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Abstract

We consider variational problems with regular Hölderian weight or

boundary singularity, and Dirichlet condition. We prove the boundedness

of the volume of the solutions to these equations on analytic domains.
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1 Introduction and Main Results

We set ∆ = ∂11 + ∂22 on analytic domain Ω ⊂⊂ R
2.

We consider the following boundary value problem:

(P )

{

−∆u = (1 + |x− x0|
2β)V eu in Ω ⊂ R

2,

u = 0 on ∂Ω.

Here:

β ∈ (0, 1/2), x0 ∈ ∂Ω,

and,

u ∈ W 1,1
0 (Ω), eu ∈ L1(Ω) and 0 < a ≤ V ≤ b.

This is an equation with regular Hölderian weight not Lipschitz in x0 but
have a weak derivative.

This problem is defined in the sense of distributions as mentioned in [10].
It arises in differents geometrical and physical situations, see for example [1,
5, 24, 28]. This type of problems was studied by many authors, with and
without boundary conditions, in the subcritical case and the critical case, also
for surfaces, see [1-28], we can find in the reference existence and compactness
results. In [9] we have the following important Theorem,

Theorem A(Brezis-Merle [9]).For u and V two functions relative to (P )
with,

0 < a ≤ V ≤ b < +∞
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then it holds, for all compact set K of Ω:

sup
K

u ≤ c,

with c depending on a, b, β, x0,K and Ω.
We deduce from Theorem A and from the elliptic estimates that, u is uni-

formly bounded in C2
loc(Ω).

In [12] we have the following important Theorem and local estimate near
points ∂Ω ∋ y 6= x0 obtained by mean of the method of moving-plane. For V a
neighborhood of ∂Ω:

Theorem B(Chen-Li [12]).For u and V two functions relative to (P ) with
V a Lipschitz function satisfying,

0 < a ≤ V ≤ b < +∞, ||∇V ||L∞ ≤ A

then it holds, for all compact set K of V − {x0}:

sup
K

u ≤ c′,

with c′ depending on a, b, A, β, x0,K,V and Ω.
We deduce from Theorem B and from the elliptic estimates that, u is uni-

formly bounded in C2
loc(Ω̄− {x0}).

In this paper we try to prove that we have on all Ω the boundedness of the
volume of the solutions of the boundary value problem (P ) if we assume that
V is uniformly Lipschitz and with the weight (1 + |x− x0|

2β), β ∈ (0, 1/2).
Our tools are the previous two theorems A and B and a local conformal map

near x0 of the analytic domain Ω and a Pohozaev type identity.
Here we have:

Theorem 1.1 Assume that u is a solution of (P ) relative to V with the
following conditions:

x0 ∈ ∂Ω, β ∈ (0, 1/2),

and V a Lipschitz function satisfying,

0 < a ≤ V ≤ b, ||∇V ||L∞ ≤ A,

we have,

∫

Ω

eu ≤ C = C(a, b, A, β, x0,Ω).

A consequence of this theorem is a compactness result of the solutions to
this Liouville type equation on analytic domains, see [4].

We have the same result if we consider the following boundary value problem
on an anlaytic domain Ω ⊂⊂ R

2:

(Pβ)

{

−∆u = |x− x0|
2βV eu in Ω ⊂ R

2,

u = 0 on ∂Ω.

Here:
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β ∈ (−1/2,+∞), x0 ∈ ∂Ω,

and,

u ∈ W 1,1
0 (Ω), |x− x0|

2βeu ∈ L1(Ω) and 0 < a ≤ V ≤ b.

Theorems A and B are true for the boundary value problem (Pβ) in a neigh-
bohood of all y ∈ Ω̄−{x0}, because their proofs are local (see [9] and [12]) and
x0 ∈ ∂Ω.

In this paper we try to prove that we have on all Ω the boundedness of the
volume of the solutions of the boundary value problem (Pβ) if we assume that
V is uniformly Lipschitz and with the weight |x− x0|

2β , β ∈ (−1/2,+∞).
Our tools are the previous two theorems A and B and a local conformal map

near x0 of the analytic domain Ω and a Pohozaev type identity.
Here we have:

Theorem 1.2 Assume that u is a solution of (Pβ) relative to V with the
following conditions:

x0 ∈ ∂Ω, β ∈ (−1/2,+∞),

and V a Lipschitz function satisfying,

0 < a ≤ V ≤ b, ||∇V ||L∞ ≤ A,

we have,

∫

Ω

|x− x0|
2βeu ≤ C = C(a, b, A, β, x0,Ω).

A consequence of this theorem is a compactness result of the solutions to
this Liouville type equation on analytic domains, see [3].

2 Proof of the Theorems:

Proof of the theorems:

The proofs of theorems 1.1 and 1.2 are similar, we do the proof of theorem
1.1.

By corollary 1 of the paper of Brezis-Merle, we have: eku ∈ L1(Ω) for
all k > 2 and the elliptic estimates and the Sobolev embedding imply that:
u ∈ W 2,k(Ω) ∩C1,ǫ(Ω̄), ǫ > 0. By the maximum principle u ≥ 0.

Step 1: Brezis-Merle interior estimates . By using the first eigenvalue and
the first eigenfunction, with Dirichlet boundary condition, the volume is locally
uniformly bounded, and thus the solutions are locally uniformly bounded by
Brezis-Merle result. The solutions u > 0 are locally uniformly bounded in
C2,ǫ(Ω) for ǫ small.

Step 2: Chen-Li boundary estimates. Let’s consider y ∈ ∂Ω, y 6= x0. Apply-
ing the moving-plane method around y and the result of Chen-Li, the solutions
are uniformly bounded in a neighborhood of y 6= x0 in C2,ǫ for ǫ small.
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Step 3:estimates around the singularity x0.

We use a conformal map f = fx0
around x0, which maps a neighborhood

of x0, Dx0
, to a unit half disk centered in 0, B+(0, 1) with f(x0) = 0 and

f(∂Ω ∩ Dx0
) = {z ∈ B+(0, 1), z1 = 0}. The solution, v = uof−1 is bounded

uniformly outside 0 in C2 norm, and is a solution of:

−∆v = |g′(z)|2(1 + |g(z)− x0|)
2βWev, in B+(0, 1/2),

with g = f−1 and W = V og, and |g′(0)| 6= 0.
We use a Pohozaev type identity. We use the fact that v is uniformly bounded

outside 0. We multiply the equation by z · ∇v and we integrate by parts:
1) We have on a small half ball B+(0, ǫ):

∫

B+(0,ǫ)

(∆v)(z · ∇v)dz =

∫

B+(0,ǫ)

−|g′(z)|2(1 + |g(z)− x0|
2β)W [z · ∇(ev)]dz,

Thus,

∫

∂B+(0,ǫ)

(z · ∇v)(∇v · ν)−
1

2
(z · ν)|∇v|2 =

=

∫

B+(0,ǫ)

(2 + 2(β + 1 +O(ǫ))|z|2β)Wevdz+

+

∫

B+(0,ǫ)

(1 + |g(z)− x0|
2β)[(z · ∇W )|g′(z)|2 + (z · ∇|g′(z)|2)W ]evdz+

−

∫

∂B+(0,ǫ)

(1 + |g(z)− x0|
2β)(z · ν)Wevdσ

We can write, (v = 0 and z · ν = 0 on {z ∈ B+(0, ǫ), z1 = 0}) and v is
uniformly bounded outsode 0:

∫

{z1=0}

1

2
(z · ν)(∂νv)

2dσ +O(1) = 0 +O(1) =

=

∫

B+(0,ǫ)

(2 + 2(β + 1 +O(ǫ))|g(z)− x0|
2β)Wevdz+

+

∫

B+(0,ǫ)

(1 + |g(z)− x0|
2β)[(z · ∇W )|g′(z)|2 + (z · ∇|g′(z)|2)W ]evdz +O(1)

thus, for ǫ small enough one can compare z · ∇W and W ; |z · ∇W | ≤ ǫA ≤
a ≤ W ,

∫

B+(0,ǫ)

|g′(z)|2(2 + 2(β + 1 +O(ǫ))|g(z)− x0|
2β)Wevdz = O(1),

Thus,
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∫

B+(0,ǫ)

|g′(z)|2(1 + |g(z)− x0|
2β)Wevdz = O(1),

and we have in a neighborhood D′
x0

of x0:

∫

D′

x0

(1 + |x− x0|
2β)V eudx = O(1),

uniformly.

References

[1] T. Aubin. Some Nonlinear Problems in Riemannian Geometry. Springer-
Verlag, 1998.

[2] Ambrosio. L, Fusco. N, Pallara, D. Functions of Bounded variations and
Free discontinuity Problems, Oxford Press. 2000.

[3] Bahoura.S.S. A uniform boundedness result for solutions to the Liouville
type equation with boundary singularity. J. Math. Sci. Univ. Tokyo, 23, no
2, 487-497. 2016.

[4] Bahoura.S.S. A compactness result for an equation with Holderian condi-
tion. Commun. Math. Anal. Vol 21, no 1, 23-34, 2018.

[5] C. Bandle. Isoperimetric Inequalities and Applications. Pitman, 1980.

[6] L. Boccardo, T. Gallouet. Nonlinear elliptic and parabolic equations in-
volving measure data. J. Funct. Anal. 87 no 1, (1989), 149-169.

[7] H. Brezis, YY. Li and I. Shafrir. A sup+inf inequality for some nonlin-
ear elliptic equations involving exponential nonlinearities. J.Funct.Anal.115
(1993) 344-358.

[8] Brezis. H, Marcus. M, Ponce. A. C. Nonlinear elliptic equations with mea-
sures revisited. Mathematical aspects of nonlinear dispersive equations, 55-
109, Ann. of Math. Stud., 163, Princeton Univ. Press, Princeton, NJ, 2007.

[9] H. Brezis, F. Merle. Uniform estimates and Blow-up behavior for solutions
of −∆u = V (x)eu in two dimension. Commun. in Partial Differential Equa-
tions, 16 (8 and 9), 1223-1253(1991).

[10] H. Brezis, W. A. Strauss. Semi-linear second-order elliptic equations in L1.
J. Math. Soc. Japan 25 (1973), 565-590.

[11] Chang, Sun-Yung A, Gursky, Matthew J, Yang, Paul C. Scalar curvature
equation on 2- and 3-spheres. Calc. Var. Partial Differential Equations 1
(1993), no. 2, 205-229.

[12] W. Chen, C. Li. A priori estimates for solutions to nonlinear elliptic equa-
tions. Arch. Rational. Mech. Anal. 122 (1993) 145-157.

[13] C-C. Chen, C-S. Lin. A sharp sup+inf inequality for a nonlinear elliptic
equation in R

2. Commun. Anal. Geom. 6, No.1, 1-19 (1998).

5



[14] D.G. De Figueiredo, P.L. Lions, R.D. Nussbaum, A priori Estimates and
Existence of Positive Solutions of Semilinear Elliptic Equations, J. Math.
Pures et Appl., vol 61, 1982, pp.41-63.

[15] Droniou. J. Quelques resultats sur les espaces de Sobolev. Hal 2001.

[16] Ding.W, Jost. J, Li. J, Wang. G. The differential equation ∆u = 8π−8πheu

on a compact Riemann surface. Asian J. Math. 1 (1997), no. 2, 230-248.

[17] B. Gidas, W-M. Ni, L. Nirenberg. Symmetry and Related Properties via
the Maximum Principle. Commun. Math. Phys. 68, 209-243 (1979).

[18] D. Gilbarg, N. S, Trudinger. Elliptic Partial Differential Equations of Sec-
ond order, Berlin Springer-Verlag.

[19] Hofmann, S. Mitrea, M. Taylor, M. Geometric and transformational prop-
erties of Lipschitz domains, Semmes-Kenig-Toro domains, and other classes
of finite perimeter domains. J. Geom. Anal. 17 (2007), no. 4, 593?647.

[20] Krantz, S. Geometric functions theory. Birkhauser.

[21] YY. Li. Harnack Type Inequality: the method of moving planes. Commun.
Math. Phys. 200,421-444 (1999).

[22] YY. Li, I. Shafrir. Blow-up analysis for solutions of −∆u = V eu in dimen-
sion two. Indiana. Math. J. Vol 3, no 4. (1994). 1255-1270.

[23] L. Ma, J-C. Wei. Convergence for a Liouville equation. Comment. Math.
Helv. 76 (2001) 506-514.

[24] Nagasaki, K, Suzuki,T. Asymptotic analysis for two-dimensional elliptic
eigenvalue problems with exponentially dominated nonlinearities. Asymp-
totic Anal. 3 (1990), no. 2, 173–188.

[25] Necas, J. Direct Methods in the Theory of Elliptic Equations. Springer.

[26] I. Shafrir. A sup+inf inequality for the equation −∆u = V eu. C. R.
Acad.Sci. Paris Sér. I Math. 315 (1992), no. 2, 159-164.

[27] Stoker, J. Differential Geometry.

[28] Tarantello, G. Multiple condensate solutions for the Chern-Simons-Higgs
theory. J. Math. Phys. 37 (1996), no. 8, 3769-3796.

6


