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This paper deals with the existence of a non-cooperative sequential equilibrium in
interrelated markets with heterogeneous atomic traders. Since this model features a rich
set of strategic interactions, there are two kinds of problems associated with the existence
of equilibrium. First, existence and uniqueness of followers�strategies are not guaranteed.
Second, the no-trade equilibrium is always an equilibrium outcome. To overcome these
two di¢ culties we consider a di¤erentiable approach. We show that the set of equations
which determines the strategies of followers is a variety with the required dimension, i.e.
the vector mapping which de�nes this set is a local C2-di¤eomorphism. The continuous
di¤erentiability of followers�strategies is critical for the existence of an interior equilibrium.
Unlike the simultaneous move games, exchange can take place in one subgame while
autarky can hold in another subgame, in which case only leaders (followers) make trade.
Some examples buttress the approach and discuss the assumptions made on the primitives.

Key Words: Pure strategies, di¤eomorphisms, Stackelberg-Nash equilibrium
Subject Classi�cation: C72, D51

1. INTRODUCTION

The coordination of private activities in decentralized markets is a core issue.
This issue found a de�nitive solution in general competitive equilibrium models
(Arrow and Debreu 1954), and in strategic market game models with Cournot
competition (Dubey 1994). But the existence of equilibrium remains an open prob-
lem when strategic competition in interrelated markets is hierarchical, i.e. when
the competition is of the Stackelberg type. The starting point of this paper is to
consider hierarchical competition between strategic buyers and sellers. Therefore,
we propose to build a Stackelberg game in which decentralized exchange embodies
only strategic traders. Our main objective is to prove the existence of a Stackelberg-
Nash equilibrium with trade within the research program for strategic market games
founded by Shubik (1973), and Shapley and Shubik (1977).

1.1. Motivations

The motivations are twofold. First, this contribution studies hierarchical opti-
mization problems into a general equilibrium setting. These problems have been
studied in multiple leader-follower games in which individuals who belong to one
industry decide in a sequential way (Sherali 1984). Here we consider a two-sector

1EconomiX, UPL, Université Paris Nanterre, CNRS, 200 avenue de la République, 92000 Nan-
terre, France. Tel. +33(1)40977543. E-mail: ludovic.julien@parisnanterre.fr .
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multiple leader-follower game in the framework of an exchange economy.2 There
are two types of commodities. The agents are categorized according to which of
the two types of commodities they trade. Traders of type X (resp. Y ) have an
initial endowment of commodity X (resp. Y ) that they wish to trade for amounts
of commodity Y (resp. X).3 Within each type, traders may be either leaders or
followers. Leaders decide in the �rst stage, anticipating the followers� reactions,
and followers decide in the second stage. There is a market-clearing relative price
which aggregates the supplies of all traders over both stages and allocates the
amounts traded to each trader. Each trader maximizes an utility function which
depends on the remaining quantity of her own commodity and the quantity of the
other commodity that she obtains after trade. Therefore, there are two multiple
leader-follower industries which are connected through trade. Possible applications
should include product di¤erentiation in two-sided markets (water markets, mobile
telephony markets), communication networks, spatial economics with locational
interdependencies, and international trade with resource specialization.

Why is it important to study the multiple leader-follower game in the context
of interrelated markets? In our setting all agents behave strategically: the demand
side as well as the supply side re�ect strategic behavior. Here the traders make
rational decisions as buyers and sellers. Indeed, the preferences of traders provide
some micro-foundations for the market demand, and then for the price function.
By contrast, in the multiple leader-follower games market demand is given insofar
as it is assumed that buyers behave competitively as price takers. In addition, the
supply is also the result of a decision: as suppliers the agents bring to the market the
di¤erence between the amount they hold and the amount they decide to consume.
The price function is endogenous: there is a market price mechanism that makes
strategic supplies mutually compatible. Indeed, the supply by the traders of type
X (resp. type Y ) matches the supply by the traders of type Y (resp. X).

Second, the main objective is to study the existence of a noncooperative equilib-
rium with trade in a two-sector model with a �nite number of leaders and followers.
To this end, our model extends the Cournot-Nash bilateral oligopoly model intro-
duced by Gabszewicz and Michel (1997), and explored by Bloch and Ferrer (2001),
Dickson and Hartley (2008), and Amir and Bloch (2009) among others.4 In this
model, there is a �nite number of strategic buyers and sellers. Each trader has cor-
ner endowment but wants to consume both commodities. There is a market price
which aggregates the strategic supplies of all traders and allocates the amounts
traded to each market participant. The Cournot-Nash equilibrium (CNE) is the
equilibrium concept. This leads us to de�ne, within this framework, another strate-
gic equilibrium concept, namely the Stackelberg-Nash equilibrium (SNE), as the
equilibrium outcome of this extended multiple leader-follower game (Section 3).
The SNE may be viewed as the solution concept of a generalized Stackelberg game:
two Cournot subgames are embedded in a two-stage sequential game. Therefore,
the existence of a non-cooperative equilibrium is quite challenging.

2The modeling of production activities in interrelated imperfectly competitive markets raise
some di¢ culties (Gabszewicz and Vial 1972, Dierker and Grodal 1999). It turns out that the
exchange model is a natural starting point to consider new issues in interrelated markets.

3 If Y is viewed as commodity money, i.e. a numeraire, then quantities of Y (resp. X) are bids
(resp. o¤ers) and the corresponding agents are buyers (resp. sellers).

4The bilateral oligopoly model is a two-good version of the strategic market games introduced
by Shubik (1973), Shapley and Shubik (1977). See Giraud (2003), and Dickson and Tonin (2021)
for surveys.
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This paper provides new insights on the study of existence of Stackelberg-Nash
equilibria. First, it gives non-cooperative foundations for bilateral exchange. Indeed,
the fact that individual demand behavior is strategic is of signi�cant importance for
trade. It turns out that the preferences of leaders and followers may lead them to
choose not to trade, and the outcome of the game may be the no trade equilibrium.
This leads us to consider the possibility of autarkic equilibria in the multiple leader-
follower game. Second, Stackelberg competition also provides new insights on the
study of optimal behavior in bilateral oligopolies. To be speci�c, by introducing
sequential heterogeneous behavior, the characterization of the strategic equilibrium,
i.e. the study of the optimal behavior in each subgame, brings into light some
hierarchical strategic interaction for which leaders anticipate the reactions of each
follower. Indeed, the followers�strategies tremendously matter for the exploration
of the mechanisms at work in the hierarchical interactions of sequential games
involving several heterogeneous agents who behave strategically.

1.2. Our contribution

The main contribution of the paper is a theorem which proves the existence of a
non-cooperative sequential equilibrium with trade in a strategic market game with
a �nite set of atoms. To prove the existence of a SNE with trade, we consider a
slight perturbation of the two-stage bilateral oligopoly model. Then, we show that
the resulting equilibria in the perturbed game exist, and then that equilibria to
the original game exist. The proof of our theorem requires �ve steps to which �ve
lemmas correspond. To the best of our knowledge, no general existence result has
been yet obtained about Stackelberg-Nash equilibria in interrelated markets.5

There are two main problems involved with the existence of a SNE with trade.
The �rst problem, which is linked to the structure of the game, concerns the follow-
ers�strategies (Julien 2017). In the basic one leader-one follower game, under mild
technical assumptions, the follower�s strategy coincides with his best response: it
is determined, given any strategy pro�le of the leader, as the solution to the maxi-
mization of the follower�s payo¤. But with at least two followers, any follower�s best
reply consists of a mapping which depends on two kinds of arguments: the strate-
gies of leaders and the strategies of all other followers. To determine the followers�
strategies, the best responses must be mutually consistent. In case they are not,
which is a possible outcome in decentralized systems without central coordination,
then neither the strategies nor the price function that maps leaders�strategies into
a price could exist. An example in Section 5 illustrates this possibility.
It is worth noting that our notion of consistency di¤ers from the notion of

price consistency in Lei¤er and Munson (2010) that results in a square nonlinear
complementarity problem. In their approach, the leaders�problems constraints can
violate the Mangasarian-Fromovitz quali�cation constraint as there can be an in�-
nite numbers of multipliers, so they assume that the vector of unique shadow prices
is set by an independent entity (leaders�strategy sets are independent of followers�
decisions). In our approach, the consistency is based on the mutual compatibil-
ity between the followers� best responses, which makes it possible to de�ne the
followers�strategies. Our notion of consistency also di¤ers from that of Kurkarni
and Shanbhag (2014) who use a shared-constraint approach which does not require
uniqueness of best responses. Here the best responses are not multi-valued.

5Some Stackelberg equilibrium concepts for the multiple leader-follower game are de�ned and
computed in �nite exchange economies (Julien 2013).
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To circumvent the �rst problem, we develop a new approach based on di¤er-
entiability. The characterization of the strategic equilibrium, i.e. the optimal be-
havior in each subgame, brings to light a consistency condition. This condition is
speci�c to sequential multiple decision settings, and relates to the internal consis-
tency of the system of equations which determines the followers�strategies. Indeed,
by using the collection of followers�best replies, we de�ne a vector function from
which we set up a system of equations that de�nes implicitly the strategies. Then,
we provide a nondegeneracy condition on the determinant of the Jacobian matrix
associated with this system of equations. This consistency condition is su¢ cient
(Lemma 1) for the existence and uniqueness of continuously di¤erentiable strate-
gies. Our approach is based on local C2-di¤eomorphisms, i.e. on twice continuously
di¤erentiable invertible mappings in the neighborhood of a point. To this end, we
resort to one version of the Implicit Function Theorem for di¤erentiable mappings
in Banach space (Raeburn 1979; Dontchev and Rockafellar 2014). If the Jacobian
of the vector function is an invertible mapping, to be speci�c a C1-di¤eomorphism,
then there exists a unique �xed point which consists of twice continuously di¤eren-
tiable strategies. Then, the price vector function that maps leaders�strategies into
a price vector as well as the reduced form payo¤s of leaders exist.

The second problem is related to the possibility of autarky in decentralized mar-
kets. It is well known that the trivial equilibrium is always a Nash equilibrium in
strategic market games with simultaneous moves (Cordella and Gabszewicz 1998;
Busetto and Codognato 2006). Thus, we wonder whether autarky is a plausible
outcome in the multiple leader-follower game with heterogeneous traders. Even if
there exists a SNE in the perturbed game (Lemma 2), it seems plausible to conjec-
ture that the no trade equilibrium is a possible outcome for the entire sequential
game, in which case neither leaders nor followers participate in exchange. In this
respect, our contribution provides new insights on the study of optimal behavior
in bilateral oligopolies. Indeed, exchange can take place in one subgame with au-
tarky in the other subgame, in which case only the leaders or only the followers
make trade. An example in Section 4 provides an illustration. This salient feature
is precluded in bilateral oligopoly with simultaneous moves.

To circumvent the second problem, we consider a slight perturbation of the
game, and we adapt to our setting the Uniform Monotonicity Lemma of Dubey
and Shubik (1978). It is worth noting that, unlike the existence of uniform bounds
on relative price in simultaneous move games, the existence of such uniform bounds
is more di¢ culty to handle with as it must hold in each perturbed subgame of the
sequential game. Indeed, we have to show that the market price is bounded in each
stage of the perturbed game (Lemma 3). More speci�cally, we take into account
that, in the perturbed subgame between leaders, the rational beliefs of leaders
about the followers�reactions matter. Then, we can show that the existence of a
SNE with trade in the perturbed game (Lemma 4), and �nally that the SNE is an
equilibrium point of the game (Lemma 5), i.e. a non trivial subgame perfect Nash
equilibrium which is robust to slight perturbation of the game.

It turns out that both problems, namely the existence of strategies and the
possibility of autarky are closely related. Indeed, the existence of a SNE with trade
for the entire game depends on the mutual consistency of the best replies in the
subgame between followers. Under this consistent condition, the reduced form
payo¤s of leaders exist, and the existence of pure strategy subgame perfect Nash
equilibria (with trade) in the �nite extensive form game can be studied.
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1.3. Related literature

From a methodological viewpoint, our model crosses two types of literature
on noncooperative equilibria: the multiple leader-follower games and the bilateral
oligopoly models.

Existence has been explored in the multiple leader-follower model. Sherali (1984)
shows existence and uniqueness with identical convex costs for leaders, and states
some results relating to the properties of the aggregate best response under the
assumptions of linear demand with either linear or quadratic costs (Ehrenmann,
2004). The determination of the convex best response stems from a family of
optimization programs for the followers based on a price function which is a¤ected
by the supply of the leaders. Neverthess, the conditions under which the followers�
decisions are mutually consistent are not studied. De Miguel and Xu (2009) include
uncertainty with stochastic market demand. Unlike Sherali (1984) they allow costs
to di¤er across leaders. But, to show that the expected pro�t of any leader is
concave, they assume that the aggregate best response of the followers is convex. As
this assumption does not always hold, these authors must resort to a linear demand.
Su (2007) studies existence of an equilibrium in the two-period forward market
model where each player solves a nonconvex program with equilibrium constraints
under the assumptions of linear demand and constant marginal costs.
Fukushima and Pang (2005), Yu and Wang (2008), Hu and Fukushima (2011),

and Jia et al. (2015) prove the existence of an equilibrium point with two lead-
ers and several followers without specifying demand and costs. Aussel and Dutta
(2008) prove existence of a Nash equilibrium by using the quasivariational inequal-
ity approach, but without considering market demand. Kurkarni and Shanbhag
(2015) show that when the leaders�objectives admit a quasi-potential function, the
global and local minimizers of the leaders�optimization problems are global and lo-
cal equilibria of the game. The novelty of our approach with respect to the multiple
leader-follower game is twofold. First, by considering all agents behave strategically,
we study the conditions under which followers�strategies exist. Second, we consider
a framework in which demand behavior is micro-founded.

To this end, we turn to the class of non-cooperative bilateral oligopoly models
with a �nite number of traders introduced by Gabszewicz and Michel (1997). Such
models have been widely studied under the assumption of Cournot competition.
Bloch and Ghosal (1997) study existence and uniqueness of Cournot-Nash equilib-
ria with trade under the assumption that traders have the same utility function.
Bloch and Ferrer (2001) show the existence of Cournot-Nash equilibria with trade
by allowing heterogeneity in preferences represented by strictly convave utility func-
tions. By using an aggregate game approach for which the payo¤ of each trader
depends on the strategies of all other traders only through aggregate o¤ers and bids
(the same for all traders), Dickson and Hartley (2008) de�ne strategic versions of
Marshallian supply and demand curves, and they prove the existence and unique-
ness of Cournot-Nash equilibria with trade assuming only that the preferences of
traders are normal in both goods and satisfy a weak version of gross substitutes.
Amir and Bloch (2009) focus on comparative statics, and only impose symmetry on
each side of the market, allowing buyers to have di¤erent preferences from sellers.
They show that gross substitutes imply uniqueness of equilibrium. More recently,
Busetto et al. (2020) show the existence of a Cournot-Nash equilibrium for the
mixed bilateral oligopoly version of the Shapley window model, i.e. with atoms
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and an atomless part. They notably impose that there is a coalition of traders
in the atomless part with di¤erentiable and additively separable utility functions
which have in�nite partial derivatives along the boundary of the consumption set.
To the best of our knowledge, no general existence proof of a Stackelberg equi-

librium has been yet obtained in bilateral oligopoly with a �nite number of traders.
Indeed, our model di¤ers from the previous ones insofar as the existence of a se-
quential equilibrium requires us to specify the optimal strategic behavior of het-
erogeneous traders at each stage of the game. Groh (1999) studies an example of
bilateral oligopoly with leaders as sellers and followers as buyers. The existence of
a sequential equilibrium with trade relies on three restrictions: the utility function
is quadratic; each side of the market embodies only leaders or followers (a leader is
only a seller and a follower only a buyer); and, traders are identical within each side
of the bilateral market. Our contribution goes beyond these three shortcomings:
we consider a general class of smooth utility functions, and heterogeneous leaders
and followers compete within each side and between both sides of the market.

1.4. Content

The paper is organized as follows. In section 2, we describe the model, and we
de�ne the Stackelberg-Nash equilibrium. Section 3 is devoted to the existence of
a Stackelberg-Nash equilibrium with trade. Section 4 provides some examples to
discuss the assumptions, buttress the working of our approach, and put forward
the main di¤erences with the corresponding Cournot-Nash games. In section 5 we
conclude. An appendix collects some proofs.

1.5. Notations

Consider the following notational convention. Vectors are in bold and capital
letters denote either sets or summations. Let z 2 Rn+. Then, z � 0 means zi > 0,
i = 1; :::; n; z > 0 means there is some i such that zi > 0, with z 6= 0, and z >> 0
means zi > 0 for all i, i = 1; :::; n. Let zi > 0 be an action. An action pro�le is given
by z = (z1; :::; zi; :::; zn), with z � 0. In addition, let z�i

M
= (z1; :::; zi�1; zi+1; :::; zn).

We sometimes set Z �
nP
i=1

zi, with Z�i
M
=

P
�i;�i 6=i

z�i = Z � zi. The Cartesian

product of sets Ai is denoted by
Q
i2I

Ai, where I = f1; :::; ng is the index set; and

A�i
M
=

Q
k2I;k 6=i

Ak is the Cartesian product of all sets but i. Let �jfj(:) be the

Cartesian product of a set of functions fj(:), where fj : A � Rn ! B � R, z 7!
fj(z), j = 1; :::;m. The notation f 2 Cs is used to say that f is continuously (resp.
twice continuously) di¤erentiable when s = 1 (resp. s = 2). F is a m dimensional
vector function when F : A � Rn ! B � Rm, F(z) = (f1(z); :::; fj(z); :::; fm(z)).
The notation z(e), where e 2 Rk, means that each zi is a function of e, i = 1; :::; n.
The Jacobian matrix of F(z) with respect to z at �z is JFz(�z) =

h
@(f1;:::;fj ;:::;fm)
@(z1;:::;;zi;:::;zn)

(�z)
i
.

Let jJFz(�z)j be the determinant of JF at �z. The Hessian matrix of f(z) at �z is

Hfz(�z) =
�

@2f
@zi@zj jz=�z

�
, i; j = 1; :::; n. The bordered Hessian of f(z) at �z is �Hfz(�z).

Its determinant is
�� �Hfz(�z)��. Finally, if we partition z such as z = (x;y), then JFx(�z)

is the Jacobian matrix of F(z) at �z when the di¤erentiation is partial and made
with respect to x only.
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2. THE MODEL

Consider an exchange economy, E , with two divisible homogeneous commodi-
ties labeled X and Y . Let pX and pY be their unit prices. We assume that com-
modity Y is the numéraire, i.e. pY = 1. Traders are of two types, namely X
and Y , with nX traders of type X and nY traders of type Y . We assume there
are mX leaders of type X, with mX > 1, and nX � mX , followers of type X,
with nX � mX > 1, where TX := f1; :::;mX ;mX + 1; :::; nXg. Likewise, we have
TY := f1; :::;mY ;mY + 1; :::; nY g, with mY > 1 and nY �mY > 1. Traders who
belong to the set TX (resp. TY ) are indexed by i (resp. by j).

2.1. Assumptions on endowments and preferences

We now provide two kinds of assumptions regarding the fundamentals for E ,
namely resources endowments and preferences. First, there are �xed initial endow-
ments which satisfy the following assumption.

ASSUMPTION 1. For each i 2 TX , wi = (�i; 0), with �i > 0; and, for each
j 2 TY , wj = (0; �j), with �j > 0.

Assumption 1 is standard in the �nite bilateral oligopoly game. Indeed, as
emphasized by Cordella and Gabszewicz (1998), it does not require the initial en-
dowments to be strictly in the interior of the commodity space (Amir et al. 1990),
or the traders sell their entire endowments (Shubik 1973; Shapley 1976). Such dis-
tribution of endowments could echo specialization in production�s technology.

Second, the preferences of each trader k are described by an utility function
uk : R2+ ! R, zk 7! uk(zk), with zk = (xk; yk), and where xk and yk are the
amounts of goods X and Y consumed by trader k, k = i; j. We make the following
set of assumptions, which we designate as Assumption 2.

ASSUMPTION 2. For all zk 2 R2+, the utility function uk(zk) satis�es:
2a. 8k, uk(zk) 2 C2(R2++;R);
2b. 8k, @uk(zk)@xk

> 0 and @uk(zk)
@yk

> 0;

2c. 8k,
�����
"
0 @uk

@xk
@uk
@yk

@2uk
(@xk)2

#����� < 0, and
�������
264 0 @uk

@xk
@uk
@yk

@uk
@xk

@2uk
(@xk)2

@2uk
@xk@yk

@uk
@yk

@2uk
@yk@xk

@2uk
(@yk)2

375
������� > 0.

2d. limxk!0
@uk(zk)
@xk

= 1 and limyk!0
@uk(zk)
@yk

= 1 for at least one leader and
one follower of each type.

Hypothesis 2a says the utility functions are twice continuously di¤erentiable in
the interior of the commodity space. And it includes the case of in�nite partial deriv-
atives along the boundary of the consumption set. 2b says the utility functions are
strictly monotonic, and 2c that they are strictly quasi-concave. From 2d, the indif-
ference curves of (at least) one trader of each type may be asymptotic to the bound-
ary of the consumption set (for instance when u(x; y) = lnx + ln y) or may have
in�nite/null slope near the quantity axis (for instance when u(x; y) =

p
x +

p
y).

These assumptions are discussed in Section 4.
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2.2. The associated game

We introduce the non-cooperative strategic market game � associated with E .
The two-stage game � embodies two simultaneous move subgames, namely �L and
�F . The mX + mY leaders (resp. (nX � mX + nY � mY ) followers) compete in
the leader-level game �L (resp. follower-level game �F ). We assume the timing of
positions is given. No trader makes a choice in two subgames. In addition, traders
meet once and cannot make binding agreements. By precluding such agreements,
we consider each trader acts independently and without communication with any
of the others. Information is assumed to be complete. Moreover, information is
imperfect in each subgame, i.e. in the leader-level (resp. follower-level) game.
The traders can o¤er only a fraction of the commodity they initially hold. Thus,

by contracting her o¤er, each trader manipulates the relative price. Let Si be the
strategy set of leader i 2 TX and Sj be the strategy set of leader j 2 TY , with:

Si := fqi 2 R+ : qi 6 �ig, i = 1; :::;mX , (1)

Sj := fbj 2 R+ : bj 6 �jg, j = 1; :::;mY . (2)

The quantity qi in (1) is the pure strategy of trader i 2 TX : it represents
the amount of commodity X leader i o¤ers in exchange for commodity Y . Like-
wise, bj is the pure strategy of leader j 2 TY . Let SL :=

QmX

i=1 Si �
QmY

j=1 Sj and
let (qL;bL) 2 SL denote the strategy pro�le for the leaders, that is (qL;bL) =
(q1; :::; qmX

; b1; :::; bmY
). Given (qL;bL) 2 SL, the followers�strategy sets are given

by:

Si := fqi(qL;bL) : SL ! [0; �i]g, i = mX + 1; :::; nX , (3)

Sj := fbj(qL;bL) : SL ! [0; �j ]g, j = mY + 1; :::; nY . (4)

Let SF :=
QnX
i=mX+1

Si�
QnY
j=mY +1

Sj , and let (qF (qL;bL);bF (qL;bL)) 2 SF
denote the strategy pro�le for the followers, that is (qF (qL;bL);bF (qL;bL)) =
(qmX+1(q

L;bL); :::; qnX (q
L;bL); bmY +1(q

L;bL); :::; bnY (q
L;bL)).

A strategy pro�le for the traders is a vector (qL;qF (qL;bL);bL;bF (qL;bL)) 2
S, where S :=

Q
i2TX Si �

Q
j2TY Sj . To lighten notations, in what follows, let

(qL;qF (:);bL;bF (:)) for (qL;qF (qL;bL);bL;bF (qL;bL)).
For each (qL;qF (:);bL;bF (:)) 2 S, the price vector (pX(qL;qF (:);bL;bF (:)); 1)

is determined according to the following price mechanism which aggregates the
strategic supplies of all traders:

pX(q
L;qF (:);bL;bF (:)) = f

B
Q , if B > 0 and Q > 0,

0, otherwise,
(5)

whereQ �
PmX

i=1 qi+
PnX
i=mX+1

qi(q
L;bL) and B �

PmY

j=1 bj+
PnY
j=mY +1

bj(q
L;bL).

With a slight abuse of notations, in what follows, let pX
M
= pX(q

L;qF (:);bL;bF (:)).

The �nal allocation received by each trader for the good for which s/he has an
allocation is the amount s/he has kept after trade, and the �nal allocation received
of the other good is proportional to the quantity s/he sells. Leader i 2 TX obtains in
exchange for qi a share

qi
Q of the aggregate supply B, i.e. a quantity of commodity Y
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equal to pXqi, and ends up with the bundle of commodities (xi(qi; pX); yi(qi; pX)) =
(1 � qi ; pXqi). Her corresponding utility level is ui(1 � qi; pXqi). Likewise, fol-
lower i 2 TX , by supplying qi(qL;bL), ends up with the bundle of commodi-
ties (xi(qi(qL;bL); pX); yi(qi(qL;bL); pX)) = (1 � qi(q

L;bL) ; pXqi(q
L;bL)), and

reaches the utility level ui(1� qi(qL;bL); pXqi(qL;bL)). Leader j 2 TY obtains in
exchange for bj a share

bj
B of the aggregate supply Q, i.e. a quantity of commodity

X equal to 1
pX
bj , and ends up with the bundle (xj(bj ; pX); yj(bj ; pX)) = ( 1pX bj ; 1�

bj), with utility level uj( 1pX bj ; 1 � bj). Likewise, follower j 2 TY , by supply-
ing bj(qL;bL), ends up with the bundle (xj(bj(qL;bL); pX); yj(bj(qL;bL); pX)) =
( 1pX bj(q

L;bL); 1 � bj(q
L;bL)), and reaches the utility level uj( 1pX bj(q

L;bL); 1 �
bj(q

L;bL)). Therefore, the �nal allocations assign the following bundles for leaders:

zi(qi; pX) = f
(�i � qi; pXqi), if pX > 0

(�i; 0), if pX = 0
, i = 1; :::;mX , (6)

zj(bj ; pX) = f
( 1pX bj ; �j � bj), if pX > 0

(0; �j), if pX = 0.
, j = 1; :::;mY , (7)

and the following bundles for followers i 2 fmX+1; :::; nXg and j 2 fmY+1; :::; nY g:

zi(qi(q
L;bL); pX) = f

(�i � qi(qL;bL); pXqi(qL;bL)), if pX > 0
(�i; 0), if pX = 0

, (8)

zj(bj(q
L;bL); pX) = f

( 1pX bj(q
L;bL); �j � bj(qL;bL)), if pX > 0

(0; �j), if pX = 0.
. (9)

Finally, let us de�ne the payo¤s of traders. De�ne the function �i : S ! R,
(qi;q

L
�i;q

F (qL;bL);bL;bF (qL;bL)) 7! �i(qi;q
L
�i;q

F (qL;bL);bL;bF (qL;bL)), for
each i = 1; :::;mX . Likewise, let �j : S! R, (qL;qF (qL;bL); bj ;bL�j ;bF (qL;bL)) 7!
�j(q

L;qF (qL;bL); bj ;b
L
�j ;b

F (qL;bL)), j = 1; :::;mY . To lighten notations, let
�i(qi; :), i = 1; :::;mX , and �j(bj ; :), j = 1; :::;mY . Then, the utility levels of lead-
ers may be written as payo¤s:

�i(qi; :) = ui(�i � qi;

mYP
j=1

bj +
nYP

j=mY +1

bj(q
L;bL)

qi +
mXP

k=1;k 6=i
qk +

nXP
k=mX+1

qk(qL;bL)

qi), i = 1; :::;mX , (10)

�j(bj ; :) = uj(

mXP
i=1

qi +
nXP

i=mX+1

qi(q
L;bL)

bj +
mYP

l=1;l 6=j
bl +

nYP
l=mY +1

bl(qL;bL)

bj ; �j � bj), j = 1; :::;mY . (11)

And, de�ne the function �i : S! R, (qi(qL;bL);qF�i(qL;bL);qL;bL;bF (qL;bL)) 7!
�i(qi(q

L;bL);qF�i(q
L;bL);qL;bL;bF (qL;bL)), for each i = mX + 1; :::; nX . Like-

wise, de�ne the function �j : S! R, (qL;qF (qL;bL);bL; bj(qL;bL);bF�j(qL;bL)) 7!
�j(q

L;qF (qL;bL);bL; bj(q
L;bL);bF�j(q

L;bL)), for each j = mY + 1; :::; nY . To

9



lighten notations, let �i(qi(:); :), where qi(:) = qi(q
L;bL), for each i = mX +

1; :::; nX , and �j(bj(:); :), where bj(:) = bj(q
L;bL), for each j = mY + 1; :::; nY .

Then, the utility levels of followers i 2 fmX + 1; :::; nXg and j 2 fmY + 1; :::; nY g
may be written as payo¤s:

�i(qi(:); :) = ui(�i � qi(:);

mYP
j=1

bj +
nYP

j=mY +1

bj(:)

qi(:) +
mXP
k=1

qk +
nXP

k=mX+1;k 6=i
qk(:)

qi(:)), (12)

�j(bj(:); :) = uj(

mXP
i=1

qi +
nXP

i=mX+1

qi(:)

bj(:) +
mYP

l=1;l 6=j
bl +

nYP
l=mY +1

bl(:)

bj(:); �j � bj(:)). (13)

2.3. Stackelberg-Nash equilibrium: de�nition

We now turn to the de�nition of a Stackelberg-Nash equilibrium. To this end,
we de�ne some concepts that are related to the behavior of traders in each subgame.

Consider the subgame �F . For each (qL;bL) 2 SL, the best reply correspon-
dences of followers are de�ned as follows.

DEFINITION 1. Let �i : S�i ! Si, with �i(qL;qF�i;bL;bF ) : = fqi 2 Si :
qi 2 argmax�i(qL; qi;qF�i;bL;bF )g, be follower i�s best reply correspondence, i =
mX + 1; :::; nX . Likewise, let  j : S�j ! Sj . with  j(qL;qF ;bL;bF�j) : = fbj 2
Sj : bj 2 argmax�j(qL;qF ;bL; bj ;bF�j)g, be follower j�s best reply correspondence,
j = mY + 1; :::; nY .

It is worth noting that this game displays a rich set of strategic interactions.
Therefore, with several followers, by contrast with the duopoly game in which the
best reply of the follower always coincides with her strategy, the followers� best
responses di¤er from their strategies. With several followers the best responses
could be inconsistent, and thereby, the followers�strategies could not be well de�ned
(see Example 3 in Section 4). The existence, for each follower, of a unique smooth
strategy is studied in Section 3. The followers�strategies are de�ned as follows.

DEFINITION 2. Let �i : SL ! Si, with (qL;bL) 7! �i(q
L;bL), be the strategy

of follower i, i = i = mX + 1; :::; nX . Likewise, let 'j : S
L ! Sj , with (qL;bL) 7!

'j(q
L;bL)., be the strategy of follower j = mY + 1; :::; nY .

De�ne the correspondence � : SL !
nXQ

i=mX+1

Si, with qF 2 �(qL;bL), and the

correspondence ' : SL !
nYQ

j=mY +1

Sj , with bF 2 '(qL;bL). Then, the price pX

may be written as pX(qL;�(qL;bL);bL;'(qL;bL)).
Consider now the subgame �L, and the best reply correspondences of leaders.

DEFINITION 3. Let �i : S
L
�i ! Si, with �i(q

L
�i;b

L) : = fqi 2 Si : qi 2
argmax�i(qi;q

L
�i;�(qi;q

L
�i;b

L);bL;'(qi;q
L
�i;b

L)g, be leader i�s best reply corre-
spondence, i = 1; :::;mX . Likewise, let  j : S

L
�j ! Sj , with  j(qL;bL�j) : = fbj 2

Sj : bj 2 argmax�j(qL;�(qL; bj ;bL�j); bj;bL�j ;'(qL; bj ;bL�j)g, be leader j�s best
reply correspondence, j = 1; :::;mY .
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Let us now consider the consistency of optimal behaviors. The equilibrium
of the two-stage game � is a pure strategy SPNE, while the equilibria in both
subgames �L and �F are Nash equilibria. But such a SPNE is a Nash equilibrium
(NE thereafter) of each subgame of � (Selten 1975).6

Therefore, consider the subgame �L, and let (qL;bL) 2 SL. De�ne the family of
functions�L : SL ! SL, with�L(qL;�(qL;bL);bL;'(qL;bL)) = �mX

i=1�i�
mY
j=1 j .

A pure strategy NE of the subgame �L is a �xed point (~qL; ~bL) of �L(:) such
that no leader has an interest to deviate unilaterally from her decision. Con-
sider now the subgame �F , and de�ne �F : S ! SF , with �F (~qL;qF ; ~bL;bF ) =
�nXi=mX+1

�i�nYj=mY +1
 j , with q

F 2 �(qL;bL) and bF 2 '(qL;bL). A pure strat-
egy NE of the subgame �F is a �xed point (~qF ; ~bF ) of �F (:) such that no follower
has an interest to deviate unilaterally from his decision.
Finally, consider the entire game �. A pure strategy SPNE of � is a �xed point

(~qL; ~qF (~qL; ~bL); ~bL; ~bF (~qL; ~bL)) 2 S, with (~qF (:); ~bF (:)) 2 (�(~qL; ~bL);'(~qL; ~bL)).
Then, (5) is ~pX = pX(~q

L; ~qF (~qL; ~bL); ~bL; ~bF (~qL; ~bL)). The allocations to leaders
(6)-(7) are ~zi = zi(~qi; ~pX), i = 1; :::;mX , and ~zj = zj(~bj ; ~pX), j = 1; :::;mY ,
and the allocations to followers (8)-(9) are ~zi = zi(~qi(~q

L; ~bL); ~pX), i = mX +
1; :::; nX , and ~zj = zj(~bj(~qL; ~bL); ~pX), j = mY +1; :::; nY . Then, the leaders�payo¤s
(10)-(11) are given by �i(~qi; ~qL�i; ~q

F (~qL; ~bL); ~bL; ~bF (~qL; ~bL)) = ui(zi(~qi; ~pX)), for
each i = 1; :::;mX , and �j(~qL; ~qF (~qL; ~bL); ~bj ; ~bL�j ; ~b

F (~qL; ~bL)) = uj(zj(~bj ; ~pX)),
for each j = 1; :::;mY , and the followers� payo¤s corresponding to (12)-(13) are
given by �i(~qL; ~qi(~qL; ~bL); ~qF�i(~q

L; ~bL); ~bL; ~bF (~qL; ~bL)) = ui(zi(~qi(~q
L; ~bL); ~pX)),

for each i = mX +1; :::; nX , and �j(~qL; ~qF (~qL; ~bL); ~bL;~bj(~qL; ~bL); ~bF�j(~q
L; ~bL)) =

uj(zj(~bj(~q
L; ~bL); ~pX)), for each j = mY + 1; :::; nY .

We are now able to de�ne formally a SNE for the game �.

DEFINITION 4. (SNE). A (nX + nY )-tuple (~qL; ~qF (~qL; ~bL); ~bL; ~bF (~qL; ~bL)) is
a Stackelberg-Nash equilibrium of � if:
a. 8i 2 f1; :::;mXg �i(~qi; ~qL�i; ~qF (~qi; ~qL�i; ~bL); ~bL; ~bF (~qi; ~qL�i; ~bL)) >

�i(qi; ~q
L
�i;q

F (qi; ~q
L
�i;
~bL); ~bL;bF (qi; ~q

L
�i;
~bL)),

for all qF (qL;bL) 2
nXQ

i=mX+1

Si and all bF (qL;bL) 2
nYQ

j=mY +1

Sj , for all qi 2 Si;

b. 8j 2 f1; :::;mY g �j(~qL; ~qF (~qL; ~bj ; ~bL�j); ~bj ; ~bL�j ; ~bL(~q
L
; ~bj ; ~b

L
�j)) >

�j(~q
L;qF (~qL; bj ; ~b

L
�j); bj ;

~bL�j ;b
F (~q

L
; bj ; ~b

L
�j)),

for all qF (qL;bL) 2
nXQ

i=mX+1

Si and all bF (qL;bL) 2
nYQ

j=mY +1

Sj , for all bj 2 Sj ;

c. 8i 2 fmX + 1; :::; nXg �i(~q
L; ~qi(~q

L; ~bL); ~qF�i(~q
L; ~bL); ~bL; ~bF (~qL; ~bL)) >

�i(~q
L; qi(~q

L; ~bL); ~qF�i(~q
L; ~bL); ~bL; ~bF (~qL; ~bL)), for all qi 2 Si;

d. 8j 2 fmY + 1; :::; nY g �j(~q
L; ~qF (~qL; ~bL); ~bL;~bj(~q

L; ~bL); ~bF�j(~q
L; ~bL)) >

�j(~q
L; ~qF (~qL; ~bL); ~bL; bj(~q

L; ~bL); ~bF�j(~q
L; ~bL)), for all bj 2 Sj .

Therefore, a SNE is a noncooperative oligopoly equilibrium of � such that, in
each stage of the game, no trader has interest to deviate unilaterally from her choice.

6 It requires the strategies of the leaders and the followers to constitute a NE of any subgame. In
addition, it is a SPNE without empty threats: it rules out incredible threats by the followers. The
reason is the strategy of any follower is optimal for any supply set by the leaders. The followers
can set their own supplies according to any possible function of the quantities set by the leaders,
with the belief that the leaders will not counter-react. Similarly, the leaders expect the followers
to conform to the decisions given by their best responses.

11



3. EXISTENCE OF A SNE WITH TRADE

Let us now turn to the existence of a SNE with trade. It is well known that
the autarkic equilibrium is always a Nash equilibrium (NE) in simultaneous move
strategic market games (Cordella and Gabszewicz 1998; Giraud 2003; Busetto and
Codognato 2006). The following example, which is borrowed from Cordella and
Gabszewicz (1998), and adapted to our setting, illustrates this feature in the se-
quential game.

EXAMPLE 1. (Autarkic SNE). Let #T1 = #T2 = 2. Assumption 1 is �i = 1,
for each i 2 TX , and �j = 1, for each j 2 TY . Assumption 2 is ui(xi; yi) = xi+yi,
i 2 TX , and ui(xi; yi) = xi + yi, j 2 TY , with  2 (0; 1), so (2d) does not hold.
The unique competitive equilibrium is given by p�X = 1 and z

�
i = (0; 1), i 2 TX , and

z�j = (1; 0), j 2 TY . In addition, the Cournot-Nash equilibrium strategies are given

by (q̂1; q̂2; b̂1; b̂2) = (0; 0; 0; 0). Consider now the SNE. The followers�best responses

are �2(q1; q2; b1) = �b1+
q

1
 b1(q1 + q2) and  2(q1; b1; b2) = �q1+

q
1
 (b1 + b2)q1.

The strategies are given by �(q1; b1) =
(1�2)b1+

p
(1�4)(b1)2+4b1q1
2 and '(q1; b1) =

(1�2)q1+
p
(1�4)(q1)2+4b1q1
2 . Then, the leaders� SNE strategies are ~q1 = 0 and

~b1 = 0. Accordingly, the strategies of followers are �(0; 0) = 0 and '(0; 0) = 0.
Then, the only SNE is the trivial equilibrium (~q1; ~q2; ~b1;~b2) = (0; 0; 0; 0).

Therefore, if all traders but one are making a null supply, any other trader,
whichever her type is, will not deviate by making a positive supply. Indeed, no
leader/follower �nds it pro�table to participate in exchange as long as no other
leader/follower does. For any trader, and whichever is the stage of the game, the
strategic advantage from trading is o¤set by the strategic advantage of reducing her
supply. Does this imply that there is never a non-trivial sequential equilibrium?
The following theorem provides a negative answer to this question.

THEOREM (Existence of a SNE with trade). Consider the �nite game �, and let
Assumptions 1 and 2 be satis�ed. Then, there exists a Stackelberg-Nash equilibrium
with trade.

The remaining part of this section is devoted to the proof of the theorem. To
prove the theorem, we consider a slight perturbation of the strategic market game
as in Dubey and Shubik (1978) when they show existence of non-autarkic Cournot-
Nash equilibria. Our proof requires �ve steps. First, we study the optimal behaviors
in each perturbed subgame. This leads to study the followers�s best responses, and
then to show the existence of unique smooth followers�strategies in the perturbed
game. Then, by considering the subgame between leaders, we study the leaders�s
best responses. Second, we prove the existence of a SNE of the perturbed game,
i.e., we determine the conditions under which the best responses of traders are
mutually consistent in each perturbed subgame as well as in the entire perturbed
game. Third, we show that there exist some uniform bounds on the market price
in each perturbed subgame. Fourth, we prove the SNE of the perturbed game is
non-autarkic. Fifth, we show that the SNE with trade is an equilibrium point of
the game, i.e., a non trivial subgame perfect Nash equilibrium which is robust to
slight perturbation of the game.

Therefore, consider a slight perturbation of the game �. Let �� be the per-
turbed game in which some outside agency puts a �xed quantity � > 0 of the two
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commodities on each side of the market. This does not change the traders�strategy
sets, but it changes outcomes and payo¤s. Given � > 0, the price (5) of �� is now
given by:

p�X =
B + �

Q+ �
. (14)

To lighten notations, let qF� (:) for q
F
� (q

L
� ;b

L
� ) and b

L
� (:) for b

F
� (q

L
� ;b

L
� ). Then,

let p�X
M
= pX(q

L
� ;q

F
� (:);b

L
� ;b

F
� (:)). Therefore, the allocations in �

� are given by
zi;� = zi;�(qi;�; p

�
X), for each i = 1; :::;mX , and zj;� = zj;�(bj;�; p

�
X), for each

j = 1; :::;mY , and by zi;� = zi;�(qi;�(:); p
�
X), for each i = mX + 1; :::; nX , and

zj;� = zj;�(bj;�(:); p
�
X), for each j = mY + 1; :::; nY . The payo¤s in �� are given

by ��i;�(qi;�;q
L
�i;�;q

F
� (:);b

L
� ;b

F
� (:)) = ui(zi;�(qi;�; p

�
X)), for each i = 1; :::;mX , and

��j(q
L
� ;q

F
� (:); bj;�;b

L
�j;�;b

F
� (:)) = uj(zj;�(bj;�; p

�
X)), for each j = 1; :::;mY , and by

��i(q
L
� ; qi;�(:);q

F
�i;�(:);b

L
� ;b

F
� (:)) = ui(zi;�(qi;�(:); p

�
X)), for each i = mX + 1; :::; nX ,

and ��j(q
L
� ;q

F
� (:);b

L
� ; bj;�(:);b

F
�j(:)) = uj(zj;�(bj;�(:); p

�
X)), for each j = mY +

1; :::; nY . We now de�ne formally the concept of �-SNE.

DEFINITION 5 (�-SNE). For all � > 0, a (nX + nY )-tuple (~qL� ; ~q
F
� (:); ~b

L
� ; ~b

F
� (:))

is a Stackelberg-Nash equilibrium of �� if conditions a., b., c. and d. in De�nition
4 hold, but where �i is replaced by ��i for each i 2 f1; :::; nXg, and �j is replaced
by ��j for each j 2 f1; :::; nY g respectively.

To show the existence of an �-SNE (with trade) we need some intermediate
results. First, we consider the behavior of traders in the perturbed game ��.

Consider the perturbed subgame ��F . The problem of follower i (resp. j) consists
of maximizing his payo¤��i(qi;�;q

L
� ;q

F
�i;�;b

L
� ;b

F
� ) (resp. �

�
j(q

L
� ;q

F
� ; bj;�;b

L
� ;b

F
�j;�)).

The next proposition echoes De�nition 1.

PROPOSITION 1. Let Assumption 2 be satis�ed. Then, for all � > 0, the best re-
sponses ��i : S�i �R++ ! Si, with (qL� ;qF�i;�;bL� ;bF� ; �) 7! ��i(q

L
� ;q

F
�i;�;b

L
� ;b

F
� ; �),

i = mX + 1; :::; nX , and  j : S�j � R++ ! Sj , with (qL� ;qF� ;bL� ;bF�j;�; �) 7!
 �j(q

L
� ;q

F
� ;b

L
� ;b

F
�j;�; �), j = mY + 1; :::; nY exist and are twice-continuously di¤er-

entiable functions.

PROOF. See Appendix A.

The next proposition says that the followers�best responses are bounded.

PROPOSITION 2. Let �� = (��mX+1; :::; �
�
nX ) and  

� = ( �mY +1; :::;  
�
nY ) be

respectively (nX � mX) and (nY � mY ) dimensional vector functions. Let �a =
(�qL� ; �q

F
� (�q

L
� ; �b

L
� ); �b

L
� ; �b

F
� (�q

L
� ; �b

L
� )) 2 S. Consider the Jacobian matrices J��

qF�

(�a) =h
@��(:)
@qF�

i
and J �

bF�

(�a) =
h
@ �(:)
@bF�

i
. Then, �I << J��

qF�

(�a) << I, where I is the

(nX � mX ; nX � nX) unit matrix, and �I << J �
bF�

(�a) << I, where I is the

(nY � mY ; nY � mY ) unit matrix. In addition, J��
bF�

(�a) =
h
@��(:)
@bF�

i
2 (�I; I),

and J �

qF�

(�a) =
h
@ �(:)
@qF�

i
2 (�I; I), where the Is are (nX � mX ; nY � mY ) and

(nY �mY ; nX �mX) unit matrices.

PROOF. See Appendix B.

To de�ne the strategies of followers (see De�nition 2), the followers�best re-
sponses must be consistent. By "consistent" we mean that the followers�strategies
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are deduced from the collection of best responses. It is worth noting that the strate-
gies might not exist even if the best responses exist (see Example 3). To this end,
we give a su¢ cient condition which guarantees the existence of followers�strategies.
To introduce this condition, de�ne the function ��i : S � R++ ! Si, with

��i(q
L
� ;q

F
� (:);b

L
� ;b

F
� (:); �) := qi;�(:) � ��i(q

L
� ;q

F
�i;�(:);b

L
� ;b

F
� (:); �), for i = mX +

1; :::; nX , and the function 	�j : S� R++ ! Sj , with 	�j(qL� ;qF� (:);bL� ;bF� (:); �) :=
bj;�(:)� �j(qL� ;qF� (:);bL� ;bF�j;�(:); �), for j = mY +1; :::; nY , � > 0 (remind (:) means
(qL;bL)). This set of functions will be useful to build the system of equations that
will implicitly de�ne the strategies.
Let �� : S�R++ ! SF the (nX �mX +nY �mY )-dimensional vector function

given by ��(:) = (��mX+1; :::;�
�
nX ; 	

�
mY +1; :::;	

�
nY ). Consider the vector equation

��(qL� ;q
F
� (:);b

L
� ;b

F
� (:); �) = 0 with (nX � mX + nY � mY ) unknowns (qF� ;b

F
� )

and mX+mY parameters (qL� ;b
L
� ). This system de�nes implicitly (at least locally)

the followers�strategies. Let �a = (�qL� ; �q
F
� (�q

L
� ; �b

L
� ); �b

L
� ; �b

F
� (�q

L
� ; �b

L
� )) be an interior

point of S, so the identity��(qL� ;q
F
� (q

L
� ;b

L
� );b

L
� ;b

F
� (q

L
� ;b

L
� )) � 0 holds in an open

neighborhood of (�qL� ; �q
F
� (�q

L
� ; �b

L
� ); �b

L
� ; �b

F
� (�q

L
� ; �b

L
� )). Implicit partial di¤erentiation

with respect to (bL� ;q
L
� ) of this identity leads to:

J��

(qF� ;bF� )
(�a):A� = �B�, for each " > 0, (15)

where J��

(qF� ;bF� )
(�a) is the (nX � mX + nY � mY ; nX � mX + nY � mY ) square

matrix formed by all partial derivatives of �� with respect to (qF� ;b
F
� ) at �a =

(�qL� ; �q
F
� (�q

L
� ; �b

L
� ); �b

L
� ; �b

F
� (�q

L
� ; �b

L
� )), and A� and B� are matrices of dimension (nX �

mX + nY �mY ;mX +mY ). The next lemma says that the solution to (15), if it
exists, determines the followers�strategies.

LEMMA 1. If
���J��

(qF� ;bF� )
(�a)
��� 6= 0, then, for all " > 0, there exist unique functions

��i : S�R++ ! Si, with bi;� = ��i(q
L
� ;b

L
� ; �), i = mX+1; :::; nX , and '�j : S�R++ !

Sj , with qj;� = '�j(q
L;bL; �), j = mY + 1; :::; nY . Moreover, ��i(:) 2 C2(S;Si),

i = mX + 1; :::; nX , and '�j(:) 2 C2(S;Sj), j = mY + 1; :::; nY .

PROOF. See Appendix C.

Lemma 1 provides a su¢ cient condition for the existence and uniqueness of
continuous di¤erentiable strategies. If the Jacobian of ��(:) is a linear map which
is invertible, i.e. a C1-di¤eomorphism, then there exists a unique �xed point to (9)
which consists of twice continuously di¤erentiable strategies. The next proposition
state that there the followers�strategies are bounded.

PROPOSITION 3. Let �� = (��M1+1
; :::; ��N1

) and '� = ('�M2+1
; :::; '�N2

) be
respectively (nX � mX) and (nY � mY ) dimensional vector functions. Consider

J��
qL�

(�a) =
h
@��(:)
@qL�

i
and J'�

qL�

(�a) =
h
@'�(:)
@qL�

i
. Then, J��

qL�

(�a) 2 [�I; I) and J'�
qL�

(�a) �
0, where the unit matrix I and the null matrix 0 are of dimension (nX �mX ;mX)
and (nY �mY ;mX) respectively. In addition, J'�

bL�

(�a) 2 [�I; I) and J��
bL�

(�a) � 0,
where I and 0 are of dimension (nY �mY ;mY ) and (nX �mX ;mY ) respectively.

PROOF. See Appendix D.

Consider now the subgame ��L. De�ne the two families of followers� strate-

gies in �� as �� : SL � R++ !
nXQ

i=mX+1

Si, with qF� = ��(qL� ;b
L
� ; �), and as '

� :
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SL�R++ !
nYQ

j=mY +1

Sj , with bF� = '�(qL� ;bL� ; �). In particular, ��(qL� ;bL� ; �) 2 C2

and '�(qL� ;b
L
� ; �) 2 C2. By virtue of Lemma 1, the price function that maps leaders�

strategies into a price and the reduced form payo¤s of leaders are well-de�ned. In-
deed, each leader knows how the market price is a¤ected by the followers�reactions.
Let the price function be p�X(q

L
� ;b

L
� ; �)

M
= pX(q

L
� ;�

�(qL� ;b
L
� ; �);b

L
� ;'

�(qL� ;b
L
� ; �)).

As ��(:) 2 C2 and '�(:) 2 C2, then p�X(qL� ;bL� ; �) 2 C2. Thus, leaders�reduced form
payo¤s are �i;�(qi;�;qL�i;�;�

�(qi;�;q
L
�i;�;b

L
� ; �);b

L
� ;'

�(qi;�;q
L
�i;�;b

L
� ; �), for each i =

1; :::;mX , and �j;�(qL� ;�
�(qL� ; bj;�;b

L
�j;�; �); bj;�;b

L
�j;�;'

�(qL� ; bj;�;b
L
�j;�; �), for each

j = 1; :::;mY . The next proposition relies to existence and continuity of leaders�
best responses (see De�nition 3).

PROPOSITION 4. Let Assumption 2 be satis�ed. Then, for all � > 0, the best

responses ��i : S
L
�i �

mYQ
j=1

Sj � R++ ! Si, with (qL�i;�;b
L
� ; �) 7! ��i(q

L
�i;�;b

L
� ; �), i =

1; :::;mX , and  
�
j :

mXQ
i=1

Si�SL�j �R++ ! Sj , with (qL� ;b
L
�j;�; �) 7!  �j(q

L
� ;b

L
�j;�; �),

j = 1; :::;mY , exist and are continuous functions.

PROOF. See Appendix E.

We now turn to the existence of an �-SNE. The next lemma shows that the
optimal behavior of traders are mutually consistent in the entire perturbed game.

LEMMA 2 (Existence of �-SNE). Consider ��, and let Assumptions 1 and 2 be
satis�ed. Then, for all � > 0, there exists an "-Stackelberg-Nash equilibrium of ��.

PROOF. We show that the optimal strategic behavior are mutually consistent,
i.e., there is a pure strategy SPNE for the entire perturbed game �", which con-
stitutes a NE of each perturbed subgame ��L and ��F . We �rst show that ��L
has a NE. To this end, let (qL� ;b

L
� ) 2 SL, and de�ne the family of functions

��L : SL �R++ ! SL, with ��L(qL� ;��(qL� ;bL� );bL� ;'�(qL� ;bL� )) = �
mX
i=1�i�

mY
j=1 j ,

where the functions ��i , i = 1; :::;mX , and  �j , j = 1; :::;mY , are well-de�ned
from Proposition 4 (see Appendix E). The function ��L is a continuous function
(as the product of continuous functions ��i , i = 1; :::;mX , and  

�
j , j = 1; :::;mY ,

from Proposition 4) over a compact and convex subset of Euclidean space (as the
product of compact and convex sets Si, i = 1; :::;mX , and Sj , j = 1; :::;mY ).
Then, by the Brouwer Fixed Point Theorem, the function ��L admits a �xed point,
namely (~qL� ; ~b

L
� ), which is a NE of ��L. Next, we show ��F has a NE. De�ne

��F : S � R++ ! SF , with ��F (q
L
� ;q

F
� ;b

L
� ;b

F
� ) = �nXi=mX+1

��i�nYj=mY +1
 �j , where

the functions ��i , i = mX+1; :::; nX , and  
�
j , j = mY +1; :::; nY , are known to exist

from Proposition 1. Let (qL� ;b
L
� ) = (~qL� ; ~b

L
� ). The function �

�
F (~q

L
� ;q

F
� ; ~b

L
� ;b

F
� )

is continuous on S, a compact and convex set of Euclidean space. Then, it has
a �xed point, namely (~qF� ; ~b

F
� ), which is a NE of ��F . Finally, from Lemma 1,

for all � > 0, as (qF� ;b
F
� ) = (��(qL� ;b

L
� ; �);'

�(qL� ;b
L
� ; �)). If (~q

L
� ; ~b

L
� ) is a �xed

point, then, by using Lemma 1, and by continuity of ��(:) and '�(:), we deduce
(~qF� ; ~b

F
� ) = (�

�(~qL� ; ~b
L
� ; �);'

�(~qL� ; ~b
L
� ; �)) is a �xed point of �

�
F , for all � > 0: Then,

(~qL" ; ~q
F
" ; ~b

L
" ; ~b

F
" ) is a �xed point of �

�.�
The next step consists of showing that the market price generated by an �-SNE

is strictly positive and �nite. Indeed, the next lemma concerns the existence of
uniform bounds on relative price in an �-SNE.
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LEMMA 3. Assume there are at least one leader and one follower of each type,
and let ~p�X = p�X(~q

L
� ; ~q

F
� (~q

L
� ; ~b

L
� ); ~b

L
� ; ~b

F
� (~q

L
� ; ~b

L
� )). Then, in an �-SNE, there exist

uniform bounds �1 > 0 and �2 > 0 such that :

8� > 0, �1 < ~p�X < �2. (16)

PROOF. See Appendix F.

It is worth noting that, unlike Dubey and Shubik (1978), the existence of such
uniform bounds on price must hold in each perturbed subgame. In particular, we
have to take into account that, in the perturbed subgame between leaders, the
rational beliefs of leaders about the followers�reactions matter.

The next lemma, whose proof adapts to our setting the study of Cournot equi-
libria in Bloch and Ferrer (2001), is linked to the existence of an "-SNE with trade.

LEMMA 4 (Existence of �-SNE with trade). Consider ��, and let Assumptions
1 and 2 be satis�ed. Then, for all � > 0, there exists an "-SNE with trade of ��.

PROOF. We have to show that there are non trivial equilibrium strategies in
each stage, i.e., there exist lower and upper uniform bounds on equilibrium supplies
such that there are at least one leader and one follower of the �rst type (resp. second
type) for whom 0 < ~qi;� < �i (resp. 0 < ~bj;� < �j).
Follower i. Consider the payo¤ given by (12). Let ��i(q

L
� ;b

L
� ; �) 2 Si. We have

to show that there are q
¯
i; �qi 2 Si such that 0 < q

¯ i
6 ��i(~q

L
� ; ~b

L
� ; �) 6 �qi < �i, for at

least one i, i = mX+1; :::; nX . Fix the strategies of all other traders in equilibrium.
Follower i�s marginal payo¤ may be written (see (A2) in Appendix A):

@��i
@qi;�

= �@ui
@xi

+ p�X
Q�i;� + "

qi;� +Q�i;� + "

@ui
@yi

, for all � > 0. (17)

From Proposition 1, there exists ��i(q
L
" ;q

F
�i;";b

L
� ;b

F
� ; �) > 0, i = mX+1; :::; nX .

In addition, from Lemma 1, there exists qi;� = ��i(q
L
� ;b

L
� ; �) > 0, i = mX+1; :::; nX .

Then, in equilibrium we have ~qi;� = ��i(~q
L
� ; ~b

L
� ; �) > 0, i = mX + 1; :::; nX . Let

MRSiX;Y (~zi;�) =
@ui=@xi
@ui=@yi jzi;�=~zi;�

, so (17) may be written:

@��i
@qi;� jqi;�=~qi;�

=
@ui
@yi

(~p�X �MRSiX;Y (~zi;�)), for all � > 0. (18)

Consider the case ��i(~q
L
� ; ~b

L
� ; �) >b¯ i > 0. As

Q�i;�+"
qi;�+Q�i;�+"

6 1 and, from Lemma
3, we have ~p�X > �1, then (18) may be written:

@��i
@qi;� jqi;�=~qi;�

>
@ui
@yi

(�1 �MRSiX;Y (~zi;�)), for all � > 0. (19)

From (2a)-(2c), we deduce
@MRSiX;Y
@qi;�

> 0. Assume ��i(:; �) = 0. Then, from

(2d), limqi;�!0MRSiX;Y = 0, so (19) becomes @��i
@qi;�

> @ui
@yi

�1. But, from (2d), we

have limqi;�!0
@ui
@yi

= limyi!0
@ui
@yi

= 1, so we deduce @��i
@qi;�

> 1. A contradiction.
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Therefore, there must be q
¯
i > 0, with q

¯
i = ��i(q

¯
L
�
;b
¯
L
� ; �) and q

¯
i 2 Si, such that

@MRSiX;Y
@qi;� jqi;�=q

¯ i
= �1. As

@�i;�
@qi;� jqi;�=q

¯ i
> 0, then for all ��i(:; �) 2 Si, we have

��i(:; �) >q
¯
i > 0. Then, ��i(:; �) > 0, so �i;� = 0 in (A6), for at least one i 2

f1; :::;mXg. Likewise, 0 <b¯ j 6 '�j :; �), j = mY + 1; :::; nY .

Consider now the case qi;� 6 �qi < �i. As p�X < �2 and
Q�i;�+"

qi;�+Q�i;�+"
6 1, then:

@��i
@qi;� jqi;�=~qi;�

<
@ui
@yi

(�2 �MRSiX;Y (~zi;�)), for all � > 0. (20)

From (2a)-(2c),
@MRSiX;Y
@qi;�

> 0. In addition, from (2d), limqi;�!0MRSiX;Y = 0

and limqi;�!�i MRSiX;Y = 1. Then, there is �qi < �i, with �qi = ���i(:; �) and

���i(:; �) 2 Si, such that (
@MRSiX;Y
@qi;�

)jqi;�=�qi = �2. Then, from (20), ( @�
�
i

@qi;�
)jqi;�=�qi < 0,

where ��i is strictly concave in qi;� on [0; �i]. Then, for all ~qi;" 2 Si, we get ~qi;" 6 �qi,
so �i;� = 0 in (A6). But, then, '�i(:; �) 6 �qi < �i for at least one follower i.
Leader i. Fix the strategies of all other leaders in equilibrium. As, in the

�rst stage, ~p�X = p�X(~q
L
� ; ~b

L
� ; �), where p

�
X(q

L
� ;b

L
� ; �)

M
= pX(q

L
� ;�

�(:; �);bL� ;'
�(:; �)),

leader i�s marginal payo¤ may be written:

@��i
@qi;� jqi;�=~qi;�

=
@ui
@yi

(�~p�X �MRSiX;Y (~zi;�)), for all � > 0. (21)

where � � 1� (1 + �X� )
~qi;�

~qi;�+ ~Q�i;�+�
+ �X�

~qi;�
~B�+�

, with � 2 [0; 1], is the inverse of the
markup (see (E2) in Appendix E).
Consider the case ~qi;" >q

¯
i > 0. As ~p�X > �1 and � 6 1, then (21) is

@��i
@qi;� jqi;�=~qi;�

>

@ui
@yi
(�1�MRSiX;Y (~zi;�)), for all � > 0. From (2a)-(2c),

@MRSiX;Y
@qi;�

> 0. Assume ~qi;� =

0. Then, � = 1, and, from (2d), limqi;�!0MRSiX;Y = 0, so (21) is @��i
@qi;�

> @ui
@yi

�1.

But, from (2d), limqi;�!0
@ui
@yi

= limyi!0
@ui
@yi

= 1, so @��i
@qi;�

> 1. A contradic-

tion. Therefore, there is q
¯
i > 0, with q

¯
i 2 Si, such that

@MRSiX;Y
@qi;� jqi;�=q

¯ i
= �1. As

@��i
@qi;� jqi;�=q

¯ i
> 0, then for all ~qi;� 2 Si, ~qi;� > q

¯ i
> 0. Then, ~qi;� > 0, so �i;� = 0 in

(E2), for at least one i 2 f1; :::;mXg.
The proof of 0 <b

¯ j
6 bj 6 ~bj;� < �j for at least one j 2 TY , follows the same

steps as the one provided for type 1 traders.�
Finally, we show the SNE is an equilibrium point (EP), which we now de�ne.

DEFINITION 6. A SNE (~qL; ~qF (~qL; ~bL); ~bL; ~bF (~qL; ~bL)) is an equilibrium point
of � if there exist sequences f�ng1n=1 and f(~qL�n ; ~q

F
�n(~q

L
�n ;
~bL�n);

~bL�n ;
~bF�n(~q

L
�n ;
~bL�n))g

1
n=1

such that:
1. �n > 0 and limn!1 f�ng = 0;
2. (~qL�n ; ~q

F
�n(~q

L
�n ;
~bL�n);

~bL�n ;
~bF�n(~q

L
�n ;
~bL�n)) is a Nash equilibrium of ��n ;

3. lim
n!1

f(~qL�n ; ~q
F
�n(~q

L
�n ;
~bL�n);

~bL�n ;
~bF�n(~q

L
�n ;
~bL�n))g = (~q

L; ~qF (~qL; ~bL); ~bL; ~bF (~qL; ~bL)).

LEMMA 5 (SNE is an EP). Consider the game �, and let Assumptions 1 and 2
be satis�ed. Then, the SNE with trade is an equilibrium point of �.
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PROOF. Consider a sequence f�ng such that limn!1 f�ng = 0. Pick one se-
quence of strategies f(qL�n ;q

F
�n(q

L
�n ;b

L
�n);b

L
�n ;b

F
�n(q

L
�n ;b

L
�n))g, n 2 f1; 2; :::g. Con-

sider the subgame ��nF . From Lemma 1, there exist qi;� := ��i(q
L
� ;b

L
� ; �), for

each i = mX + 1; :::; nX , and bj;� := '�j(q
L
� ;b

L
� ; �), for each j = mY + 1; :::; nY .

Consider, for each i = mX + 1; :::; nX , and for each j = mY + 1; :::; nY , the se-
quence of strategies f��ni (qL�n ;b

L
�n ; �n);'

�n
j (q

L
�n ;b

L
�n ; �n)g, n = 1; 2; :::, which are

de�ned over compact sets. Let (qL�kn ;b
L
�kn
; �kn) be a leaders� strategy pro�le of

the subgame ��knL . Then, for each i = mX + 1; :::; nX , and each j = mY +
1; :::; nY , there is a subsequence f��kni (qL�kn ;b

L
�kn
; �kn); '

�kn
j (qL�kn ;b

L
�kn
; �kn)g such

that lim
n!1

f��kni (qL�kn ;b
L
�kn
; �kn);'

�kn
j (qL�kn ;b

L
�kn
; �kn)g = f�i(qL;bL);'j(qL;bL)g

as lim
n!1

f��kni (:; �kn);'
�kn
j (:; �kn)g = f�i(:);'j(:)g, i = mX + 1; :::; nX , j = mY +

1; :::; nY . But (qi; bj) := (�i(q
L;bL);'j(q

L;bL), i = mX + 1; :::; nX , j = mY +
1; :::; nY . In addition, from Lemma 4, we have q

¯
i 6 ~qi 6 �qi , i = mX + 1; :::; nX ,

and b
¯ j
6 ~bj 6 �bj , j = mY + 1; :::; nY . By continuity of the payo¤ functions of

the followers (see Appendix A), we deduce (qi; bj) := (�i(q
L;bL);'j(q

L;bL) is
well-de�ned, for each i = mX + 1; :::; nX , and for each j = mY + 1; :::; nY , so
(qF ;bF ) := (�(qL;bL);'(qL;bL)) is a well-de�ned strategy pro�le of �F . Con-
sider now the subgame ��nL . From Lemma 4, we know that there exists an "-SNE
with trade of ��nL , i.e. there is a strategy pro�le f(~qL�n ; ~b

L
�n)g, for which, for at

least one leader of each type, we have that q
¯
i 6 ~qi;�n 6 �qi, i = 1; :::;mX , and

b
¯ j
6 ~bj;�n 6 �bj , j = 1; :::;mY , for n = 1; 2; :::. Thus, the sequence f(~qi;�n ; ~bj;�n)g,

i = mX + 1; :::; nX , j = mY + 1; :::; nY , is de�ned over a compact set. Then,
from the Bolzano-Weierstrass Theorem (see Corollary 4.7, p. 25 in Aliprantis et
al. 1998), there exists, for each i = 1; :::;mX , j = 1; :::;mY , a subsequence
f(~qi;�kn ; ~bj;�kn )g

1
n=1 which converges to a limit point (~qj ; ~bi), where q

¯
i 6 ~qi 6 �qi, for

each i = 1; :::;mX , and b¯ j
6 ~bj 6 �bj , for each j = 1; :::;mY , from Lemma 4. As

the payo¤ functions of the leaders are strictly concave (see Appendix D), they are
continuous, so (~qL; ~bL) = (~q1; :::; ~qmX

; ~b1; :::;~bmY
) is an EP of �L. As (~qF ; ~bF ) :=

(�(~qL; ~bL);'(~qL; ~bL)), which is an EP of �F . But then, (~qL; ~q
F ; ~bL; ~bF ) is an

interior pure strategy SPNE of �. Then, the SNE with trade is an EP of �, which
means there exists a strategy pro�le (~qL; ~qF (~qL; ~bL); ~bL; ~bF (~qL; ~bL)), which is a
non autarkic SNE of �.�

4. DISCUSSION

The following examples deserve three purposes. First, they illustrate that our
main result captures new insights on competition in bilateral oligopolies, and,
thereby, each of them puts forward the main di¤erences with the outcome of the
Cournot-Nash game. Second, they buttress the logic of our approach. Third, they
test the robustness of Assumption 2, i.e. the di¤erentiability, the strict quasi-
concavity and the behavior of the indi¤erence curves along the boundary of the
consumption sets. Example 1 computes a SNE when Assumption 2 is satis�ed.
Example 2 shows Assumption 2c is not necessary. Example 3 illustrates existence
failure. Example 4 shows a SNE may exist even if Assumptions 2a, 2c and 2d do not
hold for some traders. In each case, we also compute the Cournot-Nash equilibrium
(CNE) supplies and the competitive equilibrium (CE) supplies. In all examples
Assumption 1 is �i = 1, for all i 2 TX , and �j = 1, for all j 2 TY .
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4.1. A SNE under Assumption 2

Let TX = f1; 2; 3; 4g and TY = f1; 2; 3; 4g, with two leaders and two followers
of each type, with:

uk(xk; yk) = xk:yk, k = i; j, i; j = 1; :::; 4. (22)

The CE supplies are given by (q�1 ; q
�
2 ; q

�
3 ; q

�
4) = (

1
2 ;

1
2 ;

1
2 ;

1
2 ) and (b

�
1; b

�
2; b

�
3; b

�
4) =

( 12 ;
1
2 ;

1
2 ;

1
2 ). In addition, the CNE supplies are given by (q̂1; q̂2; q̂3; q̂4) = (

1
3 ;

1
3 ;

1
3 ;

1
3 )

and (b̂1; b̂2; b̂3; b̂4) = ( 13 ;
1
3 ;

1
3 ;

1
3 ).

Let us now compute the SNE. In the second stage of the game, for all strategy
pro�les (q1; q2; b1; b2) 2 SL, the problems of both types of followers may be written:

max
�i(q�i;b)

(1� qi)
 P4

j=1 bj

qi +
P

�i;�i 6=i q�i
qi

!
, i = 3; 4, (23)

max
 j(q;b�j)

 P4
i=1 qi

bj +
P

�j;�j 6=j b�j
bj

!
(1� bj), j = 3; 4. (24)

As all followers of the same type must adopt the same strategy at equilibrium,
the su¢ cient �rst-order conditions lead to the followers�best responses, which are
given by:

�3(q1; q2; q4;b) = �(q1 + q2 + q4) +
p
(q1 + q2 + q4)2 + (q1 + q2 + q4), (25)

�4(q1; q2; q3;b) = �(q1 + q2 + q3) +
p
(q1 + q2 + q3)2 + (q1 + q2 + q3), (26)

 3(q; b1; b2; b4) = �(b1 + b2 + b4) +
p
(b1 + b2 + b4)2 + (b1 + b2 + b4), (27)

 4(q; b1; b2; b3) = �(b1 + b2 + b3) +
p
(b1 + b2 + b3)2 + (b1 + b2 + b3). (28)

To determine the followers� strategies, let �(�3(:);�4(:);	3(:);	4(:)) = 0,
where �i(q�i;b) := qi � �i(q�i;b), i = 3; 4, and 	3(q;b�j) := bj �  j(q;b�j),
j = 3; 4. The Jacobian corresponding to (15) is given by:

J�(qF ;bF )
=

2664
1 g 0 0
h 1 0 0
0 0 1 g0

0 0 h0 1

3775 , (29)

where g � 1� q1+q3+
1
2p

(q1+q3)2+q1+q3
, h � 1� q1+q2+

1
2p

(q1+q2)2+q1+q2
, g0 � 1� b1+b3+

1
2p

(b1+b3)2+b1+b3

and h0 � 1� b1+b2+
1
2p

(b1+b2)2+b1+b2
. We get

���J�(qF;bF )

��� = (1�gh)(1�g0h0) 6= 0 as gh 6= 1
and g0h0 6= 1, so [�(0]�1 is well de�ned. Then, Lemma 1 holds, and the followers�
strategies are given by:
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�i(q1; q2; b1; b2) =
1

6
� 1
3
(q1 + q2) +

r
1

3
(q1 + q2)2 + 2(q1 + q2) +

1

4
, i = 3; 4, (30)

'j(q1; q2; b1; b2) =
1

6
� 1
3
(b1 + b2) +

1

3

r
(b1 + b2)2 + 2(b1 + b2) +

1

4
, j = 3; 4. (31)

In the �rst stage, the problem of any leader consists of maximizing her reduced
form payo¤, with pX(q1; q2; b1; b2) =

b1+b2+'3(b1;b2)+'4(b1;b2)
q1+q2+�3(q1;q2)+�4(q1;q2)

. Therefore, by using
(30)-(31), the leaders�problems may be written:

max
�i(q�i;b1;b2)

(1� qi)

0@ 1
3 +

2
3 (b1 + b2) +

2
3

q
(b1 + b2)2 + 2(b1 + b2) +

1
4

1
3 +

2
3 (q1 + q2) +

2
3

q
(q1 + q2)2 + 2(q1 + q2) +

1
4

1A qi, i = 1; 2,

(32)

max
'j(q1;q2;b�i)

0@ 1
3 +

2
3 (q1 + q2) +

2
3

q
(q1 + q2)2 + 2(q1 + q2) +

1
4

1
3 +

2
3 (b1 + b2) +

2
3

q
(b1 + b2)2 + 2(b1 + b2) +

1
4

1A bj(1� bj), j = 1; 2:

(33)
Then, after some tedious computations, as all leaders of the same type must

adopt the same strategy at equilibrium, the �rst-order conditions associated with
problems (32)-(33) yield the unique solution ~qi = ~bj = 0:421907, i = 1; 2, j = 1; 2.
From (30)-(31), we deduce (~q3; ~q4) = (~b3;~b4) = (0:427986; 0:427986).
Therefore, the SNE supplies are given by the pure strategy pro�les:

(~q1; ~q2; ~q3; ~q4) = (0:421907; 0:421907; 0:427986; 0:427986) , (34)

(~b1;~b2;~b3;~b4) = (0:421907; 0:421907; 0:427986; 0:427986) . (35)

It is worth noting that the existence of the four strategies (30)-(31) as well as
the SNE depends entirely on the fact that (29) has a nonzero determinant.

4.2. The boundary conditions

Let TX = f1; 2g and TY = f1; 2g, with:

ui(xi; yi) = ixi + yi, i 2 (0; 1), i = 1; 2, (36)

uj(xj ; yj) = xj :yj , j = 1; 2. (37)

The CE supplies are given by (q�1 ; q
�
2) = ( 12 ;

1
2 ) and (b

�
1; b

�
2) = ( 12 ;

1
2 ). In ad-

dition, if 1 6= 2, the CNE supplies are (q̂1; q̂2) = (23
2

(1+2)
2 ;

2
3

1
(1+2)

2 ) and

(b̂1; b̂2) = (
1
3 ;

1
3 ), while if 1 = 2, then (q̂1; q̂2) = (

1
6 ;

1
6 ) and (b̂1; b̂2) = (

1
3 ;

1
3 ).

Let us now compute the SNE. In the second stage of the game, the problems of
both types of followers may be written:
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max
�2(q1;b1;b2)

2(1� q2) +
�
b1 + b2
q1 + q2

q2

�
, (38)

max
 2(q1;q2;b1)

�
q1 + q2
b1 + b2

b2

�
:(1� b2). (39)

Then, the followers�best responses are given by:

�2(q1; b1; b2) = �q1 +

s
b1 + b2
2

q1, (40)

 2(q1; q2; b1) = �b1 +
p
(b1)2 + b1. (41)

We now determine the followers�strategies. To this end, let �2(q1; q2; b1; b2) :=

q1 + q2 �
q

b1+b2
2

q1 and 	2(q1; q2; b1) := b1 + b2 �
p
(b1)2 + b1. The Jacobian is

given by:

J�(qF ;bF )
=

"
1 � 1

2

q
q1

(b1+b2)

0 1

#
. (42)

We have
���J�(qF ;bF )

��� = 1. Then, the followers�strategies exist and are given by:
�2(q1; b1) = �q1 +

s
1

2

p
(b1)2 + b1q1, (43)

'2(q1; b1) = �b1 +
p
(b1)2 + b1. (44)

In the �rst stage, any leader maximizes her reduced form payo¤, with pX(q1; b1) =

b1+'2(q1;b1)
q1+�2(q1;b1)

=

r
2
p
(b1)2+b1
q1

, so the problems of the two leaders may be written:

max
fq1g

1(1� q1) +
q
2
p
(b1)2 + b1q1, (45)

max
fb1g

s
q1

2
p
(b1)2 + b1

b1:(1� b1). (46)

Then, after some tedious computations, the �rst-order conditions associated
with problems (45)-(46) yield the SNE supplies:

(~q1; ~q2) =

 p
2
p
97 + 62

48

2
(1)

2
;

p
2
p
97 + 62

24

1

1

�
1� 1

2

2
1

�!
, (47)

(~b1;~b2) =

 p
97� 5
12

;
5�

p
97 +

p
2
p
97 + 62

12

!
. (48)

Therefore, there is a SNE with trade even if some traders have linear preferences.
At least one trader (a leader and a follower of type 2) never makes a null demand
for her "own" commodity: their indi¤erence curves do not intersect the quantity
axis. In addition, it can be checked that if leaders had linear utility functions, while
followers had Cobb-Douglas utility functions, then there would be a SNE with
trade. But if all traders had the same linear utility function, then the SNE would
coincide with the CNE, which is autarkic (Cordella and Gabszewicz 1998).
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4.3. Existence failure of SNE

Let TX = f1; 2g and TY = f1; 2g, with:

ui(xi; yi) = min
�
xi � 1;

p
(yi)2

�
, i = 1; 2, (49)

uj(xj ; yj) = min(
p
(xi)2; yj � 1), j = 1; 2. (50)

The CE supplies are given by (q�1 ; q
�
2) = (0; 0) and (b

�
1; b

�
2) = (0; 0) (autarky is

Pareto optimal). The CNE supplies are (q̂1; q̂2) = (0; 0) and (b̂1; b̂2) = (0; 0).
Let us now compute the SNE. In the second stage of the game, the problems of

both types of followers may be written:

max
�2(q1;b1;b2)

min

0@�q2;
s�

b1 + b2
q1 + q2

q2

�21A , (51)

max
 2(q1;q2;b1)

min

0@s�q1 + q2
b1 + b2

b2

�2
;�b2

1A . (52)

The followers�best responses are given by:

�2(q1; b1; b2) = �q1 + (b1 + b2), (53)

 2(q1; q2; b1) = �b1 + (q1 + q2). (54)

Let �(�2(:);	2(:)) = 0, where �2(q1; q2; b1; b2) := q1 + q2 � (b1 + b2) and
(q1; q2; b1; b2) := b1 + b2 � (q1 + q2). The Jacobian is given by:

J�(qF ;bF )
=

�
1 �1
�1 1

�
. (55)

As
���J�(qF ;bF )

��� = 0, [�(0]�1 = f?g, so�(:) is not a di¤eormorphism. But, then,
the best responses do not exist. Therefore, the reduced form payo¤s of leaders do not
exist. Then, there is no strategic equilibrium which is the solution to the two-stage
game. Nevertheless, there is a CNE which corresponds to the autarkic CE.

4.4. SNE without di¤erentiability

Let TX = f1; 2g and TY = f1; 2g, with:

uk(xk; yk) = min fxk; ykg , k = i; j, i; j = 1, (56)

uk(xk; yk) = xk + yk, k = i; j, i; j = 2. (57)

The CE supplies are given by (q�1 ; q
�
2) =

�
1
2 ;

1
2

�
and (b�1; b

�
2) =

�
1
2 ;

1
2

�
. The CNE

supplies are (q̂1; q̂2) = (0; 0) and (b̂1; b̂2) = (0; 0).
Let us now compute the SNE. The OM are given by:

�2(q1; b1; b2) = �q1 +
p
(b1 + b2)q1, (58)
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 2(q1; q2; b1) = �b1 +
p
b1(q1 + q2). (59)

Let �(�2(:);	2(:)) = 0, where �2(q1; q2; b1; b2) := q1 + q2 �
p
(b1 + b2)q1 and

	2(q1; q2; b1; b2) := b1 + b2 �
p
b1(q1 + q2). The Jacobian is given by:

J�(qF ;bF )
=

24 1 � 1
2

q
q1

b1+b2

� 1
2

q
b1

q1+q2
1

35 . (60)

We get
���J�(qF ;bF )

��� = 1� 1
4

q
b1q1

(b1+b2)(q1+q2)
6= 0, so there exist best responses:

�2(q1; b1) =

p
(4b1 � 3q1)q1 � q1

2
, (61)

'2(q1; b1) =

p
(4q1 � 3b1)b1 � b1

2
. (62)

In the �rst stage, any leader maximizes her reduced form payo¤, with pX(q1; b1) =
b1+'2(q1;b1)
q1+�2(q1;b1)

=

p
(4q1�3b1)b1+b1p
(4b1�3q1)q1+q1

, so the problems of the two leaders may be written:

max
fq1g

min

 
1� q1;

p
(4q1 � 3b1)b1 + b1p
(4b1 � 3q1)q1 + q1

q1

!
, (63)

max
fb1g

min

 p
(4b1 � 3q1)q1 + q1p
(4q1 � 3b1)b1 + b1

b1; 1� b1

!
. (64)

Then, some computations lead to the unique SNE strategy pro�le:

(~q1; ~q2) =

�
1

2
; 0

�
(65)

(~b1;~b2) =

�
1

2
; 0

�
. (66)

A SNE with trade may exist even if Assumptions (2a), (2c) and (2d) are not
satis�ed for all traders: Assumption 2 constitutes a set of su¢ cient conditions.
But, beyond this, Example 4 provides new insights on competition in bilateral
oligopolies. The main salient feature stems from the fact that the symmetric CNE
is autarkic, whilst the SNE is non-autarkic. Indeed, this example allows trade
in the subgame between leaders whilst there is no trade in the subgame between
followers, and thereby in the entire game betweeen leaders and followers. It should
be noted that only the followers would have made trade if the speci�ed utility
functions had been reversed, that is if uk(xk; yk) = xk + yk, k = i; j, i; j = 1, and
uk(xk; yk) = min fxk; ykg, k = i; j, i; j = 2, then the SNE supplies are given by
(~q1; ~q2) = (0;

1
2 ) and (

~b1;~b2) = (0;
1
2 ). Such cases, which are speci�c to a sequential

strategic market game, might be called either a "partial trade equilibrium" or a
"partial autarkic equilibrium".
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5. CONCLUSION

We considered a framework in which all traders, consumers and suppliers, be-
haved strategically. Our model provided a rich set of strategic interactions, and
thereby it o¤ered new insights on the study of optimal behavior in oligopolistic de-
centralized markets. As a sequential game, it illustrated the possibility that trade
can only take place in one subgame. It also showed that the existence of a Nash
equilibrium for the entire game also depended on whether the followers�best re-
sponses were consistent. Assumptions 1 and 2 were su¢ cient conditions to ensure
that the system of equations which determined the followers�strategies were a C2-
di¤eomorphism, and thereby to show the existence of a SNE with trade.

Further theoretical issues could be explored. First, the existence of a SNE should
be extended to the case with more than two stages, and/or to an exchange economy
with a number of commodities larger than two. Second, the endogeneization of the
order of moves should be undertaken.

6. APPENDIX

Through this Appendix, we prove some intermediary results which are useful
to show our Theorem. Appendix A is devoted to the study of the followers�best
responses. Appendix B deals with the monotonicity properties of such mappings.
In Appendix C, we show that the existence of unique strategies. In Appendix D,
we show that the followers�best responses are bounded. Appendix E deals with the
existence of leaders�best responses. Appendix F shows the market price is bounded
in an �-SNE.

6.1. Appendix A: Proof of Proposition 1

Consider a follower of type X. We show the best reply ��i(q
L
� ;q

F
�i;�;b

L
� ;b

F
� ; �)

exists and is a C2 function. To this end, we study the properties of the payo¤ func-
tion �i;�(:). Then, we characterize the solution with the Kuhn-Tucker conditions.
Given an admissible strategy pro�le for all leaders and for all admissible strat-

egy pro�les of other followers, the problem of follower i consists of maximizing
his payo¤ ��i(qi;�;q�i;�;b�) subject to the set of admissible strategies Si. The so-
lution, if it exists, is the follower i�s best reply given in De�nition 1, namely
��i(q

L
� ;q

F
�i;�;b

L
� ;b

F
� ; �). Given (q

L
� ;q

F
�i;�;b

L
� ;b

F
� ) 2 S�i, the problem for follower i

may be written:

max
��i(q

L
� ;q

F
�i;�;b

L
� ;b

F
� ;�)
f��i(qi;�;qL� ;qF�i;�;bL� ;bF� ) : qi;� 2 Sig, � > 0, (A1)

where Si = [0; �i] is a nonempty compact convex set, and �i;�(:) is a continuous
function of (qL� ;q

F
�i;�;b

L
� ;b

F
� ; �) as �i;�(:) 2 C2. We show that �i;�(:) is a strictly

quasi-concave function of qi;�. Di¤erentiating (6) with respect to qi;� leads to:

@��i
@qi;�

= �@ui
@xi

+ p�X
Q�i;� + �

qi;� +Q�i;� + �

@ui
@yi

. (A2)

Di¤erentiating (A2) with respect to qi;� leads to:

@2��i
(@qi;�)2

= �
�� �Huzi ��� 2p�X Q�i;� + �(Q� + �)2

@ui
@yi

, (A3)
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where
�� �Huzi �� = @2ui

(@xi)2
� 2p�X

Q�i;�+�
Q�+�

@2ui
@xi@yi

+
�
p�X

Q�i;�+�
Q�+�

�2
@2ui
(@yi)2

is the determi-

nant of the bordered Hessian matrix of the function ui (see Assumption 2c). As
p�X

Q�i;�+�
Q�+�

= @ui=@xi
@ui=@yi

, and
�� �Huzi �� > 0 (Assumption 2c), and the last term is nega-

tive, then @2��i
(@qi;�)2

< 0, so ��i(:) is strictly concave (thereby strictly quasi-concave)

of qi;�. But then, the solution to (A1) is unique, so �
�
i(q

L
� ;q

F
�i;�;b

L
� ;b

F
� ; �) is point-

valued. Then, for each i = mX + 1; :::; nX , the mapping �
�
i(q

L
� ;q

F
�i;�;b

L
� ;b

F
� ; �) is a

function.
As the objective �i;�(:) is strictly quasi-concave (condition (d) in Arrow and

Enthoven (1961) holds), and the constraint set is quasi-convex (as it is convex),
the Kuhn-Tucker conditions are su¢ cient to identify the solution to (A1). De�ne
the Lagrangian L�i : S�R2+ �R++ ! R, with (qi;�;qL� ;qF�i;�;bL� ;bF� ;�i;�; �i;�; �) 7!
L�i(qi;�;qL� ;qF�i;�;bL� ;bF� ;�i;�; �i;�; �), as:

L�i(:; �) := ��i(qi;�;q
L
� ;q

F
�i;�;b

L
� ;b

F
� ; �) + �i;�(�i � qi;�) + �i;�qi;�, � > 0, (A4)

where �i;� > 0 and �i;� > 0 are the Kuhn-Tucker multipliers. Then, for all " > 0,
and given (qL� ;q

F
�i;�;b

L
� ;b

F
� ) 2 S�i, �

�
i(q

L
� ;q

F
�i;�;b

L
� ;b

F
� ; �), is the unique solution

to:

max
��i(:)

L�i(:; �) = ui(�i � qi;�;
B� + �

qi;� +Q�i;� + �
qi;�) + �i;�(�i � qi;�) + �i;�qi;�. (A5)

For all � > 0, by using (A2), the Kuhn-Tucker conditions may be written:

@L�i
@qi

= �@ui
@xi

+ p�X
Q�i;� + �

qi;� +Q�i;� + �

@ui
@yi

� �i;� + �i;� = 0, (A6)

�i;� > 0, (�i � qi;�) > 0, with �i;�(�i � qi;�) = 0, (A7)

�i;� > 0, qi;� > 0, with �i;�qi;� = 0. (A8)

Therefore, if qi;" > 0, then �i;� = 0, where bi;" is the solution to:

�@ui
@xi

+ p�X
Q�i;� + �

qi;� +Q�i;� + �

@ui
@yi

= �i;�, (A9)

which yields ��i(q
L
� ;q

F
�i;�;b

L
� ;b

F
� ; �) > 0. In addition, if �i;� > 0, then we have qi;� =

��i(q
L
� ;q

F
�i;�;b

L
� ;b

F
� ; �) = �i, while if �i;� = 0, then we have �

�
i(q

L
� ;q

F
�i;�;b

L
� ;b

F
� ; �) 2

(0; �i). Now, if �i;� > 0, then qi;" = 0, which means that �
�
i(q

L
� ;q

F
�i;�;b

L
� ;b

F
� ; �) = 0

and �i;� = 0 since qi;" < �i. Therefore, either we have �
�
i(q

L
� ;q

F
�i;�;b

L
� ;b

F
� ; �) > 0

when qi;� 2 (0; �i] or ��i(qL� ;qF�i;�;bL� ;bF� ; �) = 0. Then, �
�
i(q

L
� ;q

F
�i;�;b

L
� ;b

F
� ; �) >

0. In each case there exists a unique solution to (A1): either ��i(:) 2 f0; �ig or
��i(:) 2 (0; �i), i = mX + 1; :::; nX .
Finally, we show that ��i(:) 2 C2. (A6) de�nes implicitly ��i(:). As ��i(:) 2 C2

and @2��i
(@qi;�)2

6= 0, from the Implicit Function Theorem, we deduce ��i(:) 2 C2.
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6.2. Appendix B: Proof of Proposition 2

Let �a = (�qL� ; �q
F
� (�q

L
� ; �b

L
� ); �b

L
� ; �b

F
� (�q

L
� ; �b

L
� )) 2 S. First: J��

qF�

(�a) 2 (�I; I), where
I is the (nX �mX ; nX �mX) unit matrix.
The matrix J��

qF�

(�a) has unit terms on its main diagonal. To study the partial

e¤ects of a change in the strategy of any other follower, i.e. q�i;�, for �i 6= i,
�i = mX + 1; :::; nX , and bj;�, j = mY + 1; :::; nY , consider the identity:

@��i
@qi;�

(��i(q
L
� ;q

F
�i;�(:);b

L
� ;b

F
� (:); �);�

�
�i(q

L
� ;q

F
i;�(:);b

L
� ;b

F
� (:); �);b

L
� ;b

F
� (:); �) � 0,

(B1)
where, for each i = mX + 1; :::; nX , and �

�
i(q

L
� ;q

F
�i;�;b

L
� ;b

F
� ; �) is the solution to

(A2). Implicit partial di¤erentiation of (B1) with respect to q�i;�, for �i 6= i, leads

to @��i(:)
@q�i;�

= �
@2��i

@qi;�@q�i;�
@2��

i
(@qi;�)

2

, so we deduce:

@��i(:)

@q�i;�
=

p�X(
qi;�
Q�+�

@2ui
@xi@yi

+
qi;��(Q�i;�+�)

(Q�+�)2
@ui
@yi

� p�X
(Q�i;�+�)qi;�
(Q�+�)2

@2ui
(@yi)2

)

@2ui
(@xi)2

� p�X(2
Q�i;�+�
Q�+�

@2ui
@xi@yi

� p�X(
Q�i;�+�
Q�+�

)2 @2ui
(@yi)2

+ 2
Q�i;�+�
(Q�+�)2

@ui
@yi
)
. (B2)

Assume, without loss of generality, that, for at least one leader i or one follower

i0 we have ~qi;� 6
~Q�

2 or ~qi0;� 6
~Q�

2 (otherwise ~qi;�+ ~qi0;� > ~Q�). As
��� (Q�i;�+�)qi;�

(Q�+�)2

��� <�����Q�i;�+�
Q�+�

�2����, 2Q�i;�+�
Q�+�

>
qi;�
Q�+�

, and qi;��(Q�i;�+�)
(Q�+�)2

< 2
Q�i;�+�
(Q�+�)2

, then
��� @��i(:)@q�i;�

��� < 1.
Second: J��

bF�

(�a) 2 (�I; I). Implicit partial di¤erentiation of (B1) with respect
to bj;�, j = mY + 1; :::; nY , leads to:

@��i(:)

@bj;�
=

qi;�
Q�+�

@2ui
(@xi)2

� Q�i;�+�
(Q�+�)2

@ui
@yi

� p�X
(Q�i;�+�)qi;�
(Q�+�)2

@2ui
(@yi)2

@2ui
(@xi)2

� p�X(2
Q�i;�+�
Q�+�

@2ui
@xi@yi

� p�X(
Q�i;�+�
Q�+�

)2 @2ui
(@yi)2

+ 2
Q�i;�+�
(Q�+�)2

@ui
@yi
)
. (B3)

Then, a similar reasoning leads to the conclusion
���@��i(:)@bj;�

��� < 1, for all i 2 fmX +

1; :::; nXg, and all j 2 fmY + 1; :::; nY g.

6.3. Appendix C: Proof of Lemma 1

Consider the set of best responses speci�ed in De�nition 1. To build the system
of equations that implicitly de�ne the followers�strategies for the perturbed game,
de�ne the function ��i : S� R++ ! Si, with ��i(qL� ;qF� (:);bL� ;bF� (:); �) := qi;�(:)�
��i(q

L
� ;q

F
�i;�(:); ;b

L
� ;b

F
� (:); �), i = mX +1; :::; nX , and the function 	�j : S�R++ !

Sj , with 	�j(qL� ;qF� (:);bL� ;bF� (:); �) := bj;�(:) �  �j(q
L
� ;q

F
� (:);b

L
� ;b

F
�j;�(:); �), j =

mY + 1; :::; nY . As for each i = mX + 1; :::; nX , �
�
i(:) 2 C2(:), then ��i(:) 2 C2,

i = mX +1; :::; nX . Likewise, 	�j(:) 2 C2, j = mY +1; :::; nY . For all � > 0, consider
the system of equations for ��:

��i(q
L
� ;q

F
� (:);b

L
� ;b

F
� (:); �) = 0, i = mX + 1; :::; nX , (C1)

	�j(q
L
� ;q

F
� (:);b

L
� ;b

F
� (:); �) = 0, j = mY + 1; :::; nY .
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De�ne the (nX �mX +nY �mY )-dimensional vector function �� : S�R++ !
SF ,��(qL� ;q

F
� (:);b

L
� ;b

F
� (:); �) = (�

�
mX+1(:; �); :::;�

�
nX (:; �);	

�
mY +1(:; �); :::;	

�
nY (:; �)).

Then, (C1) may be written as a (nX�mX+nY �mY )-dimensional vector equation:

��(qL� ;q
F
� (:);b

L
� ;b

F
� (:); �) = 0. (C2)

Since we focus on inner solutions, consider the restriction of S � R++ to the
open set �S � R++, with �Si � Si, i 2 TX , and �Sj � Sj , j 2 TY . The vector
function ��(qL� ;q

F
� (:);b

L
� ;b

F
� (:); �) is C2 on the open set �S � R++ as each ��i

and each 	�j are C2 functions of (qL� ;bL� ) on the open set �S � R++. Let �a =
(�qL� ; �q

F
� (�q

L
� ; �b

L
� ); �b

L
� ; �b

F
� (�q

L
� ; �b

L
� )) be an interior point of S, where (�q

L
� ; �b

L
� ) corre-

sponds to a parameter con�guration. Therefore, the following identity, which de�nes
implicitly (at least locally) the strategies qL� := �

�(:) and bL� := '
�(:), holds in an

open neighborhood of �a:

��(qL� ;�
�(bL� ;q

L
� ; �);b

L
� ;'

�(bL� ;q
L
� ; �)) � 0. (C3)

We now show that �� is a local C2-di¤eomorphism, i.e. there exists a product
of open sets U � V in �S and a product neighborhood (UL�VL) in

mXQ
i=1

�Si �
mYQ
j=1

�Sj ,

with �a � U � V and (qL� ;bL� ) � (UL�VL) such that for each (qL� ;bL� ) in (UL�VL),
there exists (at least locally) one unique (nX � mX + nY � mY ) dimensional C2
vector function (��(qL� ;b

L
� ; �);'

�(qL� ;b
L
� ; �)) = [�

�]
�1
(0) in some neighborhood of

(qL� ;b
L
� ) such that (q

L
� ;�

�(:);bL� ;'
�(:)) 2 U � V and (C3) holds.

Implicit partial di¤erentiation with respect to each component of (�qL� ; �b
L
� ) yields:

J��

(qF� ;bF� )
(�a):A� + B� = 0, for each � > 0, (C4)

where:

J��

(qF� ;bF� )
(�a) =

26666666666664

1 :::
@��mX+1

@qnX;�

@��mX+1

@bmY +1;�
:::

@��mX+1

@bnY ;�

...
. . .

...
...

...
...

@��nX
@qmX+1;�

::: 1
@��nX

@bmY +1;�
:::

@��nX
@bnY ;�

@	�
mY +1

@qmX+1;�
:::

@	�
mY +1

@qnX;�
1 :::

@	�
mY +1

@bnY ;�

...
...

...
...

. . .
...

@	�
nY

@qmX+1;�
:::

@	�
nY

@qnX;�

@	�
nY

@bmY +1;�
::: 1

37777777777775
is an (nX �mX + nY �mY ; nX �mX + nY �mY ) matrix, while

A� =

2666666666664

@qmX+1;�

@q1;�
:::

@qmX+1;�

@qmX;�

@qmX+1;�

@b1;�
:::

@qmX+1;�

@bmY ;�

...
. . .

...
...

...
...

@qnX;�

@q1;�
:::

@qnX;�

@qmX;�

@qnX;�

@b1;�
:::

@qnX;�

@bmY ;�

@bmX+1;�

@q1;�
:::

@bmX+1;�

@qmX;�

@bmY +1;�

@b1;�
:::

@bmY +1;�

@bmY ;�

...
...

...
...

. . .
...

@bnY ;�

@q1;�
:::

@bnY ;�

@qmX;�

@bnY ;�

@b1;�
:::

@bnY ;�

@bmY ;�

3777777777775
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and

B� =

26666666666664

@��mX+1;�

@q1;�
:::

@��mX+1;�

@qmX;�

@��mX+1;�

@b1;�
:::

@��mX+1;�

@bmY ;�

...
. . .

...
...

...
...

@��nX;�

@q1;�
:::

@��nX;�

@qmX;�

@��nX;�

@b1;�
:::

@��nX;�

@bmY ;�

@	�
mY +1

@q1;�
:::

@	�
mY +1

@qmX;�

@	�
mY +1

@b1;�
:::

@	�
mY +1

@bmY ;�

...
...

...
...

. . .
...

@	�
nY

@q1;�
:::

@	�
nY

@qmX;�

@	�
nY

@b1;�
:::

@	�
nY

@bmY ;�

37777777777775
are matrices of dimension (nX �mX + nY �mY ;mX +mY ).
The square matrix J��

(qF� ;bF� )
(�a) has unit terms on the main diagonal and each

o¤-diagonal term is bounded below by �1 and above by 1, as from Proposition 2,
we have that �I << J��

(qF� ;bF� )
<< I and �I << J �

(qF� ;bF� )
<< I. Then, @�

�
i(:)

@q�i;�
=

� @��i(:)
@q�i;�

2 (�1; 1), with �i 6= i, and
���@��i(:)@bj;�

��� = ����@��i(:)
@bj;�

��� < 1, i = mX + 1; :::; nX ;

and
@	�

j(:)

@b�j;�
= �@ �j(:)

@b�j;�
2 (�1; 1), with �j 6= j, and

���@	�
j(:)

@qi;�

��� = ����@ �j(:)

@qi;�

��� < 1, j =

mY +1; :::; nY . The signs of the o¤ diagonal terms depend on whether the strategies
of followers are complements or substitutes. But, in any case, for all � > 0, the rows
of the matrix J��

(qF" ;bF" )
(�q"; �b") are linearly independent, so the matrix J��

(qF� ;bF� )
(�a)

is of full rank, and then invertible. Then, for all � > 0,
���J��

(qF� ;bF� )
(�a)
��� 6= 0: the di¤er-

ential of�� is a C1-di¤eomorphism, and, by the local inversion theorem,�� is a local
C2-di¤eomorphism. But, then, by the Implicit Function Theorem (Raeburn 1979,
Dontchev and Rockafellar 2014), there exist open sets U � V in �S and (UL�VL) in
mXQ
i=1

�Si�
mYQ
j=1

�Sj , with �a � U � V and (qL� ;bL� ) � (UL�VL) such that for each (qL� ;bL� )

in (UL�VL), there exists (at least locally) one unique (nX �mX + nY �mY ) di-
mensional vector function (qF� (q

L
� ;b

L
� ; �);b

F
� (q

L
� ;b

L
� ; �)) in some neighborhood of

(qL� ;b
L
� ) such that (q

L
� ;q

F
� (q

L
� ;b

L
� ; �);b

L
� ;b

F
� (q

L
� ;b

L
� ; �)) 2 U � V, and the identity

��(qL� ;q
F
� (q

L
� ;b

L
� ; �);b

L
� ;b

F
� (q

L
� ;b

L
� ; �)) � 0 holds. Indeed, the unique solution

(��(qL� ;b
L
� ; �);'

�(qL� ;b
L
� ; �)) to (q

F
� (q

L
� ;b

L
� ; �);b

F
� (q

L
� ;b

L
� ; �)) = [��]

�1
(0) is de-

�ned by �� : SL�R++ � (UL�VL)!
nXQ

i=mX+1

Si, with qF� = ��(qL� ;bL� ; �), and by

'� : SL � R++ � (UL�VL) !
nYQ

j=mY +1

Sj , with bF� = '�(qL� ;bL� ; �). For all � > 0,

each component function ��i(:) is de�ned as �
�
i : SL �R++ � (UL�VL)! Si, with

qi;� = ��i(q
L
� ;b

L
� ; �), i = mX + 1; :::; nX . The same holds for '�j : SL � R++ �

(UL�VL), with bj;� = '�j(q
L
� ;b

L
� ; �) j = mY + 1; :::; nY . In addition, for all � > 0,

��i(q
L
� ;b

L
� ; �) 2 C2(S;Si), for each i = mX+1; :::; nX , and '�j(q

L
� ;b

L
� ; �) 2 C2(S;Sj),

for each j = mY + 1; :::; nY .

6.4. Appendix D: Proof of Proposition 3

Let �a = (�qL� ; �q
F
� (�q

L
� ; �b

L
� ); �b

L
� ; �b

F
� (�q

L
� ; �b

L
� )) in S. We show that, for each i =

mX+1; :::; nX , ��i(:) satis�es�1 6
@��i(q

L
� ;b

L
� ;�)

@qi;�
< 1, and, for each j = mY+1; :::; nY ,

'�j(:) satis�es
@'�j(:)

@qi;�
> 0.
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First, we show �1 6 @��i(:)
@qi;�

< 1. Consider (9). From Cramer�s rule:

@qmX+1;�

@q1;�
= �

����J 0
��
(qF� ;bF� )

(�a)

�������J��

(qF� ;bF� )
(�a)
��� , (D1)

where J 0
��

(bF� ;qF� )

(�a) is the (nX � mX + nY � mY ; nX � mX + nY � mY ) square

matrix obtained by replacing the �rst column in J��
(bF� ;qF� )

(�a) by the �rst column

of B�, so that:

J 0
��

(qF� ;bF� )

(�a) =

26666666666664

@��mX+1

@q1;�
:::

@��mX+1

@qnX;�

@��mX+1

@bmY +1;�
:::

@��mX+1

@bnY ;�

...
. . .

...
...

...
...

@��nX
@q1;�

::: 1
@��nX

@bmY +1;�
:::

@��nX
@bnY ;�

@	�
mY +1

@q1;�
:::

@	�
mY +1

@qnX;�
1 :::

@	�
mY +1

@bnX;�

...
...

...
...

. . .
...

@	�
nY

@q1;�
:::

@	�
nY

@qnX;�

@	�
nY

@bmY +1;�
::: 1

37777777777775
(D2)

Note (D1) is well-de�ned, as from Lemma 1, we have
���J��

(qF� ;bF� )
(�a)
��� 6= 0. Let

@��i
@q1;�

= 0, i = mX + 1; :::; nX , and
@	�

j

@q1;�
= 0, j = mY + 1; :::; nY , in (D2). The

matrices J 0
��
(qF� ;bF� )

(�a) and J��
(qF� ;bF� )

(�a) have common terms: the o¤-diagonal terms

of the matrix B� coincide with the o¤-diagonal terms of the matrix J��

(qF� ;bF� )
(�a) as

Q �
P
i2T1

qi and B �
P
j2T2

bj . If
@qmX+1;�

@q1;�
< �1, then����J 0

��

(qF� ;bF� )

(�a)

���� > ���J��
(qF� ;bF� )

(�a)
��� . (D3)

Expansion by cofactors of the both sides of (D3), and cancellation among
common terms on both sides, lead to:

@��mX+1

@q1;�

����J 0
��
(qF� ;bF� )

(�a)

���� > ���J��
(qF� ;bF� )

(�a)
��� , (D4)

where

����J 0
��

(qF� ;bF� )

(�a)

���� stands for the principal minor of order (nX � mX + nY �

mY � 1):(1; 1) of J 0
��

(qF� ;bF� )

(�a). From (D3), we have
@��mX+1

@q1;�
> 1. A contradiction

as
@��mX+1

@q1;�
< �1. Then, we have �

�����J 0
��
(qF� ;bF� )

(�a)

����������J��
(qF� ;bF� )

(�a)

�����
6 1, so

@��mX+1

@q1;�
> �1. Next, if

@qmX+1;�

@q1;�
> 1, then

@��mX+1

@q1;�
< �1. A contradiction. Then, @�

�
mX+1

@q1;�
< 1.

As the same holds for all best responses, and for every i = 1; :::;mX , then

�I �
@[��mX+1(b

L
� ;q

L
� ; �); :::;�

�
nX (b

L
� ;q

L
� ; �)]

@[q1;�; :::; qmX ;�]
<< I, (D5)
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where I is the (nX �mX ;mX) unit matrix.

Now, we show
@'�j(:)

@qi;�
> 0, j = mY + 1; :::; nY , i = 1; :::;mX . Assume

@'�j(:)

@qi;�
< 0

(strategies are substitutes so goods are complements). Then, u(:) is not di¤eren-
tiable, which contradicts Assumption 2a. Then, the conclusion follows.

6.5. Appendix E: Proof of Proposition 4

Consider a leader of type X (the same holds for a type Y leader). We show that,
for each i = 1; :::;mX , the best reply �

�
i(q

L
�i;�;b

L
� ; �) exists and is a continuous func-

tion (a similar reasoning holds for  �j(q
L
� ;b

L
�j;�; �), for each j = 1; :::;mY ). To this

end, we study the properties of the reduced form payo¤ ��i(qi;�;q
L
�i;�; :;b

L
� ; :; �) �

��i(qi;�;q
L
�i;�;�

�(qi;�;q
L
�i;�;b

L
� ; �);b

L
� ;'

�(qi;�;q
L
�i;�;b

L
� ; �)). Then, we characterize the

solution with the Kuhn-Tucker conditions. For all admissible strategy pro�les of
other leaders, the problem for leader i may be written:

max
��i(q

L
�i;�;b

L
� ;�)
f��i(qi;�;qL�i;�; :;bL� ; :; �) : qi;� 2 Sig, � > 0, (E1)

The solution, if it exists, is leader i�s best reply (see De�nition 3), i.e. qi;� =
��i(q

L
�i;b

L; �). The set Si = [0; �i] is nonempty, compact and convex. As ui(:) 2 C2
and ��(:) 2 C2, and '�(:) 2 C2, we have ��i(qL�i;�;bL� ; �) 2 C2. Then, ��i(:) is a
continuous function of (qi;�;q�i;�;b�; �). We show ��i(:) is a strictly quasi-concave
function of qi;�. Di¤erentiating (6) with respect to qi;�, and using ��(:) and '�(:)
yield:

@��i
@qi;�

= �@ui
@xi

+ �p�X
@ui
@yi

, (E2)

where � � 1 � (1 + �Xi;�)
qi;�
Q�+�

+ �Xi;�
qi;�
B�+�

, �Xi;� =
@
P

i �
�
i(:)

@qi;�
, �Xi;� =

@
P

j '
�
j(:)

@qi;�
, and

p�X
M
= pX(q

L
� ;�

�(qL� ;b
L
� ; �);b

L
� ;'

�(qL� ;b
L
� ; �)). By construction �Xi;� = �X� , and

�Xi;� = �X� , with �
X
� 2 [�1; 1) and �X� > 0 (from 2a.). Indeed, as � 2 [0; 1], then

0 6 �(1 + �X� )
qi;�
Q�+�

+ �X�
qi;�
B�+�

6 1, which leads to �X�
2��X�

6 B�+�
Q�+�

6 �X�
1+�X�

. Then,

�X� 6 1
2 . And, from Proposition 3, we get �X� > �1 as @��i(:)

@qi;�
> �1. Next, by

di¤erentiating (E2) with respect to qi;� leads to:

@2��i
(@qi;�)2

=
@2ui
(@xi)2

� 2�p�X
@ui

@xi@yi
+ (�p�X)

2 @
2ui

(@yi)2
� �@ui

@yi
, (E3)

where � � (1+�X� )(B�+�)
(Q�+�)2

(2� (1+�X� )qi;�
Q�+�

)� 2�X�
Q�+�

(1� (1+�X� )qi;�
Q�+�

). The �rst three terms
on the right hand side of (E3) are equal to the negative of the determinant of
the bordered Hessian matrix of ui, which is positive from (2c). For (E3) to be

strictly negative, it is su¢ cient that � > 0, that is, B�+�
Q�+�

>
2�X�
1+�X�

1� (1+�X� )qi;�
Q�+�

2� (1+�X� )qi;�
Q�+�

.

But, as � 6 1, then B�+�
Q�+�

6 �X�
1+�X�

. Assume that �X�
1+�X�

<
2�X�
1+�X�

1� (1+�X� )qi;�
Q�+�

2� (1+�X� )qi;�
Q�+�

. Then,

1
2 <

1� (1+�X� )qi;�
Q�+�

2� (1+�X� )qi;�
Q�+�

. A contradiction. Then, � > 0. As @2��i
(@qi;�)2

< 0, the solution to

(E1) is unique, so ��i(q
L
�i;b

L; �) is point-valued. Then, the mapping ��i(q
L
�i;b

L; �)

30



is a function. As ��i(:) is strictly quasi-concave, and Si is quasi-convex, the Kuhn-
Tucker conditions are su¢ cient to identify the solution to (E1). Let

L�i(:; �) := ��i(qi;�;q
L
�i;�;�

�(qi;�; :; �);b
L
� ;'

�(qi;�; :; �))+�i;�(�i�qi;�)+�i;�qi;�, (E4)

where �i;�; �i;� > 0, i = 1; :::;mX . Then, �
�
i(q

L
�i;�;b

L
� ; �) is the unique solution to:

max
��i(:)

L�i(:; �) = ui(�i�qi;�;
BL� +

P
j '

�
j(:; �) + �

qi;� +QL�i;� +
P
k;k 6=i

��k(:; �) + �
qi;�)+�i;�(�i�qi;�)+�i;�qi;�.

(E5)
For all � > 0, the Kuhn-Tucker conditions may be written:

@L�i
@qi;�

= �@ui
@xi

+ �p�X
@ui
@yi

� �i;� + �i;� = 0, (E6)

�i;� > 0, (�i � bi;�) > 0, with �i;�(�i � bi;�) = 0, (E7)

�i;� > 0, bi;� > 0, with �i;� bi;� = 0. (E8)

If ��i(q
L
�i;�;b

L
� ; �) > 0, then �i;� = 0, where bi;� is the solution to:

�@ui
@xi

+ �p�X
@ui
@yi

= �i;�. (E9)

If �i;� > 0, then qi;� = ��i(q
L
�i;�;b

L
� ; �) = �i; if �i;� = 0, then �

�
i(q

L
�i;�;b

L
� ; �) 2

(0; �i). Now, if �i;� > 0, then �
�
i(q

L
�i;�;b

L
� ; �) = 0 and �i;� = 0 since qi;� < �i. Then,

either ��i(b
L
�i;�;q

L
� ; �) > 0 when bi;� 2 (0; �i] or ��i(bL�i;�;qL� ; �) = 0. Then, there is

a unique maximum qi;� = ��i(b
L
�i;�;q

L
� ; �) > 0, i = 1; :::;mX .

Finally, by using Berge Maximum Theorem, ��i(q
L
�i;�;b

L
� ; �) 2 C0, i = 1; :::;mX .

6.6. Appendix F: Proof of Lemma 3

To show Lemma 3, we adapt to our sequential framework one result based on the
Uniform Monotonicity Lemma (see Lemma C, p. 8, in Dubey and Shubik, 1978).

LEMMA 6 (Uniform monotonicity). Let c 2 fX;Y g, let uk : R2+ ! R, zk 7�!
uk(zk), k = i; j, i 2 TX , j 2 TY , be a continuous and increasing function, and let
H be a positive constant. Then, there exists a positive real number h(uk(:); c;H) 2
(0; 1) such that, for all sk; zk 2 R2+, if kzkk 6 H and ksk � zkk 6 h(uk(:); c;H),
then uk(sk + ec) > uk(zk), where k:k denotes the Euclidean norm, and ec denotes
the vector in R2+ whose c-th component is 1 and the other 0.

PROOF. Lemma 6 is a direct consequence of Lemma C in Dubey and Shubik
(1978) (see Appendix B, p. 19) as, for each k, uk(:) satis�es Assumptions 2a-2b.

We now show that there exist some uniform bounds on the relative price in each
perturbed subgame. First, we show there is �1 > 0 such that p

�
X > �1. Second, we

show there is �2 > 0 such that p�X < �2. Let (~q
L
� ; ~q

F
� (~q

L
� ; ~b

L
� ); ~b

L
� ; ~b

F
� (~q

L
� ; ~b

L
� )) be

an �-SNE, and let ~p�X
M
= p�X(~q

L
� ; ~q

F
� (~q

L
� ; ~b

L
� ); ~b

L
� ; ~b

F
� (~q

L
� ; ~b

L
� )) be the corresponding

relative price.
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1. First, we show the existence of �1 > 0 such that ~p
�
X > �1. Consider one leader

j and one follower j0. Let

H = max
�
��; ��

	
, with �� �

X
i2TX

�i and �� �
X
j2TY

�j ; (F1)

h = minfh(uj ; Y;H); h(uj0 ; Y;H)g;

A =
1

2
minf�j ; �j0g, j 6= j0.

Assume, without loss of generality, that ~bj;� 6
~B�

2 or ~bj0;� 6
~B�

2 , for at least
one leader j or one follower j0 (otherwise ~bj;�+ ~bj0;� > ~B�). Consider an increase of
strategic supply at each stage.
Consider �rst follower j0. Suppose �j0�~bj0;� > A. Then, an increase � in follower

j0�s supply such that bj0;�(�) = ~bj0;�+ �, with � 2 (0; 12 minf�; Ag], has the following
incremental e¤ect on his �nal holding:

xj0;�(�)� xj0;� =
~Q� + �

~B� + �+ �
(~bj0;� + �)�

~Q� + �
~B� + �

~bj0;� (F2)

= �
~B� + �� ~bj0;�
~B� + �+ �

~Q� + �
~B� + �

> �

~B�

2 +
�
2 +

�
2

~B� + �+ �

~Q� + �
~B� + �

=
�

2

1

~p�X
,

and

yj0;�(�)� yj0;� = (�j0 � ~qj0;� � �)� (�j0 � ~qj0;�) = ��, (F3)

where the strict inequality in (F2) results from ~B�+ ��~bj0;� >
~B�

2 + � >
~B�

2 +
�
2 +

�
2

(as ~bj0;� 6
~B�

2 and � 6 1
2�). Let us de�ne

t = �2~p�XeY , where eY = (0; 1). (F4)

Then, the following vector inequality holds:

zj0;�(bj0;�(�); p
�
X(~q

L
� ; ~q

F
� (:); ~b

L
� ; bj0;�(�); ~b

F
�j;�(:))) � zj0;�(~bj0;�; ~p�X) +

�

2

1

~p�X
(eX + t),

(F5)
where eX = (1; 0), and where, by (F2), the inequality (F5) is strict for the �rst com-
ponent of zj0;�. We can now apply Lemma 6, with c = X, zj0;� = zj0;�(~bj0;�; ~p�X) and

sj0;� = zj0;�(~bj0;�; ~p
�
X)+t. We know that zj0;�(~bj0;�; ~p

�
X) 2 R2+ and

zj0;�(~bj0;�; ~p�X) 6
H. If sj0;� 2 R2+ and ktk 6 h, then, by Lemma 6, we get:

uj0(zj0;�(~bj0;�; ~p
�
X) + e

X + t) > uj0(zj0;�(~bj0;�; ~p
�
X)). (F6)

As uj0 satis�es Assumptions (2b) and (2c), and as 0 < �
2
1
~p�X

< 1, then we deduce:

uj0(zj0;�(~bj0;�; ~p
�
X) +

�

2

1

~p�X
(eX + t)) > uj0(zj0;�(~bj0;�; ~p

�
X)). (F7)
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Then, as (F5) holds strictly for its �rst component, from (2b), we deduce:

uj0(zj0;�(bj0;�(�); p
�
X(~q

L
� ; ~q

F
� (:); ~b

L
� ; bj0;�(�); ~b

F
�j;�(:)))) > uj0(zj0;�(~bj0;�; ~p

�
X)), (F8)

a contradiction. Hence, either zj0;�(bj0;�; ~p�X)+t < 0 or ktk > h. If zj0;�(bj0;�; ~p�X)+t <
0, then, ~yj0;� � 2~p�X < 0. As ~yj0;� = �j0 � ~bj0;� > A, we deduce:

~p�X >
A

2
. (F9)

Suppose now we have ktk > h. Then, we deduce:

~p�X >
h

2
. (F10)

Finally, assume that the inequality �j0 � ~bj0;� > A does not hold, which means
that �j0 � ~bj0;� < A. Then, we have ~bj0;� > �j �A > A. Then ~bj0;� > A, so, we get:

~p�X >
A

��
. (F11)

Therefore, it su¢ ces to take for follower j0:

�j
0

1 = min

�
A

2
;
h

2
;
A

��

�
. (F12)

Consider now leader j. Assume �j � ~bj;� > A. Let bj;�(�) = ~bj;� + �, with

� 2 (0; 12 minf�; Ag]. As ~p
�
X =

PmX
i=1 ~qi;�+

P
j
'�j(b

L
� ;q

L
� )+�PmY

j=1
~bj;�+

P
i
��i(b

L
� ;q

L
� )+�

, then we have:

xj;�(�)� xj;� =

mXP
i=1

~qi;� +
P
i �

�
i(q

L
� ;b

L
� + �) + �

mYP
j=1

~bj;� + � +
P
j '

�
j(q

L
� ;b

L
� + �) + �

(~bj;� + �)�
~bj;�
~p�X

(F13)

= �
~B� + �� (1 + �Y� )~bj;�
~B� + �+ (1 + �Y� )�

~Q� + �
~B� + �

+ ��Y�
~bj;� + �

~B� + �+ (1 + �Y� )�

> �(1� �Y� )
~B�

2 +
�
2 + (1 + �

Y
� )

�
2

~B� + �+ (1 + �Y� )�

1

~p�X
+ �a�Y�

=
�

2

�
1� �Y�
~p�X

+ 2a�Y�

�
,

and

yj;�(�)� yj;� = ��, (F14)

where a � ~bj;�+�
~B�+�+(1+�Y� )�

, with 0 < a 6 1, �Y� =
@
P

j '
�
j(:)

@bj;�
and �Y� =

@
P

i �
�
i(:)

@bj;�
, and

where the strict inequality results from ~B� + � � (1 + �Y� )
~bj;� > (1 � �Y� )

~B�

2 + � >

(1� �Y� )(
~B�

2 +
�
2 + (1 + �

Y
� )

�
2 ) as

~bj;� 6
~B�

2 , � 6
1
2� and �

Y
� 2 [�1; 12 ]. Let us de�ne

t = �2 ~p�X
1� �Y� + 2a�Y� ~p�X

eY . (F15)
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Then, the following vector inequality holds:

zj;�(bj;�(�); p
�
X(~q

L
� ;q

F
� (~q

L
� ;bj;�(�);

~bL�j;�); bj;�(�);
~bL�j;�;b

F
� (~q

L
� ;bj;�(�); ~b

L
�j;�))) �

zj;�(~bj;�; ~p
�
X) +

�
2
1��Y� +2a�

Y
� ~p

�
X

~p�X
(eX + t).

(F16)
Let c = X, zj;�(~bj;�; ~p�X) and sj;� = zj;�(~bj;�; ~p

�
X)+t. We know that zj;�(~bj;�; ~p

�
X) 2

R2+ and
zj;�(~bj;�; ~p�X) 6 H. Suppose that sj;� 2 R2+ and ktk 6 h. Then, by Lemma

6, we deduce:

uj(zj;�(~bj;�; ~p
�
X) + e

X + t) > uj(zj;�(~bj;�; ~p
�
X)). (F17)

From Assumptions (2b) and (2c) and as 0 < �( 12
1��Y�
~p�X

+ a�Y� ) < 1, we deduce:

uj(zj;�(~bj;�; ~p
�
X) +

�

2

1� �Y� + 2a�Y� ~p�X
~p�X

(eX + t)) > uj(zj;�(~bj;�; ~p
�
X)). (F18)

But then, by Assumptions (2b) and (2c), we deduce:

uj(zj;�(bj;�(�); p
�
X(~q

L
� ;q

F
� (~q

L
� ;bj;�(�);

~bL�j;�); bj;�(�);
~bL�j;�;b

F
� (~q

L
� ;bj;�(�); ~b

L
�j;�)))) >

uj(zj;�(~bj;�; ~p
�
X)),

(F19)
a contradiction. Hence, either zj;�(~bj;�; ~p�X)+t < 0 or ktk > h. Thus, if zj;�(~bj;�; ~p�X)+
t < 0, then, ~yj;� � 2~p�X

1��Y� +2a�Y� ~p�X
< 0. Then, we have:

~p�X >
A

2

�
1� �Y�
1� a�Y� A

�
, (F20)

as ~yj;� = �j � ~bj;� > A, where A
2

1��Y�
1�a�Y� A

> 0. Reason: A2
1��Y�
1�a�Y� A

> A
2 (1� �Y� ) > 0.

The strict inequality holds as A2 > 0 and �
Y
� < 1, while the weak inequality results

from a�Y� A > 0 since 0 < a 6 1, A > 0, and �Y� > 0 (remind, from (2a), that uj0 is
di¤erentiable so �Y� cannot be negative, and � 2 [�1; 1] in (E2)). Next, if ktk > h,
then:

~p�X >
h

2

�
1� �Y�
1� a�Y� h

�
, (F21)

where h
2

1��Y�
1�a�Y� h

> 0. Reason: h
2

1��Y�
1�a�Y� h

> h
2 (1 � �Y� ) > 0. The strict inequality

holds as h
2 2 (0;

1
2 ) and �

Y
� < 1, while the weak inequality results from a�Y� h > 0

since 0 < a 6 1, h 2 (0; 1), and �Y� > 0. Finally, assume that �j �~bj;� > A does not
hold, i.e. �j � ~bj;� < A. Then, ~bj;� > �j �A > A. Then, ~bj;� > A, so we deduce:

~p�X >
A

��
. (F22)

Therefore, it su¢ ces to take for leader j:

�j1 = min

�
A

2

�
1� �Y�
1� a�Y� A

�
;
h

2

�
1� �Y�
1� a�Y� h

�
;
A

��

�
. (F23)
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Then, by taking �1 = min(�
j
1; �

j0

1 ), where �1 > 0, we conclude that:

~p�X > �1. (F24)

2. Second, we show there is �2 > 0 such that ~p�X < �2. Consider one leader i
and one follower i0. Let

ĥ = minfh(uj ; Y;H); h(uj0 ; Y;H)g; (F25)

Â =
1

2
minf�i; �i0g, i 6= i0.

Assume ~qi;� 6
~Q�

2 or ~qi0;� 6
~Q�

2 . Consider follower i
0. Assume �i0 � ~qi0;� > Â. Let

qi0;�(�) = ~qi0;�+�, with � 2 (0; 12 minf�; Âg]. Then, his �nal holding may be written:

xi0;�(�)� xi0;� = ��; (F26)

and

yi0;�(�)� yi0;� >
�

2
~p�X , (F27)

as ~Q� + �� ~qi0;� >
~Q�

2 + � >
~Q�+��~qi0;�

2 + �
2 +

�
2 (as � < �). Let us de�ne

t = � 2

~p�X
eX . (F28)

Then, we have the vector inequality:

zi0;�(qi0;�(�); p
�
X(~q

L
� ; qi0;�(�); ~q

F
�i0;�(:); ~b

L

� ; ~b
F
� (:))) � zi0;�(~qi0;�; ~p�X) +

�

2
~p�X(t+ e

Y ).

(F29)
Suppose that ri;� 2 R2+ and ktk 6 h. Then, by Lemma 6, with c = Y , we get:

ui0(zi0;�(~qi0;�; ~p
�
X) + t+ e

Y ) > ui0(zi0;�(~qi0;�; ~p
�
X)): (F30)

As Assumptions (2b) and (2c) hold for ui0 , and as 0 < �
2 ~p
� < 1, then:

ui0(zi0;�(~qi0;�; ~p
�
X) +

�

2
~p�X(t+ e

Y )) > ui0(zi0;�(~qi0;�; ~p
�
X)). (F31)

But then, by Assumptions (2b) and (2c), we have that:

ui0(zi0;�(qi0;�(�); p
�
X(qi0;�(�); ~q�i0;�; ~b�))) > ui0(zi0;�(~qi0;�; ~p

�
X)), (F32)

a contradiction. Then, either zi0;�(~qi0;�; p�X)+t < 0 or ktk > h. Thus, if zi0;�(~qi0;�; p�X)+
t < 0, then, ~xi0;� � 2

~p�X(~q�;
~b�)

< 0. As ~xi0;� = �i0 � ~qi0;� > Â, we deduce:

~p�X <
2

Â
. (F33)

Suppose now we have ktk > h. Then, we deduce:

~p�X <
2

ĥ
. (F34)
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Finally, assume �i� ~qi0;� < Â. Then, ~qi0;� > �i�Â > Â, so ~qi0;� > Â. We deduce:

~p�X <
��

Â
. (F35)

Therefore, it is su¢ cient to take:

�i
0

2 = max

�
2

Â
;
2

ĥ
;
��

Â

�
. (F36)

Consider now leader i. Assume that �i � ~qi;� > Â. Let qi;�(�) = ~qi;� + �, with
� 2 (0; 12 minf�; Âg]. Such an increase has the following e¤ect on her �nal holding:

xi;�(�)� xi;� = ��, (F37)

and

yi;�(�)� yi;� =

mYP
j=1

~bj;� +
P
j '

�
j(b

L
� ;q

L
� + �) + �

mXP
i=1

~qi;� + � +
P
i �

�
i(b

L
� ;q

L
� + �) + �

(~qi;� + �)� ~p�X ~qi;� (F38)

= �
~Q� + �� (1 + �X� )~qi;�
~Q� + (1 + �X� )� + �

~B� + �
~Q� + �

+ ��X�
~qi;� + �

~Q� + (1 + �X� )� + �

> �(1� �X� )
~Q�

2 + (1 + �
X
� )

�
2 +

�
2

~Q� + (1 + �X� )� + �
~pX + �d�

X
�

=
�

2
((1� �X� )~p�X + 2d�X� ),

where d � ~qi;�+�
~Q�+(1+�X� )�+�

, with 0 < d 6 1, �X� =
@
P

i �
�
i(q

L
� ;b

L
� ;�)

@qi;�
and �X� =

@
P

j '
�
j(q

L
� ;b

L
� ;�)

@qi;�
for � su¢ ciently small, and where the strict inequality results from

~Q� + � � (1 + �X� )~qi;� > (1 � �X� )(
~Q�

2 +
�
2 + (1 + �X� )

�
2 ) as ~qi;� 6

~Q�

2 always holds,
and as � < �, with �X� 2 [�1; 1). Let us de�ne

t = �2 1

(1� �X� )~p�X + 2d�X�
eX . (F39)

Then, the following vector inequality holds:

zi;�(qi;�(�); p
�
X(qi;�(�); ~q

L
�i;�;q

F
� (qi;�(�); ~q

L
� ; ~b

L

� ); ~b
L
� ;b

F
� (qj;�(�); ~q

L
�i;�;

~b
L

� ))) �
zi;�(~qi;�; ~p

�
X) +

�
2 ((1� �

X
� )~p

�
X + 2d�

X
� )(t+ e

Y ).
(F40)

Suppose that si;� 2 R2+ and ktk 6 h. Then, by Lemma 6, we deduce:

ui(zi;�(~qi;�; ~p
�
X) + t+ e

Y ) > ui(zi;�(~qi;�; ~p
�
X)). (F41)

From (2b) and (2c) and as 0 < �(
1��X�
2 ~p�X + d�

X
� ) < 1, we deduce:

ui(zi;�(~qi;�; ~p
�
X)) +

�

2
((1� �X� )~p�X + 2d�X� )(t+ eY )) > ui(zi;�(~qi;�; ~p

�
X)). (F42)
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But then, by Assumptions (2b) and (2c), we have that:

ui(qi;�(�); p
�
X(qi;�(�); ~q

L
�i;�;q

F
� (qi;�(�); ~q

L
�i;�; ~b

L

� ); ~b
L
� ;b

F
� (qj;�(�); ~q

L
�i;�;

~b
L

� )))) >
ui(zi;�(~qi;�; ~p

�
X)),

(F43)
a contradiction. Then, either zi;�(~qi;�; ~p�X)+t < 0 or ktk > h. Thus, if zi;�(~qi;�; ~p�X)+
t < 0, then, ~xi;� � 2 1

(1��X� )~p�X+2d�X�
< 0. As ~xi;� = �i � ~qi;� > Â, we get:

~p�X <
2

Â

 
1� d�X� Â
1� �X�

!
, (F44)

where 2
Â

1�d�X� Â
1��X�

> 0. Reason: 2
Â

1�d�X� Â
1��X�

> 2
Â

d2

1��X�
> 0 as d 2 (0; 1] and �X� < 1.

The weak inequality leads to d2 + d�X� Â� 1 6 0, so d 6 �
�X� Â
2 +

p
(�X� Â)

2+4

2 , with

0 6 d 6 1. Then we must have ��X� Â
2 +

p
(�X� Â)

2+4

2 6 1, which holds as �X� Â > 0.
Next, if ktk > h, then:

~p�X <
2

ĥ

 
1� d�X� ĥ
1� �X�

!
, (F45)

where 2
ĥ

1�d�X� ĥ
1��X�

> 0. Reason: 2
ĥ

1�d�X� ĥ
1��X�

> 2
ĥ

d2

1��X�
> 0. The weak inequality leads

to d2 + d�X� ĥ� 1 6 0, which yields d 6 �
�X� ĥ
2 +

p
(�X� ĥ)

2+4

2 , with d > 0. As d 6 1,
we must have ��X� ĥ

2 +

p
(�X� ĥ)

2+4

2 6 1, which is satis�ed as �X� ĥ > 0.
Finally, assume that the inequality �i�~qi;� > Â does not hold, i.e., �i�~qi;� < Â.

Then, we have ~qi;� > �i � Â > Â. Then, we have ~qi;� > Â, so we deduce:

~p�X <
��

Â
. (F46)

Therefore, it su¢ ces to take for leader i:

�i1 = max

(
2

Â

 
1� d�X� Â
1� �X�

!
;
2

ĥ

 
1� d�X� ĥ
1� �X�

!
;
��

Â

)
. (F47)

Then, by taking �2 = max(�
i
2; �

i0

2 ), we conclude that:

~p�X < �2. (F48)
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