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We study the number of individuals per level defined by excursions of random walks with state dependent jump law. These level numbers determine the probability of the excursion, and the set of transformations preserving the level numbers is, generically, the set of transformation that preserve the probability law of excursions. We compute the number of excursions having a fixed level numbers and we show that the class of shifts of excursions generate all the excursions having a fixed level numbers. We study the behavior of the level numbers under the Vervaat transform and the Doob transform.

Introduction

The framework of this study is given by Section 6 of [START_REF]First passage and recurrence distributions[END_REF] which also constitutes our main reference. In his article of first passage times on random walks whose jump law is state dependent, Harris associated trees to excursions and show that for the homogeneous subcritical random walk this is the the tree of a linear fractional Galton Watson process. In our work the jump law of the random walk is also state depending and the homogeneous case serves to illustrate the results.

We study classes of transformations on the excursions and focus on those preserving the (occupation) level numbers of the associated trees. As examples of these classes are the reversed transformation and the shift of bridges.

One of the motivation for this study comes from the following observation. The probability of an excursion only depends on the level numbers. Moreover, except for jumps laws satisfying some integer relation, the probability of the excursion also determines the level numbers. So the probability preserving transformation on excursions are, in a generic way, those preserving the level numbers.

In Proposition 2 we compute the number of all the excursions having a fixed level numbers, and in Proposition 3 we show that the family of shifts of excursions 1 allow to recover all the excursions having a fixed level numbers. Its proof gives an algorithm to get all of them.

For the excursions attaining their height at a unique point, we study the Vervaat transform, determine the change of its level numbers and compute the probability of its domain of definition. In the last section we study the Doob transform of the random walk ensuring to have finite excursions a.s. In Proposition 6 it is shown that the law of the excursions of the Doob transformed random walk retrieves the law of the excursions of the original random walk conditioned to be finite. In the homogeneous case this gives the law of the level counting process defined by the Vervaat transform.

There is an important and huge literature devoted to excursions of random walks and finite trees, we mention [START_REF] Champagnat | Processus de Gaton-Watson et applications en dynamique des polulations[END_REF] and all the references therein. The branching property on the Galton Watson tree processes has been shown by several authors, at this respect see Proposition of Section 3 in [START_REF] Neveu | Arbres et processus de Galton-Watson[END_REF] and Theorem 2.7 in [START_REF] Champagnat | Processus de Gaton-Watson et applications en dynamique des polulations[END_REF]. For some counting problems of trees we refer to [START_REF] Pitman | Enumerations of trees and forest related to branching processes and random walks[END_REF], in particular to compute the number of trees having a fixed class of children of the nodes. The asymptotic properties of several counting problems of finite rooted trees defined by the symmetric random walk, are described in [START_REF] Marckert | Marches Aléatoires, arbres et optimalité d'algoritmes[END_REF].

An important part of these notes is devoted to fix the notation on excursions, individuals, trees, level numbers and in the excursion random variable.

Excursions of a random walk

By Z + = {0, 1, 2, ...} we denote the nonnegative integers and by N = {1, 2, ...} the positive integers. By |A| we mean the cardinality of the set A.

Excursions.

A positive excursion is a finite sequence of points x = x[0, θ] = (x n : n = 0, ..., θ) in Z + that satisfies x 0 = 0 = x θ , x n > 0 for n ∈ (0, θ), with jumps y n = x n+1 -x n ∈ {1, -1}, n ∈ [0, θ).

Its length is θ(x) = θ, which is an even number because θ/2 is the number of 1 jumps which is equal to the number of -1 jumps. A negative excursion is defined analogously except that x n < 0 for n ∈ (0, θ).

Let X be the countable set of all excursions (in [START_REF] Pitman | Enumerations of trees and forest related to branching processes and random walks[END_REF] they are called lattice excursions), so X = X + ∪ X -where X + (respectively X -) is the class of all positive (respectively negative) excursions. The sign change x → -x defines one-to-one mappings X + → X -and X -→ X + , that preserve the length of the excursions. The number of excursions with a fixed length |{x ∈ X : θ(x) = θ}|, is given by the Catalan numbers (see Section 6 in [START_REF] Pitman | Enumerations of trees and forest related to branching processes and random walks[END_REF]).

The height x ∈ X, denoted H(x), is defined by H(x) = max x[0, θ] for x ∈ X + , H(x) = min x[0, θ] for x ∈ X -.

(For negative excursions we prefer to call it height instead of depth, as it is the usual name). We have H(x) ≤ θ/2 and H(-x) = -H(x).

2.2.

Excursion random variable defined by a random walk. Let X = (X n : n ≥ 0) be a random walk on Z with independent jumps Y n = X n+1 -X n taking values in {-1, 1}. The law P of the random walk is defined by the transition probabilities p k = p(k, k+1) ∈ (0, 1) for a jump from k to k+1 and q k = p(k, k-1) = 1p k from k to k -1, for k ∈ Z. The sequence of jumps Y = (Y n : n ≥ 0) satisfies P(Y n = 1) = p Xn and P(Y n = -1) = q Xn . In the homogeneous case the sequence of jumps is Bernoulli with p k = p, q k = q = 1p for k ∈ Z.

Let P i be the law of the walk starting from i ∈ Z and set P = P 0 when the walk starts from 0. When starting from X 0 = 0, the first return time to 0 is denoted by Θ = inf{n > 0 : X n = 0}. The excursion random variable is defined only in the set {Θ < ∞} and it is given by

X Θ = X[0, Θ] = (X n : n ∈ [0, Θ]).
So, X Θ takes values on X and it inherits all the notation of excursions, thus its sign reflection is -X Θ , it has length Θ and height H(X Θ ). Even if X 0 = 0 when defining X Θ , by an abuse of notation we set P 1 to mean that the excursion is positive and starts from the state 1. Similarly for negative excursions.

The condition P 1 (Θ < ∞) = 1 is equivalent to α ∞ = ∞ with α ∞ = lim n→∞ α n , where (1) 
α 0 = 1, α 1 = 1 and α n = n i=1 i-1 k=1 (q k /p k ) for n ≥ 2.
Let us consider the probabilities

β i = P(Θ < ∞|X k = i, k < Θ) for i ≥ 1,
where k is any positive number that satisfies ki ∈ 2Z + . We have:

(2) ∀i ≥ 1,

β i =    1 if α ∞ = ∞ 1 -αi α∞ = ∞ j=i i-1 k=1 (q k /p k ) ∞ j=0 i-1 k=1 (q k /p k ) if α ∞ < 1.
All these computations are given in Theorem 2b in [START_REF]First passage and recurrence distributions[END_REF]. For the negative excursions these quantities are defined similarly. So, as in ( 1) and ( 2

), α -∞ = lim n→∞ a -n with a -n = n i=1 i-1 k=1 (p -k /q -k ). Also β -i = P(Θ < ∞|X k = -i, k < Θ), with k + i ∈ 2Z + , satisfies: (3) ∀i ≥ 1, β -i = 1 if α -∞ = ∞, or β -i = 1 - α -i α ∞ if α -∞ < ∞.
We have,

P(Θ < ∞) = P(X Θ ∈ X + ) + P(X Θ ∈ X -) and P(X Θ ∈ X + ) = p 0 β 1 , P(X Θ ∈ X -) = q 0 β -1 . (4) Then, P(X Θ ∈ A|X Θ ∈ X + ) = (p 0 β 1 ) -1 P(X Θ ∈ A) forA ⊆ X + .
Hence, the law induced by the random walk on the class of positive excursions X + is given by ( 5)

P (X Θ = x|X Θ ∈ X + ) = (p 0 β 1 ) -1 θ(x)-1 n=0 p(x n , x n+1 ), x ∈ X + .
In the homogeneous case the condition α ∞ = +∞ is equivalent to p ≤ q, so β i = 1 for all i ≥ 1 and, (

) if p > q then α ∞ = p p -q and β i = q p i , for i ≥ 1. 6 
Then, in this case, the probability of an excursions only depends on its length. For

x ∈ X + it is P (X Θ = x θ |X Θ ∈ X + ) = (pq) θ/2 /p if p ≤ q and P (X Θ = x θ |X Θ ∈ X + ) = (pq) θ/2 /q if p > q.
Similar expressions are obtained for negative excursions.

In the next two Sections 2.3 and 2.4, we fix the notation of concepts introduced in [3].

2.3. Individuals: birth and death times, level. An individual I of a x ∈ X + is characterized by a triple (b(I), h(I), t(I)). If there is no possible confusion we write it by (b, h, t). These quantities satisfy 0 ≤ b < t ≤ θ, h ≥ 0 and

x b = h, y b = 1, t = inf{n > b : x n = h}.
So, x b+1 = h+1, y t-1 = -1. One says that the individual I is born at time b and at level h, and dies at time t. Notice that no individual can be born at time t -1. For a fixed x ∈ X + , I is characterized only by b, because h = x b and t is a function of b and h. But also I is characterized by its time of death t, because h = x t and since in (b, t) no individual can be born at level h one has b = max{0 ≤ k < n : x k = h}.

Then, for n ∈ [0, θ), y n = 1 marks the birth of an individual at n and y n = -1 marks the death of an individual at n + 1. Hence, with the set of times or birth or the set of times of death of individuals, one determines the set of jumps and so the excursion.

Let I(x) be the set of individuals in x. Its cardinal number satisfies |I(x)| = θ(x)/2 because it is the number of 1 jumps.

One has x b = h = x t and x(b, t) > h, so when we shift the levels by -h, the trajectory

x[b, t] -h = (x n -h : n ∈ [b, t]
) is an excursion. We denote x(I) = x[b, t] and call it the excursion of I in x. The life length of I, denoted by θ(I), is the length of the excursion x(I) which is θ(x(I)) = tb. There is a unique individual I 0 born at time b = 0 at level h = 0 and dying at time t = θ. So, x(I 0 ) = x and θ(I 0 ) = θ(x).

When needed we write I(x), b(I(x)), h(I(x)) and t(I(x)) to express the dependence of individuals on the excursion x.

Individuals can be defined also for a negative excursion x. In this case, an individual

I satisfies 0 ≤ b < t ≤ θ(x) but now h < 0, and x[b, t] -h = (x n -h : n ∈ [b, t]) is a negative excursion.
2.4. Tree and order of an excursion. Let x ∈ X + be a positive excursion and I ∈ I(x) be given by (b, h, t). The individuals in the set

C(I) = {J ∈ I(x) : h(J) = h + 1, b(J) ∈ [b + 1, t -1]},
are called the children of I, and I is said to be the parent of them, we put I = P(J) for all J ∈ C(I). I is a leaf if C(I) = ∅. An individual born in [b + 1, t -1] is called a successor of I. For all 0 ≤ h < h(I) there is a unique predecessor of I at level h. This defines a (finite) tree T (x) rooted by I 0 and set of sites I(x). The tree hanging from I is noted T (I), it is rooted by I and its set of nodes is constituted by I and all its successors.

The The excursion of the individual I, x(I) = x[b, t], with x b = h = x t , has the following structure:

[b+1, t-1] = k i=1 [a i , b i ] with x(a i ) = h+1 = x(b i ), x(a i , b i ) > h+1, i = 1, .., k; b i = a i+1 , i = 1, .., k -1; x[a i , b i ] = x(J i ), J i ∈ C(I).
That is, the class of excursions of all the children in C(I) are contiguous in the excursion x. The individual I is born at the site just before this class of excursions and dies just after this class. Let I(x) = {I i : i = 0, .., |I| -1} be endowed with the following order that we call level order. One puts

(7) i < j if h(I i ) < h(I j ) or if h(I i ) = h(I j ) and b(I i ) < b(I j ).
Since the time of birth of the successors of an individual is bigger than the one the individual, then the level order and the parent relation determine the order of the times of birth of individuals. Finally, since the excursions of the individuals with the same parent are contiguous, we get

(8) For h(I i ) = h(I j ), I u ∈ C(I i ), I v ∈ C(I j ) we have [i < j ⇒ u < v].
That is, the order between children of individuals at the same level follows the order of their parents.

2.5. Representation of excursions and trees. The excursion x ∈ X + is represented by the sequence

w x = (w x (j) : j ∈ [0, θ(x)) with w x (b(I i )) = i = w x (t(I i ) -1), I i ∈ I(x),
that is well defined because for all n ∈ [0, θ(x)) one has that an individual is born at n or dies at n + 1. Every i ∈ {0, .., , θ(x) -1} appears twice in w x , at the time of birth of I i and at one unit before its time of death, and w x starts and finishes at the root I 0 , w x (0) = I 0 = w(θ(x) -1). Then, this representation contains the same representation as x because the jumps of x are given by ( 9)

y j = 1 if ∀0 ≤ k < j : w x (k) = w x (j); -1 if ∃0 ≤ k < j : w x (k) = w x (j).
Now, let T be a tree with root a 0 and set of nodes A(T ) = {a 0 , .., a ℓ }. We denote by C(a i ) the set of children of a i and by P(a i ) the parent of a i = a 0 . The root a 0 is the unique node at level 0 of T and the nodes at level h + 1 of T are the children of nodes at level h. If for every node a ∈ A(T ) that is not a leaf, C(a) is totally ordered by some relation a we say that the rooted tree is ordered. When this happens one can refer to the first or to the last child, or to the child following some child. The tree T (x) defined by an excursion x is a rooted ordered tree because the children of every individual are ordered by the time of their birth.

Let us see that if T is a rooted ordered tree, then it determines a unique excursion x with T (x) = T . We first define a sequence w T = (w T (j) : j = 0, ..., ℓ -1} with values in A(T ) as follows. We take w T (0) = a 0 . If the root is a leaf we put w T (1) = a 0 and the construction finishes. If not we put w T (1) = a the first child of a 0 . Now we make an inductive construction for which it holds: [START_REF] Vervaat | A relation between Brownian bridge and Brownian excursion[END_REF] w T (i + 1) can only be w T (i), P (w T (i)) or belong to C(w T (i)).

Let us assume we have constructed (w T (j) : j ≤ i), set a = w T (i).

• Assume w T (i -1) = P (a). If a is a leaf then we put w T (i + 1) = w T (i). If a is not a leaf then w T (i + 1) ∈ C(w T (i)) is the first child of a;

• Assume w T (i -1) = a. In this case a is a leaf. We set w T (i + 1) = P (w T (i)) and we stop if P (a) = a 0 ;

• Assume w T (i -1) ∈ C(a). If w T (i -1)
is the last children of a, we set w T (i + 1) = P (w T (i)) and we stop if P (a) = a 0 . If not, we put w T (i + 1) ∈ C(w T (i)) the child of a that follows w T (i -1).

This construction satisfies [START_REF] Vervaat | A relation between Brownian bridge and Brownian excursion[END_REF]. The sequence w T contains each node exactly two times and it starts and finishes at the root a 0 . From ( 9), we can associate to w T an excursion x T having length θ(x) = 2ℓ. This is the excursion of the contour process of a tree T , see Section 3.3 in [START_REF] Champagnat | Processus de Gaton-Watson et applications en dynamique des polulations[END_REF].

Let T and T ′ be rooted trees with roots a 0 (T ) and a 0 (T ′ ) respectively. They are said to be equivalent, we denote it by T ≡ T ′ , if there exists a one-to-one mapping

ξ : A(T ) → A(T ′ ) such that ξ(a 0 (T )) = a 0 (T ′ ) and ∀a, b ∈ A(T ) : b ∈ C(a) ⇔ ξ(b) ∈ C(ξ(b)
) . This is equivalent to have a one-to-one mapping ξ : A(T ) → A(T ′ ) that preserves the levels of T and T ′ and for all a ∈ A(T ) the number of children of a and ξ(a) are the same.

For x ∈ X + it is satisfied, (11) T ≡ T (x) ⇔ ∀a ∈ A(T ) ∃ a total order on C(a) such that x T = x.
It suffices to show ⇒. The total order is defined recursively. We put a 0 (T ) = ξ(I 0 ). Since T ≡ T (x) there is a one-to-one assignment ξ I0 : C(I 0 ) → C(a 0 (T )), such that 2.6. Level numbers of an excursion. Let I h (x) be the set of individuals born at level h for x ∈ X. For x ∈ X + , the sequence

N (x) = (N h (x) = |I h (x)| : h ≥ 0)
of the number of individuals in x, ordered by the level at which they are born, is called the level numbers of x. We have N 0 (x) = 1 and the total number of individuals

N (x) = h≥0 N h (x) satisfies N (x) = |I(x)| = θ(x)/2. The height H(x) is the time of extinction of N (x) because N H(x) (x) = 0and N H(x)-1 (x) > 0. So H(x) is also called the height of N (x) and denoted by H(N (x)).
For a negative excursion x one associates the the sequence of level numbers

N (x) = (N h (x) = |I h (x)| : h ≤ 0)
in a similar way and the height H(x) is also the time of extinction of N (x).

In the set I(x) = {I i : i = 0, .., |I| -1} endowed with the level order (see [START_REF] Marckert | Marches Aléatoires, arbres et optimalité d'algoritmes[END_REF]), the index i of

I i satisfies i = ( h(Ii-1) k=0 N k (x)) + r i -1
, where r i is the rank of time of birth of I i at level h(I i ).

2.7.

Law on excursions and level numbers. Let us see that the level numbers of an excursion determines its P probability measure.

Proposition 1. For x ∈ X + , the probability P(X Θ = x|X Θ ∈ X + ) only depends on N (x). Or, equivalently, if x, x ′ ∈ X + satisfy N (x) = N (x ′ ), then P(X Θ = x|X Θ ∈ X + ) = P(X Θ = x ′ |X Θ ∈ X + ).

In a reciprocal way, assume the following hypothesis holds: the set {log(p

h q h+1 ) : h ≥ 1} satisfies (12) ∃K ⊂ N, K finite, K = ∅ : h∈K a h log(p h q h+1 ) = 0 with a h ∈ Z \ {0}, h ∈ K. Then, if P(X Θ = x|X Θ ∈ X + ) = P(X Θ = x ′ |X Θ ∈ X + ) we necessarily have N (x) = N (x ′ ). So,

in this case the probability determines the level numbers.

Proof. Since all the individuals born at level h also die at this level, the probability of an excursion x given by [START_REF] Klebaner | Transformations of Galton-Watson processes and linear fractional reproduction[END_REF], is also expressed as ( 13)

P(X Θ = x|X Θ ∈ X + ) = (p 0 β 1 ) -1 H(x)-1 h=0 (p h q h+1 ) N h (x) ,
which gives the first part.

For the reciprocal, let x,

x ′ ∈ X + . If P(X Θ = x|X Θ ∈ X + ) = P(X Θ = x ′ |X Θ ∈ X + ), from formula (13) one gets, θ(x)-1 h=0 (p h q h+1 ) N h (x) = θ(x ′ )-1 h=0 (p h q h+1 ) N h (x ′ ) .
Now we erase from both sides the common terms of the type p l q l+1 , in particular we erase p 0 q 1 . There will remain a term at the left or at the right hand side only if and only if N (x) = N (x ′ ). When this last case takes place we are left with an equality

h∈J (p h q h+1 ) b h = h∈J ′ (p h q h+1 ) c h ,
with b h , c h ∈ N, J and J ′ disjoint finite subsets of N, and at least one of them being non nonempty. By taking log the hypothesis (12) is contradicted.

Since, only for a countable set of positive real numbers there exists an arithmetic integer condition (12), the generic case is that the probability of the excursions are equal if and only if the level numbers are equal.

In the homogeneous case one has P(

X Θ = x|X Θ ∈ X + ) = P(X Θ = x ′ |X Θ ∈ X + ) if and only if θ(x) = θ(x ′ ), that is the equality of probabilities only gives N (x) = N (x ′ ).
For negative excursions a similar statement as the one of Proposition 1 can be written. The unique difference is that for a negative excursion x ∈ X -one has

P(X Θ = x|X Θ ∈ X -) = (q 0 β -1 ) -1 0 h=H(x)+1 (q h p h+1 ) N h (x) .
For the excursion random variable X Θ , the random element N (X Θ ) = (N h (X Θ ) : h ≥ 0) is its associated level counting process. For an individual I given by (b, h, t), the probability that k individuals are born in

[b + 1, t -1] at level h + 1, that is of having |C(I)| = k -1, is p k-1 h q h+1 .
In the homogeneous case one has p h = p, q h = q, so the number of children of any individual is distributed as G ∼ Geometric(q)-1, so with P(G = k) = p k q for k ≥ 0 and generating function E(z G ) = q/(1pz). So, N (X Θ ) is a linear fractional Galton Watson branching process of parameter p. Many of its properties have been developed in Section I.4 of [START_REF] Athreya | Branching Processes[END_REF]. In [START_REF] Klebaner | Transformations of Galton-Watson processes and linear fractional reproduction[END_REF] it is studied Doob transforms on the Markov chain of the linear fractional branching process or in its generating function. In Section 5 we study the Doob transform on the state dependent random walk to get the law of X Θ and N (X Θ ) conditioned to Θ be finite.

2.8. Numbers of excursions with the same level numbers. Let N = (N h : h ≥ 0) be a (sequence of) level numbers. This means

N h ∈ Z + for h ≥ 0, N (0) = 1,
if N H = 0 then N H+k = 0 for all k ≥ 0, and the total number of individuals N = h≥0 N h is finite. We call H(N ) = min{h ≥ 1 : N h = 0} the height or the time of extinction of N . Let θ = 2N . Consider the set of positive excursion with level numbers N ,

X + (N ) = {x ∈ X + : N (x) = N }. Every x ∈ X + (N ) satisfies θ(x) = θ. Let us check that X + (N ) = ∅. Let H = H(N )
and define the excursion x given by the sequence of jumps (y

n : n ∈ [0, θ -1]) with y n = 1 if n ∈ [0, H -1]
, and after N (h) -1 individuals are born at each level h = H -1, H -2, ..., 1, and they die immediately after their birth times. This is:

y H+2(NH-1+...+N h+1 )+2n = -1 if n ∈ [0, N h -1], y H+2(NH-1+...+N h+1 )+2n+1 = 1 if n ∈ [0, N h -2].
Then, there are born N h individuals at level h = 1..., H -1, there is 1 individual born at level h = 0, and no individual is born at level H. So, N (x) = N .

For making computations on the distributions of excursions, it is useful to compute the numbers of the excursions having the same level numbers, this is the cardinality of X + (N ), because combined with (13), it gives the probability of the class of excursions having the same level numbers.

Proposition 2. Let N = (N h : h ≥ 0) be a (sequence of ) level numbers with N (0) = 1, finite total number of individuals N and height H(N ). Then, the cardinality of

X + (N ) = {x ∈ X + : N (x) = N } is |X + (N )| = H(N )-2 h=1 N h+1 + N h -1 N h -1 . Proof. Let M, k ≥ 1. Let D(M, k) = |(s 1 , .., s k ) ∈ Z k 0 : k j=1 s i = M } be the set of (additive) decompositions of M into k non-negative integers. Then |D(M, k)| = M + k -1 k -1 .
To check it, let P (M +k-1, k-1) be the class of subsets of {1, ..., M +k-1} having k -1 elements. The elements {l 1 , .., l k-1 } ∈ P (M + k -1, k -1) are written in an increasing form, l 1 < ... < l k-1 . We put l 0 = 0, l k = M +k. Then, the mapping

P (M +k -1, k -1) → D(M, k), {l 1 , .., l k-1 } → (s 1 , ..., s k ) with s j = l j -l j-1 -1, j = 1, ..., k, is a bijection. Now take D(N ) = H(N )-2 h=1 D(N h+1 , N h ). This set has cardinality |D(N )| = H(N )-2 h=1 N h+1 + N h -1 N h -1 .
To finish the proof let us show that there is a bijection η : D

(N ) → X + (N ). Let s = (s h : h = 1, ..., H(N ) -2) ∈ D(N ) with (s h 1 , .., s h N h ) ∈ D(N h+1 , N h ),
First, we associate to s a tree T s , that has a root a 0 (level 0). The root has N 1 children C(a 0 ) = {a 1 1 , .., a 1 N1 }, ordered by the subindex (these are the elements at level 1). Each a 1 i1 has s 1 i1 children, for

i 1 = 1, .., N 1 . The children of a 1 i1 are noted C(a 1 i1 ) = {a 2 i1,i2 : i 2 = 1, ..., s 1 i1 }, so i 2 indicates the rank of a 2 i1,i2 in C(a 1 i1 ). Since Ni i1=1 s 1 i1 = N 2 , we can enumerate the s 1 i1 children of a 1 i1 as C(a 1 i1 ) = {a 2 i : i = i1-1 j1=1 s 1 j1 + i 2 , i 2 = 1, ..., s 1 i1 }.
In this way there are N 2 nodes (elements of level 2 of T s ) that are children of the N 1 children of a 0 , that are enumerated by {a 2

i : i = 1, ..., N 2 } with i = i(i 1 , i 2 ) = i1-1 j1=1 s 1 j1 + i 2 for some i 2 = 1, .., s 1 i1 .
By a recursive argument, the elements of the level h ≤ H(N ) -2 of T s can be enumerated as {a h i : i = 1, ..., N h } where the rank i depend on a h-tuple of indexes i = i(i 1 , i 2 , .., i h ) meaning that a h i ∈ C(a h-1 j

) with j = j(i 1 , ..., i h-1 ) and i h is the rank of a h i in the set of children C(a h-1 j

). We have

N h+1 = N h i=1 s h i . Then, a h i has s h i children that are noted C(a h i ) = {a h+1 i1,..,i h ,i h+1 : i h+1 = 1, ..., s h i }.
As before we can order all the elements of level h + 1 as {a h+1 k

: k = 1, ..., N h+1 } with k = k(i 1 , ..., i h , i h+1 ) = i h -1 j1=1 s h j1 + i h+1 for some i h+1 = 1, .., s h i , being i = i(i 1 , ..., i h ).
From (11) we can associate an excursion x to T s such that T (x) = T s . By construction we have x ∈ X + (N ). On the other hand for two sequences s, s ′ ∈ D(N ), s = s ′ , the construction made gives different rooted ordered trees T s = T s ′ and so different associated excursions x and x ′ . Now, the associated tree T (x) of an excursion x ∈ X + (N ), defines an element s ∈ D(N ). In fact, the individuals born at every level h ∈ {1, ..., H(N ) -2} of T (x) are totally ordered (by the time of birth), let us we enumerate them by I h 1 , ..., I h N h . The sequence of numbers of their children is denoted by s h = (s h 1 , ..., s h N h ), which belongs to D(N h+1 , N h ) and so s = (s 1 , ..., s H(N )-2 ) ∈ D(N ). On the other hand, recall that if i < j then the rank of every child in C(I h i ) is smaller than the rank of every child in C(I h j ), at level h + 1 (see [START_REF] Neveu | Arbres et processus de Galton-Watson[END_REF]), just as in the construction of the tree T s . Hence, we get T s = T (x).

Transformations on excursions that are level numbers preserving

Simple changes on the jumps of an excursion x ∈ X + can change the level numbers N (x). For instance, let a < θ(x) with x a ≥ 2 and assume (y a , y a+1 ) = (1, -1). Now make a unique change in the sequence of jumps, instead of (y a , y a+1 ) put (y ′ a , y ′ a+1 ) = (-1, 1). Then, the transformed excursion

x ′ satisfies N h (x ′ ) = N h (x) for h / ∈ {x a -1, x a } and N a-1 (x ′ ) = N a-1 (x) + 1, N a (x ′ ) = N a (x) -1. Also P(X Θ = x|X Θ ∈ X + )/P(X Θ = x ′ |X Θ ∈ X + ) = (p a q a+1 )/(q a p a-1 ).
In the next subsections we consider transformations Ψ :

X + → X + , x → Ψ(x), x ∈ X + ,
that preserve the level numbers, so for all x ∈ X + one has

N (x) = N (Ψ(x)), that is |I h (Ψ(x))| = |I h (x)
| for all h ≥ 0. From Proposition 1, these transformations are measure-preserving, this means

P(X Θ = x|X Θ ∈ X + ) = P(X Θ = Ψ(x)|X Θ ∈ X + ).
(Similar relations hold for negative excursions). When the set I(x) is endowed with the level order (see [START_REF] Marckert | Marches Aléatoires, arbres et optimalité d'algoritmes[END_REF]) and since N (Ψ(x)) = N (x), then the set I(Ψ(x)) is also ordered by it and we can write I(ψ(x)) = {I ϕ(i) : i = 0, ..., |I(x)| -1} where ϕ : {0, ..., |I(x)| -1} → {0, ..., |I(x)| -1} is a bijection such that for all h = 1, ..., H(x) -1 the restriction ϕ h of ϕ to the indexes of individuals in I h (x), ( 14)

ϕ h : { h-1 k=0 N k , h k=0 N k -1} → { h-1 k=0 N h , h k=0 N k -1},
is also a bijection.

In the next subsections we will consider the reversed transformation and the shift of bridges, both are level numbers preserving transformations.

3.1. Reversed excursion. Let x ∈ X be an excursion of length θ = θ(x). Then, R(x) = (x θ(x)-n : n ∈ [0, θ(x)]) ∈ X is a well defined excursion called the reversed excursion. From definition θ(R(x)) = θ(x). The mapping R defines one-to-one mappings in X + and in X -.

We claim that this transformation R preserves the associated level numbers, N (R(x)) = N (x). It suffices to show it for x ∈ X + . Let x * = R(x). For all the notions defined on excursions, we add a superscript * when dealing with x * , for instance its jumps and individuals are noted by y * and I * , respectively. We have

y * n = x * n+1 -x * n = x θ-n-1 -x θ-n = -y θ-n-1 .
Let us consider an individual I * of x * born at time b * ≥ 0 at level h * ≥ 1 and dying at time 

t * = inf{n > b * : X * n = h * }. Then, y * b * = 1 = -y * θ-b * -1 ,
(I) = t -b = θ -b * -(θ -t * ).
In the reversed excursion the time is also reversed, this is why the probability of R(x) is the same as for x, P(

X Θ = R(x)|X Θ ∈ X + ) = P(X Θ = x|X Θ ∈ X + ).
We have that R is an involution on X, that is

R • R = Id, the identity on X, so R -1 = R.
We can also define a random element R(X Θ ) by,

R(X) n+1 -R(X) n = -Y Θ-n-1 for n ∈ [0, Θ). By definition R(X Θ ) is a random excursion of length Θ and since R -1 = R one has P(R(X Θ ) = x|X Θ ∈ X + ) = P(X Θ = R(x)|X Θ ∈ X + ) for x ∈ X + . Then, N (R(X Θ )|X Θ ∈ X + ) is equally distributed as N (X Θ |X Θ ∈ X + ).
For the homogeneous random walk with p ≤ q, this is a linear fractional random walk of parameter p. 

b ≤ c : E(x)[0, a) = x[0, a), E(x)[c, θ] = x[c, θ], E(x)[a, a + c -b] = x[b, c], E(x)[c -(b -a), c) = x[a, b) and (15) If c ≤ a : E(x)[0, c] = x[0, c], E(x)(b, θ] = x(b, θ], E(x)(c, c + (b -a)] = x(a, b], E(x)[c + (b -a), b] = x[b, c].
In an equivalent way one can defines E(x) by E(x) n = x eE (n) with e E a transformation of the set of indexes. In the case b ≤ c it is given by ( 16)

e E (n) =      n if n ∈ [0, a) ∪ [c, θ], n -(a -b) if n ∈ [a, c -(b -a)] n -(c -b) if n ∈ [c -(b -a), c).
Notice that e E is one-to-one and e E (c) ∈ (e E (a), e E (b)). The case c ≤ a is defined similarly.

From the definition we have θ(E(x)) = θ(x) = θ and N h ′ (x) = N h ′ (E(x)) for all h ′ ≥ 0. Then N (E(x)) = N (x). Now, let N = (N h : h ≥ 0) be (a sequence of) level numbers with N (0) = 1 and finite N . Let θ = 2N . Then, we have 

E : X + (N ) ∩ D(E) → X + (N ).
Let E = E{a, b, c; h}, E ′ = E{a ′ , b ′ , c ′ ; h ′ } be two shifts. Then the composition of shifts E ′ • E is well-defined in the domain D(E ′ • E) constituted by the excursions x ∈ X + such that 0 ≤ a, b, c, a ′ , b ′ , c ′ ≤ θ(x), h, h ′ ≤ H(x) -1 and x a = x b = x c = h, x e -1 E (a ′ ) = x e -1 E (b ′ ) = x e -1 E (c ′ ) = h ′ . Note that (E ′ • E) -1 = E -1 • E ′ -1
. Therefore, when we consider the composition of transformations belonging to E = {E{a, b, c; h} : 1 ≤ a ≤ b, c ∈ (a, b), h ≥ 1}, one gets a group of transformations where the domain of definition depends on the transformation.

3.3.

Shift of bridges and level numbers preserving. Let x ∈ X + and x[a, b] = x(I) be an excursion of an individual I at level h ≥ 1, so with x a = h = x b , x(a, b) > h. The insertion of the excursion x[a, b] in c is simply called the insertion of I in c. We denote by E e ⊂ E the class of shifts of positive excursions. This also acts as a group of transformation because the inverse of a shift of an excursion is also a shift of an excursion.

We take I(x) = {I i (x) : i = 0, .., |I(x)| -1} ordered by the level order, that is first by the level and for equal level then by the time of birth, see [START_REF] Marckert | Marches Aléatoires, arbres et optimalité d'algoritmes[END_REF]. Let x ∈ X + and x(I i0 (x)) = [b i0 (x), t i0 (x)] be the excursion of the individual I i0 (x) born at level h i0 (x). Let c be such that x c = h i0 (x) and c ∈ (b i0 (x), t i0 (x)). Once making the transformation E(x) that inserts I i0 (x) in c, the set

I(E(x)) is written I(E(x)) = {I ϕ(i) (E(x)) : i = 0, ..., |I(x)| -1}, where ϕ : {0, ..., |I(x)| -1} → {0, ..., |I(x)| -1}
is a one-to-one mapping that preserves the level, h(I ϕ(i) (E(x))) = h(I i (x)), and it induces a one-to-one mapping I h (x) → I h (E(x)), see ( 14). The times of birth and death of the individuals in E(x) is computed with (15) and ( 16),

∀i : b ϕ(i) (E(x)) = e E (b i (x)), t ϕ(i) (E(x)) = e E (t i (x)).
Let us describe the case c ≥ t i0 (x). The unique change in terms of the tree is that the parent (and so the ancestors) of I i0 (x) can change. One has

P(I ϕ(i0) (E(x))) = P(I i0 (x)) if x[b i0 (x), c] ≥ h i0 (x), and = P(I i0 (x)) if min[b i0 (x), c] ≤ h i0 (x) -1.
In the last case one has,

P(I ϕ(i0) (E(x)) = I k (x) with h(I k (x)) = h i0 (x) -1 and b(I k (x)) = max{b(I j (x)) : h(I j (x)) = h i0 (x) -1, b(I j (x)) < b(I ϕ(i0) (E(x))}.
In terms of trees: if P(I i0 (x)) = P(I ϕ(i0) (E(x))) then T (x) and T (E(x)) coincide, except by the numbering of I i0 in the set of children C(P(I i0 (x))). When P(I i0 (x)) = P(I ϕ(i0) (E(x))), the subtree T (I 0 (x)), that hanged from P(I 0 (x)) in T (x), it hangs from P(I ϕ(i0) (E(x))) in T (E(x)), that is once making the shift E.

Remark 2. One can exchange the excursions of two individuals I i and I j at the same level in a way that keeps their ranks i and j respectively. This is done by making a sequence of shifts of their children C(I i ) and C(I j ) and so their rank i and j are kept, and after making these shifts their new children are C(I j ) and C(I i ) respectively. Hence, their excursions have been exchanged but their ranks are the same. This property will be used in the proof of the next result.

In this result we will start from some excursion x and make a sequence of shifts of excursions, so one has

x r = E r • ... • E 1 (x 0 ), r ≥ 1.
When writing this composition we always assume that x is in the domain of definition of E r • ... • E 1 . On the other hand we recall that for any sequence of level numbers N = (N h : h ≥ 0) with N finite, there exists some excursion x with N (x) = N .

Proposition 3. Let x ∈ X + be a positive excursion with level numbers N (x). Then,

{x ′ ∈ X + : N (x ′ ) = N (x)} = {x r = E r • ... • E 1 (x) : E 1 , .., E r ∈ E e , r ≥ 1}.
Proof. The statement is equivalent to the following one: if x, x ′ ∈ X + are two positive excursions with the same level numbers N (x) = N (x ′ ), then there is a sequence of shifts of excursions (E i : i = 1, ..., r) such that (17)

x ′ = E r • ... • E 1 (x).
Let us prove it. We have N h (x) = N h (x ′ ) for all h ≥ 0, so the heights of x and x ′ are equal, H(x) = H(x ′ ) = H. Then N H+k (x) = 0 = N H+k (x ′ ) for all k ≥ 0. Put N h = N h (x) for h = 0, .., H -1. We will show ( 17) by an induction procedure on pairs of consecutive levels.

Let us consider levels 1 and 2. There are N 1 individuals at level 1 in both x and x ′ . Let I 1 , .., I n1 and I ′ 1 , .., I ′ N1 be the individuals in x and x ′ respectively born at level 1. For i = 1, ..., N 1 , let s i and s ′ i be respectively the number of children of I i and I ′ i in x and x ′ , respectively. We have,

N1 i=1 s i = N 2 = N1 i=1 s ′ i . (18) 
Let k 1 be the maximal integer 1 ≤ k 1 ≤ N 1 for which there exists a permutation π of {1, ..., N 1 } that satisfies s π(i) = s ′ i for all i = 1, .., k 1 . As indicated in Remark 2 we shift the excursions of the children of the individuals I i and I π(i) in order that after these shifts, the children of I i and I π(i) are C(I π(i) ) and C(I i ), respectively. Hence, we have

s i = s ′ i for all i = 1, ..., k 1 . If k 1 = N 1 we go to the next step. Assume k 1 < N 1 . If s k1+1 > s ′ k1+1 , then we insert s k1+1 -s ′
k1+1 excursions of children of I k1 into the ending coordinate of the excursions of the children of some individual I r with r > k 1 + 1. If s k1+1 < s ′ k1+1 then we take s ′ k1+1s k1+1 excursions of the children of the individuals (I r : r > k 1 + 1) and insert them at the coordinate marking the end of the excursions of the children of I k1+1 . These changes can be done because (18) holds. So, we get s ′ i = s i , i = 1, .., k 1 + 1. Our algorithm continues and so by simply shifting excursions of lervel 2 in x, one gets s i = s ′ i for i = 1, ..., N 1 . Then we go to the next step of the induction.

Suppose for some h ≥ 2 and for all levels 1 ≤ h ′ < h one has s i,h ′ ,k = s ′ i,h ′ ,k for all k = 1, ..., N h ′ , where s i,h ′ ,k and s ′ i,h ′ ,k are the number of children of individuals I i and I ′ i in x and x ′ respectively, at level h ′ < h. Let us show that we can make a sequence of shifts at level h + 1 in x, in order that this is also satisfied up to level h + 1. Let I r and I ′ r , r = 1, ..., N h be the individuals of x and x ′ at level h and let s r and s ′ r be the number of their children. Since, similarly to (18), we have

N h r=1 s r = N h+1 = N h
r=1 s ′ r , the same argument as the one made for individuals of levels 1 and 2 works in this case for individuals of levels h and h + 1, and shows that we can permute the children of the individuals of level h in x, to get s r = s ′ r for i = 1, ..., N h . Hence, the induction step holds. This induction states that there is sequence of shifts of excursions (E i : i = 1, ..., d) that once applied to x gives:

x = F (x) with F = E d • ... • E 1 and x satisfies T ( x) ≡ T (x ′ ),
that is, the excursions x and x ′ have equivalent trees. Then, -by using property (11), the class of children (C(I) : I ∈ I( x)) of T ( x) can be ordered inductively as in (C(I) : I ∈ I(x ′ )). Then, there exists a sequence of shifts of excursions

(E i : i = d + 1, ..., d + d ′ ) fulfilling x ′ = F ′ ( x) with F ′ = E d+d ′ • ... • E d+1 ,
because the change of enumeration corresponds in making shifts of excursions (that do not change the predecessors). We have proven

(19) x ′ = F ′ • F (x) = E d+d ′ • ... • E d+1 • E d • ... • E 1 (x).
From (19) we also find,

x = F -1 • F ′ -1 (x ′ ) = E -1 1 • ... • E -1 d • E -1 d+1 ... • E -1 d+d ′ (x ′ ),
where the E i -1 , i = 1, ..., d + d ′ are also shifts of excursions.

Remark 3. Proposition 3 states that the action of shifts of excursions allows to retrieve the whole class of trees {T }(N (x)) that preserves N (x) and when we know that two excursions x and x ′ have the same level numbers N (x) = N (x ′ ) the proof provides an algorithm of transforming one excursions into the other one.

Example. Let x ∈ X + , x ′ = E * (x) where E * is the shift of a negative excursion x[a, b] to c. So, in this case c ∈ (a, b), x a = x b = x c = h ≥ 1 and 0 < x(a, b) < h.
Then, Proposition 3 states that one can write

x ′ = E r • ... • E 1 (x)
for a sequence of shifts of positive excursions (E 1 , ..., E r ).

The Vervaat transform

We wish that the Vervaat transform of an excursion is also an excursion, so we define it only on the set of excursions attaining their heights at a single coordinate.

As for the other transformation we seek to see how it changes the level numbers.

The Vervaat transform, introduced in [10], has been mainly studied for the Brownian excursions and bridges. In [6] it is studied for random walks, and constructed from the coordinate where the walk attains its global minimum.

4.1. Definition and properties. Recall H(x) denotes the height of an excursion x. Let us consider

X +,U = {x ∈ X + : N H(x)-1 = 1}, X -,U = {x ∈ X : N H(x)+1 = 1}, X U = X +,U ∪X -,U .
X +,U (respectively X -,U ) is the set of positive (respectively negative) excursions for which the height is attained at a unique coordinate. In fact, for x ∈ X there exists a unique m ∈ (0, θ) such that x m = H(x) if and only if N H(x)-1 (x) = 1. The same for negative excursions.

We will introduce the Vervaat transform V : X U → X U and give some of its properties in detail. Let X ∈ X +,U with length θ = θ(x). It is useful to denote the transformed point by x = V + (x) and to add to all the notions associated to x a Then, by using θm = m, n + m = n + θm and n + mθ = nm, we get

x n = x n+θ-m + H(x) if 0 ≤ n ≤ m x n-m + H(x) if m + 1 ≤ n ≤ θ.
By using again the definition (20) we get that x l+m-θ = x l-m-θ for l = θm + 1, ..., θ and x l+m = x l+m for l = 1, .., θm. This gives x n = x n for n = 1, .., m and l = m + 1, ..., θ. Now, for n = 0 we have

x 0 = x θ-m = -H(x) + H(x) = 0 = x 0 . Then x = x, that is V(V(x)) = x.
This implies that V is a bijection and that

V -1 = V.
In the previous construction of V we have collapsed times 0 and θ, and we have inserted an interval of times of length θ just after the coordinate m where the height is attained. So, m plays the role of 0, there are θ units of times starting from m because we identify 0 and θ. Let us see that at m is the unique place where we can do this procedure. Take x ∈ X with θ(x) = θ, fix k ∈ [0, θ] and define x ′ by, (24)

x ′ n = x n+k -x k if 0 ≤ n ≤ θ -k x n+k-θ -x k if θ -k + 1 ≤ n ≤ θ.
Then x ′ 0 = 0 = x ′ θ holds. We develop the argument only for x ∈ X + . We have that x ′ is a positive excursion only when k = 0 or k = θ and in both cases x ′ = x. Moreover, x ′ is a negative excursion only if there exists a unique m for which x m = H(x) and k = m. In fact from (24) we must have x n ≤ x k for all n ∈ [0, θ], so x k = H(x). If for some other k ′ ∈ (0, θ) one has x k ′ = H(x), then it would not be a negative excursion because in (24) one would get three different times n at which one should have x ′ n = 0. Now, if there is a unique point, the unique negative excursion is defined with k = m as in the previous construction.

We notice that for x ∈ X U , N (V(x)) only depends on N (x). Moreover, if N (x) = N (x ′ ) for x, x ′ ∈ X, then V is defined for none or for both x, x ′ , and when it is defined then N (V(x)) = N (V(x ′ )).

The Vervaat transformed V(X Θ ) excursion random variable, when X Θ ∈ X U , is made with the set of jumps Y n = V(X Θ ) n+1 -V(X Θ ) n , 0 ≤ n < Θ given by,

Y n = Y n+m if 0 ≤ n ≤ Θ -m Y n+m-θ if Θ -m + 1 ≤ n < Θ,
where m is the coordinate at which X Θ m = H(X Θ ).

In the homogeneous case, with p ≤ q, N (X Θ |X Θ ∈ X +,U ) is distributed as a linear fractional Galton Watson process of parameter p conditioned to N H(X Θ )=1 . We shall describe N (V(X Θ )|X Θ ∈ X +,U ) at the end of the last Section.

Let us summarize the global action of some of the transformations already introduced. We recall the sign reflectionon X, given by x → -x. We have thatand R preserve X U , that is -X U = R(X U ) = X U . Moreover -, R and V are involutions on X U , that is

-2 = R 2 = V 2 = Id X U ,
and they commute among themselves:

-R = R • -, -V = V • -, R • V = V • R.
So, the group of transformations G(-, R, V) generated by these transformations acting on X U (we denote by R the restriction of R to X U ), has eight elements

G(-, R, V) = {Id X U , -Id X U , R, -R, V, -V, V • R, -V • R}.

4.2.

A martingale. We will compute P(X Θ ∈ X U , that is the probability of the set of excursions that attain its height at a unique point, which is the domain of the Vervaat transformation. To this purpose it is useful to introduce a martingale.

The random walk X = (X n : n ≥ 0) starts from X 0 = c, for some fixed c ∈ Z, but as said when the computations refers to the excursion random variable X Θ or to Θ, we always take X 0 = 0, or X 0 = 1 when dealing with positive excursions. To define a martingale Z = (Z n : n ≥ 0) associated to X starting from c we first introduce the sequence (A n : n ∈ Z) given by A 0 = 0 and for i ≥ 1, 1), but shifted in the initial coordinate, and it corresponds to the set of coordinates used to immerse the random walk in the Brownian motion as done in [START_REF]First passage and recurrence distributions[END_REF]. The process Z, which is proven to be a martingale, is defined by

A i = i j=1 j-1 k=0 (q c+k /p c+k ), A -i = - 0 j=-(i-1) -1 k=j (p c+k /q c+k ) . Note that A -1 = -1. The sequence (A i : i ∈ Z) is similar to (α i : i ∈ Z + ) introduced in (
Z n = A Xn-c
, n ≥ 0, and so Z 0 = 0.

Since the sequence (A n : n ∈ Z) is strictly increasing, j → A j-c for j ∈ Z, is one-to-one. On the other hand when X n = k then Z n = A k-c . So, the information {Z i : 0 ≤ i ≤ n} is equivalent to {X i : 0 ≤ i ≤ n} and so it also gives {p Xi , q Xi : 0 ≤ i ≤ n}. We have

E(Z n+1 |Z i , i ≤ n) = p Xn A Xn-c+1 + q Xn A Xn-c-1 .
It is straightforward to see that (Z n : n ≥ 0) is a martingale. Let us check it when Z n = A j for some j ≥ 1. We have

X n = c + j, so E(Z n+1 |Z i , i ≤ n) = p c+j A j+1 + q c+j A j-1 = p c+j A j + j-1 k=0 q c+k p c+k q c+j p c+j + q c+j A j - j-1 k=0 q c+k p c+k = A j = Z n .
Define the stopping time τ l = inf{n ≥ 0 : X n = l}. For r < c < s, consider the stopping time τ = inf(τ r , τ s ). By using the martingale property of Z n = A Xn-c we get, P(τ s < τ r )A s-c + (1 -P(τ s < τ r )A r-c = 0.

Then,

P(τ s < τ r ) = -A r-c A s-c -A r-c and P(τ r < τ s ) = A s-c A s-c -A r-c . (25) 
To compute this quantities let us consider u, v ≥ 1. From the definition of A u , A v and after multiplying and dividing by

-1 k=-(u-1) q c+k p c+k one gets -A -u A v -A -u = 0 j=-(u-1) j-1 k=-(u-1) q c+k p c+k v j=-(u-1) j-1 k=-(u-1) q c+k p c+k , A v A v -A -u = v j=1 j-1 k=-(u-1) q c+k p c+k v j=-(u-1) j-1 k=-(u-1) q c+k p c+k .
Hence, by taking into account that sc ≥ 1, -(rc) ≥ 1, we replace the quantities into (25) to get,

P(τ s < τ r ) = -A r-c A s-c -A r-c = 0 j=r-c+1 j-1 k=r-c+1 q c+k p c+k s-c j=r-c+1) j-1 k=r-c+1) q c+k p c+k , P(τ r < τ s ) = A s-c A s-c -A r-c = s-c j=1 j-1 k=r-c+1 q c+k p c+k s-c j=r-c+1 j-1 k=r-c+1) q c+k p c+k . ( 26 
) 4.3. Distribution of the height. Our first result gives the distribution of the height H(X Θ ) of a positive random excursion, so with X 0 = 0, X 1 = 1. (For negative excursions similar computations can be made). Firstly, we will get

P 1 (H(X Θ ) ≥ s, Θ < ∞) for s ≥ 1. Recall that (2) states that β s = P(Θ < ∞ | X k = s, Θ > k) (with k -s ∈ 2Z + ), satisfies β s = 1 when α ∞ = 1 and β s = 1 -αs α∞ if α ∞ < ∞. Notice that, P 1 (Θ < ∞, H(X Θ ) ≥ 1) = P 1 (Θ < ∞) = β 1 .
We will also compute the probability that at some unique coordinate the height of the excursion is attained, this is

P 1 (Θ < ∞, X Θ ∈ X +,U ). Notice that P 1 (H(X Θ ) = 1, X Θ ∈ X +,U ) = q 1 ,
and this event corresponds to the excursion (0, 1, 0). Proposition 5. We have,

(27) P 1 (Θ < ∞, H(X Θ ) ≥ s) = β s s-1 j=0 j-1 k=0 q k+1 p k+1 , and 
P 1 (Θ < ∞, X Θ ∈ X +,U , H(X Θ ) = s) = q s s-1 j=0 j-1 k=0 q k+1 p k+1 × 0 k=-s+2 q k +s-1 p k+s-1 1 j=-s+2 j-1 k=-s+2) q c+k p c+k . ( 28 
)
Proof. One can check that the relations (27) and (28) hold for s = 1. Let us prove the relations for s ≥ 2. We have

P 1 (Θ < ∞, H(X Θ ) ≥ s) = P 1 (τ s < τ 0 )P s (Θ < ∞).
Hence by putting c = 1, r = 0 one finds

P 1 (Θ < ∞, H(X Θ ) ≥ s) = β s s-1 j=0 j-1 k=0 q k+1 p k+1
, On the other hand,

P 1 (Θ < ∞, H(X Θ ) = s, N s-1 = 1 = s) = P 1 (τ s < τ 0 ) q s P s-1 (τ 0 < τ s ).
By making again use of (26) one gets

P 1 (Θ < ∞, H(X Θ ) = s, N s-1 = 1) = q s s-1 j=0 j-1 k=0 q k+1 p k+1 × 0 k=-s+2 q k +s-1 p k+s-1 1 j=-s+2 j-1 k=-s+2 q c+k p c+k . Since {H(X Θ ) = s, N s-1 = 1} = {H(X Θ ) = s, X Θ ∈ X +,U }, the result follows.
In the homogeneous case, Proposition 5 gives:

(i) When p = q:

P 1 (Θ < ∞, H(X Θ ) ≥ s) = β s p s-1
qp q sp s and

P 1 (Θ < ∞, H(X Θ ) = s, N s-1 = 1) = q(pq) s-1 q -p q s -p s 2 .
In the case p ≤ q one has β s = 1 and if p > q then β s = (p/q) s , see (6).

(ii) When p = q we have P(Θ < ∞|X 0 = 1) = 1 and we get:

P 1 (Θ < ∞, H(X Θ ) ≥ s) = 1 s , P 1 (Θ < ∞, H(X Θ ) = s, X Θ ∈ X +,U ) = 1 2s 2 and P 1 (Θ < ∞, X Θ ∈ X +,U ) = π 2 12 .
For negative excursions we set X 1 = -1 and the same computations give the analogous results for the H(X Θ ). In the case p = q one must exchange p by q in the formulae and note that when q ≤ p one has P -1 (Θ < ∞) = 1.

Doob transform and conditioning on always return to 0

Now we study the probability behavior of trajectories that return to 0, so for which X Θ is well defined. All we will do in the next paragraphs has a meaning when P 0 (Θ < ∞) < 1. Since P 0 (Θ < ∞) = p 0 P 1 (Θ < ∞) + q 0 P -1 (Θ < ∞), we will be in the case P 1 (Θ < ∞) < 1 or P -1 (Θ < ∞) < 1. When this happens we will define the jump probabilities ensuring to have a.s. return to the origin, and this will give as a byproduct the statistics of X Θ conditioned to Θ < ∞.

The first return to 0 is called τ + = inf{n > 0 : X n = 0} (this variable was denoted Θ when starting from X 0 = 0). We also consider the hitting time of 0, τ (ω) = inf{n ≥ 0 : X n = 0}. So, if X 0 = 0 one has τ + = τ . Now, we define a canonical random walk that always return to 0. First, from the Markov property we have for all i ∈ Z, (29) P i (τ + < ∞) = p i P i+1 (τ < ∞) + q i P i-1 (τ < ∞).

In particular and since P 0 (τ 0 < ∞) = 1,

P 1 (τ + < ∞) = q 1 + p 1 P 2 (τ < ∞), P -1 (τ + < ∞) = p -1 + q -1 P -2 (τ < ∞).
Now, let i 0 = 0 and i 1 , ..., i n be all positive or all negative, and such that |i k+1 -i k | = 1 for k = 0, ..., n -1. From the Markov property one has, P 0 (X k = i k , k = 1, ..., n, τ + < ∞) = P in (τ + < ∞)P 0 (X k = i k , k = 1, ..., n)

= P in (τ + < ∞) n-1 k=0 p(i k , i k+1 ).
So,

P 0 (X k = i k , k = 1, ..., n, τ + < ∞|τ + < ∞) = P in (τ < ∞) P 0 (τ + < ∞) n-1 k=0 p(i k , i k+1 ) = n-1 k=0 p(i k , i k+1 ) P i k+1 (τ < ∞) P i k (τ + < ∞) . ( 30 
)
Let us define, p i = p i P i+1 (τ < ∞) P i (τ + < ∞) , q i = q i P i-1 (τ < ∞) P i (τ + < ∞) .

From (29) we get p i + q i = 1, i ∈ Z.

Let us endow the random walk X = (X n : n ≥ 0) with the transition probabilities p i ∈ (0, 1) and q i = 1p i for the passages from i to i + 1 and from i to i -1 respectively, for i ∈ Z. The transition probability matrix given by p i , q i , is called the Q-matrix (of always return to 0). Let P k be the probability law when using p i and q i for i ∈ Z and when the walk starts from X 0 = k. Let us write p i , q i , in terms of known quantities.

The hitting probabilities for excursions are the (β i : i ∈ Z \ {0}) defined in ( 2) and (3). We have P i (τ + 0 < ∞) = P i (τ 0 < ∞) = β i for i ∈ Z \ {0} and we define (31) β 0 = P 0 (τ + 0 < ∞) = p 0 β 1 + q 0 β -1 . Hence the transition probabilities of the Q-matrix are given by p i = p i β i+1 β i , q i = q i β i-1 β i for |i| = 1, (32)

p 1 = p 1 β 2 β 1 , q 1 = q 1 1 β 1 and p -1 = p -1 1 β -1
, q -1 = q -1 β -2 β -1 .

Let x = (i 0 , ..., i n ) ∈ X be an excursion, so with i 0 = 0 = i n , i 1 , ..., i n all positive or all negative, and such that |i k+1i k | = 1 for k = 0, ..., n -1. From (30) and since P in (τ < ∞) = P 0 (τ < ∞) = 1, we find,

P 0 (X 1 = i 1 , ..., X n = i n ) = n-1 i=0
p(i k-1 , i k ) P 0 (τ + < ∞)

-1

= P 0 (X 1 = i 1 , ..., X n = i n )P 0 (τ + < ∞) -1 . (33)

By summing over all the excursions x = (i 0 , ..., i n ) ∈ X in (33), we get P 0 (Θ < ∞) = P 0 (τ + < ∞)P 0 (τ + < ∞)

-1 = 1.

Let us note by E the mean expected value associated to P. From (33) we also get that for every nonnegative function g : N → R + it holds E 0 (g(Θ)) = n≥1 g(n)P 0 (τ + = n)P 0 (τ + < ∞) -1 = E 0 (g(Θ) | Θ < ∞).

Proposition 6. We have

(34) P 0 (X Θ ) = x | Θ < ∞) = P 0 (X Θ ) = x), x ∈ X ,
and the laws of N (X Θ ) conditioned to be in X + , under P and under P are equal. That is, (35) P 0 (X Θ = x | X Θ ∈ X + ) = P 0 (X Θ = x | X Θ ∈ X + ) , x ∈ X + .

Finally, (36) P 0 (N (X Θ ) = x | X Θ ∈ X + ) = P 0 (N (X Θ ) = x|X Θ ∈ X + ) , x ∈ X + .

Proof. Since P 0 (θ < ∞) = 1, then X Θ has only finite excursions P-a.s., and from (33) one gets that the law of X Θ under P, is equal to the law of X Θ under P 0 conditioned to Θ be finite.

Let us prove (35). From ( 4), (31) and (32) we get P 0 (X Θ ∈ X + )P 0 (τ + < ∞) = p 0 β 0 = p 0 β 1 = P 0 (X Θ ∈ X + ).

Then, for x = (i 0 , ..., i n ) ∈ X + we obtain,

P 0 (X Θ = x|X Θ ∈ X + ) = n-1 i=0 p(i k-1 , i k ) P 0 (X Θ ∈ X + )P 0 (τ + < ∞) -1 = n-1 i=0 p(i k-1 , i k ) P 0 (X Θ ∈ X + ) -1 = P 0 (X Θ = x|X Θ ∈ X + ).
Then, (35) holds. So, also (36) is satisfied because (35) implies that the laws of the level counting processes N (X Θ ) conditioned to {X Θ ∈ X + }, under P and P, are equal.

  In a reciprocal way. Let h ≥ 0. If x a = h + 1 = x b and x(a, b) ≥ h + 1, then x[a, b] = (x(J 1 ), x(J 2 ), .., x(J l )) where J 1 , .., J k ∈ C(I) are children of an individual I born at level h and at time b = max{0 ≤ n < a : x n = h}.

TRemark 1 .

 1 (I) and T (ξ I0 (I)) are equivalent. We enumerate C(a 0 (T )) = {ξ I0 (I) : I ∈ C(I 0 )} by the time of born of I ∈ C(I 0 ). Now, the induction is made for all I ∈ C(I 0 ) because we can state a one-to-one assignment ξ I : C(I) → C(ξ I0 (I)) such that T (J) and T (ξ I (J)) are equivalent and we enumerate C(ξ I0 (I)) = {ξ I0 (J) : J ∈ C(I)} by the time of born of J ∈ C(I). Thus, we get w T = w x , so (9) gives x T = x. When one takes the collection of number of children of the individuals, {|C|}(x) = {|C(I)| : I ∈ I(x)}, then one can compute the class of trees T ∈ {T }{|C|}(x) that satisfy {|C(a)| : a ∈ A(T )} = {|C|}(x), see [9].

  and so an individual I of x dies at time t = θb * . On the other hand x * b * = h * , so x θ-b * = h * , then I is born at level h * . Finally, t * = inf{n > b * : x * n = h * } = sup{θn < θb * : x θ-n = h * }. Hence, I is born at time b = θt * . Since to each individual I * of x * one is able to associate a unique individual I of x and this operation is also invertible, we conclude that the associated level numbers are equal, N (x * ) = N (x). Note that the lengths of life of the individuals I * and I are the same, in fact they are respectively θ(I * ) = t *b * and θ

3. 2 .

 2 Shift of bridges. We will define the class of shift transformations,E = {E{a, b, c; h} : 1 ≤ a ≤ b, c ∈ (a, b), h ≥ 1},where E{a, b, c; h} is partially defined on X + , its domain of definition beingD(E{a, b, c; h}) = {x ∈ X + : 0 ≤ a, b, c ≤ θ(x), h ≤ H(x) -1, x a = x b = x c = h}.Let us describe the action of E = E{a, b, c; h}. Take x ∈ D(E), x[a, b] a bridge with x a = x b = h ≥ 1, and c ∈ (a, b) with x c = h. In the transformed excursion E(x), the bridge x[a, b] will be shifted in cb units of times when b ≤ c and in ac units of time when c ≤ a. It is also said that the bridge x[a, b] is inserted in c. To be precise, for x ∈ X + and θ = θ(x), the shift is given by If

  The (partially defined) shift E is one-to-one. The shifts of x[a, b] to a or to b, are the identity. When b ≤ c, E -1 is the shift of the bridge x[c -(ba), c] to a, and its domain is D(E{c -(ba), c, a; h}). The equality E -1 (E(x)) = x holds because E(D(E{a, b, c; h})) ⊆ D(E{c -(ba), c, a; h}). If c ≤ a the inverse E -1 is the shift of the bridge x[c, c + (ba)] to b.

  individuals born at level h+1 in [b+1, t-1] are born at times {n ∈ [b+1, t-1] : x n = h + 1}, and they die before t because the numbers of jumps 1 and -1 are the same in [b + 1, t -1]. The equality |{n ∈ [b + 1, t -1] : x n = h + 1}| = k expresses that k -1 individuals are born in [b + 1, t -1] at level h+ 1 in x, because the passage to h + 1 at time t -1, satisfies y t-1 = -1. Notice that k = 1 if and only if t = b + 2.
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hat , for instance its jumps are written y n and the individuals I. Let us make the definition, (20)

Then, x 0 = 0 = x θ .

Proposition 4. The Vervaat transform V : X U → X U is a bijection satisfying θ(V(x)) = θ(x), H(V(x)) = -H(x) and (21)

V : X +,U → X -,U and V : X -,U → X +,U .

Moreover,

Finally, V is an involution in X U , that is

and one can check that x attains its height

Let us turn to the proof of (22). The jumps y n = x n+1x n , 0 ≤ n < θ, satisfy

Therefore, the level numbers N ( x) has H(x) levels (N -h ( x) : 0 ≤ h ≤ H(x) -1) as N (x) and it satisfies (22). In particular N 0 ( x) = 1 = N H(x)-1 (x) (the last equality being the hypothesis).

Let us now show (23). We also make the argument only for x ∈ X +,U . Let us put x = V(V(x)). Its height H( x) = -H(x) is attained at the unique coordinate m = θm. From (20) we find,

Let us see what happens in the homogeneous case. If p = q, then the Q-chain is the same as the original one because β i = 1 for all i ∈ Z. Let us assume p < q, then β i = 1 and β -i = (p/q) i for i ≥ 1. For i = 0 one has

Hence, β i+1 /β i = 1 = β i-1 /β i , β -(i+1) /β -i = p/q and β -(i-1) /β -i = q/p for i ≥ 2. Hence, the transition probabilities are p i = p, q i = q and p -i = q, q -i = p for i ≥ 2.

On the other hand p 1 = p, q 1 = q and p -1 = p q p = q, tq -1 = q p q = p.

Finally

Therefore in the Q-matrix we have 1/2 the probability to start a positive or a negative excursion is 1/2 and the excursions are sign symmetric.

When p > q, the analysis is the same as the one just made, we must only exchange the behavior of the positive excursions with the behavior of negative excursions and exchange the roles of p and q. Therefore, for the homogeneous random walk we have P(X Θ = x) = P(X Θ = -x) for all x ∈ X. Then, from (34) one gets, (37)

So, under P conditioned to Θ be finite, the distribution of all the quantities are sign symmetric. Thus, the distributions of H(X Θ ) and -H(-X Θ ) conditioned to {Θ < ∞} are the same, as well the distributions of (N h (X Θ ) : h ∈ Z) and (N -h (-X Θ ) : h ∈ Z) conditioned to {Θ < ∞}.

In the homogeneous case when p ≤ q, N (X Θ ) is the linear fractional Galton Watson process of parameter p. Since {X Θ ∈ X +,U } = {N H(X Θ )-1 = 1}, then N (X Θ ) conditioned to {X Θ ∈ X +,U } is the linear fractional Galton Watson process conditioned to {N H(X Θ )-1 = 1}. From the symmetry (37) and relation ( 22) we get that the Vervaat transformed level counting process N (V(X Θ )) conditioned to {X Θ ∈ X +,U } is the time reversed linear fractional Galton Watson process of parameter p,

(N H(X Θ )-1-h (X Θ ) = 0, .., H(X Θ ) -1), conditioned to {N H(X Θ )-1 = 1}.