 to 2020. The portfolio dataset is filtered so that only companies with long-term borrowings are considered4 . Table 2 sums up dataset sizes and default rates. 

Results and discussion

Investment strategies

The portfolio optimization problem is applied over a random N = 2500 firms sample from the Portfolio dataset. Each selection method described in section 3) is given the objective to buy n = 100 loans. We assume that each company of the sample takes a single loan, and that all loans have the same value. We use company default event as a proxy for its loan default event. We can notice that the risk estimated by LGBM is slightly overestimated on buckets 4, 5 and 6 given the actual defaults observed on the SME population. Appendix Figure 9's top graph details the investment strategy proposed by the optimizer from this binning, without considering any kind of correlation or similarity between buckets. This budget is among the best with constraint we can possibly generate without access to any decomposition of the risk for each company. We can notice that from the target IR of 10% upwards, the investment strategy recommends to buy the whole of buckets 7 and 8, which are the smallest (they include only 23 loans) and riskiest (the average of estimated probabilities of default is 38% for bucket 7 and 54% for bucket 8). As a consequence, we know post-hoc that 11 defaults will automatically be included in the corresponding portfolios. The bottom graph details the strategy changes after taking inter-bucket correlation into account thanks to (5). The composition of the portfolios is not drastically disrupted, however the mid-rated buckets 4, 5+ and 5 are given more weight.

Appendix Figure 8 displays a matricial visualization of our sample's Ward-agglomerated dendrogram built by Algorithm 1. SHAP-similar buckets are obtained by cutting it to a desirable depth d 0 max(∆). We consider the cut-off value to be optimal when maximizing intra-bucket correlation while not generating too many buckets (K ≤ 100), which would negatively impact the optimization step. We fix d 0 = 0.5 ⋅ max(∆) according to Figure 3, which generates 93 buckets.

Each features an average of 27 elements with similar risk profiles, which can however share very dissimilar magnitudes. with the average IR, suggesting that the safest behavior to adopt is to invest in the least risky population that have the lowest rates. Correlated MV optimization produces close performances, although it manages to reach a higher return peak of 5.3% (+ 0.7 10 -2 ) on the targeted 6% IR.

This corresponds to the slice of the budget composed at more than 90% of bucket 4's assets.

Applying correlation penalization over a population of buckets with highly similar pricings tends to push the optimizer to simply prefer the buckets with the highest expected returns. It seems here that inter-bucket correlation doesn't reach its full potential on naively clustered buckets.

1/N strategy performs at an average of 4%, which is surprisingly good given that it does not consider any notion of ratings, correlation or optimization. It is indeed close to be as performant as traditionnal binning with no specific research or implementation costs, and its Sharpe ratio is preferable from a targeted IR of 7.5% onwards. This reinforces previous research results stating that 1/N strategy stands as a solid contender against sophisticated methods, and should still be privileged as a diversification method for small investors.

The two strategies based on SHAP bucketing present interesting results. The investments optimized without considering inter-bucket correlation perform better than BoF bucketing on a vast majority of its IR range and manage to reach a return of 5.7% with acceptable variance. With inter-bucket correlation taken into account the returns are greatly improved. The methodology performs at least as well as its uncorrelated counterpart on its entire IR range, and even manages to reach 7.3% of return when targeting an average IR of 10%, while keeping variance levels under control. The method's impact on the observed returns proves the relevance of clustering on risk profiles instead of risk magnitude. The Sharpe ratio analysis confirms the domination of SHAP-based strategies over the traditional and 1/N ones, with a neat advantage when taking correlation into account. Correlated BoF strategy seems however the most promising on the 4-6% IR range, and allows to minimize risk if one accepts to truncate the maximum reachable returns.

Figure 5: Observed returns and Sharpe ratios for each method

For each targeted IR, the mean and standard deviation of returns are measured over 100 investment simulations.

As 1/N strategy does not consider IR, its results are displayed as a single point sticked to the y-axis. Sharpe ratio is reported on the 5-to-12% range of targeted IR For each strategy, the efficient frontier corresponds to the upper-left part of the convex hull of its mean-variance point cloud. This graph allows to consider which strategy provides the highest expected returns for a given tolerable variance, as well as the lowest variance for a given expected return For each strategy s, the maximum reachable utility max (µs,σs) (µs -γ ⋅ σ 2 s 2) is computed given the level of risk aversion γ

Conclusion

In this study we propose a methodology based on SHAP values to adapt portfolio optimisation to the SME-dedicated crowdlending market, whose unlisted and illiquid nature make traditional optimisation methods such as CAPM or Markowitz mean-variance model hardly applicable. We propose risk profile correlation as an efficient substitute for asset correlation, which allows us to rebuild the joint component of the variance-covariance matrix. With the objective to constitute a 100-loans portfolio from a pool of 2.500 firms with long-term borrowings, our method manages to generate up to 3% more return than naive 1/N investment and mean-variance optimization applied at best using the official Banque de France rating statistics. We use post-hoc real default events to accurately estimate those returns. The relevance of reintroducing correlation within MV optimization is confirmed by much more compelling results on the MV efficient frontier than with uncorrelated strategies.

We define risk profile as the SHAP-decomposition vector of the Probability of Default estimated by modern machine learning techniques. We use risk profile as a substitute for asset information which does not exist for the SME segment. We use Centered Cosine Similarity to quantify the likeness of risk profiles in pairs, then gather together similar risk profiles with Ward hierarchical clustering. The resulting clusters can then be considered as virtual 'stocks' in which to invest. Quadratic optimization is applied to generate budget investment recommendations among those clusters. The optimization is led under the successive assumptions of independant inter-cluster risks, then correlated inter-cluster risks.

Our methodology could benefit the crowdlending market segment dedicated to financing SMEs. Lenders may expand their investment methods which relied until now on very crude diversification techniques, thus allowing to target higher returns. Platforms may propose new investment advice and tools to help inexperienced crowdlenders. Portfolios could be assessed on the homogeneity of the risk profiles they hold, with higher quality scores rewarding heterogeneity. This would also apply to new loan fundings, such that lenders would know which ones have the most decorrelated risk profiles from their portfolios.

The main limitations of our model lies in its application conditions, which requires an important provision to be immediately spent among a vast and varied pool of loans. This is not often the case in practice as investors tend to spread their investments over time. Some further research is needed to demonstrate how to successfully break down a SHAP-supported strategy over time. The two graph details the optimised investment strategies for the buckets described in table 3. Inter-bucket correlation is taken into account on the second graph. Buckets gather compagnies whose estimated risks have the same magnitude. The two graphs detail the optimised investment strategies for the 93 buckets generated with Ward hierarchical clustering of the firms' default profiles. Inter-bucket correlation is taken into account on the second graph. Buckets gather compagnies with similar risk profiles, and not necessarily the same magnitude.
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 2 Figure 2: Illustration of one agglomerative clustering step on a set of four clusters
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 3 Figure 3: Impact of dendogram cut on intra-bucket risk correlation
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 4 Figure 4: Herfindahl-Hirschman Index of all strategies
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 5 Figure 5's first panel displays the observed return of each strategy compared to the range of targeted average IRs. The second panel displays their corresponding Sharpe ratio, with a reference risk-free rate of 0.84 5 . Traditional uncorrelated MV optimization on BoF bucketing is one of the two least performing strategy : it struggles to reach 4.6% of return and collapses in negative values when targeting at least 10% of interest. The variance of its performances grows

Figure 6

 6 Figure6displays the efficient frontiers of the four competing algorithms. To generate it, we took the upper-left part of the convex hull of the mean-variance point cloud. We notice again the superiority of the correlated strategies over the uncorrelated ones in terms of mean-variance trade-off. Although interesting, the single-point 1/N strategy is easily overperformed : we can find 3% more return with the SHAP-correlated strategy for the same amount of variance, or way lower levels of variance for the same return with naïve bucketing. Annex Figure11displays the different risk-aversion indifference curves for different investor profiles, while Figure7displays the maximal reachable utilies given different levels of risk aversion. The 1/N strategy would by far be the least preferred one, while uncorrelated strategies would be acceptable at best without ever dominating the others. Investors with a low risk aversion would be rewarded the most by targeting high IRs (10%) of the correlated SHAP-bucketed strategy. The preferred strategy
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 6 Figure 6: Efficient frontier of competing methods
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 9 Figure 9: Budget investments for naive BoF strategies
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 10 Figure 10: Budget investments for SHAP strategies

  

  

  

  

  

Table 1

 1 This section details our clustering methodology based on SHAP values. The first step consists in

	displays the

Table 2 :

 2 Dataset composition 

	Dataset	# Observations Default rate
	Train	408,668	2.2 %
	Portfolio	35,243	2.4 %

Table 3 :

 3 Naive bucketing based on Banque de France's ratings

	Bucket Size Average risk (10 -2 ) Unit return st°deviation (10 -2 ) Actual defaults
	3++	101	0.015	0.011	0
	3+	184	0.074	0.021	0
	3	283	0.18	0.035	0
	4+	403	0.38	0.10	0
	4	569	0.99	0.30	2
	5+	604	3.0	1.2	18
	5	211	8.5	2.3	8
	6	122	19	5.9	13
	7	14	38	4.9	6
	8	9	54	10	5

Table 3

 3 describes the characteristics of the buckets produced by BoF clustering on our sample.

The value of these splitting percentiles can be found on the second column of Table1

Information gathered from webstat.banque-france.fr, 'Taux des crédits aux entreprises' dataset

Available at https://www.inpi.fr/fr/licence-registre-national-du-commerce-et-des-societes-rncs

Balance sheets with a striclty positive value for the 'borrowings with more than 1-year maturity' item

Average of three-year government bonds in 2017, see https://www.banque-france.fr/statistiques/parutionreference-name/taux-indicatifs-des-bons-du-tresor-et-oat

Appendix Figure 10's top graph details the results of the corresponding optimized budget, again without considering inter-bucket correlations. All but one buckets are used at some point on the investment strategy. As Σ is diagonal, (6) becomes a linear combination of (z 2 k ) terms, which prompts the optimizer to maximize bucket diversification while investing as little as possible in each. Finally, the bottom graph details the budget when inter-bucket CCS introduced in ( 5) is taken into account, this time with major effects compared to BoF bucketing. Only 43 of the 95 available buckets are used, as inter-bucket CCS penalizes the selection of buckets with too similar risk profiles, which greatly constraints the optimizer. The passage to a quadratic optimization form promotes diversification parsimony, as the solver now seeks the least correlated bucket population in which to concentrate investments. Figure 4 displays the Herfindahl-Hirschman Index of all four strategies. 

Appendix A