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As large scale penetration of renewables into electric systems requires increasing flexibility from dispatchable production units, the electricity mix must be designed in order to address brutal variations of residual demand. Inspired from the philosophy of Distributionally Robust Optimization (DRO), we propose a trajectory ambiguity set including residual demand trajectories verifying both support and variability criterion using ambiguous quantile information. We derive level-maximizing, level-minimizing and variability-maximizing residual demand trajectories using two algorithms based on forward-backward path computation. This set of limiting trajectories allows us to make investment decisions robust to extreme levels and brutal variations of residual demand. We provide a numerical experiment using a MILP investment and unit commitment model in the case of France and discuss the results.

I-Introduction

Modeling time-varying weather events is a pivotal element in investment and operational decisions for electricity production systems, especially when the share of renewables in the production mix is important.

Weather dynamics that affect electricity demand and renewable energy sources (RES) availability are characterized by non-normal distributions, autocorrelation and cross-correlations, in addition to cycles following various time scales (seasonal and daily). Net load uncertainties have a direct impact on the level of risks taken by investors when financing new production units (De Sisternes, 2016 ; Alvarez Lopez & Kumaraswamy, 2010) and on mechanisms required for adequate remuneration. These uncertain features need to be precisely modeled in optimization models in order to take informed investment and dispatching decisions. However, the distributions of electricity demand and RES availability parameters are often subject to uncertainties. In this paper, we provide a set of tools inspired from distributionally robust optimization in order to derive a set of extreme trajectories of a set of uncertain parameters. The originality of our work lies in the definition of robustness, conceived not only as a protection against extreme values of an uncertain parameter but also against its most extreme variations in time.

Traditional approaches to optimization under uncertainty [START_REF] Babonneau | Robust Optimization for Environmental and Energy Planning[END_REF] include stochastic optimization (SO) (Birge & Louveaux, 1997; Kall & Wallace, 1994), chance-constrained programming [START_REF] Cooper | Chance-Constrained Programming[END_REF]Prékopa, 1970) and stochastic dynamic programming [START_REF] Bellman R | Dynamic Programming[END_REF][START_REF] Ross Sheldon | Stochastic Processes[END_REF]Bertsekas, 1995). These models assume the perfect knowledge of a well-defined probability model of an uncertain parameter. In the deterministic formulation of stochastic optimization, each value of the parameter is associated with a scenario with a positive probability of occurrence. This results in high complexity and makes the computation of the solution quickly intractable for large models. Moreover, solutions are highly sensitive to errors in the estimation of the distribution of the uncertain parameter. Distributionally robust optimization (DRO) is an emerging approach combining insights from SO and RO by searching for a solution that optimizes the worst-case expected performance on a set of distributions of the uncertain parameters, referred to as the ambiguity set. Contrary to SO, DRO does not require knowledge of the entire distribution of the uncertain parameters but only information about its moments, which makes it increasingly popular [START_REF] Shapiro | On complexity of stochastic programming problems[END_REF] Instead of modeling uncertain states with their associated transition probabilities within a process, we define longitudinal clusters of each component of multidimensional random process and construct a trajectory ambiguity set for each cluster. This set includes all probability distributions of a given stochastic process with their quantiles included in a ball centered on the empirical quantile value. Similarly, the distribution of the variations between two consecutive quantile values in the stochastic process has each quantiles centered around each quantile value of the empirical distribution of variations. The radius of these balls are defined as functions of both the number of quantiles considered and the number of observations in the training dataset. This framework allows us to refine the usual definition of robustness.

Robustness is usually implicitly considered as hedging against the highest or lowest value the uncertain parameters can take. Yet, in the case of electric systems with high renewables penetration, system flexibility is increasingly required and valued. Thus, it seems appropriate to define a production mix that is also robust to the most extreme variations of the uncertain parameters, namely electric load, solar and wind capacity factors. Using a combination of backward and forward iterative computations to calculate the longest path (highest variations) between each consecutive values of the uncertain parameter, we propose two polynomial time algorithms allowing to determine the variability-maximizing and levelmaximizing trajectories of the uncertain parameters' quantiles. A set of worst-case trajectories can then be defined for each possible distribution included in the trajectory ambiguity set. Finally, we propose a numerical experiment, using our original framework for electricity mix optimal investment decisions under residual demand uncertainty in the case of one of the most industrial French regions. We provide a discussion of the results and hints for further research and improvement of the simplified framework proposed in this paper.

Section II details our clustering and DRO-inspired methodology in a quantile information framework, providing theoretical properties for our trajectory ambiguity set and two original algorithms for computing worst-case trajectories. Section III proposes a numerical simulation using a cost minimizing optimization model for the electricity mix of the French region Auvergne Rhône-Alpes, comparing solutions obtained when using only parameter's level robustness to both level and variability robustness, before concluding in Section IV.

II-Methodology

Our method first consists in clustering individual cyclical components of residual demand in order to identify patterns in their trajectories. Then, we propose an extended version of the ambiguity set proposed by Delage & Ye (2010), called trajectory ambiguity set, in order to include uncertainty in the quantity of variations of the uncertain parameter. We provide its theoretical properties with proofs in addition to an algorithmic method for estimating the most-adverse trajectories.

II.1. Clustering methodology

II.1.1. Definitions

We define the multidimensional random process of dimension deviation, coefficient and variation, maximum and standard deviation of the first differences. A subset of these measures is selected using factor analysis and then used for clustering analysis. This first clustering step is performed through using a statistical program (modeled in R and using the package traj.) For , the corresponding set of clusters is noted with elements , where | | .

Once clusters of trajectories have been determined for each { } , we further identify a set of "metaclusters" noted , in order to identify associative patterns between individual clusters of trajectories.

"Meta-clusters" correspond to the set of exogenous conditions generate a combination of clusters for each component of { } . By construction, we assign a single meta cluster to each period of length , where is associated with the trajectory { } . In the case of electricity generation, ,"meta-clusters" can be defined as the set of exogenous meteorological conditions which jointly determine electricity demand trajectories, PV and wind capacity factor trajectories.

For each period , we define the joint state of trajectories as ( ) ∏ . Then, for a given combination , if there exists no such that { | ( ) } , we say that is impossible. "Meta-clusters" are computed using the k-means method and their optimal number is determined using the "elbow" method. Note that in the case of residual demand, which is a linear combination of electricity demand and RES production, each element or component had follows a daily cycle with the same period . 
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where ( ) | | and ( ) corresponds to the cumulative distribution function of . We further define the binary matrix ̃ associated to , with elements defined such that :
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Using this definition of ̃ , and can respectively be computed as follows:
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The definition of the worst-case joint state of nature ∏ is conditional on the type of variables included in the multidimensional random process { } and the users' objectives. In the context of electricity generation mix optimization under residual demand uncertainty, the worst-case trajectory corresponds to the case where demand trajectory takes its highest values while PV and wind capacity factor trajectories take their lowest values, or when the exact opposite happens. If we assume { } corresponds to electricity demand trajectory and { } corresponds to capacity factor trajectory for renewable generation technology , then the worst-case joint states of nature are defined as

( ) and 
(
). Yet, although ( ) are theoretically possible, they may be empirically impossible, i.e. there may exist no "meta-cluster" such that those combinations are generated. Thus, the worst-case joint states of nature that are feasible, defined as ̂ and ̂ , are respectively the solutions to the following optimization problems:
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It is important to note that the clustering step is only required for non-commensurable individual stochastic processes. In the case of residual demand, electricity load is typically measured in MWh while wind and solar capacity factors have no unit. It is thus not possible to aggregate them. If installed capacities in wind and solar units are known a priori, it is possible to directly compute the renewable production, which in turns allows us to aggregate components of { } into a one dimensional stochastic process corresponding to residual demand.

II.2. Trajectory-based DRO using quantile information

Robust optimization consists in finding a solution that remains feasible in the case where an unknown parameter takes its worst possible value, yet it may result in overly conservative solutions. On the other hand, DRO consists in finding a solution that maximizes the expected performance (or minimizes the expected cost) under the most averse distribution of an unknown parameter. However, the expected performance might not only be a function of , but also of ̇ . In the case of electricity mix optimization, starting and ramping costs, in addition to technical limitations to the variation of production (minimum production level, minimum-up and down time, ramping limits) may significantly affect the optimal solution. A suboptimal mix in terms of flexibility may result in load shedding or overproduction if dispatchable production units cannot rapidly adjust to residual demand fluctuations.

The worst-case distribution of parameters can thus be defined as the distribution of residual demand components that maximizes or minimizes the values taken by residual demand and maximizes the volatility of residual demand trajectories. We define the ambiguity set associated with the multidimensional random process { } as . Let ( ) be the decision vector and ( ̇) be a random cost function [START_REF] Rahimian | Distributionally Robust Optimization: A Review[END_REF], increasing both in and ̇. Given this formulation, the robust optimization problem has the following form:

{ { ( ̇)}} ( )
Assuming separability of the cost function and ( ) , the robust optimization problem can be reformulated as

{ { ( )} { ( ̇)}} ( )

II.2.1. Definitions and main properties

Let us start with a general presentation of our approach and drop subscript without loss of generality.

We define the trajectory ambiguity set associated with the distribution of { } as follows:

{ | | ( ) ( ) | ( ) ( ) | ( ) | ( ) ̇ ( ̇ ( ) ) ( ) | ( ) }
We assume that the true support of the unknown parameter, denoted by , is unknown. The originality corresponds to the -th quantile in the empirical conditional distribution of ̇| ( ) . Finally, , .

of
We note the vector of quantile values respectively. Let us define the empirical distribution of such that: 
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) is an unbiased estimate of the true probability of . Then, as the variance of the estimator ( ) decreases with , the variance of ( ) decreases also with and we can show that, for

(| ( ) ( )| ) (| ( ) ( ( ) )| ) ( ( ) )
As , using the Chebyshev's inequality. The same holds for the distribution of variations of the uncertain parameter. Thus, we can define as decreasing functions of and increasing functions of 

Where the positive signs when deriving with respect to and translate the fact that the ambiguity of measure is expected to increase for extreme events. As the number of observations may be low for such events, higher values of and ensure the ambiguity set includes extreme tail values of the uncertain parameter that have not yet been observed in the training dataset.

It is possible to relate our trajectory ambiguity set to a moment-based ambiguity set (Delage & Ye, 2010) by approximating its moments. For instance, using information on the vector ( ) , it is possible to define a distribution of mean values such that:

{∑ ( ) ̂ | ̂ (( ̂) ) ̂ } ( ) With | | .
We bound the expected value of , ( ), by successively pushing all the mass into the inferior bound and the upper bound of each of the | | intervals: Finally, due to the ambiguity of the measure of quantile values, the probability that the uncertain parameter lies within a given set is itself a function of this ambiguity, which is captured by the vector (( ) ). In order to formalize this intuition, let us define the subset (
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, ( ) . Then, for all subset , it is possible to define and identify a couple
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II.1.2. Algorithms for estimating the volatility-maximizing and level-maximizing trajectories

The purpose of the methodology presented in this subsection consists in computing the trajectory that maximizes a given score function when starting from a given point ( ) , , . In the context of electricity mix robust optimization, we are both interested in the trajectories that respectively maximize the variability (defined as the absolute variation) and the level of the uncertain parameter. As computing the variability and values taken by each trajectory would be extremely costly, we provide two algorithms which allow computing exactly the trajectories of quantiles which respectively maximize the level and variability of the uncertain parameter, defined as { ( ) } and { ( ) } .

The philosophy of the variability-maximizing algorithm can be summarized as follows: for each value of quantile at each point of time, we compute both forward and backward in time the value that maximizes the score function when starting from this value. Starting from ( ) , , this yields a pair of values ( ( ) ( ) ) ( ) , from which we compute forward the value that maximizes our function starting from ( ) , and backward starting from the value ( ) . By iterating this procedure, we construct a unique trajectory of length originating from ( ) .

In order to make the presentation of the algorithms as clear as possible, let us start with a certain number of more formal definitions. , , we define (resp.

) as the maximum forward variation possible from the value (resp. the maximum backward variation possible from the value ( ) ). Moreover, we define (resp.

) the maximum (resp. the minimum) forward variation possible, such that { }. In order to avoid confusions, we use subscript when referring to quantile identifier going backward, and when going forward. The sequences of quantiles corresponding

to the variability and level-maximizing trajectories are defined recursively as:
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And :

As ⋃ , we can further deduce that :
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Moreover, for any , if , no trajectory takes the value ( ) . Conversely, there exists such that the trajectory { } varies more in absolute terms than the trajectory defined by { }. Similarly, if for any sequence ( ) ⋃ ⋃ , there exists a trajectory that varies more in absolute terms than the trajectory { } .

The utility of our iterative approach relies on the fact that any trajectory that is not included in the subset cannot be the trajectory that maximizes the variations of the uncertain parameter. This result is summarized in the following theorem with the associated proof:

Theorem: Let ( ) be a sequence of quantile indexes. Then, by denoting the sum of absolute variations of the sequence of quantiles indexed in , .

Proof:

Assume , . Then, {( ) ( ) }
such that the following condition is verified:

( ∑ ‖ ‖ ∑ ) ( ∑ ‖ ‖ ∑ )
Yet, as , ‖ ‖ , the following condition must hold :

(((‖ ‖ ) (‖ ‖ )) ((∑ ‖ ‖ ∑ ) (∑ ‖ ‖ ∑ )))
This implies that for each trajectory {( ) ( ) }, there exists a couple (

),

, such that the two following conditions holds:
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As the above conditions hold for any sequence of quantiles {( ) ( ) }, they imply that ( ) ( ) is true. This further implies that , so is impossible and we conclude that there exists no trajectory such that .

Then, by computing all trajectories , the previous theorem implies that the trajectory which maximizes the total variability is included in the set . This result avoids the costly computation of the total variability of all possible trajectories of the uncertain parameter.

In order to compute both trajectories, our method first requires replacing each value of the uncertain parameter by its nearest quantile in the empirical distribution of the parameter. The sequence of operations that are necessary for computing the variability-maximizing trajectory of quantiles (Algorithm 1) can be summarized as follows:

Algorithm 1: 4-step algorithm for variability-maximizing trajectory 1

Step 1: For to , for , do: 2 Compute and ;

3

Step 2: Using matrixes and , compute ;

4
Step 3: Compute the couple ( )

5
Step 4: Compute and to obtain variability-maximizing sequence of quantiles

{( ) ( ) } 6 End
Where ( ) and ( ) . The strategy of this algorithm consists in computing the variability-maximizing trajectory, using the iterative procedure described above, starting from each quantile of the uncertain parameter for each point of time. The values of correspond to the total variability of each trajectory included in the subset . Then, the row and column index of the greatest element of indicate the "origin" point of the variability-maximizing trajectory, which can finally be obtained by computing and . The variability-maximizing trajectory is noted { ( ) } .

Similarly, defining the vector ( ) , the sequence of operations required for computing the levelmaximizing quantile trajectory (Algorithm 2) can be expressed as: where the vector is determined by the number of observations in the training dataset and the size of .

Each value of the uncertain parameter is replaced by its nearest neighbor in the vector ( ( )

̂)

for each time period. We can say that a distribution is unambiguously worse than another distribution if the variability and level scores associated with its variability and level maximizing trajectories are both superior or equal to those obtained from the alternative distribution. However, we leave for further research the derivation of the worst-case distribution of the uncertain parameter, as the comparison of variability and level scores depends on the shape of the cost function.

III.2. Numerical simulation results

III.2.1. Technical assumptions

In the following section, we present the results of the model described above applied in the case of the French region Auvergne Rhône-Alpes. This administrative region is located in the South-East of France and enjoys strong solar irradiation compared to the national average. In addition, it accounts for roughly 11.6% of French GDP, while its mean share of national electricity load equals to 13.8%.

We assume no initial generation capacities. For convenience, we further assume that no investment occurs in hydroelectric production units. As only one region is considered, transmission constraints and transmission costs are not included in the model. Moreover, we constrain the variable for capacity investment to take only discrete values for nuclear, gas turbines (GT) and combined cycle gas turbine plants (CCG), and continuous values for other production and storage technologies. Nuclear investment is performed by blocks of 1.6 GW, corresponding to the rated power of the EPR Flamanville plant (the most recent nuclear power project in France), while CCG investments are made by blocs of 0.45 GW, which corresponds to the average nominal power of General Electric's 9HA.01/.02 gas turbine. Finally, GT investments are performed by blocks of 0.3 GW. Flexibility characteristics of main generation units can be found in Table 1. Oil and gas prices are forecasted using linear regression, we take Netherlands TTF and OECD countries CIF per million Btu dollar prices as reference on the period 2005-20181 .

Finally, we take a 5% discount rate and a CO2 price equal to 50€/ton, without taking any CO2 emission ceiling. Investments decisions are made every two years over the 2021-2029 period. In order to simplify the practical application of the methodology presented in section II, we use the theoretical worst-case joint state of nature ( ) instead of the empirical one ( ̂ ̂ ). Yet, this assumption may generate trajectories significantly more variable than empirically observed ones, which may lead to overly conservative investment decisions. Thus, we compare the results using residual demand trajectories generated using Algorithms 1 and 2 with empirically observed level and variability-maximizing residual demand trajectories. For convenience, we let the reader refer to the Appendix for detailed explanations on the estimation of empirically observed worst-case trajectories.

When considering the technical characteristics of generation technologies presented in Table 1, one actually notice that ramping rates are high enough for each technology units to vary their output within their entire production range. Indeed, as the model is defined using hourly time step, nuclear plants may vary their production by more than 100% of their rate power within an hour. Thus, ramping constraints are not binding within hourly time resolution. Moreover, when looking at dispatch data from RTE, it appears that nuclear plants especially are operated with much less flexibility than their technical characteristics actually allow. Taking national hourly production data on the period 2013-2018, Figure 1 shows the distribution of the rate of variation of nuclear output, defined with respect to nominal power: It appears from Figure 1 that in roughly 90% of cases, nuclear output hourly variations are comprised within -2.1% and +2.1% on average. If we take the whole distribution, the lower an upper bounds on hourly variations observed in the data become -12.4% and +13.9%. Still, these figures remain largely inferior to the ramping capacities of nuclear units, which suggests they are operated in a much rigid way considering their flexibility characteristics. This can be linked to the fact that RTE2 uses nuclear plants for baseload production instead of load-following.

A similar reasoning may be carried out for all technologies. We here focus on the case of nuclear, and add these operational "rules" as constraints to our optimization model. In order to precisely analyze how operational flexibility affects investment decisions, we include the minimum and maximum hourly variation values as operational bounds for thermal units.

III.2.2. Comparison of investment decisions and operational costs using theoretical and empirical worst RD trajectories

We start by analyzing the investment results obtained when using trajectories obtained using both Algorithms 1 and 2, that are presented in Table 2. As we assume no initial installed capacities, the figures reported correspond to the level of generation capacity for each technology in 2021, using successively theoretical worst-case RD trajectories and empirical trajectories. For each column, the figures on the left correspond to the optimal investment level with maximum-level-robust only decisions, while figures on the right correspond to both maximum-level-robust and variability-robust decisions. We provide in Appendix optimal investment results when taking simultaneously minimum-level-robust, maximum-levelrobust and variability-robust decisions. As the variability of solar and wind capacity factors would have no effect on the shape of residual demand for null installed capacities, we impose various thresholds values for the level of investment in renewable technologies. It can first be noted from Table 2 that as the threshold for renewables installed capacities increases, the investments in peaking technologies (CCG and gas turbines) are non-decreasing for all cases, while the capacities in nuclear decrease. Yet, while in the level-robust only case, investment in peaking technologies remain constant with respect to the threshold value, the sum of their installed capacities is always increasing with level-variability robustness (especially using theoretical trajectories). The behavior of investment in batteries is more chaotic: as its optimal level steadily increases both for level-robust only and level-variability-robust investment decisions using theoretical trajectories, its level-robust capacities increase while its level-variability-robust capacities decrease using empirical trajectories.

When hedging against both types of worst-case trajectories, peaking technologies and battery storage seem to behave as substitutes in the empirical case and complements in the theoretical case. This complementarity can be explained by the fact that, while higher capacities in battery storage allow the smoothing of highly variables renewable production when capacities increase, thermal peaking technologies remain necessary as the capacity factors of wind and solar units is quasi null in the levelmaximizing RD trajectory. Theoretical trajectories may thus result in slight over conservatism compared to empirical ones. Indeed, as level-robust only investment levels obtained using theoretical and empirical trajectories are quite close, this indicates level-maximizing trajectories have similar profiles while the theoretical variability-maximizing trajectory exhibits significantly higher variability than the empirical one.

High storage capacities are thus necessary for high variability periods, yet the equilibrium of the electric system still requires significant thermal capacities for high residual demand periods.

As shown in Table 3, the adapted mix, corresponding to level-variability robust investment decisions, systematically exhibit lower yearly fixed cost and annuities than the non-adapted mix, corresponding to the level-only robust decision. Similarly, the adapted mix always has higher variable costs, both in the case of the level-maximizing and variability-maximizing weeks, compared to the non-adapted one. However, the theoretical variability-maximizing week is always integer infeasible with the non-adapted mix, even when allowing curtailment of renewables and load shedding, which would result in a system blackout. Yet, the empirical variability-maximizing week remains feasible with the non-adapted mix and at least cost than with the adapted mix. Apart from the theoretical case, we observe a clear trade-off between high variable costs and low fixed costs mixes depending on targeted level of system flexibility. Yet, both adapted and non-adapted mixes exhibit a high share of CO2 emitting production capacities, which would result in highly polluting and expensive mixes depending on the price of carbon. After measuring that a higher CO2 price doesn't significantly change the above results, we impose a restriction on the maximum number of oil and gas power plants in the mix. This ceiling is defined such that the optimization problem is infeasible for any number of fossil plants strictly lower than . In other words, corresponds to the minimum number of oil and gas production units necessary to maintain the frequency of the electric system within acceptable bounds without using reserves. The resulting production mixes and cost decomposition are presented in Table 4 and 2, while these ratios to expand to 372% and 56% respectively for the ET adapted mix.

A similar observations can be made when imposing a minimum of 5 GWe of renewables in the mix. The flexibility "loss" of not investing 1 GWe of oil or gas production unit in the system must be compensated by more than 6 GWe of battery storage to ensure an equivalent level of system flexibility.

As observed in Table 5, this results into significantly higher yearly fixed costs and annuities for both adapted and non-adapted mixes. For a threshold of 3 GWe, TT and ET adapted mixes respectively exhibit 15% and 24% higher yearly FOM costs and annuities compared to Table 3, while these ratios decrease to 13% and 18% respectively for a threshold of 5 GWe of renewables. 6 and 7 in Appendix. However, we made the assumption that there are no initial capacities. In the case preexisting capacities are not retired when new investments are made, increasing the share of renewables in the electric mix increases more than proportionally the total FOM costs and annuities of the system. As increasing decarbonization imposes increasingly avoiding CO2 emitting technologies, the total costs of the system will increase more rapidly than the share of renewables because of increasing investments in storage for flexibility requirement. In the case the electric mix is not properly designed in terms of flexibility needs (non-adapted mix), the objective of minimizing CO2 emissions while developing renewables may trigger infeasible situations resulting in system blackouts with extremely high costs for the society.

IV-Conclusion

We presented in this paper an original approach based on philosophy of DRO and the tools of RO in order to derive worst-case trajectories of uncertain parameters, derived both in terms of level and variability. As a higher share of renewables in the electricity mix is associated with higher residual demand variability, it makes sense to hedge against situations that would require high flexibility from the system and push power plants to their technical limits.

For each possible matrix of quantile values for the uncertain parameter defined in the trajectory ambiguity set, we derive its level-maximizing and variability-maximizing trajectories expressed in quantiles of its empirical distribution. For each value of this matrix, it is possible to derive a pair of trajectories and thus a joint distribution of worst-case trajectories associated to each possible value of the vector described in Section 2. We leave the derivation of the worst-case theoretical probability distribution of the uncertain parameter based on this joint distribution for further research. Still, we prove how our simple framework can be used for refining utility investment decisions in the context of the transition of electric systems, allowing us to derive optimal solutions hedging against situations of extremely levels and variability of uncertain parameters at minimum cost. and correspond to the observed photovoltaic and wind generation units capacity factors. The RD level-maximizing week for each season is thus the vector of hours ( ) that maximizes the above expression:

̆

In order to estimate the volatility-maximizing week for each season, we start by scaling each component of RD such that they take values 0 and 1. As and are not directly observed in the data, we obtain them by dividing the solar and wind power outputs by photovoltaic and wind plants installed capacities respectively. Electricity load is standardized by subtracting for all ̆ the minimum value from the distribution of ̆ and dividing it by the range of the distribution. We note ̆ the normalized demand. As we are interested in measuring variations of residual demand, this standardization is necessary so the differences in ranges of RD components are neutralized. However, the variability of RD trajectories is both a variable of RES installed capacities and the share of RES capacities in total electricity load. Thus, the selection of the most-volatile RD week in the data must be informed by the share of RES in the electricity mix that is targeted. Formally, we define the simulated RD as follows:

( ) ̆ ∑ ∑ ( ̆ ∑ ∑ )
corresponds to the volume of installed capacity that is targeted for RES. It is chosen equal for solar and wind generation technologies. can be related to the share of RES in the electricity mix. For for instance, the amount of installed capacity is approximately equal to 50% of electricity demand. For , it is roughly equal to 33%. For a given value of , ( ) is estimated for , where is calibrated using the peak load observed in the data. Noting the peak load , we have ⌊ ⌋, such that ̆ . This ensures that the values of used for estimating ( ) reflect the true range of electricity demand. Then, the total weekly variation of the simulated RD for given season and year is given by:

( ) ∫ | ( ) ̇|
Finally, it is possible to express the total weekly variation as a score by dividing it by the maximum weekly variation observed. Using French data from RTE on the electricity consumption, solar and wind power production on the period 2013-2018, we obtain the following graph for all weeks of spring: The red, orange, green and blue lines respectively correspond to RD weekly variability scores with RES installed capacities equal to 100%, 66%, 50% and 40% approximately. The striking feature of Figure 8 is that while some weeks exhibit very high variability scores for 100% RES, the score drastically increases when the share RES in the electricity mix increases as well (approx. week 62 for instance). On the contrary, some weekly RD patterns become increasingly problematic, in terms of flexibility requirement from the generation mix, when the RES share of approximately 40%. Thus, based on the RES penetration target, it is possible to select one (or several, with increased computational costs though) weeks based on this variability score. 
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	characterization of stochastic independence of uncertainty (Chen et al., 2019). The use of DRO models
	is becoming increasingly popular for modeling power dispatch, power flows and production planning in
	the electricity sector (Chen In order to properly model decisions involving stochastic processes, DRO coupled with Markov Decision
	Processes with uncertain transition probabilities and reward parameters provides a popular approach. Xu
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	trajectories (						
									| | | |, { }	({ } ). We
	assume { }	takes discrete values. Furthermore, we assume individual components of { }	have
	different scales and are not commensurable. The first step of our method consists in determining
	statistical patterns in the trajectories of each component	of our random process. { }	can be
	decomposed as the stacking of one dimensional random vectors { } , with	. We assume that
	, { }	is a weakly cyclically stationary stochastic process of period , such that
	( )	(	) and ( )	(		), for		, where	is the set of strictly positive
	integers. Finally, we define the support of { }	as	∏	∏ ∏	, where
			.					
	{ }	can thus be decomposed into the reunion of several cyclical stochastic processes of period such
	that { }	({ }	{	}		{ (	) }	), where	. In a similar
	fashion, { }	can be decomposed into a reunion of stochastic processes such that { }
	({ }	{	}	{	(	) }	).	
	The clustering step consists in identifying in the data, for each { }	, different clusters of
	trajectories of period , where a cluster includes all trajectories which share similar statistical properties. A
	number of relevant statistical measures can be used to identify patterns in individual longitudinal

  It is possible to show that the trajectories that takes the highest or lowest values of the uncertain parameter are different from the trajectory that maximizes its variations under rather mild conditions.

		( )	and (	)	, then ( )		. It is then straightforward to verify that
		( ) as	and | | | |.		
	Let us consider the trajectory (		) that successively takes the supremum values of
		and . Let	{‖	‖|		} and	‖	‖.
	We define the maximum absolute variation between consecutive values	and	as ̇ such that
			‖	‖	̇ . By definition, ̇ . If there exist	such
	that	‖(	) (		)‖	̇	, then the level-maximizing trajectory
	(		) does not maximize the variations of the uncertain parameter.

Table 1 : Flexibility characteristics of main generation technologies.

 1 

	Technology	Minimum Load (%	Ramping rate (% of	Minimum
		nominal power)	nominal power/min)	uptime/downtime
				(hours)
	Combined cycle gas turbine	45	20	0
	Oil turbine	20	8	2
	Nuclear	50	2-5	10
	Hydroelectric	5	15	0.1
	Sources: Gonzalez-Salazar et al. (2018), IAEA (2018), Schill et al. (2016), IEA (2015), Schröder et al. (2013),
	EC JRC (2010).			

Table 2 : Optimal investment level by technology, with constraints on minimum installed capacities for renewables

 2 

		> 1 GWe	> 3 GWe	> 5 GWe
		TT	ET	TT	ET	TT	ET
	Combined cycle gas	4.05/8.1	4.95/5.85	4.05/9.9	4.95/6.75	4.05/10.8	5.85/6.75
	turbine						
	Gas turbine	1.2/1.2	1.2/1.8	1.2/0.6	0.9/2.4	1.2/0.9	0.9/2.1
	Nuclear	19.2/12.8	17.6/16	19.2/11.2	17.6/14.4	19.2/9.6	16/14.4
	Wind	0/0	0.52/0	0/0	0.064/0	0/0.33	0.30/1.07
	Utility-scale PV	1/1	1.21/1	3/3	2.93/3	5/4.67	4.70/3.93
	Commercial PV	0/0	0/0	0/0	0/0	0/0	0/0
	Residential PV	0/0	0/0	0/0	0/0	0/0	0/0
	Battery storage	1.40/9.89	3.70/2.73	2.41/10.40	5.51/6.40	2.89/10.73	6.55/3.50

(TT= Theoretical trajectories; ET= Empirical Trajectories) 

Table 3 : Cost decomposition of the electricity mix, with constraints on minimum installed capacities for renewables

 3 

(INF= Infeasible dispatch) 

Table 5 respectively

 5 

		> 3 GWe	> 5 GWe
		TT	ET	TT	ET
	Combined cycle gas	0/9	0/4.05	0/9	0/4.5
	turbine				
	Gas turbine	0/0	0.9/0	0/1.2	0.9/0
	Nuclear	24/12.8	20.8/17.8	24/11.2	20.8/17.6
	Wind	0/0.3	5.56/1.53	0/0	5.74/0.9
	Utility-scale PV	3/2.7	0/1.47	5/5	0/4.1
	Commercial PV	0/0	0/0	0/0	0/0
	Residential PV	0/0	0/0	0/0	0/0
	Battery storage	13.76/20.4 19.51/23.8 13.51/18.8 18.78/12.8

Table 4 : Optimal investment level by technology, with constraints on minimum installed capacities for renewables and maximum on CO2 emitting power plants

 4 While CO2 emitting technologies completely disappear from the non-adapted mixes, both for theoretical

and empirical trajectories, Table

4

exhibits much higher battery storage capacities for adapted mixes compared to Table

2

, with an incompressible level of oil and gas plants only slightly lower than for unconstrained investment. With a minimum level of 3 GWe of renewable capacities, the TT adapted mix has 96 % higher battery storage capacities while roughly 16% lower oil and gas production capacities compared to Table

Table 5 : Cost decomposition of the electricity mix, with constraints on minimum installed capacities for renewables and maximum on CO2 emitting power plants

 5 

Similar conclusions can be drawn when comparing minimum-maximum-level-robust to minimummaximum-level-robust and variability-robust decisions with empirical data. Investment results and costs figures are reported in Table

Table 6 : Optimal investment level by technology, with constraints on minimum installed capacities for renewables and maximum on CO2 emitting power plants

 6 

	Appendix to III.2.2:			
		> 1 GWe	> 3 GWe	> 5 GWe
		ET	ET	ET
	Combined cycle gas	10.8/9.45	10.35/9.45 11.7/11.25
	turbine			
	Gas turbine	1.5/2.7	1.5/2.1	0.9/1.5
	Nuclear	10.8/9.6	9.6/9.6	8/8
	Wind	0/0	0/0	0/0.03
	Utility-scale PV	1/1	3/3.04	5/4.97
	Commercial PV	0/0	0/0	0/0
	Residential PV	0/0	0/0	0/0
	Battery storage	6.32/7.34	12.74/12.9 13.08/13.2

(Empirical trajectories, minimum-maximum-level robust vs. minimum-maximum-level-robust and variability-robust 

See BP Statistical Review of World Energy, June

RTE is the French transmission system operator

(

) such that:

Then:

)

Similarly, (

). Then, by noting

) ), we have:

Using a similar reasoning in order to derive a lower bound for ( ), we can provide it with the following bounds, with ( ) :

In the case we are interest in the level-minimizing trajectory, we just need replacing the supremum by the infimum in the previous expression. The subsets of trajectories generated when using the above described procedure that respectively maximize the variability of the uncertain parameter and its level are defined as:

We define the forward and backward variability scores as:

With the distance operator which measures the absolute variation between two consecutive values, defined as follows:

With ( ) .

Concerning level-maximizing trajectory, it is straightforward that any trajectory that takes highest quantile values more often than all other trajectories maximizes its level. It is thus sufficient to compute only the forward level score, which can be defined as follows:

Where

In the case we are interested in computing the level-minimizing trajectory again, we just need replacing the supremum by the infimum in equation (33). We define the subsets which include all antecedents of ( ) , that is all elements such that

We note the following equality, :

This equivalence simply states that is either equal to the supremum of the absolute distance from the antecedents of ( ) or the supremum of the absolute distance from all values such that ( ) is not the furthest value which is feasible from

. In a similar fashion, we define the subsets including all elements such that

II.2. Cluster-level ambiguity sets

Let us now reintroduce the subscript and consider the uncertain vector ( )

∏

, where for all . For each component of the uncertain vector and state

, it is possible to define a cluster-based ambiguity set. Formally, it can be written as follows:

As the computation of joint trajectories may be intractable, we make the hypothesis similar to Yu & Xu (2015)

that the trajectories among different state, within a given empirically possible combination, are independent. This property is essential in order to be able to derive results and individual trajectories for each component of our uncertain vector. This central assumption is equivalent to saying that for any feasible joint state of nature ( ) and pair ( ) , , the stochastic processes { } ( ) and { } ( ) are independent. The cross correlations between components of { } are assumed negligible once controlling for the joint state of nature.

However, it may be objected that this approach may generate unrealistic residual demand trajectories and overly conservative results, by introducing too much variability. Moreover, the bounds on the volatility of each component of { } are estimated separately and not as functions of the volatility of other components. Yet, it is possible to hierarchically estimate the matrixes ( ) and ( ) as functions of ( ) and

( )

, where correspond to components different from which optimal trajectories have been estimated in previous steps. Similarly, as the volatility of trajectory is measured for each parameter separately, the volatility of residual demand (seen as a linear combination of electricity demand and production of renewables) may be quite low due to variations "cancelling" each other (an increase in demand may be cancelled out by an increase in wind production at the same period). Again, it is possible to hierarchically estimate

If the assumption that individual trajectories are independent within cluster combinations is verified, then it is possible to estimate the worst-case (level and volatility) trajectories for each component of our uncertain vector.

Then, assuming that { } corresponds to electricity demand parameters and { } to RES capacity factor parameters, we can define residual demand as follows, :

∑ ( )

, where corresponds to the installed capacity of RES technology . Recall from II.1. that we defined the worst-case state combinations as ( ) and ( ). Then, it is possible to express respectively the maximum level, minimum level and maximum volatility trajectories as linear combinations of residual demand components, noted { } , { } and { } respectively. We have, :

III-Numerical experiment: Electricity mix optimal investment and dispatch under uncertain residual demand

III.1. Presentation and description of the optimization model

The presentation and formulation of variables, parameters and equations is largely borrowed from De Sisternes (2013) as it provides great readability to the model and facilitates the understanding of equations. For saving some space, the full formulation of the model, including description of parameters, variables and equations, is provided in the Appendix.

The model used for this numerical experiment is formulated as a MILP with unit commitment and transmission constraints. We include constraints on ramping up and down of production units, maximum and minimum stable output levels, minimum up and down times, online or offline status, in addition to flow balance and flow capacities constraints for the network. We include storage devices under the form of batteries, reservoirs and hydraulic pumped storage stations, and electric vehicles (EVs), which are modeled as batteries with an hourly minimum state-of-charge requirement based on the expected distance driven in the following time period. Finally, we include constraints on CO2 price, in addition to supplydemand equilibrium constraints corresponding to both level-maximizing and volatility-maximizing residual demand trajectories. The model is formulated at the regional geographical scale, while combining yearly, seasonal and hourly time scales.

Appendix:

Appendix to III.1.:

The presentation and formulation of variables, parameters and equations is largely borrowed from De Sisternes (2013), as it provides great readability to the model and facilitates the understanding of equations.

III.1.1. Indices and sets

, where is the set of electricity and transmission network costs (investment costs expressed as annuities, maintenance costs). We make the assumption that the variable cost of transmitting electricity is equal to zero. Finally, we define the value of lost load (VOLL), which corresponds to the cost of one non-served unit of electricity demand.

We introduce generation units technical constraints, including maximum and minimum stable power output (the latter applying when a unit is online, ie effectively feeding electricity into the network), ramping up and down limits and minimum up and down times, in addition to CO2 emission rate, for each technology. Specifically for storage technologies and electric vehicles (EV), we consider maximum and minimum state of charge limits, charging speed, round-trip efficiency (we choose ), in addition to the average number of kilometers for each time interval of the day in order to approximate the electricity consumption requirements of an EV fleet.

Finally, we introduce distance measures for each arc , where its length is calculated as the distance in kilometers between the centroids of regions and . This provides an approximation for the length of new transmission lines to build for reinforcing transmission capacities along arc . Yet, we may consider the resulting investment costs as upper bounds as centroid distance is likely to overestimate the length of new lines needed to link the two regions. In order to keep our model linear, we introduce two auxiliary variables for production in additional to the slack variable . is equal to the output power produced by technology plant in addition to the minimum production level . Put differently, the total output power of generation technology plants is equal to the sum of and .

III.1.3. Variables

The volume of electricity transmitted from region to region is not a decision variable in the model, but is necessary in order to express flow balance and flow capacity constraints. The following variables correspond to the level of curtailed wind power and non-served electricity, storage units and EV stock (state of charge) and flow. Finally, we introduce binary variables which correspond to the commitment state and start-up/shut-down decision of power plants, in order to account for the physical limitations of thermal and hydropower technologies and mechanical inertia. Finally, the two binary variables and translate the fact that storage units and EV cannot be storing and releasing electricity at the same moment, and can only execute one of those two actions.

III.1.4. Structure of the centralized cost minimization optimization model

Where:

Note that the optimal level of investment must both satisfy equations (44) and (45) simultaneously. Therefore, there exist one single set of optimal investment solutions and several distinct set of solutions for the optimal dispatch. We note the vector of solutions for the optimal dispatching problem facing trajectory as ( ). For sake of clarity, we drop the superscript for decision variables in the model equations.

The objective function (43) can be decomposed as the discounted sum of three components. The first one corresponds to the sum of annuities and fixed operations and maintenance (FOM) costs for cumulated investments in new generation capacities; the second one corresponds to short-term variable and start-up costs, in addition to CO2 costs for thermal technologies. Finally, the third part corresponds to the sum of annuities and FOM for cumulated new investments in transmission capacities. This third component is divided by two as new investments are made for arcs between each pair of regions. The parameter is a tuning parameter corresponding to the approximate number of weeks for each season.

We set it equal to .

Equations (44) corresponds to the primary frequency control constraint, stating that frequency must remain in an interval around its nominal value. We set it to equal to mHz. Equations (51) -(60) together formalize constraints on commitment state, start-up and shut-down decisions and maximum and minimum stable power, while keeping our framework linear. We combine the big-M method and the use of slack variables to express minimum production level constraints as a system of linear equations. translate the same set of constraints for EV, with equation (70) ensuring that for each period the state of charge is high enough so EV can drive the number of kilometers driven in the following period.

Appendix to III.2.1.:

We present a simple method for estimating empirically observed (ie data-driven) level and volatilitymaximizing RD components trajectories. In order to respect the correlation of parameters between regions and RD components, we estimated these trajectories at the national level in order to identify in the data the weeks corresponding to the trajectories of interest. We chose hours and estimate trajectories for each season.

We start by normalizing the values observed for electricity load, noted for given year , season and hour . Taking reference year , the normalized consumption ̆ corresponds to the consumption that would have been observed in year if the demographic, GDP and energy efficiency growth rates observed in the interval are applied to . For instance, assume GW and take 2018 as reference year. With a GDP growth rate of 2% and a 1% growth rate in energy efficiency gains, then we have ̆ GW. The normalization is performed using the following sectorial decomposition formula, for :

, where is the set of electricity consuming sectors, is the average load share of sector , is the GDP growth rate (demographic growth rate for residential sector) of sector in year , and is the energy efficiency gains growth rate. We implicitly perform a homothetic transform to each point of demand distribution. The normalized RD can thus be expressed as follows: