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Abstract

We analyse whether, and when, a large set of Google search data can be useful to

increase GDP nowcasting accuracy once we control for information contained in official

variables. We put forward a new approach that combines variable pre-selection and

Ridge regularization and we provide theoretical results on the asymptotic behaviour of

the estimator. Empirical results on the euro area show that Google data convey useful

information for pseudo-real-time nowcasting of GDP growth during the four first weeks

of the quarter, when macroeconomic information is lacking. However, as soon as official

data become available, their relative nowcasting power vanishes. In addition, a true

real-time analysis confirms that Google data constitute a reliable alternative when

official data are lacking.
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1 Introduction

Big sets of alternative data are now widely used by practitioners for short-term

macroeconomic forecasting and nowcasting purposes. Seminal papers on the use of al-

ternative datasets against this backdrop tend to show evidence of a sizeable gain when

using such data (see for example the use of Google data by Choi and Varian [2009] or

Choi and Varian [2012]). In this paper, we ask the question whether such data are still

useful when controlling for official variables, such as opinion surveys or production, gen-

erally used by forecasters. And if so, when exactly are those alternative data actually

adding a gain in nowcasting accuracy, both in quasi and true real-time frameworks. In

this respect, we focus on Google search data and assess their ability to provide useful

information to nowcast the euro area quarterly GDP growth rate. Using a new approach

mixing variable selection and ridge regression, for which we provide asymptotic results as

regards the estimator, we empirically show that Google data are indeed useful, but only

when official data are not available to practitioners, that is during the first four weeks

at the beginning of the quarter. After this initial period, the marginal gain of those

data tends to disappear as soon as official variables become available. Those results

hold in real-time, meaning that Google data can be used by practitioners when official

data are lacking. In addition to this, we explore the usefulness of Google search data

during recession periods. We show that Google search data overperform official statis-

tics to nowcast euro area GDP during the Great Recession period from 2008q1 to 2009q2.

Nowcasting GDP growth is extremely useful for policy-makers to assess macroe-

conomic conditions in real-time. The concept of macroeconomic nowcasting has been

popularized by Giannone et al. [2008] and differs from standard forecasting approaches

in the sense it aims at evaluating current macroeconomic conditions on a high-frequency

basis. The idea is to provide policy-makers with a real-time evaluation of the state of the

economy ahead of the release of official Quarterly National Accounts, that always come

out with a delay. For example, the New York Fed and the Atlanta Fed have recently

developed new tools in order to evaluate US GDP quarterly growth on a high-frequency

basis1. The tool developed by the Atlanta Fed, referred to as GDPNow, is updated 6

to 7 times per month, while the NY Fed’s tool is updated every Friday. With reference

to countries other than the US, many papers have put forward econometric modelling

to nowcast GDP growth in advanced countries (see among others Frale et al. [2010] or

Kuzin et al. [2011] for the euro area, Aastveit and Trovik [2012] for Norway or Bragoli

[2017] for Japan), as well as in emerging countries (see for example Modugno et al.

1See the websites https://www.newyorkfed.org/research/policy/nowcast and https://www.

frbatlanta.org/cqer/research/gdpnow.aspx
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[2016] for Turkey or Bragoli et al. [2015] for Brazil). Some researchers have also pro-

posed approaches to nowcast economic output at a global level in order to assess on a

regular high-frequency basis world economic conditions (see Golinelli and Parigi [2014]

or Ferrara and Marsilli [2018]).

In the existing literature, GDP nowcasting tools integrate standard official macroeco-

nomic information stemming, for instance, from National Statistical Institutes, Central

Banks, International Organizations. Typically, three various sources of official data

are considered: (i) hard data, like production, sales, employment, (ii) opinion surveys

(households or companies are asked about their view on current and future economic

conditions), and (iii) financial markets information (generally available on high frequency

basis). However, more recently, a lot of emphasis has been put on the possible gain that

forecasters can get from using alternative sources of high-frequency information, some-

times referred to as Big Data (see for example Varian [2014], Giannone et al. [2017] or

Buono et al. [2018]). Various sources of Big Data have been used in the recent literature

such as for example web scraped data, scanner data or satellite data. One of the main

source of alternative data is Google search and seminal papers on the use of such data

for forecasting are the ones by Choi and Varian [2009] and Choi and Varian [2012] (see

also Scott and Varian [2015] who combine Kalman filters, spike-and-slab regression and

model averaging to improve short-term forecasts).

Overall, empirical papers show evidence of some forecasting power for Google data,

at least for some specific macroeconomic variables such as consumption (Choi and Var-

ian [2012]), unemployment rate (D’Amuri and Marcucci [2017]), building permits (Coble

and Pincheira [2017]) or car sales (Nymand-Andersen and Pantelidis [2018]). However,

when correctly compared with other sources of information, the jury is still out on the

gain that economists can get from using Google data for forecasting and nowcasting.

For example, Vosen and Schmidt [2011] show that Google Trends data lead to an ac-

curacy gain when compared with business surveys to forecast the annual growth rate

of US household consumption. But some other papers tend to show that the gain in

forecasting using Google data is very weak when other sources of information are ac-

counted for in the analysis. For example, Goetz and Knetsch [2019] estimate German

GDP using simultaneously both official and Google data on a monthly basis and show

that adding Google data only leads to limited accuracy gains. However, they provide

some evidence that those data can be a potential alternative to survey variables. We

also refer to Li [2016] on this issue. Overall, the literature tends to point out that Google

data can be extremely useful when economists do not have access to information or when

information is fragmented, as for example when dealing with emerging economies (see

Carriere-Swallow and Labbe [2013]) or low-income developing countries (Narita and Yin
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[2018]).

In this paper, we estimate both pseudo real-time and true real-time nowcasts for the

euro area quarterly GDP growth between 2014q1 and 2016q1 by plugging Google data

into the analysis, in addition to official variables on industrial production and opinion

surveys, commonly used to assess for GDP growth. The Google data that we get are

indexes of weekly volume changes of Google searches in the six main euro area countries

organized by keywords about different topics which are gathered in 26 broad categories

such as auto and vehicles, finance, food and drinks, real estate, etc. Those broad cat-

egories are then split into a total of 269 sub-categories per country, leading to a total

of 1776 variables for all the six countries2. Our objective is to assess whether Google

search data convey some gain in nowcasting accuracy and when. in this respect, we

put forward a new approach relying on a bridge equation explaining GDP growth by

a few official variables, as proposed by Angelini et al. [2011], but which also integrates

variables selected from a large set of Google data. More precisely, we pre-select Google

variables by targeting GDP growth in the vein of Bai and Ng [2008] but with a differ-

ent approach. Pre-selection is implemented by using the Sure Independence Screening

method put forward by Fan and Lv [2008] enabling to preselect the Google variables the

most related to GDP growth before entering the bridge equation. After pre-selection, we

use Ridge regularization to estimate the bridge equation as the number of pre-selected

variables may still be large. We provide new theoretical results showing the asymptotic

properties of the estimator for this model that combines variable pre-selection and Ridge

regularization.

Five main stylized facts come out from our empirical analysis. First, we point out

the usefulness of Google search data for nowcasting euro area GDP for the first four

weeks of the quarter when there is no available official information about the state of

the economy. Indeed, we show that at the beginning of the quarter, Google data provide

an accurate picture of the GDP growth rate. Against this background, this means that

such data are a good alternative in the absence of official information and can be used

by policy-makers. Second, we get that as soon as official data become available, that

is, for the euro area, starting from the fifth week of the quarter, the gain from using

Google data for GDP nowcasting rapidly vanishes. This result contributes to the debate

on the use of big data for short-term macroeconomic assessment when controlling for

standard usual macroeconomic information. Third, we show that pre-selecting Google

2See for example Bontempi et al. [2018] for a detailed description of this dataset, in a different
framework
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data before entering the nowcasting models appears to be a pertinent strategy in terms

of nowcasting accuracy. Indeed, this approach enables to retain only Google variables

that have some link with the targeted variable. This result confirms previous analyses

that have been done when dealing with large datasets through dynamic factor models

(see e.g. Bai and Ng [2008] or Schumacher [2010]). Fourth, we carry out a true real-time

analysis by nowcasting euro area GDP growth rate using the official Eurostat timeline

and vintages of data. We show that the three previous results still hold in real-time, in

spite of an expected increase in the size of errors, suggesting that Google search data can

be effectively used in practice to help the decision-making process. Finally, we evaluate

to what extent Google search data are useful during recession periods. We empirically

show that, for the Great Recession period from 2008q1 to 2009q2, nowcasts based on

Google data, with and without official data, overperform nowcasts based on official data

only.

The rest of the paper is organized as follows. In Section 2 we describe the model we

consider for nowcasting, the Sure Independence Screening (SIS) approach to pre-select

the data, as well as the Ridge regularization. In Section 3, we provide new theoreti-

cal results about the convergence of the estimator against this background. Section 4

describes the structure of the Google search data used for nowcasting. The empirical

results are presented in Section 5 and Section 6 concludes.

2 Methodology

2.1 The nowcasting approach

In order to get GDP nowcasts, we focus on linear bridge equations that link quarterly

GDP growth rates and monthly economic variables. The classical bridging approach is

based on linear regressions of quarterly GDP growth on a small set of key monthly in-

dicators as for example in Diron [2008]. In our exercise, in addition to those monthly

variables, we also consider Google data, available at a higher frequency, and we aim at

assessing their nowcasting power. More precisely, Google data are available on a weekly

basis, providing thus additional information when official information is not yet avail-

able. Even if Google data are not on average extremely correlated with the GDP growth

rate, we are going to show that they still provide accurate GDP nowcasts if conveniently

treated.

Therefore, we assume that we have three types of data at disposal: soft data, such as
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opinion surveys, hard data, such as industrial production or sales, and data stemming

from Google search machines. Let t denote a given quarter of interest identified by its

last month, for example the first quarter of 2005 is dated by t = March2005. A general

model to nowcast the growth rate of any macroeconomic series of interest Yt for a specific

quarter t is the following, for t = 1, . . . , T :

Yt = β0 + β′sxt,s + β′hxt,h + β′gxt,g + εt, E[εt|xt,s, xt,h, xt,g] = 0, (2.1)

where xt,s is the Ns-vector containing soft variables, xt,h is the Nh-vector containing

hard variables, xt,g is the Ng-vector of variables coming from Google search and εt is an

unobservable shock. In our empirical analysis Yt is the quarterly GDP growth rate of

the euro area. Because variables xt,s, xt,h and xt,g are sampled over different frequencies

(monthly and weekly, respectively), the relevant dataset for calculating the nowcast

evolves within the quarter. We asssume in the remaining of this paper that a given

quarter is made up of thirteen weeks. Thus, by denoting with x
(w)
t,j , j ∈ {s, h, g}, the j-

th series released at week w = 1, . . . , 13 of quarter t, we denote the relevant information

set at week w of a quarter t by

Ω
(w)
t := {x(w)

t,j , j ∈ {s, h, g} such that xt,j is released at w}.

For simplicity, we keep in Ω
(w)
t only the observations relative to the current quarter t

and do not consider past observations. While xt,g is in Ω
(w)
t for every w = 1, . . . , 13, the

other variables are in the relevant information set only for the weeks corresponding to

their release and so the dataset is unbalanced.

To explicitly account for the different frequencies of the variables, we replace model

(2.1) by a model for each week w such that:

Ŷt|w = E[Yt|Ω(w)
t ], t = 1, . . . , T and w = 1, . . . , 13

and E[Yt|Ω(w)
t ] = β0,w + β′s,wx

(w)
t,s + β′h,wx

(w)
t,h + β′g,wx

(w)
t,g (2.2)

where x
(w)
t,j = 0 if x

(w)
t,j /∈ Ω

(w)
t . For instance, as the first observation of industrial pro-

duction relative to the current quarter t is only released in week 9, then we set x
(w)
t,h = 0

for every w = 1, . . . , 8. The bridge equation (2.2) exploits weekly information to obtain

more accurate nowcasts of quarterly GDP growth.

For variables for which we have more than one release per quarter we consider the

sample average of all the observations in the quarter. So, for Google variables, x
(w)
t,g :=
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∑w
v=1 xt,g,(v)/w where xt,g,(v) denotes the Google variable released at week v of quarter t.

We define in a similar way x
(w)
t,s and x

(w)
t,h if they are released more than once in quarter t.

We refer to Table 1 in the Annex for a detailed description of the models for each week.

2.2 Pre-selection of Google data

The recent literature on nowcasting and forecasting with large datasets comes to the

conclusion that using the largest available dataset is not necessarily the optimal approach

when aiming at nowcasting a specific macroeconomics variable such as GDP, at least

in terms of nowcasting accuracy. Indeed, the problem arises because we have too many

variables and using all the variables would only add noise in the estimation process. For

example, against the background of bridge equations augmented with dynamic factors,

Barhoumi et al. [2010] empirically show that factors estimated on a small database lead

to competitive results for nowcasting French GDP compared with the most disaggre-

gated data. From a theoretical point of view, Boivin and Ng [2006] suggest that larger

databases lead to poor forecast when idiosyncratic errors are cross-correlated or when

the forecasting power comes from a factor that is dominant in a small database but is

dominated in a larger dataset. An empirical way to circumvent this issue is to target

more accurately the variable to be nowcast. For example, Bai and Ng [2008] show that

forming targeted predictors enables to improve the accuracy of inflation forecasts while

Schumacher [2010] shows that targeting German GDP within a dynamic factor model

is a performing strategy.

In this respect, all the categories and subcategories in the Google search data are not

necessarily correlated with the GDP growth that we want to nowcast. Therefore, using

all the variables in the Google search dataset is not necessarily a good strategy because

one would pay the price of dealing with ultra-high dimensionality without increasing the

nowcasting accuracy as measured by the Mean Squared Forecasting Error (MSFE). For

this reason we pre-select Google data before performing the nowcast, that is, we consider

a procedure enabling to pre-select the subset of variables in the Google search dataset

that are the most relevant for GDP growth nowcasting. These ones are the variables

that are the most “related” with the variable Yt and that capture much of the variability

in GDP growth. In a second step, we will use a Ridge regularization to estimate models

(2.2) by using the selected subset of Google data. As explained in Section 2.3 below, a

regularization technique is required because the number of selected variables can still be

large while not ultra-high.

While in our empirical analysis we have tried several pre-selection procedures, it

turns out that the innovative approach put forward by Fan and Lv [2008] appears to
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provide interesting and intuitive results. This approach is referred to as Sure Inde-

pendence Screening, or SIS hereafter. Sure screening refers to the property that all

important variables survive after applying a variable screening procedure with probability

tending to 1 (see Fan and Lv [2008], p. 853). The basic idea of this approach is based

on correlation learning and relies on the fact that only the variables with the highest

absolute correlation with the GDP should be used in modelling.

Let us start from the standard linear regression equation (2.1) with only the stan-

dardized Ng Google variables as explanatory variables, that is β0 = βs = βh = 0 in

equation (2.1). Let Y denote the T -vector of quarterly GDP growth: Y := (Y1, . . . , YT )′.

We compute ω := (ω1, . . . , ωNg)
′, the vector of marginal correlations of predictors with

the response variable Yt, such as

ω = X
′
gY, (2.3)

where Xg := (x
(13)′

1,g , . . . , x
(13)′

T,g )′ is the T × Ng matrix of average Google data – where

for each quarter we average over the thirteen weeks of this specific quarter, i.e. x
(13)
t,g :=∑13

w=1 xt,g,(w)/13 – that have been centered and standardized columnwise. The average

over each quarter is taken to make the weekly Google data comparable to the quarterly

GDP growth data in terms of frequency. For any given λ ∈]0, 1[, the Ng components of

the vector ω are sorted in a decreasing order and we define a submodel M̂g such as:

M̂g = Mg(λ) := {1 ≤ j ≤ Ng : |ωj| is among the first [λT ] largest of all} ,

where [λT ] denotes the integer part of λT . Since only the order of componentwise

magnitudes of ω is used, this procedure is invariant under scaling and thus it is identical

to selecting predictors using their correlations with the response. This approach is an

easy way to filter out Google variables with the weaker correlations with GDP growth

rate so that we are left with d = [λT ] < T Google variables. The empirical choice of

the hyperparameter λ is discussed in subsection 3.3. An important feature of the SIS

procedure is that it uses each covariate xt,g,j independently as a predictor to decide how

useful it is for predicting Yt.

This method is desirable because it has the sure screening property, that is, with

probability tending to one, all the important variables in the true model are retained

after applying this method. Let N := 1 + Ns + Nh + Ng, β := (β0, β
′
s, β
′
h, β

′
g)
′ and

let M∗ := {1 ≤ j ≤ N : βj 6= 0} be the true sparse model with non-sparsity size

s∗ = |M∗|. Moreover, let M∗
g := {1 ≤ j ≤ Ng : βg,j 6= 0} be the subset of the true sparse

model containing only the indices of the active Google variables with size s∗g = |M∗
g |

and remark that {1 + Ns + Nh + j; j ∈ M∗
g } ⊂ M∗. The Ng − s∗g variables whose

index is not included in M∗
g can also be correlated with Y via linkage to the predictors
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contained in the true sparse model M∗
g . Finally, denote M̂ = M̂(λ) := {1 ≤ j ≤

(1 + Ns + Nh)} ∪ {1 + Ns + Nh + j; j ∈ M̂g}. Fan and Lv [2008, Theorem 1] show

that under normality of εt and other conditions (see Fan and Lv [2008, Conditions 1-4])

the sure screening property holds, namely for λ = cT−θ where c > 0 is a constant and

θ < 1− 2κ− τ with κ and τ defined in Fan and Lv [2008, Conditions 3-4]:

P (M∗ ⊂ M̂) = 1−O(exp{−CT 1−2κ/ log(T )}).

In particular, SIS can reduce the dimension from Ng to [λT ] = O(T 1−θ) < T for some

θ > 0 and the reduced model M̂ still contains all the variables in the true model M∗

with a probability converging to one as T →∞.

As an alternative to the SIS procedure one could use the Lasso to pre-select Google

variables. Let β̂
(w)
lasso denote the lasso estimator obtained by solving the following mini-

mization problem for each week w:

β̂
(w)
lasso := arg min

βg

{
1

T

T∑
t=1

(
Yt − β0 − β′gx

(w)
t,g

)2

+ λ‖βg‖1

}

where ‖ · ‖1 denotes the `1-norm and λ is a penalty level. The model selected by the

Lasso for each week is given by M̂g := support(β̂
(w)
lasso) = {j : β̂

(w)
lasso,j 6= 0}.

2.3 Ridge regression

Google search data have an extremely large dimension, with the number of variables

much larger than the number of observations (i.e. Ng � T , sometimes referred to as fat

datasets). Therefore, when using Google search data for nowcasting one has to deal with

such high dimensionality. Even after implementing one of the pre-selection described in

subsection 2.2, the number of Google variables may remain large compared to the time

dimension T . Therefore, one needs to use a machine learning technique suitable to treat

fat datasets.

One of the most popular ways to deal with a large number of covariates and possible

problems of multicollinearity is the Ridge regression (also known as Tikhonov regu-

larisation). Let β := (β0, β
′
s, β
′
h, β

′
g)
′ and denote Xt,M̂ := (1, x′t,s, x

′
t,h, x

′
t,g,M̂g

)′, where

xt,g,M̂g
= {xt,g,j; j ∈ M̂g} is the vector containing only the selected Google variables

and where for simplicity we omit the superscript ‘(w)′. Ridge regression estimates β in

equation (2.2) by minimizing a penalized residuals sum of squares where the penalty is

given by the Euclidean squared norm ‖ · ‖2. Our procedure consists in first pre-selecting
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data by using either the SIS method or the Lasso and then, in a second step, we apply

the Ridge regularisation to the selected model M̂ . By using model (2.2) for each week

w ∈ {1, . . . , 13, } we define the Ridge estimator after model selection, which we call

Ridge after model selection estimator, as:

β̂(w) = β̂(w)(α)

:= arg min
β;βg,j=0,j∈M̂c

g

{
1

T

T∑
t=1

(
Yt − β0 − β′sx

(w)
t,s − β′hx

(w)
t,h − β

′
gx

(w)
t,g

)2

+ α‖β‖2
2

}
, (2.4)

where α > 0 is a regularization parameter that tunes the amount of shrinkage. Without

loss of generality, we can assume that the selected elements of x
(w)
t,g corresponding to

the indices in M̂g are the first elements of the vector. Then, we can write β̂(w) as

β̂(w) = (β̂
(w)′

1:|M̂ |
,0′)′ where

β̂
(w)

1:|M̂ |
= β̂

(w)

1:|M̂ |
(α) =

(
1

T

T∑
t=1

Xt,M̂X
′
t,M̂

+ αI

)−1

1

T

T∑
t=1

X ′
t,M̂
Yt,

0 is the (N − |M̂ |)-dimensional column vector of zeros, and I is the |M̂ |-dimensional

identity matrix. This is the estimator we are going to use in our empirical analysis. The

empirical choice of the hyperparameter α is a crucial issue because it has an important

impact on the nowcasting accuracy. We discuss this choice in Section 4.3. In the next

section we present the theoretical properties of the Ridge after model selection estimator.

3 Theoretical Properties

In this section we present theoretical properties of the Ridge after model selection

estimator. This estimator has not been considered in the literature before. SIS pre-

selection has been coupled with the SCAD method of Fan and Li [2001] and the Dantzig

selector in Candes and Tao [2007] by Fan and Lv [2008] who establish consistency of

the corresponding estimator. The Lasso pre-selection has been coupled with the Least

square and the Ridge estimator by Liu and Yu [2013] who also establish consistency. In

particular, the latter consider the case where P (M∗ = M̂)→ 1 as T →∞. Asymptotic

properties for the out-of-sample prediction error associated with the Ridge estimator

without model selection have been analysed in Giannone et al. [2008] and Carrasco

and Rossi [2016] while asymptotic properties for the in-sample prediction error are well

known in the inverse problems literature, see e.g. Carrasco et al. [2007] and Florens and
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Simoni [2016] for a Bayesian interpretation of the Ridge estimator. Here, we establish an

upper bound for both the in-sample and out-of-sample prediction error associated with

the Ridge after model selection estimator. This upper bound gives the rate of covergence

as N, T →∞.

Let β := (β0, β
′
s, β
′
h, β

′
g)
′ andXt := (1, x′t,s, x

′
t,h, x

′
t,g)
′ for t = 1, . . . , T , beN -dimensional

column vectors where we have eliminated the week w index for simplicity, and let

X := (X1, . . . , XT )′ be a (T × N) matrix. Recall the definition M∗ := {1 ≤ j ≤
N : βj 6= 0} with s∗ := |M∗|, and let M∗c denote the complementary set of M∗

in {1, . . . , N}. Remark that, if we denote by N1 the dimension of (β0, β
′
s, β
′
h)
′, then

M∗ = {1, . . . , N1} ∪ {N1 + j; j ∈ {1, 2, . . . , Ng} and βg,j 6= 0}. For a vector β ∈ RN and

an index set M ⊂ {1, . . . , N}, denote βM,j := βj1{j ∈M} and, for a (T ×N) matrix X

denote by XM the (T × |M |) matrix made of the columns of X corresponding to the in-

dices in M and by Xt,M the transpose of the t-th row of XM . Thus, βM has zero outside

the set M . We denote by PX (resp. PXτ ) the conditional probability given the covari-

ates X (resp. X and Xτ ). For a vector δ ∈ RN and given covariates Xt, t = 1, . . . , T ,

define the squared prediction norm of δ as ‖δ‖2
2,T := δ′X ′Xδ/T , the `0-norm of δ as

‖δ‖0 :=
∑N

j=1 1{δj 6= 0} and the Euclidean norm is denoted by ‖δ‖2 :=
√
δ′δ.

We now state the assumptions that we use to derive the theoretical results. For

simplicity, we leave implicit the dependence of each model on the week w.

Assumption A.1. (i) Assume that Yt = β′∗Xt+εt, t = 1, . . . , T , with β∗ the true value of

β, β := (β0, β
′
s, β
′
h, β

′
g)
′ and Xt := (1, x′t,s, x

′
t,h, x

′
t,g)
′ both N-dimensional vectors, and let

εt ∼ N (0, σ2) be independent for t = 1, . . . , T . (ii) β∗g = (β∗g,1, . . . , β∗g,s∗g , β∗g,s∗g+1, . . . , β∗g,Ng)
′

with β∗g,j 6= 0 for j = 1, . . . , (s∗ −N1) and β∗j = 0 for j = s∗ + 1, . . . , Ng.

Assumption A.1 (i) states that the true model is linear with Gaussian errors, while

Assumption A.1 (ii) states that the subvector of the true β∗ corresponding to the Google

variables is s∗g-sparse. Next, we introduce an assumption which is known in the literature

as a restricted sparse eigenvalue condition on the empirical Gram matrix (X ′
M̂
XM̂)/T ,

see e.g. Belloni and Chernozhukov [2013].

Assumption A.2. For a given m < T ,

κ(m)2 := min
‖δM∗c‖0≤m, δ 6=0

‖δ‖2
2,T

‖δ‖2
2

> 0, φ(m) := max
‖δM∗c‖0≤m, δ 6=0

‖δ‖2
2,T

‖δ‖2
2

.

We also define the condition number associated with the empirical Gram matrix (X ′
M̂
XM̂)/T :

µ(m̂) =

√
φ(m̂)

κ(m̂)
, where m̂ := |M̂ \M∗|1{M̂ ⊇M∗}.
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The number m̂ is the number of incorrect covariates selected.

We start by establishing an upper bound on the in-sample prediction error. Its proof

is provided in Appendix B.

Theorem 3.1 (In-sample prediction error). Suppose that Assumptions A.1 and A.2 are

satisfied and let M̂ be the model selected in the first step. Let β̂(w) be the Ridge estimator

defined in (2.4). Then, for every ε > 0, there is a constant Kε independent of T such

that with PX-probability at least 1− ε,

‖β̂−β∗‖2,T ≤

(
Kε

√
m̂ log(N) + (m̂+ s∗) log(e2µ(m̂))

T
+ 2α‖β∗‖2

1

κ(m̂)

)
1{M̂ ⊇M∗}

+

(
Kεσ√
T

√
k̂ log(s∗) + k̂ log(e2µ(0)) +

2α

κ(0)
‖β∗‖2 + ‖β∗,M∗\M̂‖2,T

)
1{M̂ ⊂M∗}.

The theorem is stated in terms of conditional probability given covariates X and

selected model M̂ . We could eliminate the conditioning on X by adding an assumption

about boundedness of the second moment of each component of X. For both Lasso and

SIS pre-selection methods the probability of the event {M̂ ⊃ M∗} converges to 1 (and

so the probability of {M̂ ⊇M∗}). We remark that if M̂ ⊂M∗ we get a bias term given

by ‖β0,M∗\M̂‖2,T . This is intuitive since the second-step Ridge estimator is always biased

for the components in M∗ \ M̂ .

The next corollary establishes an upper bound for the Euclidean norm of (β̂ − β∗).

Corollary 3.1 (Coefficient estimation). Suppose that Assumptions A.1 and A.2 are

satisfied and let M̂ be the model selected in the first step. Let β̂(w) be the Ridge estimator

defined in (2.4). Then, for every ε > 0, there is a constant Kε independent of T such

that with PX-probability at least 1− ε,

‖β̂ − β∗‖2 ≤

(
Kε

√
m̂ log(N) + (m̂+ s∗) log(e2µ(m̂))

Tκ(m̂)2
+ 2α‖β∗‖2

1

κ(m̂)2

)
1{M̂ ⊇M∗}

+

(
Kεσ

κ(m̂)
√
T

√
k̂ log(s∗) + k̂ log(e2µ(0)) +

2α

κ(m̂)κ(0)
‖β∗‖2 +

‖β∗,M∗\M̂‖2,T

κ(m̂)

)
1{M̂ ⊂M∗}.

Compared to the upper bound for the in-sample prediction error, every term in the

upper bound in Corollary 3.1 has an additional factor of 1/κ(m̂). As seen in Assumption

A.2, κ(m̂) has to be interpreted as the smallest restricted eigenvalue of the empirical

Gram matrix and so it can be small when N is large. Therefore, the upper bound in

Corollary 3.1 can be larger than the upper bound in Theorem 3.1.

In the next theorem we establish an upper bound for the out-of-sample prediction
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error.

Corollary 3.2 (Out-of-sample prediction error). Suppose that Assumptions A.1 and

A.2 are satisfied and let M̂ be the model selected in the first step. Let β̂(w) be the Ridge

estimator defined in (2.4). Let Xτ be such that
∑m̂+s∗

j=1 X2
τ,j < C2(m̂+ s∗) for a constant

0 < C < ∞. Then, for every ε > 0, there is a constant Kε independent of T such that

with PXτ -probability at least (1− ε),

X ′τ (β̂ − β∗) ≤ (
√
m̂+ s∗)C

×
[(

Kε

√
m̂ log(N) + (m̂+ s∗) log(e2µ(m̂))

Tκ(m̂)2
+ 2α‖β∗‖2

1

κ(m̂)2

)
1{M̂ ⊇M∗}+(

Kεσ
√
s∗

κ(m̂)
√
T

√
k̂ log(s∗) + k̂ log(e2µ(0)) +

2α
√
s∗

κ(m̂)κ(0)
‖β∗‖2 +

√
s∗

κ(m̂)
‖β∗,M∗\M̂‖2,T

)
1{M̂ ⊂M∗}

]
.

The upper bound for the out-of-sample prediction error is larger than the upper

bound for the in-sample prediction error. This is because Xτ has dimension N which is

large. However, thanks to the pre-selection, this dimension is reduced from N to (m̂+s∗)

which gives the factor outside the square bracket in the upper bound in Corollary 3.2.

Hence, we do not need to assume that ‖Xτ‖2 = Op(1) as e.g. in Carrasco and Rossi

[2016].

4 Design of the empirical analysis

This section first describes the data used in the empirical analysis. Then, it describes

how to deal with the various reporting lags. Finally, we propose a way to select both

the hyperparameters λ and α involved in the estimation procedure.

4.1 Data

Our objective in this paper is to assess the role of Google data for nowcasting the

euro area GDP, especially to assess (i) if these big data are relevant when there is no

official data available for the forecaster and (ii) to what extent these data provide use-

ful information when official data become available. In this respect, the variable Yt in

model (2.1)-(2.2) that we target is the quarterly growth rate of the real euro area GDP,

stemming from Eurostat. The official data that we consider are of two kinds: industrial

production for the euro area as a whole provided by Eurostat, which is a global measure
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of hard data and is denoted by IPt, and a composite index of opinion surveys from var-

ious sectors computed by the European Commission (the so called euro area Sentiment

Index) denoted by St.

Our big dataset covers Google searches for the six main euro area countries: Bel-

gium, France, Germany, Italy, Netherlands and Spain. We have at disposal a total of

Ng = 1776 variables, corresponding to 26 categories and 296 subcategories for each coun-

try. Google search data are data related to queries performed with Google search. The

data are indexes of weekly volume changes of Googles queries grouped by category and

by country. Data are normalized at 1 at the first week of January 2004 which is the first

week of availability of these data. Then, the following values indicate the deviation from

the first value. However, there is no information about the search volume. Google data

are weekly data that are received and made available by the European Central Bank

every Tuesday. Original data are not seasonally adjusted, thus we take the growth rate

over 52 weeks to eliminate the seasonality within the data.

We use data from 20 March 2005 (twelfth week of the first quarter) until 29 March

2016 (thirteen week of the first quarter). We split the sample in two parts and use data

starting from the first week of January 2014 for the out-of-sample analysis.

4.2 Dealing with various reporting lags

An important feature of all these data is that they are released with various reporting

lags, leading thus to non-balanced information dataset at each point in time within the

quarter. In the literature, this issue is refereed to as ragged-edge database (see Angelini

et al. [2011]). For instance, Google search data are weekly data available every Tuesday,

while the soft and hard data are monthly data available at the end of every month and

at the middle of the third month of the quarter, respectively. Treating weekly data

is particularly challenging as the number of entire weeks present in every quarter is

not always the same, and a careful analysis has to be done when incorporating these

data. In addition, there is a frequency mismatch in the data as the explained variable

is quarterly and the explanatory variables are either weekly (Google data) or monthly

(hard and soft variables). In order to account for the various frequencies and the timing

at which the predictive variables become available, we adopt the strategy to consider

a different model for every week of the quarter as described in Section 2.1. Thus we

end up with thirteen models given in equation (2.2), each model including the variables

available at this date.
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As regards the dates of availability, we mimic the exact release dates as published by

Eurostat. This means that the first survey of the quarter, referring to the first month,

typically arrives in week 5. Then, the second survey of the quarter, related to the second

month, is available in week 9. Industrial production for the first month of the quarter

is only available about 45 days after the end of the reference month, that is generally in

week 11. Finally, the last survey, related to the third month of the quarter, is available

in week 13. A scheme of the release timeline is presented in Figure 1.

To construct the variable x
(w)
t,g in equation (2.2) containing Google search data for

the w-th week, we take the sample average of the Google variables from week 1 to week

w of the quarter t. Let us denote by xt,g,(w) the Google variable available at week w of

period t not averaged. Hence, x
(w)
t,g =

∑w
v=1 xt,g,(v)/w and pre-selection is applied to this

average variable. Take for instance w = 3 (i.e. Model 3 which is used at week 3), then

x
(3)
t,g is equal to (xt,g,(1) +xt,g,(2) +xt,g,(3))/3.3 The other variables in equation (2.2) denote,

respectively: Yt the euro area GDP growth rate, x
(w)
t,s the monthly data from surveys,

available at the end of each month, and x
(w)
t,h denotes the growth rate of the index of

industrial production, available about 45 days after the end of the reference month. Be-

cause of the frequency mismatch within the whole dataset, the thirteen models include a

different number of predictors, as we have explained above. As regards the survey, x
(w)
t,s ,

and the industrial production, x
(w)
t,h , we impose the following specific structure which

mimics the data release explained above, and that will be used throughout our exercise.

The variable x
(w)
t,s is not present in models 1 to 4 because the survey is not available in the

Figure 1: Timeline of data release in the pseudo real-time exercise within the quarter.

3In our empirical analysis, we also test models that do not use the average over weeks of Google
search data as explanatory variables, but instead, Google search data for each new weeks is considered
as the variable for the quarter. Results clearly point that models integrating averaged Google search
data give smaller Mean Squared Forecasting Errors than models that do not use the averaged Google
search data.
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first four weeks of the quarter, so that β
(1)
t,s = β

(2)
t,s = β

(3)
t,s = β

(4)
t,s = 0. Then, for models

5 to 8, x
(w)
t,s is the value of the survey for the first month of the quarter: x

(w)
t,s = St,1

where St,i denotes the variable St referring to the i-th month of quarter t. In models 9

to 12, x
(w)
t,s will be equal to the average of the survey data available at the end of the

first and second month of the quarter: x
(w)
t,s = (St,1 + St,2)/2. Last, in model 13, x

(w)
t,s is

the average of the survey data over the quarter: x
(w)
t,s = (St,1 + St,2 + St,3)/3. Similarly,

the variable x
(w)
t,h is not present in models 1 to 10 (so that β

(1)
t,h = . . . = β

(10)
t,h = 0), and

in models 11 to 13, x
(w)
t,h will be the value of the growth rate of the index of industrial

production IPt for the first month of the quarter.

The idea of having thirteen models is that a researcher will use one of these ones to

nowcast the current-quarter values of Yt depending on the current week of the quarter.

For instance, to nowcast the current-quarter value of Yt at the end of week 2, the Model

w = 2 will be used. In Table 1 in the Annex, we give the thirteen models based on

equation (2.2) and we denote them by M1, . . . ,M13.

One of the main issue in the literature on big data is to know whether and when

such alternative data are able to bring an additional gain with respect to standard types

of variables, like hard and soft data. To contribute to the existing literature on this is-

sue, we have also estimated nowcasting models without including the vector of variables

selected from the Google search data. That is, these models only include as predictors

the survey and the growth rate of the index of industrial production (i.e. β
(w)
t,g = 0 in

equation (2.2)). We have in total four such models, one for each release of data of these

two variables within the quarter, denoted NoGoogle1, . . . , NoGoogle4 in Table 2 in the

Annex, that will be used for comparison purposes.

An additional issue with the reporting lags concerns the release of GDP figures. In

fact, the first GDP assessment is generally released about 45 days after the end of the

reference quarter, but sometimes the delay may be longer. For instance, GDP figures

for the first quarter of 2014 were only released on the 4th of June 2014. For this reason

if one wants to nowcast in real-time GDP growth for 2014q2 it is not possible to use

the estimated model with the data available up to 2014q1 because one does not observe

the GDP for 2014q1. Instead, one has to use the estimated parameters computed with

the data available up to 2013q4. Because of this, we impose a gap of two quarters be-

tween the sample used for fitting the model (training sample) and the sample used for

the out-of-sample analysis (test data). For coherence, we use this structure in both the

pseudo-real-time and the true real-time analysis.

16



Another issue concerns the inclusion of lagged GDP among the explanatory vari-

ables. Because of the delay in the release of the GDP we cannot include the lagged GDP

as explanatory variable in every nowcasting model. In addition to this, the GDP is not

released at a fixed date, meaning that the release is different at every period (every

quarter and every year). For these reasons we have not included the lagged GDP among

the explanatory variables in the thirteen models (2.2) for the pseudo-real-time analysis.

On the other hand, for the true real-time analysis we have exploited the additional infor-

mation arising from lagged GDP and have included it among the explanatory variables

when it is available. We provide in Table 3 in the Annex an overview of the dates at

which specific GDP figures are released as well as the indication of the time from which

we can include the lagged GDP among the explanatory variables and the arrival times

of new vintages. We have used this calendar to construct our real-time analysis.

In fact we carry out two types of real-time analysis: (I) a true real-time analysis

which includes the lagged GDP growth when it is available, and (II) a true real-time

analysis which does not include the lagged GDP growth. The latter is meant for com-

parison with the pseudo-real-time analysis which does not include lagged GDP values.

4.3 Selection of the tuning parameters λ and α

To construct our Ridge after model selection estimator for the thirteen models (2.2)

one has to set two tuning parameters: λ and α. The empirical choice of the latter is

crucial because it has an important impact on the nowcasting accuracy. We select them

by using a data-driven method based on a grid-search procedure on the training sample

corresponding to the specific nowcasting period we are considering. Selection of (λ, α)

is made for each of the thirteen models and for each nowcasting period. Hence, in total

we have 13 ∗ 9 = 117 values for the pair (λ, α).

Let τ denote the last quarter of the training sample. In our analysis, we consider

for λ a grid of 99 equispaced values in (0, 1], denoted by Λ. Then, the selection is made

sequentially: for each value of λ in the grid we select for α in model w and for the

nowcasting period τ + 1 the value α̂
(w)
τ (λ) that solves α̂

(w)
τ (λ) := arg minα∈A Q̂

(w)
τ (α;λ),

where A is a grid of equispaced values in [0, a], for some a > 0, and Q̂
(w)
τ (α;λ) is a

criterion to be defined below.

Once a value α̂
(w)
τ (λ) is selected for each value of λ in the grid, we select the value

of λ that minimizes the MSFE of the nowcast of the GDP growth of the last quarter τ

of the training sample obtained by using the selected α̂
(w)
τ (λ). That is, in model w we

select the value λ̂
(w)
τ := arg minλ∈Λ(Yτ −X ′τ,M̂ β̂

(w)(α̂
(w)
τ (λ)))2 where M̂ = M̂(λ).

For the choice of α we propose to use two criteria. The first one is based on the
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Generalized cross-validation (GCV) technique (see Li [1986, 1987]) whose idea is to

choose a value for α for which the MSFE is as small as possible. This technique has

recently been used by Carrasco and Rossi [2016] in a forecasting setting. The idea is to

select the value of α that minimizes the following quantity:

Q̂(w)
τ (α;λ) =

τ−1
∑τ

t=1(Yt −X ′t,M̂ β̂
(w))2(

1− τ−1tr(R̂τ (α))
)2

where τ denotes the last quarter of the training sample, tr(·) denotes the trace operator

and R̂τ (α) is given by

R̂τ (α) = XM̂

(
τ−1

τ∑
t=1

Xt,M̂X
′
t,M̂

+ αI

)−1

τ−1X ′
M̂
.

The second criterion is based on the idea of looking at the norm of the residuals with

respect to the normal equations, this is known as error free method in the inverse problem

literature, see Engl et al. [2000]. Hence, the criterion to be minimised is :

Q̂(w)
τ (α;λ) =

1

α2

∥∥∥∥∥∥
∑τ

t=1Xt,M̂Yt

τ
−

∑τ
t=1 Xt,M̂X

′
t,M̂
β̂

(w)

M̂,2

τ

∥∥∥∥∥∥
2

2

where β̂
(w)

M̂,2
is the 2-times iterated Tikhonov (Ridge) estimator.

5 Empirical Results

In this section we present the results of our empirical exercises aiming at nowcasting

the euro area GDP growth using various types of data sources. In the following the

notation M1, . . . ,M13 and NoGoogle1, . . . , NoGoogle4 refer to the notation and models

defined in Tables 1 and 2 in the Annex, respectively.

5.1 Overall evaluation of Google search data

This section is split into three parts. First, we look at the accuracy gains stemming

from using Google data when controlling for standard official macroeconomic data, by

comparing nowcasts obtained with and without such data, in a pseudo real-time exer-

cise. Then we look at the effects of pre-selecting Google data before estimating Ridge

regressions. Third, we perform a true real-time analysis.
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5.1.1 Is there a gain from using Google data, and when ?

In this subsection we compare the evolution over the quarter of weekly Root MS-

FEs (RMSFE) stemming from the nowcasting models, with and without Google search

data. We do this exercise in pseudo-real time, that is, by using historical data but

by accounting for their ragged-edge nature. To evaluate the impact of Google search

data on current-quarter nowcasts of the GDP growth, we make two types of compar-

isons. First, we estimate the thirteen nowcasting models by using only Google data,

that is, x
(w)
t,s = x

(w)
t,h = 0 for every w = 1, . . . , 13 in Equation (2.2). Second, to assess

the marginal gain of integrating Google data, we compare the four models that only ac-

count for hard and soft data (i.e. without Google data) with the corresponding models

given by (2.2) accounting for the full set of information (Google, Survey and Indus-

trial Production). More precisely, we directly compare the following pairs of models:

(NoGoogle1,M5), (NoGoogle2,M9), (NoGoogle3,M11), and (NoGoogle4,M13). The

results of these comparisons are reported in Figure 2 below and in Table 4 in the Annex.

The estimation has been conducted by using Ridge regularization coupled with the SIS

pre-selection approach as described in Sections 2.2 and 2.3. Figure 3 is similar to Fig-

ure 2 but with pre-selection conducted by using the Lasso. The corresponding RMSFE

values are reported in Table 5 in the Annex. The tuning parameter of the Lasso is auto-

matically chosen by cross-validation in the range (0, 5). This range is clearly arbitrary

and the results slightly change when we change the range for λ. We have also computed

the Ridge after Lasso selection estimator by constraining the λ to be chosen such that

the number of selected Google search categories does not exceed the number selected

with the SIS procedure. These results are shown in Figure 10 and in Table 6 in the

Annex.

The first striking feature that we observe in Figure 2 is the downward sloping evolution

of RMSFEs stemming from the models with full information (Google, Industrial Pro-

duction and Survey) over the quarter. This is in line with what could be expected from

nowcasting exercises when integrating more and more information throughout the quar-

ter (see Angelini et al. [2011]). When using Google information only (light gray bars),

we still observe a decline but to a much lower extent and the RMSFEs stay above 0.25

even at the end of the quarter. However, when focusing on the beginning of the quarter,

models that only integrate Google information provide reasonable RMSFEs that do not

exceed 0.30 (see Figure 2). This result shows that Google search data possess a informa-

tional content that can be valuable for nowcasting GDP growth for the first four weeks
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Figure 2: The importance of Google data. Pseudo-real-time analysis with pre-selection of Google
data by SIS method. RMSFEs from: (i) models M1 - M13 with only variables extracted from Google
data (in light gray), (ii) models M1 - M13 with all the variables (St, IPt and Google data) (in gray),
(iii) models with only official variables NoGoogle1 - NoGoogle4 (in black).
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Figure 3: The importance of Google data. Pseudo-real-time analysis with pre-selection of Google
data by Lasso. RMSFEs from: (i) models M1 - M13 with only variables extracted from Google data
(in light gray), (ii) models M1 - M13 with all the variables (St, IPt and Google data) (in gray), (iii)
models with only official variables NoGoogle1 - NoGoogle4 (in black).

of the quarter, when there is no other available official information about the current

state of the economy. When information about the first survey of the quarter arrives,

that is in week 5, the model that only incorporates Google data clearly suddenly under-

perfoms. Looking at Table 4, we see that the RMSFE goes from 0.2887 in week 4 when

only Google information is used to 0.2361 in week 5 when the full information model is

used. In addition, we note that a simple model, only accounting for official hard and
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soft information, leads to a much lower RMSFE in week 5 (equal to 0.1807, see Table 4

in the Annex). Comparing black bars and gray bars in Figure 2 clearly shows evidence

that there is no additional gain of adding Google data to the model starting from week

5; a simple model with only hard and soft information cannot indeed be outperformed.

As a robustness check, we compare the SIS pre-selection procedure with the Lasso proce-

dure, that we consider as an alternative pre-selection approach, standard in this literature

(see Section 2.2). Results for RMSFEs obtained using this approach are presented in

Figure 3. We get an overall similar pattern as the one obtained with the SIS approach in

the sense that RMFSEs declined over the quarter when more information is integrated.

We also observe a clear shift in week 5 when we integrate the first survey of the quarter,

RMSFE is going down to 0.2498 from 0.3435 in week 4 (see results in Table 5 in the

Annex). However, when compared with the SIS approach, we note that for the first

four weeks of the quarter, RMSFEs are much higher than those obtained with the SIS

approach, for any model.

5.1.2 Is it worth to pre-select Google data?

As mentioned in Section 2.2, the literature suggests that it could be useful to first

pre-select a sub-sample of Google data before estimating the thirteen models given in

(2.2). In this respect, various approaches have been put forward in order to target ex

ante the variable of interest (see e.g. Bai and Ng [2008] or Schumacher [2010], against

the background of bridge equations augmented with dynamic factors). In this section

we present the performance of our Ridge after model selection estimator for nowcasting

GDP growth described in Section 2.2, compared with a standard Ridge regularization

approach without any pre-selection.

The idea of the SIS pre-selection method is to identify ex ante, among the initial large

dataset, the Google variables that have the highest absolute correlation with the tar-

geted variable, namely the GDP growth rate. First, let us have a look at the relationship

between the number of selected variables through the SIS procedure and the absolute

correlation between each Google variable and the GDP growth rate at the same quar-

ter. We recall that for the Google variables we take the average over each quarter, see

Section 2.2. This relationship is described in Figure 4. We clearly observe an inverse

non-linear relationship, with a kind of plateau starting from an absolute correlation of

about 0.25. Indeed, most of Google variables present an absolute correlation with cur-

rent GDP growth rate lower than 0.30. Thus it seems useful to only focus on a core

dataset with the highest correlations.
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Figure 4: Plot of the number of selected Goggle variables by the SIS method versus the correlation
with current GDP (computed for the first training sample).

We then analyse the nowcasting performances of bridge regressions that use the SIS

pre-selection approach, as well as the one of bridge regressions that use the Lasso pre-

selection approach, associated with Ridge regularization. Figure 5 presents the evolution

over the 13 weeks of the quarter of RMSFEs stemming from bridge models estimated

using Google search data and Ridge regression coupled or not with the SIS and Lasso

pre-selection approaches. We clearly see that using a pre-selection approach (light and

dark gray bars, similar to the gray bars in Figure 2) allows for an overall improvement

in nowcasting accuracy. A striking result is that the RMSFE is lower for all the weeks

when a pre-selection approach is used. Moreover, when pre-selection is implemented,

RMSFEs evolve over the quarter in a more smoother way. For example, without any

pre-selection, we observe that in week 6 the RMSFE jumps to 0.3829, from 0.3239 in

week 5. Table 7 in the Annex reports the exact values of the RMSFEs with and without

pre-selection. When comparing the two pre-selection approaches, namely SIS and Lasso,

we observe that for the first weeks of the quarter SIS approach leads to lower RMSFEs,

especially as regards the first two weeks. This result is noteworthy as, as pointed out in

the previous sub-section, the first weeks are those of interest for the use of Google data.

The overall gain underlines the need for pre-selecting data using a targeted approach.
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Figure 5: Pseudo-real-time: is it worth to preselect? Evolution over the 13 weeks of the quarter
of the RMSFEs stemming from bridge models using Google data, St and IPt estimated from Ridge
regularization with and without SIS or Lasso pre-selection approaches.

5.1.3 A true real-time analysis

In this subsection, we carry a true real-time analysis by using vintages of data for

GDP and industrial production4 and by accounting for the observed timeline of data

release as provided by Eurostat. As regards the dates of the GDP releases, there is a

large heterogeneity from one period to the other. When available, we also include the

lagged GDP growth among the explanatory variables of the nowcasting models. Figure

3 in the Annex gives the exact weeks in the out-of-sample period 2014q1-2016q1 where

the lagged GDP growth is included in the real-time analysis.

In Figure 6 we show that pre-selecting Google data is still worth in real-time. Indeed,

RMSFEs obtained from models integrating pre-selected Google data are systematically

lower (light bars), for all weeks, than those obtained without any pre-selection (dark

bars). The corresponding RMSFE values are reported in Table 8.

In Figure 7, we show the impact of Google search data on GDP growth nowcast-

ing accuracy in the context of a true real-time nowcasting analysis. The corresponding

RMSFE values are reported in Table 9 in the Annex. Similarly to the pseudo real-time

exercise, we get that during the first 4 weeks of the quarters, when only Google infor-

mation is available, RMSFEs are quite reasonable. This fact is reassuring about the

reliability of the real-time use of Google search data when nowcasting GDP. However,

4Survey data are generally not revised.
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Figure 6: True real-time analysis: is it worth to preselect? Evolution over the 13 weeks of the
quarter of the RMSFEs stemming from bridge models using Google data, St, IPt, and lagged GDP
growth estimated from Ridge regularization with and without SIS pre-selection approaches. The models
include the lagged GDP growth when it is available.
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Figure 7: The importance of Google data. True Real-time analysis with pre-selection of Google data.
RMSFE from: (i) models M1 - M13 with only variables extracted from Google data (in light gray), (ii)
models M1 - M13 with all the variables (St, IPt, laggedGDP and Google data) (in gray), (iii) models
NoGoogle1 - NoGoogle4 (in black).

starting from week 5, as soon as the first survey of quarter is released, the marginal gain

of using Google data instantaneously vanishes. 5

5There is an exception in week 11, where it is surprising to note that the integration of surveys, past
GDP value and industrial production tend to suddenly increase the RMSFEs, in opposition to what
can be expected from previous empirical results. This stylized has to be further explored.
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Finally, in order to compare the results of the real-time analysis with the ones from

the pseudo-real-time analysis, we compute GDP growth nowcasts without including the

lagged GDP growth among the explanatory variables. The results are given in Figure 8.

The corresponding RMSFE values are reported in Table 10. We see that both analyses

lead to a similar shape in the evolution of RMSFEs within the quarter, although, as

expected, the uncertainty around weekly nowcasts is a bit higher in real time.
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RMSFE with Google data+IP+Survey (True Real time)

Figure 8: Pseudo-Real-time versus True Real-time analysis (with pre-selection). Comparison of RMS-
FEs within the quarter from pseudo-real-time (in light gray) and true real-time (in gray) analysis. The
true real-time analysis does not include lagged GDP growth among the explanatory variables.

5.2 Are Google search data useful during recession periods?

As an additional result, we evaluate in this subsection to what extent Google search

data are useful during recession periods in their ability to reduce the MSFEs of euro

area GDP growth nowcasting. Especially, we focus on the Great Recession period from

2008q1 to 2009q2. All the euro area economies have been largely negatively affected by

the adverse financial shock during this specific period of time. The research question

for us is to check whether Google data do present a specific pattern during this major

event, in spite of a relatively low number of quarters under consideration (6 quarters).

In this respect, we compute the RMSFEs for the euro area GDP growth, over the

13 weeks of each quarter, stemming from three various approaches: (i) Ridge regression

with all available information (i.e.: Google data as well as lagged Survey, Survey, and

IPI), (ii) Ridge regression with all information retained after the SIS pre-selection and

(iii) Ridge regression with only Google data. Pre-selection of variables using the SIS is
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Figure 9: Nowcasting during recession periods. RMSFE from: (i) models M1 - M13 with Google data,
Survey, and IPI without pre-selection (in black), (ii) models M1 - M13 with pre-selected Google data,
Survey, and IPI (in dotted gray), (iii) models M1 - M13 with Google data only without pre-selection
(in gray), (iv) models with only official variables NoGoogle1 - NoGoogle4 (in black lines).

specifically carried out for this recession.

Figure 9 and Table 11 in the Annex report the RMSFE for the three approaches

that we consider in this exercise. As a first result, when comparing nowcasts obtained

by using only Google data (in grey) and by using all available data (in dark), we observe

relatively similar results on average over the 13 quarters. In particular, we see that

the nowcast based on Google search data outperforms nowcast without Google data.

A striking result is that Google-based nowcasting during the Great Recession performs

better when data are not pre-selected using the SIS approach, in opposition to what

has been observed in the previous analysis over the whole sample. Indeed, RMSFEs are

about twice higher when we pre-select variables (light grey bars). This result suggests

that during a recession phase, a broader information set is needed to adequately assess

the state of the economy, while a core dataset is likely to be sufficient during expansions.

Leaving aside the relatively low number of quarters in this robustness check, we get

the interesting result that pre-selecting data among a large database before entering

nowcasting models does not appear to be an efficient strategy during recession periods,

in opposition to expansions. We point out here an asymmetric result between expansion

and recessions phases that would be worth to further study.
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6 Conclusions

Large sets of alternative variables have gained in popularity among macroeconomists

when trying to assess the current state of the economy on a high-frequency basis. How-

ever, the jury is still out as regards the marginal gain of those data when controlling for

available official variables such as production, sale or opinion surveys.

In this paper, we ask the question whether, and when, a large set of Google variables

can be useful to nowcast euro area GDP growth when controlling for official information

conveyed by opinion surveys and industrial production. Because Google search data

are high dimensional, in the sense that the number of variable is large compared to the

time series dimension, there is a price to pay for using them: first, we need to reduce

their dimensionality from ultra-high to high by using a screening procedure and, second,

we need to use a regularized estimator to deal with the pre-selected variables. In this

respect, we put forward a new approach combining variable pre-selection and Ridge

regularization enabling to account for a large database. Especially, we implement the

Sure Independent Screening approach put forward by Fan and Lv [2008] enabling to

retain only the Google variables that are the most correlated with the targeted variable,

that is GDP growth rate. We provide theoretical results on the asymptotic behaviour

of the estimator against this background of this new combined approach.

Five salient facts emerge from our empirical analysis. First, against the background

of a pseudo real-time analysis, we point out the usefulness of Google search data in

nowcasting euro area GDP growth rate for the first four weeks of the quarter when

there is no information about the state of the current quarter. We show that at the

beginning of the quarter, Google data indeed provide an accurate picture of the GDP

growth rate. Second, as soon as official data become available, that is starting from

week 5 with the release of the first opinion survey of the quarter, then the relative

nowcasting power of Google data rapidly vanishes. Third, we show that pre-selecting

Google data before entering the nowcasting models appears to be a pertinent strategy

in terms of nowcasting accuracy. This result confirms previous results obtained with

bridge equations augmented with dynamic factor (see e.g. Bai and Ng [2008]). Fourth,

we show that when using Google search data in the context of a true real-time analysis,

the three previous salient facts remain valid. This result argues in favor of the use of

Google search data at the beginning of the quarter, when there is no official information

available about the current quarter, for real-time policy-making. Finally, we evaluate

to what extent Google search data are useful during recession periods. We show that

for the Great Recession period from 2008q1 to 2009q2 nowcasts that account for Google

data information clearly outperform those only based on official data.
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A Proofs

B Proof of Theorem 3.1

Define the criterion Q̂(β) := 1
T

∑T
t=1(yt − β′M̂Xt)

2 + α‖βM̂‖
2
2. Hence by definition of

the Ridge estimator after SIS selection:

Q̂(β̂)− Q̂(β∗) < 0. (B.1)

The proof is made of two parts: in the first part we consider the event M∗ ⊆ M̂ and in

the second part we consider the complement event M∗ ⊃ M̂ . First, we consider the case

M∗ ⊆ M̂ with m̂ := |M̂ \M∗| and let δ̂ := β̂ − β∗. This and (B.1) imply

1

T

T∑
t=1

(yt − β̂′M̂Xt)
2 − 1

T

T∑
t=1

(yt − β′∗,M̂Xt)
2 < α

(
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2
2 − ‖β̂M̂‖

2
2

)
≤ α

(
‖β∗,M̂‖

2
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2
2 − ‖δ̂M̂‖

2
2 − 2β′∗,M̂ δ̂M̂

)
≤ α

(
−‖δ̂M̂‖

2
2,T

1

φ(m̂)
+ 2‖β∗‖2 ‖δ̂M̂‖2

)

by using the fact that ‖δ̂M̂‖
2
2 ≥ ‖δ̂M̂‖

2
2,T min‖δMc∗‖0≤m̂,‖δ‖0 6=0

‖δ‖22
‖δ‖22,T

= ‖δ̂M̂‖
2
2,T/φ(m̂). Hence,

since M∗ ⊆ M̂ : (yt − β′∗,M̂Xt) = (yt − β′∗Xt) = εt, and so we get

‖δ̂M̂‖
2
2,T − 2

1

T

T∑
t=1

(yt − β′∗,M̂Xt)X
′
tδ̂M̂ ≤ α

(
−‖δ̂M̂‖

2
2,T

1

φ(m̂)
+ 2‖β∗‖2 ‖δ̂M̂‖2

)
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and so,
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2,T

(
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α
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)
≤ 2

1
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t=1

εtX
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≤ σ4
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log
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1
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(B.2)

for a universal constant D ≥ 1, where the last inequality holds with probability at least

1− ε and it follows by applying Belloni and Chernozhukov [2013, Lemma 5]. Moreover,

by using the upper bound
(
N
m̂

)
≤ N m̂ and by defining D̄ := max{1, log(D), log(1/(ε(1−

1/e)es
∗
))} we obtain

4
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where we have used the fact that D̄ + log(µ(m̂)) = D̄(1 + log(µ(m̂))) = D̄ log(eµ(m̂))

and the Gibbs inequality for the concave function
√
·. So, from (B.2) and (B.3) we have

‖δ̂M̂‖2,T ≤ Kεσ

√
m̂ log(N) + (m̂+ s∗) log(e2µ(m̂))

T
+ 2α‖β∗‖2

1

κ(m̂)

where Kε := 4
√

6D̄. This gives the first part of the result of the theorem

Next, we consider the case M̂ ⊆ M∗ with k̂ := |M∗ \ M̂ | and let δ̂M̂ := β̂ − β∗,M̂ .
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This and (B.1) imply (by using the identity β̂ = β̂M̂):
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‖δ̂M̂‖

2
2,T −

2α

κ(0)
‖β∗,‖2 ‖δ̂M̂‖2,T

= ‖β̂M̂−β∗‖
2
2,T−

2

T

T∑
t=1

εtX
′
t(β̂M̂−β∗,M̂)−‖β∗,M∗\M̂‖

2
2,T+

α

φ(0)
‖δ̂M̂‖

2
2,T︸ ︷︷ ︸

≥0

− 2α

κ(0)
‖β∗,‖2 ‖δ̂M̂‖2,T .

(B.4)

By applying Belloni and Chernozhukov [2013, Lemma 5] (with in their notation s = 0,

p = s∗, T̃ = M∗, T = M̂ and m = k̂) we get that with probability at least 1− ε: ∀k̂ ≤ T

33



and a universal constant D ≥ 1,

2

T

T∑
t=1

εtX
′
t(β̂M̂ − β∗,M̂)

‖β̂M̂ − β∗,M̂‖2,T

‖β̂M̂−β∗,M̂‖2,T ≤ 2 sup
‖δ
M̂c‖≤k̂, ‖δ‖2,T>0

∣∣∣∣∣ 1

T

T∑
t=1

εtX
′
tδ

‖δ‖2,T

∣∣∣∣∣ ‖β̂M̂−β∗,M̂‖2,T

≤ σ4
√

2
‖δ̂M̂‖2,T√

T

(√
log

(
s∗

k̂

)
+

√
k̂ log(Dµ(0)) +

√
m̂ log(1/(ε(1− 1/e)))

)

≤ σ4
√

2
‖δ̂M̂‖2,T√

T

(√
k̂ log(s∗)D̄ +

√
k̂D̄ (1 + log(µ(0))) +

√
k̂D̄

)
= σ4

√
2D̄
‖δ̂M̂‖2,T√

T

(√
k̂ log(s∗) +

√
k̂ log(eµ(0)) +

√
k̂

)
≤ σ4

√
6D̄
‖δ̂M̂‖2,T√

T

√
k̂ log(s∗) + k̂ log(e2µ(0)), (B.5)

where we have used the upper bound
(
s∗

k̂

)
≤ (s∗)k̂, the Gibbs inequality for the concave

function
√
·, and by defining D̄ := max{1, log(D), log(1/(ε(1 − 1/e)))}. So, by (B.4) -

(B.5), by denoting Kε := 4
√

6D̄ and by remarking that ‖δ̂M̂‖2,T ≤ ‖δ̂‖2,T := ‖β̂M̂−β∗‖2,T

we obtain

0 > ‖δ̂‖2
2,T − σKε

‖δ̂‖2,T√
T

√
k̂ log(s∗) + k̂ log(e2µ(0))− ‖β∗,M∗\M̂‖

2
2,T −

2α

κ(0)
‖β∗‖2 ‖δ̂‖2,T

which is a second degree inequality in ‖δ̂‖2
2,T = ‖β̂M̂ − β∗‖2,T and which gives

‖β̂M̂ − β∗‖2,T ≤
Kεσ√
T

√
k̂ log(s∗) + k̂ log(e2µ(0)) +

2α

κ(0)
‖β∗‖2 + ‖β∗,M∗\M̂‖2,T

which gives the second part of the result of the theorem.

C Proof of Corollary 3.1

Remark that, since ‖(β̂−β∗)M∗c‖0 is equal to zero if M̂ ⊂M∗ and is upper bounded

by m̂ if M̂ ⊇M∗, we have

‖β̂ − β∗‖2
2,T =

‖β̂ − β∗‖2
2,T

‖β̂ − β∗‖2
2

‖β̂ − β∗‖2
2

≥ min
‖δM∗c‖0≤m̂, δ 6=0

‖δ‖2
2,T

‖δ‖2
2

‖β̂ − β∗‖2
2 = κ(m̂)2‖β̂ − β∗‖2

2.

The result follows from this and the result of Theorem 3.1.
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D Proof of Corollary 3.2

Let C > 0 be the constant as in the statement of the corollary and denote

η :=

(
Kε

√
m̂ log(N) + (m̂+ s∗) log(e2µ(m̂))

Tκ(m̂)2
+ 2α‖β∗‖2

1

κ(m̂)2

)
1{M̂ ⊇M∗}

+

(
Kεσ

κ(m̂)
√
T

√
k̂ log(s∗) + k̂ log(e2µ(0)) +

2α

κ(m̂)κ(0)
‖β∗‖2 +

1

κ(m̂)
‖β∗,M∗\M̂‖2,T

)
1{M̂ ⊂M∗},

and η̃ :=
√

(m̂+ s∗)Cη where C is the constant in the statement of the theorem. Since

(β̂ − β∗)j = 0 for every j > m̂+ s∗, by the Cauchy-Schwartz inequality we have:

X ′τ (β̂ − β∗) =
m̂+s∗∑
j=1

Xτ,j(β̂ − β∗)j ≤

(
m̂+s∗∑
j=1

X2
τ,j

)1/2

‖β̂ − β∗‖2

≤
√

(m̂+ s∗)C‖β̂ − β∗‖2 (D.1)

by using the assumption in the corollary. Therefore,

PXτ

(
X ′τ (β̂ − β∗) ≤ η̃

)
≥ P

(m̂+s∗∑
j=1

X2
τ,j

)1/2

‖β̂ − β∗‖2 ≤ η̃

∣∣∣∣∣∣Xτ


≥ P

(√
(m̂+ s∗)C‖β̂ − β∗‖2 ≤ η̃

∣∣∣Xτ

)
= P

(
‖β̂ − β∗‖2 ≤ η|Xτ

)
≥ (1− ε)

by Corollary 3.1.
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Annex
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Figure 10: The importance of Google data. Pseudo-real-time analysis with pre-selection of Google
data by Lasso where λ is chosen such that the number of selected Google search categories is less or
equal to the number of categories selected with the SIS procedure. RMSFEs from: (i) models M1 -
M13 with only variables extracted from Google data (in light gray), (ii) models M1 - M13 with all
the variables (St, IPt and Google data) (in gray), (iii) models with only official variables NoGoogle1 -
NoGoogle4 (in black).
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Model Equation Predictors

M1 Yt = β0,1 + β′g,1x
(1)
t,g + ε

(1)
t x

(1)
t,g = xt,g,(1)

M2 Yt = β0,2 + β′g,2x
(2)
t,g + ε

(2)
t x

(2)
t,g =

∑2
v=1 xt,g,(v)

2

M3 Yt = β0,3 + β′g,3x
(3)
t,g + ε

(3)
t x

(3)
t,g =

∑3
v=1 xt,g,(v)

3

M4 Yt = β0,4 + β′g,4x
(4)
t,g + ε

(4)
t x

(4)
t,g =

∑4
v=1 xt,g,(v)

4

M5 Yt = β0,5 + βs,5x
(5)
t,s + β′g,5x

(5)
t,g + ε

(5)
t x

(5)
t,g =

∑5
v=1 xt,g,(v)

5 , x
(5)
t,s = St,1

M6 Yt = β0,6 + βs,6x
(6)
t,s + β′g,6x

(6)
t,g + ε

(6)
t x

(6)
t,g =

∑6
v=1 xt,g,(v)

6 , x
(6)
t,s = St,1

M7 Yt = β0,7 + βs,7x
(7)
t,s + β′g,7x

(7)
t,g + ε

(7)
t x

(7)
t,g =

∑7
v=1 xt,g,(v)

7 , x
(7)
t,s = St,1

M8 Yt = β0,8 + βs,8x
(8)
t,s + β′g,8x

(8)
t,g + ε

(8)
t x

(8)
t,g =

∑8
v=1 xt,g,(v)

8 , x
(8)
t,s = St,1

M9 Yt = β0,9 + βs,9x
(9)
t,s + β′g,9x

(9)
t,g + ε

(9)
t x

(9)
t,g =

∑9
v=1 xt,g,(v)

9 , x
(9)
t,s =

St,1+St,2

2

M10 Yt = β0,10 + βs,10x
(10)
t,s + β′g,10x

(10)
t,g + ε

(10)
t x

(10)
t,g =

∑10
v=1 xt,g,(v)

10 , x
(10)
t,s =

St,1+St,2

2

M11 Yt = β0,11 + βs,11x
(11)
t,s + βh,11x

(11)
t,h + β′g,11x

(11)
t,g + ε

(11)
t x

(11)
t,g =

∑11
v=1 xt,g,(v)

11 ,

x
(11)
t,s =

St,1+St,2

2 , x
(11)
t,h = IPt,1

M12 Yt = β0,12 + βs,12x
(12)
t,s + βh,12x

(12)
t,h + β′g,12x

(12)
t,g + ε

(12)
t x

(12)
t,g =

∑12
v=1 xt,g,(v)

12 ,

x
(12)
t,s =

St,1+St,2

2 , x
(12)
t,h = IPt,1

M13 Yt = β0,13 + βs,13x
(13)
t,s + βh,13x

(13)
t,h + β′g,13x

(13)
t,g + ε

(13)
t x

(13)
t,g =

∑13
v=1 xt,g,(v)

13 ,

x
(13)
t,s =

∑3
i=1 St,i

3 , x
(13)
t,h = IPt,1

Table 1: Equations of the 13 models (M1, . . . ,M13) corresponding to (2.2) used to nowcast GDP

growth over each quarter. Equations include the variables pre-selected from Google data as well as

information stemming from surveys (St) and industrial production (IPt). St,i denotes the variable

surveys St referring to the i-th month of the current-quarter t and IPt,i denotes the growth rate of the

industrial production available at the 11th week of the current-quarter t and referring to the i-th month

of the current-quarter t.
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Model Equation Predictors

NoGoogle1 Yt = β0,1 + βs,1x
(1)
t,s + εt x

(1)
t,s = St,1

NoGoogle2 Yt = β0,2 + βs,2x
(2)
t,s + εt x

(2)
t,s = St,1+St,2

2

NoGoogle3 Yt = β0,3 + βs,3x
(3)
t,s + βh,3x

(3)
t,h + εt x

(3)
t,s = St,1+St,2

2
, x

(3)
t,h = IPt,1

NoGoogle4 Yt = β0,4 + βs,4x
(4)
t,s + βh,4x

(3)
t,h + εt x

(4)
t,s = St,1+...+St,3

3
, x

(4)
t,h = IPt,1

Table 2: Equations of the four models used to nowcast GDP growth without the variables extracted

from Google data. xt,g,w denotes the Google variable available at week w of period t not averaged. St,i

denotes the variable surveys St referring to the i-th month of the current-quarter t and IPt,i denotes

the growth rate of the industrial production available at the 11th week of the current-quarter t and

referring to the i-th month of the current-quarter t.
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2 lags between estimation period and forecasting period

Last Training Nowcasting 1st GDP Vintage which contains Lagged week of new

Period Period the last GDP in the Training sample GDP Vintage

2013Q3 2014Q1 08/04/2014 no

2013Q4 2014Q2 08/04/2014 no

08/04/2014 no

15/04/2014 no 3rd week

04/06/2014 yes 10th week

2014Q1 2014Q3 02/07/2014 no

2014Q2 2014Q4 01/10/2014 no

21/10/2014 no 4th week

14/11/2014 yes 7th week

09/12/2014 yes 11th week

2014Q3 2015Q1 09/12/2014 no

17/03/2015 yes 12th week

2014Q4 2015Q2 17/03/2015 no

02/06/2015 yes 10th week

2015Q1 2015Q3 02/06/2015 no

30/07/2015 no 4th week

09/09/2015 yes 11th week

24/09/2015 yes 13th week

2015Q2 2015Q4 24/09/2015 no

13/11/2015 yes 7th week

08/12/2015 yes 11th week

2015Q3 2016Q1 08/12/2015 no

12/02/2016 yes 6th week

16/02/2016 yes 7th week

08/03/2016 yes 10th week

Table 3: Timeline of GDP release in real-time within the quarter. The first column gives the last

period used for the in-sample analysis (training sample), the second column indicates the nowcasting

period, the third column indicates the date of the first vintage which contains the GDP growth in the

last period of the training sample (indicated in the first column), the fourth columns indicates whether

a lagged GDP growth is available to be included among the explanatory variables (the corresponding

date and week of availability are given in the third and fifth columns, respectively). Finally, the fifth

column gives the week, and so the model, corresponding to the date in the third column.
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