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This paper deals with the existence of a non-cooperative sequential equilibrium in
interrelated markets with heterogeneous atomic traders. Since this model features a rich
set of strategic interactions, there are two kinds of problems associated with the existence
of equilibrium. First, existence and uniqueness of followers’ strategies are not guaranteed.
Second, the no-trade equilibrium is always an equilibrium outcome. To overcome these
two difficulties we consider a differentiable approach. We show that the set of equations
which determines the strategies of followers is a variety with the required dimension, i.e.
the vector mapping which defines this set is a local C*-diffeomorphism. The continuous
differentiability of followers’ strategies is critical for the existence of an interior equilibrium.
Unlike the simultaneous move games, exchange can take place in one subgame while
autarky can hold in another subgame, in which case only leaders (followers) make trade.
Some examples buttress the approach and discuss the assumptions made on the primitives.

Key Words: Pure strategies, diffeomorphisms, Stackelberg-Nash equilibrium
Subject Classification: C72, D51

1. INTRODUCTION

The coordination of private activities in decentralized markets is a core issue.
This issue found a definitive solution in general competitive equilibrium models
(Arrow and Debreu 1954), and in strategic market game models with Cournot
competition (Dubey 1994). But the existence of equilibrium remains an open prob-
lem when strategic competition in interrelated markets is hierarchical, i.e. when
the competition is of the Stackelberg type. The starting point of this paper is to
consider hierarchical competition between strategic buyers and sellers. Therefore,
we propose to build a Stackelberg game in which decentralized exchange embodies
only strategic traders. Our main objective is to prove the existence of a Stackelberg-
Nash equilibrium with trade within the research program for strategic market games
founded by Shubik (1973), and Shapley and Shubik (1977).

1.1. Motivations

The motivations are twofold. First, this contribution studies hierarchical opti-
mization problems into a general equilibrium setting. These problems have been
studied in multiple leader-follower games in which individuals who belong to one
industry decide in a sequential way (Sherali 1984). Here we consider a two-sector

1EconomiX, UPL, Université Paris Nanterre, CNRS, 200 avenue de la République, 92000 Nan-
terre, France. Tel. +33(1)40977543. E-mail: ludovic.julien@parisnanterre.fr .



multiple leader-follower game in the framework of an exchange economy.? There
are two types of commodities. The agents are categorized according to which of
the two types of commodities they trade. Traders of type X (resp. Y') have an
initial endowment of commodity X (resp. Y') that they wish to trade for amounts
of commodity Y (resp. X).> Within each type, traders may be either leaders or
followers. Leaders decide in the first stage, anticipating the followers’ reactions,
and followers decide in the second stage. There is a market-clearing relative price
which aggregates the supplies of all traders over both stages and allocates the
amounts traded to each trader. Each trader maximizes an utility function which
depends on the remaining quantity of her own commodity and the quantity of the
other commodity that she obtains after trade. Therefore, there are two multiple
leader-follower industries which are connected through trade. Possible applications
should include product differentiation in two-sided markets (water markets, mobile
telephony markets), communication networks, spatial economics with locational
interdependencies, and international trade with resource specialization.

Why is it important to study the multiple leader-follower game in the context
of interrelated markets? In our setting all agents behave strategically: the demand
side as well as the supply side reflect strategic behavior. Here the traders make
rational decisions as buyers and sellers. Indeed, the preferences of traders provide
some micro-foundations for the market demand, and then for the price function.
By contrast, in the multiple leader-follower games market demand is given insofar
as it is assumed that buyers behave competitively as price takers. In addition, the
supply is also the result of a decision: as suppliers the agents bring to the market the
difference between the amount they hold and the amount they decide to consume.
The price function is endogenous: there is a market price mechanism that makes
strategic supplies mutually compatible. Indeed, the supply by the traders of type
X (resp. type Y) matches the supply by the traders of type Y (resp. X).

Second, the main objective is to study the existence of a noncooperative equilib-
rium with trade in a two-sector model with a finite number of leaders and followers.
To this end, our model extends the Cournot-Nash bilateral oligopoly model intro-
duced by Gabszewicz and Michel (1997), and explored by Bloch and Ferrer (2001),
Dickson and Hartley (2008), and Amir and Bloch (2009) among others.* In this
model, there is a finite number of strategic buyers and sellers. Each trader has cor-
ner endowment but wants to consume both commodities. There is a market price
which aggregates the strategic supplies of all traders and allocates the amounts
traded to each market participant. The Cournot-Nash equilibrium (CNE) is the
equilibrium concept. This leads us to define, within this framework, another strate-
gic equilibrium concept, namely the Stackelberg-Nash equilibrium (SNE), as the
equilibrium outcome of this extended multiple leader-follower game (Section 3).
The SNE may be viewed as the solution concept of a generalized Stackelberg game:
two Cournot subgames are embedded in a two-stage sequential game. Therefore,
the existence of a non-cooperative equilibrium is quite challenging.

2The modeling of production activities in interrelated imperfectly competitive markets raise
some difficulties (Gabszewicz and Vial 1972, Dierker and Grodal 1999). It turns out that the
exchange model is a natural starting point to consider new issues in interrelated markets.

31f Y is viewed as commodity money, i.e. a numeraire, then quantities of Y (resp. X) are bids
(resp. offers) and the corresponding agents are buyers (resp. sellers).

4The bilateral oligopoly model is a two-good version of the strategic market games introduced
by Shubik (1973), Shapley and Shubik (1977). See Giraud (2003), and Dickson and Tonin (2021)
for surveys.



This paper provides new insights on the study of existence of Stackelberg-Nash
equilibria. First, it gives non-cooperative foundations for bilateral exchange. Indeed,
the fact that individual demand behavior is strategic is of significant importance for
trade. It turns out that the preferences of leaders and followers may lead them to
choose not to trade, and the outcome of the game may be the no trade equilibrium.
This leads us to consider the possibility of autarkic equilibria in the multiple leader-
follower game. Second, Stackelberg competition also provides new insights on the
study of optimal behavior in bilateral oligopolies. To be specific, by introducing
sequential heterogeneous behavior, the characterization of the strategic equilibrium,
i.e. the study of the optimal behavior in each subgame, brings into light some
hierarchical strategic interaction for which leaders anticipate the reactions of each
follower. Indeed, the followers’ strategies tremendously matter for the exploration
of the mechanisms at work in the hierarchical interactions of sequential games
involving several heterogeneous agents who behave strategically.

1.2. Owur contribution

The main contribution of the paper is a theorem which proves the existence of a
non-cooperative sequential equilibrium with trade in a strategic market game with
a finite set of atoms. To prove the existence of a SNE with trade, we consider a
slight perturbation of the two-stage bilateral oligopoly model. Then, we show that
the resulting equilibria in the perturbed game exist, and then that equilibria to
the original game exist. The proof of our theorem requires five steps to which five
lemmas correspond. To the best of our knowledge, no general existence result has
been yet obtained about Stackelberg-Nash equilibria in interrelated markets.’

There are two main problems involved with the existence of a SNE with trade.
The first problem, which is linked to the structure of the game, concerns the follow-
ers’ strategies (Julien 2017). In the basic one leader-one follower game, under mild
technical assumptions, the follower’s strategy coincides with his best response: it
is determined, given any strategy profile of the leader, as the solution to the maxi-
mization of the follower’s payoff. But with at least two followers, any follower’s best
reply consists of a mapping which depends on two kinds of arguments: the strate-
gies of leaders and the strategies of all other followers. To determine the followers’
strategies, the best responses must be mutually consistent. In case they are not,
which is a possible outcome in decentralized systems without central coordination,
then neither the strategies nor the price function that maps leaders’ strategies into
a price could exist. An example in Section 5 illustrates this possibility.

It is worth noting that our notion of consistency differs from the notion of
price consistency in Leiffer and Munson (2010) that results in a square nonlinear
complementarity problem. In their approach, the leaders’ problems constraints can
violate the Mangasarian-Fromovitz qualification constraint as there can be an infi-
nite numbers of multipliers, so they assume that the vector of unique shadow prices
is set by an independent entity (leaders’ strategy sets are independent of followers’
decisions). In our approach, the consistency is based on the mutual compatibil-
ity between the followers’ best responses, which makes it possible to define the
followers’ strategies. Our notion of consistency also differs from that of Kurkarni
and Shanbhag (2014) who use a shared-constraint approach which does not require
uniqueness of best responses. Here the best responses are not multi-valued.

5Some Stackelberg equilibrium concepts for the multiple leader-follower game are defined and
computed in finite exchange economies (Julien 2013).



To circumvent the first problem, we develop a new approach based on differ-
entiability. The characterization of the strategic equilibrium, i.e. the optimal be-
havior in each subgame, brings to light a consistency condition. This condition is
specific to sequential multiple decision settings, and relates to the internal consis-
tency of the system of equations which determines the followers’ strategies. Indeed,
by using the collection of followers’ best replies, we define a vector function from
which we set up a system of equations that defines implicitly the strategies. Then,
we provide a nondegeneracy condition on the determinant of the Jacobian matrix
associated with this system of equations. This consistency condition is sufficient
(Lemma 1) for the existence and uniqueness of continuously differentiable strate-
gies. Our approach is based on local C?-diffeomorphisms, i.e. on twice continuously
differentiable invertible mappings in the neighborhood of a point. To this end, we
resort to one version of the Implicit Function Theorem for differentiable mappings
in Banach space (Raeburn 1979; Dontchev and Rockafellar 2014). If the Jacobian
of the vector function is an invertible mapping, to be specific a C!-diffeomorphism,
then there exists a unique fixed point which consists of twice continuously differen-
tiable strategies. Then, the price vector function that maps leaders’ strategies into
a price vector as well as the reduced form payoffs of leaders exist.

The second problem is related to the possibility of autarky in decentralized mar-
kets. It is well known that the trivial equilibrium is always a Nash equilibrium in
strategic market games with simultaneous moves (Cordella and Gabszewicz 1998;
Busetto and Codognato 2006). Thus, we wonder whether autarky is a plausible
outcome in the multiple leader-follower game with heterogeneous traders. Even if
there exists a SNE in the perturbed game (Lemma 2), it seems plausible to conjec-
ture that the no trade equilibrium is a possible outcome for the entire sequential
game, in which case neither leaders nor followers participate in exchange. In this
respect, our contribution provides new insights on the study of optimal behavior
in bilateral oligopolies. Indeed, exchange can take place in one subgame with au-
tarky in the other subgame, in which case only the leaders or only the followers
make trade. An example in Section 4 provides an illustration. This salient feature
is precluded in bilateral oligopoly with simultaneous moves.

To circumvent the second problem, we consider a slight perturbation of the
game, and we adapt to our setting the Uniform Monotonicity Lemma of Dubey
and Shubik (1978). It is worth noting that, unlike the existence of uniform bounds
on relative price in simultaneous move games, the existence of such uniform bounds
is more difficulty to handle with as it must hold in each perturbed subgame of the
sequential game. Indeed, we have to show that the market price is bounded in each
stage of the perturbed game (Lemma 3). More specifically, we take into account
that, in the perturbed subgame between leaders, the rational beliefs of leaders
about the followers’ reactions matter. Then, we can show that the existence of a
SNE with trade in the perturbed game (Lemma 4), and finally that the SNE is an
equilibrium point of the game (Lemma 5), i.e. a non trivial subgame perfect Nash
equilibrium which is robust to slight perturbation of the game.

It turns out that both problems, namely the existence of strategies and the
possibility of autarky are closely related. Indeed, the existence of a SNE with trade
for the entire game depends on the mutual consistency of the best replies in the
subgame between followers. Under this consistent condition, the reduced form
payoffs of leaders exist, and the existence of pure strategy subgame perfect Nash
equilibria (with trade) in the finite extensive form game can be studied.



1.3. Related literature

From a methodological viewpoint, our model crosses two types of literature
on noncooperative equilibria: the multiple leader-follower games and the bilateral
oligopoly models.

Existence has been explored in the multiple leader-follower model. Sherali (1984)
shows existence and uniqueness with identical convex costs for leaders, and states
some results relating to the properties of the aggregate best response under the
assumptions of linear demand with either linear or quadratic costs (Ehrenmann,
2004). The determination of the convex best response stems from a family of
optimization programs for the followers based on a price function which is affected
by the supply of the leaders. Neverthess, the conditions under which the followers’
decisions are mutually consistent are not studied. De Miguel and Xu (2009) include
uncertainty with stochastic market demand. Unlike Sherali (1984) they allow costs
to differ across leaders. But, to show that the expected profit of any leader is
concave, they assume that the aggregate best response of the followers is convex. As
this assumption does not always hold, these authors must resort to a linear demand.
Su (2007) studies existence of an equilibrium in the two-period forward market
model where each player solves a nonconvex program with equilibrium constraints
under the assumptions of linear demand and constant marginal costs.

Fukushima and Pang (2005), Yu and Wang (2008), Hu and Fukushima (2011),
and Jia et al. (2015) prove the existence of an equilibrium point with two lead-
ers and several followers without specifying demand and costs. Aussel and Dutta
(2008) prove existence of a Nash equilibrium by using the quasivariational inequal-
ity approach, but without considering market demand. Kurkarni and Shanbhag
(2015) show that when the leaders’ objectives admit a quasi-potential function, the
global and local minimizers of the leaders’ optimization problems are global and lo-
cal equilibria of the game. The novelty of our approach with respect to the multiple
leader-follower game is twofold. First, by considering all agents behave strategically,
we study the conditions under which followers’ strategies exist. Second, we consider
a framework in which demand behavior is micro-founded.

To this end, we turn to the class of non-cooperative bilateral oligopoly models
with a finite number of traders introduced by Gabszewicz and Michel (1997). Such
models have been widely studied under the assumption of Cournot competition.
Bloch and Ghosal (1997) study existence and uniqueness of Cournot-Nash equilib-
ria with trade under the assumption that traders have the same utility function.
Bloch and Ferrer (2001) show the existence of Cournot-Nash equilibria with trade
by allowing heterogeneity in preferences represented by strictly convave utility func-
tions. By using an aggregate game approach for which the payoff of each trader
depends on the strategies of all other traders only through aggregate offers and bids
(the same for all traders), Dickson and Hartley (2008) define strategic versions of
Marshallian supply and demand curves, and they prove the existence and unique-
ness of Cournot-Nash equilibria with trade assuming only that the preferences of
traders are normal in both goods and satisfy a weak version of gross substitutes.
Amir and Bloch (2009) focus on comparative statics, and only impose symmetry on
each side of the market, allowing buyers to have different preferences from sellers.
They show that gross substitutes imply uniqueness of equilibrium. More recently,
Busetto et al. (2020) show the existence of a Cournot-Nash equilibrium for the
mixed bilateral oligopoly version of the Shapley window model, i.e. with atoms



and an atomless part. They notably impose that there is a coalition of traders
in the atomless part with differentiable and additively separable utility functions
which have infinite partial derivatives along the boundary of the consumption set.

To the best of our knowledge, no general existence proof of a Stackelberg equi-
librium has been yet obtained in bilateral oligopoly with a finite number of traders.
Indeed, our model differs from the previous ones insofar as the existence of a se-
quential equilibrium requires us to specify the optimal strategic behavior of het-
erogeneous traders at each stage of the game. Groh (1999) studies an example of
bilateral oligopoly with leaders as sellers and followers as buyers. The existence of
a sequential equilibrium with trade relies on three restrictions: the utility function
is quadratic; each side of the market embodies only leaders or followers (a leader is
only a seller and a follower only a buyer); and, traders are identical within each side
of the bilateral market. Our contribution goes beyond these three shortcomings:
we consider a general class of smooth utility functions, and heterogeneous leaders
and followers compete within each side and between both sides of the market.

1.4. Content

The paper is organized as follows. In section 2, we describe the model, and we
define the Stackelberg-Nash equilibrium. Section 3 is devoted to the existence of
a Stackelberg-Nash equilibrium with trade. Section 4 provides some examples to
discuss the assumptions, buttress the working of our approach, and put forward
the main differences with the corresponding Cournot-Nash games. In section 5 we
conclude. An appendix collects some proofs.

1.5. Notations

Consider the following notational convention. Vectors are in bold and capital
letters denote either sets or summations. Let z € ]R’_f_. Then, z > 0 means z; > 0,
i =1,...,n; 2z > 0 means there is some ¢ such that z; > 0, with z #£ 0, and z >> 0
means z; > 0 for all4,7=1,...,n. Let z; > 0 be an action. An action profile is given

by z = (21, ..., 24y ey 2), with z > 0. In addition, let z_; £ (215 ooy Zim1y Zid 1y ooy Zn)-
n

We sometimes set Z = Y z;, with Z_; £ > z_; = Z — z. The Cartesian

i=1 —i,—ii
product of sets A; is denoted by [] A;, where T = {1,...,n} is the index set; and
i€
A_; = [l Agis the Cartesian product of all sets but i. Let x,f;(.) be the

keT ki
Cartesian product of a set of functions f;(.), where f; : ACR®” - BCR, z —
fi(z), 7 =1,...,m. The notation f € C® is used to say that f is continuously (resp.
twice continuously) differentiable when s = 1 (resp. s = 2). F is a m dimensional
vector function when F : A C R" — B C R™, F(z) = (f1(2), ..., fi(2), ..., fm(2)).
The notation z(e), where e € R*, means that each z; is a function of e, i = 1, ..., n.
3(f1,~~~’fj,~~~’fm)(z) )

Bz 1sssZireeesn)

Let |Jr,(Z)| be the determinant of Jp at Z. The Hessian matrix of f(z) at Z is
Hy, (Z) = {82]0 _}, i,j =1,...,n. The bordered Hessian of f(z) at Z is Hy, (z).

020z |z=%

The Jacobian matrix of F(z) with respect to z at z is Jr, (Z) = [

Its determinant is |7:(fz (Z) | Finally, if we partition z such as z = (x,y), then Jr,(Z)
is the Jacobian matrix of F(z) at Z when the differentiation is partial and made
with respect to x only.



2. THE MODEL

Consider an exchange economy, £, with two divisible homogeneous commodi-
ties labeled X and Y. Let px and py be their unit prices. We assume that com-
modity Y is the numéraire, i.e. py = 1. Traders are of two types, namely X
and Y, with nx traders of type X and ny traders of type Y. We assume there
are mx leaders of type X, with mx > 1, and nx — my, followers of type X,
with nx — mx > 1, where Tx := {1,...,mx,mx + 1,...,nx }. Likewise, we have
Ty :={1,....,my,my + 1,...,ny}, with my > 1 and ny — my > 1. Traders who
belong to the set T'x (resp. Ty) are indexed by 4 (resp. by 7).

2.1. Assumptions on endowments and preferences

We now provide two kinds of assumptions regarding the fundamentals for &,
namely resources endowments and preferences. First, there are fixed initial endow-
ments which satisfy the following assumption.

ASSUMPTION 1. For each i € Tx, w; = (a;,0), with a; > 0; and, for each
j €Ty, wj=(0,0;), with 3; > 0.

Assumption 1 is standard in the finite bilateral oligopoly game. Indeed, as
emphasized by Cordella and Gabszewicz (1998), it does not require the initial en-
dowments to be strictly in the interior of the commodity space (Amir et al. 1990),
or the traders sell their entire endowments (Shubik 1973; Shapley 1976). Such dis-
tribution of endowments could echo specialization in production’s technology.

Second, the preferences of each trader k are described by an utility function
Uy Ri — R, z — uk(zg), with zx = (2, yx), and where z; and y; are the
amounts of goods X and Y consumed by trader k, k = 4, j. We make the following
set of assumptions, which we designate as Assumption 2.

ASSUMPTION 2. For all z, € Ri, the utility function wuy(zy) satisfies:
2a. Vk, ui(z) € C*(R3,R);
2b. Vk, %>Oanda“§7(zk)>0;

Tk Yr

0 Oup Ouy
Tk Uk UL Uk

2c. Vk, Oun  Ous < 0, and orr (0zn)Z  Dapdur > 0.
Yk [CEDE Juy azuk aQuk

Oyr  OyrOzp  (Oyx)?

% = oo for at least one leader and

2d. limg,, o 8“#(:’“) = oo and lim,, o

one follower of each type.

Hypothesis 2a says the utility functions are twice continuously differentiable in
the interior of the commodity space. And it includes the case of infinite partial deriv-
atives along the boundary of the consumption set. 2b says the utility functions are
strictly monotonic, and 2c that they are strictly quasi-concave. From 2d, the indif-
ference curves of (at least) one trader of each type may be asymptotic to the bound-
ary of the consumption set (for instance when u(z,y) = Inx + Iny) or may have
infinite/null slope near the quantity axis (for instance when u(z,y) = vz + /7).
These assumptions are discussed in Section 4.



2.2. The associated game

We introduce the non-cooperative strategic market game I' associated with £.
The two-stage game I' embodies two simultaneous move subgames, namely I';, and
T'r. The mx + my leaders (resp. (nx — mx + ny — my) followers) compete in
the leader-level game I';, (resp. follower-level game I'r). We assume the timing of
positions is given. No trader makes a choice in two subgames. In addition, traders
meet once and cannot make binding agreements. By precluding such agreements,
we consider each trader acts independently and without communication with any
of the others. Information is assumed to be complete. Moreover, information is
imperfect in each subgame, i.e. in the leader-level (resp. follower-level) game.

The traders can offer only a fraction of the commodity they initially hold. Thus,
by contracting her offer, each trader manipulates the relative price. Let S; be the
strategy set of leader i € Tx and S; be the strategy set of leader j € Ty, with:

Si = {ql €R+ 1 g go‘i}vi:lv“'vaa (1)

Sj = {bj eR,: bj < ﬁj}, =1 ..,my. (2)

The quantity ¢; in (1) is the pure strategy of trader i € Tx: it represents
the amount of commodity X leader i offers in exchange for commodity Y. Like-
wise, b; is the pure strategy of leader j € Ty. Let S¥ := [["} S; x HJ Y S; and

let (q¥;b%) € S denote the strategy profile for the leaders, that is (q¥;bl) =
(q1s s Gy 3 D15 ooy biny ). Given (q¥; b%) € ST the followers’ strategy sets are given
by:

S; = {qi(qL;bL) St 0,04]},i=mx +1,....,nx, (3)

S‘ = {bj(qL;bL) : SL — [0,5}}7 j=my +1,...,ny. (4)

Let 8 :=[1%, 11 Si ¥ [}, +1S), and let (q F(gl;bl); b (gl;bl)) € ST
denote the strategy profile for the followers, that is (qf (q¥; b%);bf (q%;bt)) =
(@mx+1(a%D5), s guy (" D5); by 1 (a”; D), -, by (@75 D).

A strategy profile for the traders is a vector (q” ,qF (q%;b%); bL, b (qF; b)) €
S, where S = [[;cp, Si X HjETy S;. To lighten notations, in what follows, let
(a”,a”(.);b%, bF () for (a*, qF (a*; b%); bL, bF (qF; b)).

For each (q¥, q¥'(.); b, b (.)) € S, the price vector (px (q, qf (.); bL, b (\)), 1)
is determined according to the following price mechanism which aggregates the
strategic supplies of all traders:

if B>0and Q >0, (5)
0, otherwise,

where @ = > ¢i+>.1%, 1 ¢i(q";b") and B = > b bj(a”;bk).
With a slight abuse of notations, in what follows, let px = pX(q ,af"(); b b ().

px(a”.q"();b", b () ={ o

The final allocation received by each trader for the good for which s/he has an
allocation is the amount s/he has kept after trade, and the final allocation received
of the other good is proportional to the quantity s/he sells. Leader ¢ € T'x obtains in
exchange for ¢; a share % of the aggregate supply B, i.e. a quantity of commodity Y



equal to px¢;, and ends up with the bundle of commodities (z;(¢;, px), ¥i (¢, Px)) =
(1 — ¢; ,pxq;). Her corresponding utility level is u;(1 — ¢;,pxq;). Likewise, fol-
lower i € Tx, by supplying ¢;(q”;b%), ends up with the bundle of commodi-
ties (zi(qi(a”; "), px), yi(ai(a"; b¥),px)) = (1 — ¢i(@*;b") ,pxqi(q*; b")), and
reaches the utility level u;(1 — ¢;(q%; b%), pxq;(q”; bl)). Leader j € Ty obtains in
exchange for b a share 1;3' of the aggregate supply @, i.e. a quantity of commodity
X equal to - bj, and ends up with the bundle (z;(b;,px), y;(bj,px)) = ( i(bj’ 1—

b;), with utlhty level uj(pxb 1 — b;). Likewise, follower j € Ty, by supply-
ing b;(q”; b%), ends up with the bundle (z;(b;(q”; b"),px),y;(b;(a” bL) px)) =
(pl b (af;bL),1 — bj(gl; b)), and reaches the utility level ui(5x Lp, (q bl 1 —
bj(ql;bL)). Therefore, the final allocations assign the following bundles for leaders:
. _ ¢ (i —qi,pxq), ifpx >0 .
Zz(q“pX)—{ (ai70)’ iprzO y Z—l,...,mx, (6)

] o (Jiijﬂj_bj)aipr>0
Zj(bj7pX)7{ (07BJ)7lpr:0

and the following bundles for followers ¢ € {mx+1,...,nx}and j € {my+1,...,ny }:

) j = 13 sy TY (7)

o; — q; L;bL, i L;bL ,if >0
mla(atsbh).px) = (@7 AP hpedla b Ok =0 g

_, (Gkbi(ahsbF), B; —bi(a; b)), if px >0
200, px) = 7 o |

Finally, let us define the payoffs of traders. Define the function m; : S — R,
(¢i-q%;, 9" (@";bF);bL, bF (q"; b")) = mi(gi, 4%, a7 (a”; bF); bE, b (gF; bY)), for
eachi =1,...,mx. Likewise, let 7; : S — R, (q”, " (q%; b%); b; b£]7bF(qL;bL)) —
mi(a", q" (q%; b*); b5, b, b (q”; b)), j = 1,...,my. To lighten notations, let
mi(gi,.), 2 = 1,...,mx, and 7;(b;,.), § = 1,...,my. Then, the utility levels of lead-

ers may be written as payoffs:

(9)

Zb+ S b(ak;bh)

j= j=my+1

(g, ) = ui(a; — q;, xS e ¢),i=1,...,mx, (10)
a+ > a+ Y, ar(g¥;bl)
k=1 ki k=mx+1

Zqﬂr Z ¢i(q”;bl)

i=mx—+1 .
mj(bj,.) = u;( e = bj, B, —bj), 5 =1,...,my. (11)
b+ Y b Y bilghibh)
1=1,l#j l=my+1

And, define the function 7; : S — R, (¢:(q*;bL), qf;(q%; bL), qL; bE bF(qL;bL)) —
ﬂ'z(q,(q ;b)) qf;(q¥; b%), qF; bL bF(qL,bL))7 for each i = mx +1,. . Like-
wise, define the function 7; : S —>]R ( L qf (q;bL); bL, b (qk; bL), bF (q :bl)) —
mi(a®, a”(q";b"); b, bi(qh; bh), b (g b)), for each j = my + 1,...,ny. To
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lighten notations, let m;(q;(.),.), where ¢;(.) = ¢i(q¥;b%), for each i = mx +
1,...nx, and 7;(b;(.),.), where b;(.) = b;(q”;b%), for each j = my + 1,...,ny.
Then, the utility levels of followers i € {mx +1,...,nx} and j € {my +1,...,ny}
may be written as payoffs:

Zb+ > b

mi(ai(2), ) = wilas — ai.), - a()),  (12)
() + > an + > ar(.)
k=1 k=mx+1,k#i
Z q; + Z . Q1()
75 (b;(),.) = u;( i=mxt bi(.), B; — b;(.)). (13)
bi(.) + Z b + Z bi(.)
1=1,l#j l=my +1

2.3. Stackelberg-Nash equilibrium: definition

We now turn to the definition of a Stackelberg-Nash equilibrium. To this end,
we define some concepts that are related to the behavior of traders in each subgame.

Consider the subgame I'r. For each (q”;b%) € SE, the best reply correspon-
dences of followers are defined as follows.

DEFINITION 1. Let ¢; : S_; — S;, with ¢, (q ,qf bl b)) = {q € S :
q; € argmax;(ql, ¢;, q¥,; L, b))}, be follower i’s best reply correspondence, i =
mx +1,..,nx. L1kew1se let Y; :S_j — §;. with wj(qL7qF;bL,b}_7j) = {b; €
S; 1 b; € argmax;(qF, qF; b%, b;, bljj)}, be follower j’s best reply correspondence,
j=my +1 ..,ny

It is worth noting that this game displays a rich set of strategic interactions.
Therefore, with several followers, by contrast with the duopoly game in which the
best reply of the follower always coincides with her strategy, the followers’ best
responses differ from their strategies. With several followers the best responses
could be inconsistent, and thereby, the followers’ strategies could not be well defined
(see Example 3 in Section 4). The existence, for each follower, of a unique smooth
strategy is studied in Section 3. The followers’ strategies are defined as follows.

DEFINITION 2. Let o; : S — &;, with (qX; b%) — a;(q¥; bl), be the strategy
of follower i, i =i = mx +1,...,nx. Likewise, let ¢; : St — §;, with (qf;bl) —
©; (q¥;b%)., be the strategy of follower j = my + 1, ..., ny

nx
Define the correspondence o : ¥ —  []  &;, with qf" € a(q¥;b?), and the
i=mx—+1
ny
correspondence ¢ : S — [ S;, with b € (q”;bL). Then, the price px
j=my+1
may be written as px (q", o(q"; b");b", p(q"; b")).

Consider now the subgame T';, and the best reply correspondences of leaders.

DEFINITION 3. Let ¢, L. — 8, with ¢;(qt;;bl): = {¢ € Si : ¢ €
arg max 7;(q;, q%;, o(qi, q"; bL) b%, ¢o(q;, q%;; bE)}, be leader i’s best reply corre-
spondence, 1 = 1 sy mx. L1kew1se, let ¢, : SL< — §;, with z/Jj(qL;bfj) c={b; €
S; b € argmaij(qL,a(qL;bj,bf ); b, bLJ,cp( Lib;, bl ;)}, be leader j’s best
reply correspondence, j = 1,...,my.
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Let us now consider the consistency of optimal behaviors. The equilibrium
of the two-stage game I' is a pure strategy SPNE, while the equilibria in both
subgames I';, and I'p are Nash equilibria. But such a SPNE is a Nash equilibrium
(NE thereafter) of each subgame of T' (Selten 1975).°

Therefore, consider the subgame I'z, and let (q”; bl) € SE. Deﬁne the family of
functions Ay, : ST — SL with AL (q%, o(ql;b); bl p(ql; b)) = x"X ¢, >< 20;
A pure strategy NE of the subgame T'j, is a fixed point (QL;BL) of AL(.) such
that no leader has an interest to deviate unilaterally from her decision. Con-
sider now the subgame 'z, and define Ar : S — S, with Ap(g”, q%;b%, b)) =
XZL:XmX+1¢iX;l:my+le7 with qf" € a(q¥;bl) ar~1d b € p(ql;bl). A pure strat-
egy NE of the subgame T'r is a fixed point (§7'; b*") of Ap(.) such that no follower
has an interest to deviate unilaterally from his decision.

Finally, consider the entire game I'. A pure stra‘Eegy SPNE of T is a fixed point
(@, (@ b"): b, B (a5 B4) < S, with (" ()i B’ () € (o(d":B"): (@ b))
Then, (5) is px = pX(q .4 (q bL) b~ b¥ (g~ bL)) The allocations to leaders
(6)_(7) are Zl = Zi(qiaﬁx)a = 1,..,mx, and ZJ = Zj (b_]pr) .] = 1,..,my,
and the allocations to followers (8)-(9) are z; = zl(qz(q b)), px), i = mx +
1,...,nx,and z; = z;(b;(@*; bL), px), 7 = my +1, ...,ny. Then, the leaders’ payoffs
(10)-(11) are given by m;(g;,q%;, a" (@%; bL) bl bF( L. bL)) = u(2i(Gi, px)), for
each i = 1,...,mx, and m;(§%, " (@";b%);b;, bL,, bF (G bL)) = u;(z;(bs, px)),
for each j = 1,...,my, and the followers’ payoﬁs corresponding to (12)-(13) are
given by (%, i (@ bY), ¥, (@%5 bh); b, b (G5 bE)) = wi(z:(d(@ks bb), ix),
for each i = mx +1,...,nx, and m;(a", q" (g ,bL),bL,l;j(dL;BL),f)fj(qL;BL)) =
uj(zj(éj(qL;BL),ﬁX)), for each j =my +1,...,ny.

We are now able to define formally a SNE for the game T'.

DEFINITION 4. (SNE). A (nx + ny)-tuple (§%, " (g%; b*); bF, b¥ (g%; b")) is
a Stackelberg-Nash equilibrium of T if: o

a. Vi € {17 ceey mX} Wi(qh (~1£” qF(qiu 512“ bL) bL bF(QM q_-;; b ))

ﬂz(leqezaq (Qla L bL) bL bF(qLa~L bL))7
nx
for all gf'(q%;bl) € ] i and all bP(qX;bl) € H S;, for all ¢; € S;;
i=mx+1 o j= my+1 o
b.Vj € {1,.;my} 7;(@", @"(@"; b;, bL ); b, bfj,bL( 1b;,bL;)) >
- - L ~
ﬂ—j(qu q ( L7 ij b—j)a ij bEj, bF(q 5 ij béy))v
nx ny
for all ' (q¥;bL) € ] Siandall bf(qF;bE) e T[] S, forall b € Sj;
i=mx—+1 J my +1

c. Vi e {mx+1,...nx} m(a", G(@";bh),a",(@;bl); bk, bF (G~ bL)) >
mi(@", 4:(@" "), a%(g"; b*); b", b(G"; b)), for all ¢; € S;;

d. Vi € {my +1,..,ny} m;(@",a" (% bh); bl b;(§"; bh),br (g% b)) >

m;(a",a" (a"; br); b, b;(; bF), bY(§%;bF)), for all b; € S;.

Therefore, a SNE is a noncooperative oligopoly equilibrium of I" such that, in
each stage of the game, no trader has interest to deviate unilaterally from her choice.

61t requires the strategies of the leaders and the followers to constitute a NE of any subgame. In
addition, it is a SPNE without empty threats: it rules out incredible threats by the followers. The
reason is the strategy of any follower is optimal for any supply set by the leaders. The followers
can set their own supplies according to any possible function of the quantities set by the leaders,
with the belief that the leaders will not counter-react. Similarly, the leaders expect the followers
to conform to the decisions given by their best responses.

11



3. EXISTENCE OF A SNE WITH TRADE

Let us now turn to the existence of a SNE with trade. It is well known that
the autarkic equilibrium is always a Nash equilibrium (NE) in simultaneous move
strategic market games (Cordella and Gabszewicz 1998; Giraud 2003; Busetto and
Codognato 2006). The following example, which is borrowed from Cordella and
Gabszewicz (1998), and adapted to our setting, illustrates this feature in the se-
quential game.

EXAMPLE 1. (Autarkic SNE). Let #77 = #T5 = 2. Assumption 1 is o; = 1,
for each i € Tx, and §; = 1, for each j € Ty. Assumption 2 is u; (s, yi) = y2i + yi,
i € Tx, and u;(x;,y;) = x; +vyi, j € Ty, with v € (0,1), so (2d) does not hold.
The unique competitive equilibrium is given by p% =1 and zf = (0, 1), ¢ € Tx, and
z; = (1,0), j € Ty. In addition, the Cournot-Nash equilibrium strategies are given
by (41, G2; by, 52) = (0,0;0,0). Consider now the SNE. The followers’ best responses

are ¢y (q1, g2;b1) = —bi + 4/ 3b1(q1 + g2) and P5(q1301,02) = —q1 + /5 (b1 + b2)as.

The strategies are given by o(q1;b1) = A=2b1+/ (-4 (o) Hvbran and p(q1;b1) =

2y
(1=2v)q1+1/(1=47) (q1)2+47b1 ¢
by = 0. Accordingly, the strategies of followers are ¢(0;0) = 0 and ¢(0;0) = 0.
Then, the only SNE is the trivial equilibrium (¢, g2;b1,b2) = (0,050, 0).

. Then, the leaders’ SNE strategies are ¢ = 0 and

Therefore, if all traders but one are making a null supply, any other trader,
whichever her type is, will not deviate by making a positive supply. Indeed, no
leader/follower finds it profitable to participate in exchange as long as no other
leader/follower does. For any trader, and whichever is the stage of the game, the
strategic advantage from trading is offset by the strategic advantage of reducing her
supply. Does this imply that there is never a non-trivial sequential equilibrium?
The following theorem provides a negative answer to this question.

THEOREM (Existence of a SNE with trade). Consider the finite game T, and let
Assumptions 1 and 2 be satisfied. Then, there exists a Stackelberg-Nash equilibrium
with trade.

The remaining part of this section is devoted to the proof of the theorem. To
prove the theorem, we consider a slight perturbation of the strategic market game
as in Dubey and Shubik (1978) when they show existence of non-autarkic Cournot-
Nash equilibria. Our proof requires five steps. First, we study the optimal behaviors
in each perturbed subgame. This leads to study the followers’s best responses, and
then to show the existence of unique smooth followers’ strategies in the perturbed
game. Then, by considering the subgame between leaders, we study the leaders’s
best responses. Second, we prove the existence of a SNE of the perturbed game,
i.e., we determine the conditions under which the best responses of traders are
mutually consistent in each perturbed subgame as well as in the entire perturbed
game. Third, we show that there exist some uniform bounds on the market price
in each perturbed subgame. Fourth, we prove the SNE of the perturbed game is
non-autarkic. Fifth, we show that the SNE with trade is an equilibrium point of
the game, i.e., a non trivial subgame perfect Nash equilibrium which is robust to
slight perturbation of the game.

Therefore, consider a slight perturbation of the game I'. Let I'“ be the per-
turbed game in which some outside agency puts a fixed quantity € > 0 of the two
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commodities on each side of the market. This does not change the traders’ strategy
sets, but it changes outcomes and payoffs. Given € > 0, the price (5) of I'“ is now
given by:
B+e
Q+e
To lighten notations, let qZ'(.) for qf'(q%; bl) and b%(.) for b¥(ql; bL). Then,
let p% = px(qZ,qf(.);bL, bF(.)). Therefore, the allocations in T'¢ are given by
Zie = Zi(Qie, %), for each ¢ = 1,...,myx, and z;. = z;.(b;.,p%), for each
j=1,...,my, and by z;. = 2;(¢;¢(.),p%), for each i = mx + 1,...,nx, and
zje = Zje(bje(.), D), for each j = my + 1,...,ny. The payoffs in I'® are given
by wje(q“,qﬂi »af();bE,BE() = ui(2ic(gic, p)), for each i = 1,...,;my, and
(qe ) e () b],ﬂbej e7bf()) = uj(zj76(bj7€’pg{))7 for ea‘Chj = 17"'7mY7 and by
m(als die(-), al ()DL, DI () = ui(zie(gie(), P ), for each i =mx +1,....nx,
and 7§ (qe ) e (');bf)bﬂe(')’bfj(')) = uj(zjﬁ(bj}ﬁ(')’pg()% for each j = my +
1,... ny We now define formally the concept of e-SNE.
DEFINITION 5 (e-SNE). For all € > 0, a (nx + ny)-tuple (%, % (.); bZ, bF(.))
is a Stackelberg-Nash equilibrium of I'¢ if conditions a., b., ¢. and d. in Definition

4 hold, but where 7; is replaced by «§ for each ¢ € {1,...,nx}, and 7; is replaced
by 7§ for each j € {1,...,ny } respectively.

€

Px =

(14)

To show the existence of an e-SNE (with trade) we need some intermediate
results. First, we consider the behavior of traders in the perturbed game I'°.

Consider the perturbed subgame I‘E The problem of follower 4 (resp. j) consists
of maximizing his payoff 7¢(g;.c,a”,q”; ;i bE, bl) (resp. (q6 ,ql’;bj ., bl b}jj )
The next proposition echoes Definition 1.

PROPOSITION 1. Let Assumption 2 be satisﬁed Then, for all € > 0, the best re-
5p0n868¢ S—IXR++—>S7J wlth (qe7q ze)b b )'_>¢ (q57q 157bL b )7
i =mx +1,.,nx, and ¢; : S_; xRy — Sy, wzth (af, qf'; bk, bfje; ) —
wj(qf, ql; bk, bﬂ G €), g =my +1,...,ny exist and are twice-continuously differ-
entiable functions.

PROOF. See Appendix A.

The next proposition says that the followers’ best responses are bounded.

PROPOSITION 2. Let ¢ = (¢, 1,05, ) and 9 = (05, 41,05, be
respectively (nx —mx) and (ny — my) dimensional vector functions. Lel a =

(n
(a@l,af (gh; bl); bl bF (gF; bE)) € S Consider the Jacobian matrices J¢e (a) =
)

[ } and Ty . (a) = [ abé ] Then, -1 << J¢s (a) << I, where I is the
(nX — mx,nx —Enx) unit matriz, and —I << .7,/,; ( ) << I, where 1 is the
) |: 8bF :| S (_IaI)v
and Jye . (8) = {ag’(;(;)] € (=L, 1), where the Is are (nx — mx,ny — my) and
af €
(ny —my,nx —mx) unit matrices.

PROOF. See Appendix B.

(ny — my,ny — my) unit matriz. In addition, j¢; (a

To define the strategies of followers (see Definition 2), the followers’ best re-
sponses must be consistent. By "consistent" we mean that the followers’ strategies
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are deduced from the collection of best responses. It is worth noting that the strate-
gies might not exist even if the best responses exist (see Example 3). To this end,
we give a sufficient condition which guarantees the existence of followers’ strategies.

To introduce this condition, define the function ®§ : S x R4y — &;, with
&5(F,al ();bE,bE()ie) == gie(.) — di(ak,a”,,();bE, P ();e), for i = my +
1,...,nx, and the function ¥§ : S x R} — &, with W;(qf,qf(.);bf,bf(.);e) =
bj(.)—v5(al, qf (.); b bljj 6( );€), for j = my +1,...,ny, € > 0 (remind (.) means
(g%; b%)). This set of functions will be useful to buﬂd the system of equations that
will implicitly define the strategies.

Let Y¢:SxR,, — S the (nx —mx +ny —my)-dimensional vector function
given by Y¢(.) = (P50 11,5 P53 W5y 115 - ¥5, ). Consider the vector equation
Ye(al,qf (.);bE,bE(.);€) = 0 with (nx — mx + ny — my) unknowns (qf'; bl
and mx +my parameters (q¥; bL). This system defines implicitly (at least locally)
the followers’ strategies. Let a = (616 ., a7 (gl; bE); bL, b (gF; b)) be an interior
point of S, so the 1dent1ty Y<(qr, qf (qf; bL); bE, bf(qs ;bL)) = 0 holds in an open
neighborhood of (g* 7qE F(@L;bE); bl bl (gF; bl)). Implicit partial differentiation
with respect to (bX;ql) of this identity leads to:

J‘r; FF)

(a).A¢ = B¢, for each € > 0, (15)

where jre (@) is the (nx — mx + ny — my,nx —mx + ny — my) square

F F)
matrix formed by all partial derivatives of Y¢ with respect to (qf;bf) at a =
(@l af (gl; bl); bl bl (gL; bE)), and A and B¢ are matrices of dimension (nX —
mx + ny —my,mx + my). The next lemma says that the solution to (15), if it
exists, determines the followers’ strategies.

LEMMA 1. If |J~ (a)| # 0, then, for all € > 0, there exist unique functions

(aF bF)
oS SxRyy — S;, with b = 05(ql;blse), i = mx+1,...,nx, and @5 SxRyy —
S;, with g = goj(qL;bL;e), j = my +1,..,ny. Moreover, c<(.) € C*(S,S;),
i=mx +1,..,nx, and ¢j(.) € C2(S,S;), j=my +1,...,ny

PROOF. See Appendix C.

Lemma 1 provides a sufficient condition for the existence and uniqueness of
continuous differentiable strategies. If the Jacobian of Y¢(.) is a linear map which
is invertible, i.e. a C'-diffeomorphism, then there exists a unique fixed point to (9)
which consists of twice continuously differentiable strategies. The next proposition
state that there the followers’ strategies are bounded.

PROPOSITION 3. Let 0 = (09,11, 0%,) and ¢ = (P, 115 Ph,) be
respectively (nx —mx) and (ny — my) dimensional vector functions. Consider

Joc, (@) = [Bg;;)} and Jpe () = [8“’ ”} Then, Jo<, (8) € [-L1) and Ty , (a) >

€

0, where the unit matriz 1 and the null matriz 0 are of dimension (nx —mx, mX)
and (ny —my, mx) respectively. In addition, Tos, (a) € [-L,1) and Toe ,(@) >0,

where T and 0 are of dimension (ny — my,my) and (nx —mx,my) respectwely
PROOF. See Appendix D.
Consider now the subgame I'¢. Define the two families of followers’ strate-
gies in I'“ as o€ : SE x Ry, — Tﬁ( Si, with qf" = o¢(qX;bl;e), and as ¢°

1=mx+1

14



SExR, . — ﬁ Sj, with bf" = ¢°(q%; bZ;€). In particular, o(qX; bZ;€) € C?
j=my+1

and ¢°(q%; bl;€) € C2. By virtue of Lemma 1, the price function that maps leaders’
strategies into a price and the reduced form payoffs of leaders are well-defined. In-
deed, each leader knows how the market price is affected by the followers’ reactions.
Let the price function be pX(qE iblie) £ px(ql,o¢(ql;bE;€); bE, o(ql; bLe)).
As 0¢(.) € C? and ¢°(.) € C?, then pX(qE ;bl;€) € C2. Thus, leaders’ reduced form
payoffs are m; c(¢i.e, 9%, ., 0 (qz e q”; s blie);bl, o (gic, " s bl ), for each i =
1,...,mx, and 7;(ql, o¢(qF ,bm,bfje, €); bj,e,bijﬁ,goé(qf;bj7e,bfj’e, €), for each
7 = 1,...,my. The next proposition relies to existence and continuity of leaders’
best responses (see Definition 3).

PROPOSITION 4. Let Assumption 2 be satisfied. Then, for all € > 0, the best

my

responses ¢ : ST, x H Sj x Ryy — Sy, with (q*; ;bl;e) — ¢i(qh; ;blse), i =

L....,mx, and ¢j : ‘Hl Six Sy xRyy — Sj, with (qf;bL; ;€)= Yj(alibh; se),
1=
j=1,...,my, exist and are continuous functions.
PROOF. See Appendix E.

We now turn to the existence of an e-SNE. The next lemma shows that the
optimal behavior of traders are mutually consistent in the entire perturbed game.

LEMMA 2 (Existence of e-SNE). Consider T'¢, and let Assumptions 1 and 2 be
satisfied. Then, for all € > 0, there exists an e-Stackelberg-Nash equilibrium of T°.

PROOF. We show that the optimal strategic behavior are mutually consistent,
i.e., there is a pure strategy SPNE for the entire perturbed game I'®, which con-
stitutes a NE of each perturbed subgame I'Y, and I't:. We first show that I'§,
has a NE. To this end, let (qf;bL) € ST, and define the family of functions
Ag - SF xRy — S*, with Ag(ql,o°(ql;bl); b, v (al;bl)) = X2 ¢, x 7295,
where the functions ¢;, i = 1,...,mx, and ¢§, j = 1,...,my, are well- deﬁned
from Proposition 4 (see Appendix E). The function A¢ is a continuous function
(as the product of continuous functions ¢;, i = 1,...,mx, and ¢, j = 1,...,my,
from Proposition 4) over a compact and convex subset of Euclidean space (as the
product of compact and convex sets S;, i = 1,...,mx, and Sj, j = 1,...,my).
Then, by the Brouwer Fixed Point Theorem, the function A{ admits a fixed point,
namely (g~ 7l~) ), which is a NE of I'S. Next, we show I'% hab a NE. Define
AS S xRy, — ST with AS(qF, qf ,bL bl) = x mx+1¢z Yy 1%, where
the functlons o5, i=mx+1,..,nx, and w], j=my+1,...,ny, are known to exist
from Proposition 1. Let (qEL;beL) (- 7bL). The function A% (g, qf ,bL b%)
is continuous on S, a compact and convex set of Euclidean space. Then, it has
a fixed point, namely (§f;bl"), which is a NE of I'S.. Finally, from Lemma 1,
for all € > 0, as (qf;bf") = (o¢(ql;bLse); (qe,bL €)). If (§%;bF) is a fixed
point, then, by usmg Lemma 1, and by continuity of o¢(.) and ¢ ()7 we deduce
GH ,bF) (o¢(qY; bE;e); (qe ; bf; €)) is a fixed point of I'S, for all € > 0. Then,
(k,qt ,bL bF) is a fixed point of I'*.H

The next step consists of showing that the market price generated by an e-SNE
is strictly positive and finite. Indeed, the next lemma concerns the existence of
uniform bounds on relative price in an e-SNE.
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LEMMA 3. Assume there are at least one leader and one follower of each type,
and let pS = p5(ar,af (a;bk); bL bF(qE ,bL)). Then, in an e-SNE, there exist
uniform bounds £, > 0 and &, > 0 such that:

Ve > 0, & < Pk < &,. (16)

PROOF. See Appendix F.

It is worth noting that, unlike Dubey and Shubik (1978), the existence of such
uniform bounds on price must hold in each perturbed subgame. In particular, we
have to take into account that, in the perturbed subgame between leaders, the
rational beliefs of leaders about the followers’ reactions matter.

The next lemma, whose proof adapts to our setting the study of Cournot equi-
libria in Bloch and Ferrer (2001), is linked to the existence of an e-SNE with trade.

LEMMA 4 (Existence of e-SNE with trade). Consider T'¢, and let Assumptions
1 and 2 be satisfied. Then, for all € > 0, there exists an e-SNE with trade of T'°.

PROOF. We have to show that there are non trivial equilibrium strategies in
each stage, i.e., there exist lower and upper uniform bounds on equilibrium supplies
such that there are at least one leader and one follower of the first type (resp. second
type) for whom 0 < §; < o (resp. 0 < l;j,E < B;)-

Follower i. Consider the payoff given by (12). Let o (q6 ;bl:e) € S;. We have
to show that there are g;,¢; € S; such that 0 <q, of(ql ,bL €) < g; < ay, for at
least one ¢, 1 = mx +1,...,nx. Fix the strategies of all other traders in equilibrium.
Follower ¢’s marginal payoff may be written (see (A2) in Appendix A):

on§ ou; . Q_ic+e Ou;

=T e e T g all e > 0. 17
8qi,e 8(E2 * Px Gi,e + in,e +e ayz orane ( )

From Proposition 1, there exists ¢5(ql, ¥ ;i bl blie)>0,i=mx+1,..,n
In addition, from Lemma 1, there exists ¢; . = o$(q” ,bEL, €)=20,i=mx+1,...,nx
Then, in equilibrium we have §; . = o$(@X;bl;e) > 0, i = myx + 1,...,nx. Let
i = Ou; /Ox; .
MRS y (i) = 3u7§ayl 122 s 5O (17) may be written:
or§ 0
Ti uz( MRSX v (Zi,)), for all € > 0. (18)

8(11',6 ‘qi.e=qi . ayz

Consider the case ¢ (qE ;

€ ;

€) =b; > 0. As % < 1 and, from Lemma

3, we have p5 > £, then (18) may be written:
ons§ Ou;
>

B . 0; ‘(& MRSX v (Zie)), for all € > 0. (19)

From (2a)-(2c¢), we deduce % > 0. Assume 05(.;¢) = 0. Then, from

(2d), lim,, .o MRSy = 0, so (19)

9ui ¢ . But, from (2d), we
. Ou; 1 Ou; o
have limg, .o 5t = limy, o 5t = 00, so we deduce a1 -

9y

16



Therefore, there must be q; > 0, with q; = o5 (qL bEL7e) and q; € S;, such that
OMRSYk

O
o§(.;€) 2q; > 0. Then, o§(.;€) > 0, so Aie = 0 in (A6)7 for at least one i €

{1,...,mx}. Likewise, 0 <b; < ¢.;€), j = my +1,..

= £,. As aw'_i‘e _ > 0, then for all o5(.;e) € S;, we have

Consider now the case ¢; < §; < oy. As p§ < 52 and q%_‘% 1, then:
ore o )
T < Z8(¢, — MRS y(7:.0)), for all € > 0. (20)

0qi e las,c=ds y;
OMRSY% " . ;
From (2a)-(2¢), —5g-— > 0. In addition, from (2d), limg, .o MRS =0
and limg, .o, MRS}}Y = oo. Then, there is §; < «y, with ¢ = 75(.;¢) and
5<(.;€) € S;, such that (%)‘q“ _g: = & Then, from (20), (275),,, —g <0,
where 7§ is strictly concave in ¢; . on [0, o;]. Then, for all §; . € S;, we get Gi e < @,
50 Aje = 0in (A6). But, then, ¢$(.;€) < § < o; for at least one follower 4.

Leader i. Fix the strategies of all other leaders in equilibrium. As, in the
first stage, p = p& (4F; bL1e), where p (q;blie) = px(al,o¢(.€);bE, (. ¢€)),
leader ¢’s marginal payoff may be written:

ons§ ou; , S
= —(xp%x — MRS% y (%)), for all € > 0. 21
O, op X T M @) (21)
where x =1 — (14 v )ﬁ +nX ;: , with x € [0,1], is the inverse of the

markup (see (E2) in Appendix E).
Consider the case G; - >q; > 0. Aspg > &, and x < 1, then (21) i

e
18 >
6q €la; e=d4,e

SMRSf‘XX
94,
0. Then, x = 1, and, from (2d), lim,, , .o MRS% y = 0, so (21) is aq > Quig

g—;(flfMRSégy(Zi,e)), for all e > 0. From (2a)-(2¢), > 0. Assume Gie =

0y;
But, from (2d), 1iin,54’0?971; = hmyiﬂog—yf = 00, SO 83;1' > o00. A contradic-
. . . OMRS:
tion. Therefore, there is q; > 0, with g; € §;, such that Tﬁ"qu‘ . &, As
f?;em L 0, then for all G € Si, Gic > q, > 0. Then, i > 0,50 y1; . = 0 in

(E2), for at least one i € {1,...,mx}.
The proof of 0 <b; < b; < bj < Bj for at least one j € Ty, follows the same
steps as the one provided for type 1 traders.ll

Finally, we show the SNE is an equilibrium point (EP), which we now define.

DEFINITION 6. A SNE (%, & (§; b%); b” bF( L bL)) is an_equilibrium point
of T if there exist sequences {en} ~,and {(@% ,af (aF ; bf ); bfn bf; @k bf))}n 1
such that:

1. €, > 0 and lim,,_ {€,} = 0;

2. (a*.a” (= ;bL )bl Bgn @t ; b% )) is a Nash equilibrium of T'*»;

3. lim {(@",&" (a%;BL )b bF (ah:BE)) = (4" (" bY); BE.B7(a" b)),

LEMMA 5 (SNE is an EP). Consider the game T', and let Assumptions 1 and 2
be satisfied. Then, the SNE with trade is an equilibrium point of T.
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PROOF. Consider a sequence {e,} such that lim, ., {e,} = 0. Pick one se-
quence of strategies {(q” ,q” (q% ;bL );bL bl (gL ;bL )}, n € {1,2,...}. Con-
sider the subgame I'. From Lemma 1, there exist ¢; . := o$(qX;bE;e), for
each i = mx +1,...,nx, and b, := wj(qf;bf;e), for each j = my + 1,...,ny.
Consider, for each i = mx + 1,...,nx, and for each j=my +1,...,ny, the se-
quence of strategies {05 (ql; bl ;en); 05" (al;bE sen)}, n = 1, 2 .., which are

defined over compact sets. Let (qfk ;bfk i€k, ) be a leaders’ strategy profile of

En

the subgame 1"6'“" Then, for each i = mX +1,.. nX, and each j = my +
1,...,ny, there is a subsequence {a (gt 'bELk P €k, )s <p] Fn (qsk ,bsk i€k, )} such

that  lim {U-k"(qekﬂ'bin7 T T 'bfkn er)} = {oi(a’;bY);p;(ak; b}

as hm {U ek, )i (e, ) = {oi(); e ()}, i=mx+1,..,nx, j =my +
1,...,ny. But (qi;bj) = (0;(ql; b); v;(q Lbl), i =mx +1,...,nx, 7 = my +
1,...,ny. In addition, from Lemma 4, we have q; < ¢; < ¢; , ¢ = mx +1,...,nx,
and b; < Bj < l_)j, j = my + 1,...,ny. By continuity of the payoff functions of
the followers (see Appendix A), we deduce (g;;b;) := (03(q";b");9;(q"; b") is
well-defined, for each i = mx + 1,...,nx, and for each j = my + 1,...,ny, so
(qf';bF) == (a(q®; bl); p(qh; bL)) is a well-defined strategy profile of I'z. Con-
sider now the subgame I'Y". From Lemma 4, we know that there exists an e-SNE

with trade of I'{", i.e. there is a strategy profile {(dfn;Bfn)}, for which, for at
least one leader of each type, we have that q; < i, < @, @ = 1,...,mx, and

b; < Ej,e" < bj, j=1,...,my, for n = 1,2,.... Thus, the sequence {(qi,en;éj,e")},

it =mx +1,...nx, j = my + 1,...,ny, is defined over a compact set. Then,
from the Bolzano-Weierstrass Theorem (see Corollary 4.7, p. 25 in Aliprantis et
al.  1998), there exists, for each i = 1,...,mx, j = 1,..,my, a subsequence

{(Gien,, 3 bjer,, )} ey which converges to a limit point (g;; b;), where q; < ¢; < G, for
each ¢ = 1,...,mx, and b; < I;j < I_)j, for each j = 1,...,my, from Lemma 4. As
the payoff functions of the leaders are strictly concave (see Appendix D), they are
continuous, so (§%;bL) = (G1, s Gy ; b1, - by ) is an EP of T'z. As (§7;b%) :=
(U(QL;BL);QO(QL;BL)), which is an EP of I'r. But then, (QL,QF;BL,BF) is an
interior pure strategy SPNE of I'. Then, the SNE with trade is an EP of T', which
means there exists a strategy profile (g%, % (q%; b%); bL, b¥ (gF; b)), which is a
non autarkic SNE of T".l

4. DISCUSSION

The following examples deserve three purposes. First, they illustrate that our
main result captures new insights on competition in bilateral oligopolies, and,
thereby, each of them puts forward the main differences with the outcome of the
Cournot-Nash game. Second, they buttress the logic of our approach. Third, they
test the robustness of Assumption 2, i.e. the differentiability, the strict quasi-
concavity and the behavior of the indifference curves along the boundary of the
consumption sets. Example 1 computes a SNE when Assumption 2 is satisfied.
Example 2 shows Assumption 2c is not necessary. Example 3 illustrates existence
failure. Example 4 shows a SNE may exist even if Assumptions 2a, 2¢ and 2d do not
hold for some traders. In each case, we also compute the Cournot-Nash equilibrium
(CNE) supplies and the competitive equilibrium (CE) supplies. In all examples
Assumption 1 is a; = 1, for all i € Ty, and 3; = 1, for all j € Ty.
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4.1. A SNE under Assumption 2

Let Tx = {1,2,3,4} and Ty = {1,2,3,4}, with two leaders and two followers
of each type, with:

uk(xkvyk) = Tk Yk, k= iujv 7’7] = ]-7 74 (22)
The CE supplies are given by (q7,45,45,45) = (3,3, 3. 3) and (bf, b5, 05, b}) =
(% : %, é) In addition, the CNE supplies are given by (¢1,d2,d3,d4) = (3,3, 3, %

(blab2ab3ab4) (37% %7%)

Let us now compute the SNE. In the second stage of the game, for all strategy
profiles (q1,qo; b1, b2) € S, the problems of both types of followers may be written:

4
. b
max (1 —gq;) ( 21 b q¢> L i=3,4, (23)

$s(a-4:b) G+ D iz i
2471 qi )
max i= b | (1—b,), =34 o4
¥s(a-s) (bj i i (=555 (24)

As all followers of the same type must adopt the same strategy at equilibrium,
the sufficient first-order conditions lead to the followers’ best responses, which are
given by:

b3(q1,42,q1;D) = —(1 + 2+ q1) + V(@1 + @2 + @)+ (@ + g2 +aq),  (25)

64(q1,42.93:b) = (1 + @2+ @3) + V(01 + @2 + @3)2 + (1 + @2 + a3), (26)

V(s b1, b2, ba) = —(b1 + by + ba) + /(b1 + by + ba)2 + (b1 + bz + ba), (27)

Ua(a;br, ba, bs) = —(by +ba +b3) + /(b1 +ba+b3)2 + (br + b2+ b3).  (28)
To determine the followers’ strategies, let Y(®3(.), P4(.); Us(.), ¥yu(.)) = O,
where ®;(q—;;b) == ¢; — ¢;(q-i;b), i = 3,4, and V3(q;b_;) := b; — ¥;(q; b_;),
j = 3,4. The Jacobian corresponding to (15) is given by:
1 g 0 0
h 1 0 O
J’I‘ 9F; bF) - 0 0 1 g/ ) (29)
0 0 n 1
where g =1 —  aitasty =1_  aitget3 g =1_ bi+bz+3
o V(a1+a3)2+q1+qs’ \/m v/ (b1+b3)2+b1+b3
r—1_ bit+bat+3 (1 B ’
and A/ =1 VT We get ‘j’r(qF;bF)’ =(1—gh)(1—g'h)#0asgh#1

and ¢g'h/ # 1, so ['I‘(O]f1 is well defined. Then, Lemma 1 holds, and the followers’
strategies are given by:
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1 1 1 1 .
oi(q1,q2;b1,b2) = 5~ g(fh +q2) + \/3((]1 +q2)? +2(q1 + q2) + vk 3,4, (30)

11 1 ; L
(pj(ql,q2;b1,b2) = 6~ §(b1 +b2) 4+ (b1 4+ b2)? +2(by + ba) + Ve j=3,4. (31)

In the first stage, the problem of any leader consists of maximizing her reduced

. b1+ba+¢3(b1,b2)+p,(b1,b
form payOff’ with pX(ql’ 925 bl’ b2) = q1+qz+i§EQ17q§§+fﬂqi7qz; ’

(30)-(31), the leaders’ problems may be written:

Therefore, by using

©;(q1,923b—1)

Lt 20+ b) + 2+ b2+ 200+ b))+ 1)
¢(malf(b )(1_(12) 1 5 5 1 Qi7121527
R §+§(Q1+(12)+§\/(Q1 +¢2)°+2(q +q2) + 3
(32)
%JF%(%+Q2)+%\/(41+Q2)2+2(Q1 +q2) + 1 )
max bj(1—b;),j=1,2.
2
T3

+
(br +b2) + 21/ (b1 +b2)? +2(b1 + by) +

Wl
ol L

(33)
Then, after some tedious computations, as all leaders of the same type must
adopt the same strategy at equilibrium, the first-order conditions associated with
problems (32)-(33) yield the unique solution ¢; = Bj =0.421907, 1 = 1,2, j = 1,2.
From (30)-(31), we deduce (s, Gs) = (b3, bs) = (0.427986,0.427986).
Therefore, the SNE supplies are given by the pure strategy profiles:

(G1, G2, s, qa) = (0.421907,0.421907, 0.427986, 0.427986) , (34)

(by, by, bs, by) = (0.421907,0.421907, 0.427986, 0.427986) . (35)
It is worth noting that the existence of the four strategies (30)-(31) as well as
the SNE depends entirely on the fact that (29) has a nonzero determinant.
4.2. The boundary conditions
Let Tx = {1,2} and Ty = {1, 2}, with:

Uj(.’L'j,yj) =Tj.Yj, j = 172. (37)
The CE supplies are given by (¢7,¢5) = (%, %) and (b1,03) = (2, 2) In ad-

dition, if 7, # 75, the CNE supplies are (41,G2) = and

(3 ,)
o Y1it+72) ’3(7 +7 )?
(b1,b9) = (%, %)7 while if v; = 75, then (41,G2) = (67, 5-) and (bl,bg) (37 3)

Let us now compute the SNE. In the second stage oz the game, the problems of
both types of followers may be written:
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by + by >
max 1-— + , 38
(q13b1,b2) LIS <q1 Fp® (38)

q1 + g2
max ba | .(1 —b2). 39
(a1,02:b1) <b1+b2 2) (1=1b2) (39)

Then, the followers’ best responses are given by:

b1 + by

Go(q;b1,b2) = —qu + q1, (40)

bo(q1, q2;b1) = —b1 + /(b1)2 + by (41)

We now determine the followers’ strategies. To this end, let ®5(q1, g2;b1,b2) :=

Q+ g2 — ,/%ql and Wo(q1,qo;b1) := by + ba — 1/ (b1)? + by. The Jacobian is

given by:
1 1. /_a
jT(qF;bF) = 0 2 vl(b1+b2) . (42)
We have ’jr(qF;bF) = 1. Then, the followers’ strategies exist and are given by:
1 2
oa(qu;b1) = —q1 + 5 (b1)? + b1q1, (43)
2

302((]1; bl) =—b1 + v/ (51)2 + by. (44)

In the first stage, any leader maximizes her reduced form payoff, with px (¢1;b1) =

. 2
Ziiizggiflﬁﬂ = /v (le) +b1, so the problems of the two leaders may be written:

rglai(%(l —q1) +\/ 72V (1) + b1, (45)
q1

q1
max, | —————b1.(1 — by). 46
03\ 72/ (b1)% + by 11 =by) (46)

Then, after some tedious computations, the first-order conditions associated
with problems (45)-(46) yield the SNE supplies:

(41, G2) = < 2V97+62 1, 2\/@4-621(1_172))7 (47)

48 (11)% 24 71 27
G <\/97—5 5— /97 + 2\/97+62> (18)
1,02) — 9 °
12 12

Therefore, there is a SNE with trade even if some traders have linear preferences.
At least one trader (a leader and a follower of type 2) never makes a null demand
for her "own" commodity: their indifference curves do not intersect the quantity
axis. In addition, it can be checked that if leaders had linear utility functions, while
followers had Cobb-Douglas utility functions, then there would be a SNE with
trade. But if all traders had the same linear utility function, then the SNE would
coincide with the CNE, which is autarkic (Cordella and Gabszewicz 1998).
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4.3. Existence failure of SNE
Let Tx = {1,2} and Ty = {1, 2}, with:

w;(x;,y;) = min (:rz -1, (yl)2> ,1=1,2, (49)
uj(ﬂ?j,yj) = min( V (xi)Q’yj - 1)’ J=12. (50)

The CE supplies are given by (q7,4¢3) = (0,0) and (b7,03) = (0,0) (autarky is
Pareto optimal). The CNE supplies are (41, G2) = (0,0) and (61, 132) = (0,0).

Let us now compute the SNE. In the second stage of the game, the problems of
both types of followers may be written:

2
T (Zi 122 QQ> ’ 1)
max  min <(J1 Rk b2> i —by | . (52)
¥ (q1,q2301) by + bo ’
The followers’ best responses are given by:
Go(q1;b1,b2) = —q1 + (b1 + b2), (53)
Va(q1,q2:01) = —b1 + (a1 + g2)- (54)

Let T(@Q(),\IJQ()) = 0, where q)g(ql,QQ;bl,bQ) = q1 + q2 — (bl -+ b2) and
(q1,q2;b1,b2) := b1 + ba — (g1 + ¢2). The Jacobian is given by:

1 -1
j’r(qF;bF) = |: -1 1 :| . (55)

As ’J-r(qp,bF) =0, [Y(0]"" = {@}, so X(.) is not a diffeormorphism. But, then,
the best responses do not exist. Therefore, the reduced form payoffs of leaders do not
exist. Then, there is no strategic equilibrium which is the solution to the two-stage
game. Nevertheless, there is a CNE which corresponds to the autarkic CE.

4.4. SNE without differentiability
Let Tx = {1,2} and Ty = {1, 2}, with:

uk(xkayk) = min {xkayk}a k= ivjv 7’,] = ]-v (56)
(T, Yo) = Te + Y, b =1,7, 4,5 = 2. (57)
The CE supplies are given by (¢}, q3) = (3, 3) and (b7,b3) = (3,1). The CNE

supplies are (g1, ¢2) = (0,0) and (31, 52) = (0,0).
Let us now compute the SNE. The OM are given by:

$(q1;b1,b02) = —q1 + /(b1 + b2)qu, (58)
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Vo(q1,q2;01) = —b1 + /b1 (1 + q2)- (59)

Let X (®2(.); Wa(.)) = 0, where ®3(q1,q2;b1,b2) := q1 + g2 — /(b1 + b2)q1 and
Wo(q1,qo;b1,b2) := b1 + ba — \/b1(q1 + ¢2). The Jacobian is given by:

1 VAT
2 1+b2
j‘r(qp;bm - 1 b, 1 (60)
2\ a1taq2
We get ‘jT(QF.bF) =1-1 m # 0, so there exist best responses:

V(4b1 = 3q1)q1 — @1

o2(qu;01) = 5 ; (61)
R (62)

In the first stage, any leader maximizes her reduced form payoff, with px (¢1;b1) =

b1+@,(qi;b1) A/ (4g1—3b1)b1+b1

artoz(quby) T \/(451*3Q1)Q1+Q1

, so the problems of the two leaders may be written:

4q7 — 3b1)b b
max min [ 1 —qq, (g1 Dby + 1111 ) (63)
{a1} (4b1 = 3q1)q1 + ¢

\/(4b1 — 3
max min( (45, Q1)Q1+Q1b171_b1>’ (64)

{61} (4(]1 - 3[)1)61 + b1

Then, some computations lead to the unique SNE strategy profile:
L 1
(1, G2) = 570 (65)

(by,by) = <;0> . (66)

A SNE with trade may exist even if Assumptions (2a), (2¢) and (2d) are not
satisfied for all traders: Assumption 2 constitutes a set of sufficient conditions.
But, beyond this, Example 4 provides new insights on competition in bilateral
oligopolies. The main salient feature stems from the fact that the symmetric CNE
is autarkic, whilst the SNE is non-autarkic. Indeed, this example allows trade
in the subgame between leaders whilst there is no trade in the subgame between
followers, and thereby in the entire game betweeen leaders and followers. It should
be noted that only the followers would have made trade if the specified utility
functions had been reversed, that is if ug(xk,yx) = T + Yy, k = 4,7, 1,7 = 1, and
ug(zr, yr) = min{xg,yx}, k = 4,7, i, = 2, then the SNE supplies are given by
(G1,q2) = (0, %) and (131, Bg) = (0, %) Such cases, which are specific to a sequential
strategic market game, might be called either a "partial trade equilibrium" or a
"partial autarkic equilibrium".

23



5. CONCLUSION

We considered a framework in which all traders, consumers and suppliers, be-
haved strategically. Our model provided a rich set of strategic interactions, and
thereby it offered new insights on the study of optimal behavior in oligopolistic de-
centralized markets. As a sequential game, it illustrated the possibility that trade
can only take place in one subgame. It also showed that the existence of a Nash
equilibrium for the entire game also depended on whether the followers’ best re-
sponses were consistent. Assumptions 1 and 2 were sufficient conditions to ensure
that the system of equations which determined the followers’ strategies were a C?-
diffeomorphism, and thereby to show the existence of a SNE with trade.

Further theoretical issues could be explored. First, the existence of a SNE should
be extended to the case with more than two stages, and/or to an exchange economy
with a number of commodities larger than two. Second, the endogeneization of the
order of moves should be undertaken.

6. APPENDIX

Through this Appendix, we prove some intermediary results which are useful
to show our Theorem. Appendix A is devoted to the study of the followers’ best
responses. Appendix B deals with the monotonicity properties of such mappings.
In Appendix C, we show that the existence of unique strategies. In Appendix D,
we show that the followers’ best responses are bounded. Appendix E deals with the
existence of leaders’ best responses. Appendix F shows the market price is bounded
in an e-SNE.

6.1. Appendix A: Proof of Proposition 1

Consider a follower of type X. We show the best reply ¢¢(qr, q}_'jiye; b, bl e)
exists and is a C? function. To this end, we study the properties of the payoff func-
tion 7; ¢(.). Then, we characterize the solution with the Kuhn-Tucker conditions.

Given an admissible strategy profile for all leaders and for all admissible strat-
egy profiles of other followers, the problem of follower 7 consists of maximizing
his payoff m5(g; e, d—ie; be) subject to the set of admissible strategies S;. The so-
lution, if it exists, is the follower i’s best reply given in Definition 1, namely
oi(al,q; bl bl e). Given (qf,q; ;bl,bE) € S_;, the problem for follower i
may be written:

bt (ql £na)§)L LF ){W:(Qi7€’q£7qfi,s5b£7bf) D Qie € Si}, e>0, (A1)
k3 qe ’q—i,e; e Pe €

where S; = [0, o;] is a nonempty compact convex set, and m; (.) is a continuous
function of (qf,q”; ;bl,bf;€) as m; () € C?. We show that m; c(.) is a strictly
quasi-concave function of g; .. Differentiating (6) with respect to g; . leads to:

ons Ou; —ie T Ou;
Mo Oy e Qoiete Oui (A2)
04, ox; Qie + Q—i,c + €0y
Differentiating (A2) with respect to ¢; . leads to:
0?r¢ - Qi +€0u;
L= — Hy, | — 205 —— , A3
(0gi,e)? | i P (Qc +¢€)? dy; (43)
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where |Hu Qcte Ox;0y; Qete (0y:)2

nant of the bordered Hessian matrix of the function w; (see Assumption 2c). As

P% Qé+:6 = g?;gi?, and |H7LZi| > 0 (Assumption 2c¢), and the last term is nega-
2 €

tive, then gfﬁ% < 0, so w§(.) is strictly concave (thereby strictly quasi-concave)

2
= (gi?)zz — QPE(Q_M-H D%, + (pE(Q_i’d_e) 0%u is the determi-

of g; c. But then, the solution to (A1) is unique, so ¢j(q,q”; bk, bl €) is point-
valued. Then, for each i = mx + 1,...,ny, the mapping ¢5(q”, qui,é bl bFfie)is a
function.

As the objective m; ((.) is strictly quasi-concave (condition (d) in Arrow and
Enthoven (1961) holds), and the constraint set is quasi-convex (as it is convex),
the Kuhn-Tucker conditions are sufficient to identify the solution to (Al). Define
the Lagrangian £ : S X Rf_ x Ry4 — R, with (qije,qf, qfi’e; bf, bf;)\iﬁe,ui,e; €) —
L5 (e, qu qfi,é beL’ bf;)\i,ea H e €), as:

L5(5€) o= 75(qie; a5 a7 DL DI ) + Al — i) + G, € >0, (Ad)

where A; > 0 and ;¢ = 0 are the Kuhn-Tucker multipliers. Then, for all € > 0,
and given (qF, qfi7€; bl bE)e S ., ¢i(ar, qfi7€; b, bF;€), is the unique solution
to:

B.
maxLs(.;€) = ui(0G — e, e

5 odie) T el — i) F i (A5
95() T Qe gt T el = did) +pi i (AD)

For all € > 0, by using (A2), the Kuhn-Tucker conditions may be written:
855 . ou; . in,e +e ou;

= QU e Smhe € W\ =, A6
dq; Ox; Px Gije + Q—ic + € 0y; e K, (A6)
Xie 20, (0 — qipe) =0, with A\j (a; —gie) =0, (A7)
Pie =0, gie =0, with p; .gic = 0. (A8)

Therefore, if ¢; . > 0, then p; . = 0, where b; . is the solution to:

8’&1 ¢

_axi +pX Gi,e + Q*i,e + € ayz B Ai7€7 (Ag)
which yields ¢(q”, q”; .;bZ, bE; €) > 0. In addition, if A; c > 0, then we have ¢; . =
oi(al,q; bl bl €) = ay, while if \; ¢ = 0, then we have ¢5(q”, q”; ;bL, bl ;€) €
(0, ;). Now, if p; . > 0, then ¢; . = 0, which means that ¢§(qf, q"; .;bL,bf;€) =0
and ;. = 0 since ¢; . < a;. Therefore, either we have ¢f(qX,q”; ;;bL,bl;e) > 0
when ¢; . € (0,a;] or ¢{(al,a”; ;bL,bl;e) = 0. Then, ¢i(al,q”; ;bl,bl;e) >
0. In each case there exists a unique solution to (Al): either ¢5(.) € {0,;} or

¢:() € (0,0éi), t=mx +1,...,nx.
Finally, we show that #5(.) € C2. (A6) defines implicitly ¢5(.). As 7¢(.) € C?

o ms

and e # 0, from the Implicit Function Theorem, we deduce ¢5(.) € C2.

Q_ic+e Ou;
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6.2. Appendix B: Proof of Proposition 2
Let a = (qF,q/ (ql; bl); bl, bl (gl;bl)) € S. First: Ty _(a) € (—LI), where
de
Iis the (nx — mx,nx —mx) unit matrix.
The matrix Jg- (a) has unit terms on its main diagonal. To study the partial
q

effects of a Changeein the strategy of any other follower, i.e. g_;., for —i # i,
—i=mx +1,...,nx, and b, j = my + 1,...,ny, consider the identity:

871-: € €
o0 (¢5(ar, a; . ();bE,bE()e), 0% (ak,al ();bE,BE();€);bE, BE ();€) = 0,

| (B1)
where, for each i = mx +1,...,nx, and ¢{(ql, q"; .;bL,bf;€) is the solution to
(A2). Implicit partial differentiation of (B1) with respect to q_; ., for —i # 4, leads

82x¢
995() _ _ P4, Pa—ic .
to q—sc —  oZsc > SO WE deduce:
©@a;,002

i 0%uy; ie—(Q_i,c+€) du; Q_i,et€)qie 9%u;
o¢i(.) P (G e ety +° (56+e)2 5 9. - P <Q€+f))2q @9.)7) (B2)
. - 02 i Q—i,e+5 o2 i Q—i,s+€ 2 02 i Q—i,e+68 i :
04—i,c om? — Px G amay, — Px (G ) anyr 2 0 oy

Assume, without loss of generality, that, for at least one leader ¢ or one follower

i" we have G; . < % or gy < % (otherwise §; ¢+ Gir e > QE) As ‘% <

2
Q_i cte Q_icte Qi Gi,e—(Q—i,c+€) Q_i,cte 945 ()
( op: ) ) 2G5 > g e and g TS < 27g 0e, then aqﬂ-,e‘ <1

Second: T . (a) € (=L, I). Implicit partial differentiation of (B1) with respect

to bj.e, j = my + 1,...,ny, leads to:

Qie  9%u;  Q-ietedu; (Q—i,et+€)die 8*u;

o95(.) Qe (027 (@i oy, PX T @ra? 0n)°
. 02wy Q_icte 92u; Q—_ictero 92uy Q_ictedu;
i Gz — Px 2T ooy — Px GG e ) G + 2055 3

(B3)

Then, a similar reasoning leads to the conclusion ‘%‘ <1, forallie {mx+
1,...,nx},and all j € {my +1,...,ny }.

6.3. Appendix C: Proof of Lemma 1

Consider the set of best responses specified in Definition 1. To build the system
of equations that implicitly define the followers’ strategies for the perturbed game,
define the function ®¢ : S x Ry — S;, with ®(q, qf (.);bL, bE();€) = qi () —
gbf-(qf,qfi’s(.),;bf,bf(.);e), i=mx +1,...,nx, and the function ¥§: S xR —
Sj, with U5(al,qf (.);bl,bE();€) = bjc(.) — ¥5(al,al ();bl,bE; ()e), 5 =
my + 1,..,ny. As for each i = mx + 1,...,nx, ¢5(.) € C?(.), then ®(.) € C?,
i=mx +1,..,nx. Likewise, ¥5(.) € C?, j=my+1,....,ny. For all € > 0, consider
the system of equations for I'“:

o5(ql,al ();bE,bE()ie) = 0,i=mx+1,..,nx, (C1)
US(ql,al ()bl bl ()ie) = 0,j=my +1,....ny.
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Define the (nx —mx + ny —my )-dimensional vector function Y¢: S xR, —
S, Y (al,al ();bE,bE()ie) = (P41 (56)s s Bl (56); Ul 11 (5 €5, Uiy (56)).
Then, (C1) may be written as a (nx —mx +ny —my )-dimensional vector equation:

Y (aF,qf (.);bl, bl ();e) = 0. (C2)

Since we focus on inner solutions, consider the restriction of S x R, to the
open set S x R++, with S; € S;, i € Tx, and S C Sj, j € Ty. The vector
function Y¢(q%, qf(.);bE,bf(.);€) is C? on the open set S x Ry, as each ®¢
and each V¥§ are C? functlons of (qf;bL) on the open set S x Ry,. Let a =
(gr,qf (@%;bl); bE, bF (gL; b)) be an interior point of S, where (g~;bl) corre-
sponds to a parameter configuration. Therefore, the following identity, which defines
implicitly (at least locally) the strategies qL := 0(.) and b¥ := ¢(.), holds in an
open neighborhood of a:

Te(qs O (bL’ qe ) )) =0. (03)

We now show that Y€ is a local C?-diffeomorphism, i.e. there exists a product
my

of open sets U x V in S and a product neighborhood (U xVy) in H S; x H S;,

‘(bl;qlie);bl, e

with a CU x V and (q¥;bl) C (U, xV1) such that for each (qF ,bf) in (Z/IL><VL)7
there exists (at least locally) one unique (nx — mx + ny — my) dimensional C?
vector function (o¢(q%; bZ; €); o (q: bE;€)) = [X] 7' (0) in some neighborhood of
(q%; bE) such that (qf, o (.),bEL7 @°(.)) € U x V and (C3) holds.

Implicit partial differentiation with respect to each component of (q~; bZ) yields:

€ €
j’ri , bF)( a). A 4 B = 0, for each € > 0, (C4)
where:
r 1 0P, 41 0P, 11 07, 11 ]
Odn e Obmy +1,e Obny e
Pr 2% 2%
67)( 1 (31)7)( b =
=\ dm x +1,e my +1,e ny e
al) = €X €
Yo, () Ve DV . ouLy
6‘17nx+1,e Ban,e abny,e
8\116 3‘1’6 8\1/6
ny ny ny 1
L Odmx+1,¢ Ognx . Obmy +1,e i

isan (nx —mx +ny —my,nx —mx + ny — my) matrix, while

M O0dmy+1,¢ Oqmy+1,c  OQmy+1,¢ Om oy +1,c ]
0qu,e Om y ,e 0b1, e Obmy e
aqnx,e a(InX,e aan,s 8(171)(,6
€ _ 0q1,c OGm  ,e by ¢ Obmy e
A = Obim y +1,¢ Obrmy+1,e  Obmy 41,c Obmy +1,e
9q1, e Om y ,e 0b1, e abmy,e
any € dbny € db'VLY € db‘ny €
L Oq1,e Odm x e 0by e Obmy e
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and

o,

[oL

0P,

oP;,

mxt1,e mx+1e mxt1.e mx+1le
Oq1,e Odm x e 0by,e Obmy e
B‘I’Z . 34’2 e 3@1 . B‘I’i .
X X P X
B — 9q1,c Odm x 0by . Obmy e
ovs, owe Sl v, ows
q1, e 8‘1777)( e LI abm,y,s
d\If;Y ows, dngy d\y;Y
L O0q1,e Om x e Ob1,e Obmy e

are matrices of dimension (nx — mx + ny — my,mx + my).
The square matrix jrf FuF) (a) has unit terms on the main diagonal and each
a:’;

off-diagonal term is bounded below by —1 and above by 1, as from Proposition 2,

P
we have that —I << j¢e oF) <<Tand -I<< ng f, . << L Thenvwﬂ*
8?52 € (—-1,1), Wlth—z;ézand‘ ‘:‘ nx:
):—gf;;) € (=1,1), with J#J,and‘aq ‘— 61“ ’<1 j=

my +1, .,y . The signs of the off diagonal terms depend on Whether the strategies
of followers are complements or substitutes. But, in any case, for all ¢ > 0, the rows

of the matrix JT? Fr) (@c; be) are linearly independent, so the matrix jrqu;bf) (a)

is of full rank, and then invertible. Then, for all € > 0, ’jr )’ £ 0: the differ-

ential of Y€ is a C!-diffeomorphism, and, by the local inversion theorem, Y€ is a local
C2-diffeomorphism. But, then, by the Implicit Function Theorem (Raeburn 1979,
Dontchev and Rockafellar 2014), there exist open sets U x V in S and (U xVy) in

H S x H Sj, witha CU x V and (qF; bE) C (U, x V1) such that for each (qZ; bL)
i=1 j=1

in (UL xVy), there exists (at least locally) one unique (nx — mx + ny —my) di-
mensional vector function (qf (q”;bF;e); bl (qf;bl;e€)) in some neighborhood of
(qF; bE) such that (qF, qf (q6 ;bLie); bl bF(qf;blie)) € U x V, and the identity
Ye(qF, qf (ql;bE;€); bE, b (gL;bEi€)) = 0 holds. Indeed, the unique solution

(o°(az;bée) o (alsbiie)) to (qf (qeva €);bl (afsblie) = [X71(0) is de-
fined by o€ : SE xRy, D (UL xVL) — H Si, with ' = 0¢(q%; bE;€), and by

1=mx—+1

S;, with bf' = ¢°(qF; bE;e€). For all € > 0,

(@F'pl)

@ ST x R.H_ D) (ULXVL) — H

j=my+1
each component function o¢(.) is defined as 0§ : SE x Ry D (U xVy) — S;, with
gie = o5(ql;bEe), i = mx + 1,...,nx. The same holds for w5 SEx Ry, D

(UL, xVy), with b = <,0](qe iblie) j =my +1,.
oS(ql;bEse) € C3(S,S;), for each i = mx +1,.
for each j=my +1,...,ny.

.,ny. In addition, for all € > 0,
o nx, and ©5(qF; bl e) € C3(S, S)),

6.4. Appendix D: Proof of Proposition 3

Let a = (g%, qf(gl; bF); bt bF(q6 ,beL)) in S. We show that, for each i =

mx+1,...,nx, of(.) satisfies —1 < W < 1, and, for each j = my+1, ..., ny,

©5(.) satisfies qJZ(e) > 0.
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oo

First, we show —1 < ﬁo < 1. Consider (9). From Cramer’s rule:

a)

/
e
OGmx +1,e _ _’ (af'sel")

8Q1, N ’ 3

‘ jT(qF bl (a)

where J4 . (a) is the (nx — mx + ny — my,nx — mx + ny — my) square
Fal)

matrix obtained by replacing the first column in J~- (a) by the first column

(bFial)
of B¢, so that:

; (D1)

i a‘binx+1 aq)fn,x+1 8<I>fnx+1 8<D5nx+1 T
9q1,e O y e Obmy +1,e Obny e
0P, oD, oD,
8 X “ee 1 (9})7)( “ee 8b X
! =) — q1,e my +1,e ny e
a) = € € € D2
T(q‘ bF)( ) 3‘I’my+1 6‘I’my+1 1 (’){\Ilmy_*_l ( )
a(Ile o a(InX,e o dbnx,e
8\115 6\116 B\IJ6
ny ny ny 1
991, Ogn x e Obmy +1,e i

Note (D1) is well-defined, as from Lemma 1, we have j—re # 0. Let

FrNCY

€

=0,71=mx +1,. nX,andgf =0,j=my +1,..,ny, in (D2). The
(a) have common terms: the off-diagonal terms

9®<

3f11 €

matrices J-rg . (a) and jre
F)

FF
e’e )

of the matrlx B¢ coincide Wlth the off-diagonal terms of the matrix jT; F ) (a) as
al'vl
Q= > gand B= Y b, If% < —1, then
€Ty JET,
U = —
‘ Ylar o) ()| > ‘jrqu;bb (a)‘ ‘ (D3)

Expansion by cofactors of the both sides of (D3), and cancellation among
common terms on both sides, lead to:
0%;, 11

a(h,e

T (a) : (D4)

(@F'spl)

> ‘j‘rqu:bf) (5)

stands for the principal minor of order (nx — mx + ny —

0
my — 1).(1,1) of J4- (a). From (D3), we have % > 1. A contradiction

(aF bF) 9q

995, 1y

‘ YlaFbF) . ‘ 0L, 1 .
oa < —1. Then, we have —1+——=——= < 1, so ——=*— > —1. Next, if

as 9q1,e

a
(qF bl
O +1,¢ o7, . %7,
Hmxtle 5 1 then —=X* < —1. A contradiction. Then, —2x+L < 1.
0q1,e 0q1, e Oqu,e
As the same holds for all best responses, and for every i = 1,...m x, then

L L
1< N (biarie), 0y, (b ae €)]
- a[q1,67'~~7QmX,e]

<< 1, (D5)
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where I is the (nx — mx,mx) unit matrix.

<P()

Now, we show B - >0, j=my+1,. ny,i=1,. . Assume a i)

<0
(strategies are substitutes so goods are complements) Then u(.) is not dlfferen—
tiable, which contradicts Assumption 2a. Then, the conclusion follows.

6.5. Appendix E: Proof of Proposition 4

Consider a leader of type X (the same holds for a type Y leader). We show that,
for each i = 1,...,mx, the best reply ¢5(q~ io ;bl;€) exists and is a continuous func-
tion (a similar reasoning holds for 9§ (qF ,bfj . €), for each j = 1,...,my). To this
end, we study the properties of the reduced form payoff 7¢(q; ., q i ,bf, €) =

75(qie, 4" 0, 0(qie, 9% ;DL €); D, 0% (gic, 4", ;DE; €)). Then, we characterize the
solution with the Kuhn-Tucker conditions. For all admissible strategy profiles of
other leaders, the problem for leader ¢ may be written:

max {Wle'(qz',eyqeiew;bfa';ﬁ) ‘e G‘Si}a €> Oa (El)
#s(al, blie) '

The solution, if it exists, is leader i’s best reply (see Definition 3), i.e. ¢ =
#5(q;; bE;€). The set S; = [0, a;] is nonempty, compact and convex. As u,(.) € C?
and o¢(.) € C?, and ¢°(.) € C?, we have 7§(q”; ;;blie) € C2 Then, 7§(.) is a
continuous function of (g;,q—;.; be;€). We show 7§(.) is a strictly quasi-concave
function of g; .. Differentiating (6) with respect to ¢; ., and using o¢(.) and ¢°(.)
yield:

877; o 8Uz € 8uz
3%’,5 - Ox; T Xpx 8%’ (E2)

where x = 1 — (1 + 1) g + npi, Vie = 92, 00) X 92,9i0) and

Qc+e 1,eB4e? Vi€ 9qie 7 Tie 0qi e ’
P = px(al, o (al;bl;e); bl (gl bE;e). By construction v, = v, and
nye = nX, with vX € [-1,1) and 7 > 0 (from 2a.). Indeed, as x € [0 1], then
. . . X
0< —(1+ Vf()icgd_e +nX Bq:j_e < 1, which leads to 2325 < geiz < 1+VX Then,
vX < % And, from Proposition 3, we get vX > —1 as %%fj > —1. Next, by
differentiating (E2) with respect to g; . leads to:
8271'16' - 82ui € 8’U,Z 9 82ui 8ui

G0~ @ap  XPxgmay, T Gy g B

x X\ X X,
= (HV )_f);e) (2- (1+5:_~_)51’5 )— Q217+e( - (121235“6 ). The first three terms

on the right hand side of (E3) are equal to the negative of the determinant of
the bordered Hessian matrix of w;, which is positive from (2c). For (E3) to be

a+vX)a; .

: ve. it is suffici Be o 2f 1=
strictly negative, it is sufficient that x > 0, that is, Qte ” TriX Rz ST

where Kk =

STaue
e A nX X 1_%

e 2 € €T€E
But, as x < 1, then o7c < 1+uX ssume that 30X < 13X CET ST Then,

T Qete

17(1+v )i, e
i< ﬁ A contradiction. Then, £ > 0. As ¢ )2 < 0, the solution to
€

Qe
(E1) is unique, so ¢5(ql;;b%;¢) is point-valued. Then, the mapping ¢5(q”,; b%;e)
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is a function. As 7§(.) is strictly quasi-concave, and S; is quasi-convex, the Kuhn-
Tucker conditions are sufficient to identify the solution to (E1). Let

L5(€) =75 (qies a%5.00 0 (Qises 5 €); DL, 0 (@ies 3 €)) + Nie (i — ie) + 11y o Gie, (E4)

where \i c,pt; . > 0,47 =1,...,mx. Then, qbf(qfi’e; bZ;€) is the unique solution to:

L €.
Be +2j<pj('7€)+€

maxL5(.;€) = ui(ai_qi,ea qz‘,e)-i-)\i,e(Oéi—Qi,e)-f'Mi,qu',e-

() Gie +QF, 4+ X oh(5€) e
ko ki
(E5)
For all € > 0, the Kuhn-Tucker conditions may be written:
oL Ou; Ou;
i YU e — N\je =0, E6
aqi’e 81'7, + XpX ayz s + l’(’z,e ( )
)\i,e 2 O, (Oti — bi,e) 2 0, Wlth )\Z‘7€(Oéi — bi7€) = O, (E?)
e 2 0, bie >0, with g by =0. (E8)
If ¢5(q”; ;bk;e) > 0, then p; . = 0, where b; . is the solution to:
— € =qu, . E9
al’i + XPx ayz Mue ( )

If A\je > 0, then ¢; = gb?(qfi’e;bL'e) = a;; if A =0, then qﬁf(qfi’e;bf;e) €

€
(0, ;). Now, if ; . > 0, then ¢5(q”; ;bl;€) = 0 and \; ¢ = 0 since g;,c < a;. Then,
either ¢§(b%; ;qt;€e) > 0 when b; € (0,0] or ¢5(b%; ;ql;€) = 0. Then, there is
a unique maximum g; . = ¢f(b£i76;q£; €)=>0,i=1,..,mx.

Finally, by using Berge Maximum Theorem, ¢; (qfiye; blie)eCi=1,..,mx.

6.6. Appendix F: Proof of Lemma 3

To show Lemma 3, we adapt to our sequential framework one result based on the
Uniform Monotonicity Lemma (see Lemma C, p. 8, in Dubey and Shubik, 1978).

LEMMA 6 (Uniform monotonicity). Let ¢ € {X,Y}, let ug : RL — R, 2z —
up(zx), k=1,7,1 € Tx, j € Ty, be a continuous and increasing function, and let
H be a positive constant. Then, there exists a positive real number h(ug(.),c, H) €
(0,1) such that, for all s,z € R2, if ||z&|| < H and ||sk — zk|| < h(ux(.),c, H),
then uk(si + €°) > ug(zx), where ||.|| denotes the Euclidean norm, and e° denotes
the vector in Ri whose c-th component is 1 and the other 0.

PROOF. Lemma 6 is a direct consequence of Lemma C in Dubey and Shubik
(1978) (see Appendix B, p. 19) as, for each k, uy(.) satisfies Assumptions 2a-2b.

We now show that there exist some uniform bounds on the relative price in each
perturbed subgame. First, we show there is £; > 0 such that p§ > &;. Second, we
show there is £, > 0 such that p§ < &,. Let (QEL,Qf((if,f)f),f)f,ﬁf((if,ﬁf)) be
an e-SNE, and let 55 = p (a2, @& (g%; bE); bL, bF (§L; bL)) be the corresponding
relative price.
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1. First, we show the existence of £&; > 0 such that p§ > &,. Consider one leader
j and one follower j'. Let

H = max{d,B},With a= Z a; and B = Z B (F1)

i€Tx jE€TY
h = min{h(“ja Y, H)7 h(“j’?K H)}a

1
= Emin{ﬂpﬁj’}aj?éj/'

Assume, without loss of generality, that b;. < % or bjr. < %, for at least
one leader j or one follower j' (otherwise 67-764— ij,e > 36). Consider an increase of
strategic supply at each stage.

Consider first follower j'. Suppose 3,/ fl;jge > A. Then, an increase J in follower
j"’s supply such that bj (0) = l;j/’e +6, with 4 € (0, 2 min{e, A}], has the following
incremental effect on his final holding:

Qe"’e 7 ) 7
i e(0) —xjre = =———(bjrc+9)— = bis F2
i@ —aye = et §) = Z0 (F2)

6B€+6_Bj/,6Q6+6
B.+e+d B.+e
Betrc+3Qc+e 01

> 5% = — 5 =
Bc+e+d Bo+e  2p%

and
yj’,e((s) —Yjre = (ﬁj' —qjre — ) — (ﬁj/ - Qj’,e) = -9, (F3)
where the strict inequality in (F2) results from B, 4 ¢ —bjr . > 15”2‘ +e> 5’2‘ +5+3
(as nge < % and § < %e) Let us define
t = —2p5e’, where e = (0,1). (F4)
Then, the following vector inequality holds:
e (~L ~F L L F T ~c 61 X
2j1,e(bj,e(0), PX (G, e ()i D, b5r,e(9),D25(1))) = 2r,e(bjr.e Px) + 525?(6 +1),
X
(F5)

where eX = (1,0), and where, by (F2), the inequality (F5) is strict for the first com-
ponent of z; .. We can now apply Lemma 6, with ¢ = X, zj . = z;7 (bj ., p% ) and

Sj.e = 2jr,e(bjr.c; P ) +1t. We know that zj: ¢(bjr,c, P ) € R} and Hza",e(ba",aﬁ%)H <
H.1If sj; . € R% and ||t|| < h, then, by Lemma 6, we get:

wjr (@1, e(byre D) + € +1) > wj (250, (bjr e, Fx))- (F6)
As u;s satisfies Assumptions (2b) and (2¢), and as 0 < %]51 < 1, then we deduce:
X
7 ~c 9 1 X 7 ~c
wjr (2.6 (bjre, D) + 5157(9 +1)) > ujr (20 c(bjr.e; Px))- (F7)
X
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Then, as (F5) holds strictly for its first component, from (2b), we deduce:

wj(zr,e(bjr e (8), D5 (@5, @ (); bEbjr,e(8), D7 (1)) > ujr (zjr e (bjr.e, %)), (F8)

a contradiction. Hence, either z;/ ¢ (bjs ¢, p% )+t < Oor ||t|| > h.Ifzj (bj ., D5 )+t <
0, then, y; . — 2p% < 0. As gjr . = B — by > A, we deduce:
- A
Suppose now we have ||t|| > h. Then, we deduce:
h

Py > 5. (F10)

Finally, assume that the inequality §;/ j/’

¢ = A does not hold, which means
that 3, — b]/,6 < A. Then, we have bJ/,6 >p;,-A=A

. Then by > A, so, we get:

A
P > —. F11
Px a (F11)
Therefore, it suffices to take for follower j':
i’ A A
7 = min h (F12)
22 a

Consider now leader j. Assume §; —bj. > A. Let bj () = I;j’e + 6, with

i€ bL, c €
§ € (0, 3 min{e, A}]. As p§ = il ds +Z ¢5(bfial)+

SR , then we have:
by, d—E o (bLial)+

mx
> i+ 22 05(als bl +0) + e :

i= bj.e
Te(0) = Tje = (bjc+0) — pe (F13)
Do bjet o+ ¢5(aksbl+4d) +e X
j=1
B §~E+e—(1+l/ )bj.c Q€+€+6Y bjc+0
Bi4+e+(1+vY)0 B.+e e B.+e+(1+vY)s

]~3E € )
2 +s+(1+v0)5 1 \san?
Be+e+ (1+vY)8 P ‘

Y

(
5 (1—vY
= ( ~5VE +2a772/>7
2 Dk

> 0(1—-v])

and

yj,e((s) — Yje = -4, (F14)

bjetd _ 62 <p, _ X, 050)
Bt (rer )5 with 0 <a <1, v) = and nY = by < , and

where the strict inequality results from B, + € — (1 + v )b > (1 — v VB te>
(LT=v)(Ee+ 5+ (1+0v))3) as bj.e < Be 5 < leand vY € [-1,1]. Let us define

where a =

~E

Px Y
t=-2 . F15
1—vY +2anY pS © (F15)
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Then, the following vector inequality holds:

¢ (m ~L
2,c(07.6(0), 5 (@F5 af (@;3b7.c(0), DL, )3 b «(0), bL, bl (@lib;e(9),b%; ) >
7 ~¢ 1—v 2an,
Zj,e(bj}sapx) g%( =+ t)-
: 5 _ (F16)
Let c = X, 2z ¢(bje, D) and sj c = 2 ¢(bj ¢, D% )+t. We know that z; (b ,D%) €
R3 and HZj,E(Bj75,Z~)S()H < H. Suppose that s; . € R and ||t[| < h. Then, by Lemma

6, we deduce:

(2. (bj.e, D) + ¥ +1) > uy (Zj,e(?)j,e,ﬁ})) (F17)

From Assumptions (2b) and (2c) and as 0 < 6(% 52 vl anY) < 1, we deduce:
X

T € 5171/2/+2a773ﬁ6
uj(2.c(bje, D5) + 5 X

e R ) > g B (P19

But then, by Assumptions (2b) and (2c), we deduce:

uJ(Z] C(b 6(6) pX(qe 3 e (qf;bj’€(6)7l;£j 6) bj 6(6) Bej,e’b (qe 7b] 6(6) B£J€)))) >
“j(zaye(ba,f’px)),

_ ~(F19)
a contradiction. Hence, either z; (b ¢, p§ )+t < O or ||t|| > h. Thus, if z; (b, , pS )+
t <0, then, ;. — ,/Yi# < 0. Then, we have:
A 1-vY
0% > 5 | ——7 F20
Px =5 <1 —anY A> (F20)
as e = B; — bj.e = A, where 511(”7YA>0 Reason: glla;YA/ A1 -vi) >o.

The strict inequahty holds as 5 > 0 and v < 1, while the weak inequality results
from any A >0 smce 0<a<l1l, A>0, and nY > 0 (remind, from (2a), that u; is
differentiable so Y cannot be negative, and x € [—1,1] in (E2)). Next, if |¢t| > h,
then:

h( 1-vY
Py > = | ————— F21
x> 5 (T ) (F21)
Y
where %11;:;h > 0. Reason: glla:Yh > 4(1—vY) > 0. The strict inequality

holds as 2 € (0, 3) and v¥ < 1, while the weak inequality results from anY h >
since 0 < a < 1 h € (0,1), and 776 > 0. Finally, assume that 8; —bj . > A does not
hold, i.e. 8; —bj. < A. Then, b;. > 3; — A > A. Then, Ej,e > A, so we deduce:

. _A
Px > = (F22)

Therefore, it suffices to take for leader j:

. A 171/Y h 171/Y A
Jo_ i d 2 o =
d-mnly (i) 1 (tagn) 2
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Then, by taking &, = min (¢, f{/), where &; > 0, we conclude that:

Px > &1 (F24)

2. Second, we show there is & > 0 such that p§ < &,. Consider one leader ¢
and one follower 4'. Let

h = min{h(u;,Y, H), h(uj,Y, H)}; (F25)

p 1
A = §min{ai,ai/},i7€i’.

l

Assume §; ¢ < % or gy, < 5. Consider follower 7. Assume oy — Gy« > A. Let

qir,e(8) = Gy +6, with § € (0, 3 min{e, A}]. Then, his final holding may be written:

Tire(0) — xyr e = =03 (F26)
and
5,
yi’,e((s) — Yil e > §an (F27)
as Qc+e— Gire > % +ez %4—54—% (as § < €). Let us define

2

t=——e*. (F28)
Px

Then, we have the vector inequality:

~ ~ T ~ ~€ 4 ~€
zi/,e(qi’,e(é)ap} (qfa Qi’,E(J)a qfi’,e('); b 3 bf())) > Zi’,é(Qi',eapX) + ipX(t + eY)'

(F29)
Suppose that r; . € R2 and [|¢|| < h. Then, by Lemma 6, with ¢ =Y, we get:

i (2ir, (v, D)+t 4 €7) > wir (210, c(@i o, Px)). (F30)
As Assumptions (2b) and (2c) hold for uy, and as 0 < $5¢ < 1, then:

~ ~€ g ~€ ~ ~€
Uir (Zir e (Gir e, D) + §px(t + ey)) > i (2ir e (Gir e, D)) (F31)

But then, by Assumptions (2b) and (2c), we have that:

Uy (Zi’,e(Qi/,e(§)7p§( (Q’L”,E(J)a 61—71',6; be))) > Uy (Zi’,E(‘ji’,eyﬁE())v (F32)
a contradiction. Then, either z;/ ¢ (Gir ¢, p5 )+t < 0or ||t]] > h. Thus, if z;7 ¢ (Gir ¢, D )+
t <0, then, Fjc — —=2—=— < 0. As Tjr.c = i — Gir.c > A, we deduce:
’ P% (Qe;b,) ’ ’
i < 2. (F33)
A

Suppose now we have ||t|| > h. Then, we deduce:

2
P< 2 (F34)
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Finally, assume o; —gir « < A. Then, g e > o —A > 121, SO G e > A. We deduce:

Py < (F35)

SHRSY

Therefore, it is sufficient to take:

} . (F36)

Consider now leader ¢. Assume that a; — G; . > A. Let Gi,e(0) = Gie + 9, with
6 € (0, 3 min{e, A}]. Such an increase has the following effect on her final holding:

D>>‘\Q|

i’ 2
52 = max {Aa

)

SN

.Ti75(6) — T e — —(5, (F37)

)

and

5J5+Z o5 (bliql +6) + €
Yie(0) = Yie = (@i,e +0) = P Gi,e (F38)
26176+6+210-f( 7qe +5)

?MS

Q6+€_(1+V )QzEB +e€ 77X (ji,e+5
Qe+ (1+vX)0+e Qc+e Qi+ (1+vX)5+e
9t (14v5)2 5

> 01 —vX)-2 x + ddnX
( )Q€+(1+1/§)5+
]
= 2((1_V )px+2d775 )7
Whered:#ﬁ:)(He with 0 < d < 1, Vf*%?{;bf;e)andnf

W for § sufficiently small, and where the strict inequality results from

Qc+e— (1+ v )qu > (1—v )(Q + 5+ 1+ )7) as gie < ~2 always holds,
and as § < €, with vX € [-1 1) Let us deﬁne

1
t=—-2 X, F
(1~ %) + 2dnX (£39)

Then, the following vector inequality holds:

- ;=L = - ~ L
21.c(01.e(0): P (#.6(9), 1, A (41, (6), Ge 3 b ) DO DY (46(0), @15 bC))) 2
2i,e(Gie, D) + 5((1 = v2)P + 2dn ) (t + V).
(F40)
Suppose that s; . € R2 and [|¢|| < h. Then, by Lemma 6, we deduce:

wi(Zi,e(Gi,e, D) + 1+ ey) > ui(Zi,e(Gire, D)) (F41)

From (2b) and (2c) and as 0 < 6(*= +dnX) < 1, we deduce:

- g - _—_
wi(2i,e(Gie, D)) + 5 (1= vE)P + 2d075)(t + 7)) > ui(2i.e(Gie, D)) (F42)
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But then, by Assumptions (2b) and (2c), we have that:

N - ~L = - ~L
wi(i,e(8), P5 (41,e(8), &%, ; af (¢:,c(6), @2, ; b, ); BE, B (g5.(9), @5, . B.)))) >
ui(z’i,E(Qi,eap_EX))a

(F43)
a contradiction. Then, either z; ((G; e, p% )+t < 0 or ||t|| > h. Thus, if z; (G ., P% )+

t < 07 then, :'Z.i,e - 2W < 0. As ‘/'z.i,e = Q; — Qi,e > A, we get:

€

2 (1- an/Al
P < = | —— |, F44
Px A < 1— l/g{ > ( )
where %IIEZ{;A > 0. Reason: %lzigfl > %1_di§ >0asde (0,1] and vX < 1.
The weak inequality leads to d? + dnffl —1<0,s0d< f"fTA + 7V(7'5(;‘)Q+4, with

X A / A ~
0 < d < 1. Then we must have —"€2A + W < 1, which holds as 775(14 > 0.
Next, if ||t|| > h, then:

2 (1—dnXh
P < = | ———— F45
Px 7 < 1— Z/g( ) ’ ( )
X7 X7
where %% > 0. Reason: %lzfth > %1_dzx > 0. The weak inequality leads

to d? + dyXh — 1 < 0, which yields d < —2e + YOI igh g5 0. As d < 1,

X7 / 7 ~
we must have —7"7’1 + W < 1, which is satisfied as ng(h > 0.
Finally, assume that the inequality a; —g; c = A does not hold, i.e., ;=G ,c < A.
Then, we have ¢; . > o; — A > A. Then, we have §; . > A, so we deduce:

=Y

5 < = (F46)

S

Therefore, it suffices to take for leader i:

, 2 (1—dnXA\ 2 (1—dpXh\ B
i = S s S 2Ee ) B F4
3 maX{A< s >7h< —ux )7 (F47)

Then, by taking &, = max(&5, fg), we conclude that:
Px <&y (F48)
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