
HAL Id: hal-04159614
https://hal.science/hal-04159614

Preprint submitted on 12 Jul 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Pathway: a fast and flexible unified stream data
processing framework for analytical and Machine

Learning applications
Michal Bartoszkiewicz, Jan Chorowski, Adrian Kosowski, Jakub Kowalski,

Sergey Kulik, Mateusz Lewandowski, Krzysztof Nowicki, Kamil Piechowiak,
Olivier Ruas, Zuzanna Stamirowska, et al.

To cite this version:
Michal Bartoszkiewicz, Jan Chorowski, Adrian Kosowski, Jakub Kowalski, Sergey Kulik, et al.. Path-
way: a fast and flexible unified stream data processing framework for analytical and Machine Learning
applications. 2023. �hal-04159614�

https://hal.science/hal-04159614
https://hal.archives-ouvertes.fr

Pathway: a fast and flexible unified stream data processing
framework for analytical and Machine Learning applications

Michał Bartoszkiewicz Jan Chorowski∗ Adrian Kosowski

Jakub Kowalski Sergey Kulik Mateusz Lewandowski

Krzysztof Nowicki Kamil Piechowiak Olivier Ruas

Zuzanna Stamirowska
{firstname.lastname}@pathway.com

Pathway.com
Paris, France

Przemysław Uznański

ABSTRACT
We present Pathway, a new unified data processing framework that
can run workloads on both bounded and unbounded data streams.
The framework was created with the original motivation of re-
solving challenges faced when analyzing and processing data from
the physical economy, including streams of data generated by IoT
and enterprise systems. These required rapid reaction while calling
for the application of advanced computation paradigms (machine-
learning-powered analytics, contextual analysis, and other elements
of complex event processing). Pathway is equipped with a Table
API tailored for Python and Python/SQL workflows, and is pow-
ered by a distributed incremental dataflow in Rust. We describe the
system and present benchmarking results which demonstrate its
capabilities in both batch and streaming contexts, where it is able to
surpass state-of-the-art industry frameworks in both scenarios. We
also discuss streaming use cases handled by Pathway which cannot
be easily resolved with state-of-the-art industry frameworks, such
as streaming iterative graph algorithms (PageRank, etc.).

CCS CONCEPTS
• Information systems → Computing platforms; Data stream-
ing; Location based services.

KEYWORDS
Event streaming, Batch computation, Incremental computation,
Pathway, Benchmark.

1 INTRODUCTION
Traditionally, data processing systems were designed either for
high throughput batch computations, or for low latency streaming
processing. However, modern data applications often demand low
latencies at high data throughputs. One solution is the lambda
architecture [20], which calls for running two similar workloads: a
batch one for exact computations on historical data and a streaming
one used to patch the batch results with latest data. Alternatively,
aiming to avoid architecture complexity, it is also possible to rely
on data processing frameworks which unify batch and streaming
computations.
∗Authors in alphabetical order. Corresponding author: jan.chorowski@pathway.com.

The new data processing framework which we describe in this
paper, Pathway, has a unified runtime suitable for running both
streaming and batch tasks. Its design results from the need to per-
form certain types of real-time analytics workloads, which we con-
sidered in the logistics and supply chain vertical (see Section 2) but
arguably representative of a wider range of industry data. These
workloads call for a contextual data analysis, sometimes entering
into the real-time machine learning space, in addition to giving
significant attention to out-of-order data point arrival in event
streams. They also typically require the reconciliation of numerous
event streams, some of which may carry contradictory (erroneous)
information.

Pathway is a data processing framework with a Python API and
a reactive data processing engine with a tunable batch size which
allows it to be dynamically adjusted for a desired throughput vs
latency trade-off. In this paper, we describe its features and pro-
vide benchmark results, comparing Pathway to leading batch and
streaming data processing systems on a classical analytical bench-
mark, namely a word counting task implemented using groupby,
and a fundamental iterative graph processing algorithm, namely
PageRank. We demonstrate that Pathway is capable of achieving
throughput outperforming state-of-the-art general purpose batch
engines, while being able to respond with latencies better than state-
of-the-art streaming systems. At the same time, Pathway succeeds
in handling in streaming mode types of iterative and contextual
workloads, such as PageRank on a changing graph, which to our
knowledge are not supported by any generally industrialized system
with a Dataframe/Table API programming layer. Overall, the system
performance is owed to a combination of design choices around
mapping between tabular syntax and actual key-value data orga-
nization, the performance of the underlying differential dataflow
assembly for key-value data, the designed operator primitives, and
inter-operator optimizations made in the transpilation process.

The paper is structured as follows. In Section 2, we outline the
original motivation for the creation of Pathway originating from
industry use cases. In Section 3, we provide a historical overview
of some of the major approaches to dataflow-based streaming data
processing. An overview of the Pathway framework, together with
code examples, is put forward in Section 4. In Section 5 we provide

Pathway team

Figure 1: Example of a geospatial event data enrichment process for the Pathway framework. A stream of raw asset locations
originating from moving IoT devices [right] is converted into a structured real-time view of processes [left], enabling anomaly-
detection and alerting for assets, routes, and locations. The enriched data encompasses a custom map induced from the IoT
data that combines typical trajectories (graph edges) and key locations (geofences marked visually either location markers, or
clusters of geofences that indicate their count).

results of benchmarks of Pathway, Spark, Flink, and other frame-
works for wordcount (streaming) and PageRank (batch, streaming,
and backfilling). Section 6 contains some concluding remarks and
directions of work in progress.

2 INITIAL INDUSTRY MOTIVATION
We initially designed Pathway as a data processor able to accom-
modate the needs of our real-time analytical platform. We were
working with major clients in logistics and supply chain, primarily
in international trade (third-party logistics, containerized maritime
trade) and postal services.Wewere creating deployments for perpet-
ual workloads, with a focus on geospatial events data representing
events recorded by moving assets. This included IoT data from
physical tracker devices, GPS data collected from applications de-
ployed in operators’ mobile phones, location scans recorded at
depots and warehouses, and manual operator entries. Physical as-
pects considered included containers, shipments, trucks, human
operators, and vehicles in passenger transportation. A single data
enrichment pipeline was deployed and intended for use across mul-
tiple use cases in the organization (see Fig. 1 for an illustration),
most immediately in the context of physical process observability
and monitoring (real-time control towers), anomaly-detection, and
forecasts (Estimated Times of Arrival). This fits into the spirit of
building cross-organizational “data products” which are often spon-
sored by multiple users across the organization [11]. A discussion of
some of the business objectives behind specific deployments under-
taken by La Poste (French Postal Services), DB Schenker (a major
global freight forwarder), and others can be found on Pathway’s
website [18].

A characteristic shared across most of the deployments we ob-
served, and perhaps a generally-accepted property of the industry
verticals concerned, was the nature of the event streams. While
the majority of data volumes was arriving with a latency of up to
several seconds from measurement to system ingress, a significant
part of the data was nonetheless arriving delayed or revised (cor-
rected) within a time window of several hours. This stemmed from
numerous causes, from network connectivity issues of devices to
manual correction of incorrect or incomplete manual data entries.
Overall, the type of data treated gives rise to the following feasibil-
ity thesis about process observability design in general: preliminary
conclusions (insights and alerts) can be drawn from the incoming
data within seconds of data points’ arrival, however, delayed data
points can also lead to a change in detected anomalies and changes
of “digital twin” representation of the traced processes, even up to
48 hours later.

In terms of requirements on outcomes, the considered analytics
deployments operate across multiple time scales. Certain types of
urgent alerts (such as physical assets veering off-course, unplanned
door-opening alerts, etc.) need to be raised and dealt with within
seconds. Alerts related to transport qualitymonitoring (temperature
changes of perishables, etc.) or changes to congestion in routing and
depots typically need to be raised withinminutes. Some information
related to changes of process (e.g., detection of new key points of
interest) can be recomputed with a significantly large delay, up to 24
hours. This creates room for a certain trade-off between real-time
and minibatch computation.

At the same time, for the analytics data pipeline we were provid-
ing to our clients, full batch recomputation of the entire pipeline

Pathway: a fast and flexible unified stream data processing framework for analytical and Machine Learning applications

was not a feasible option. Many insights relied on contextual compu-
tation. For example, in the absence of data labels, obtaining insights
related to correct transport monitoring conditions (temperature,
shocks, etc.) is often only feasible through analysis of “typical” val-
ues observed for similar transports in the past. Also, the attribution
of certain data anomalies, such as a GPS tracker on an asset leaving
a prescribed depot area at an incorrect time, to a specific probable
cause (e.g., sensor measurement aberration due to GPS noise, ver-
sus, actual transport anomaly) is highly dependent on the context
of other measurements made in a similar or comparable area, or by
the same or comparable measurement device in the past.

Overall, the data pipelines considered relied on data-driven in-
sights which were fed typically upwards of 1 year of historical
data as a reference frame for applied machine learning models.
The computational data pipelines despite significant optimization
could take upwards of 24 hours to perform a complete recomputa-
tion on the multi-core machines allocated to them by the clients.
This made our move to streaming / minibatch analytics pipelines
driven by a double motivation. First, we needed to reduce latency
for the time-critical use cases. Secondly, we needed to introduce
pipeline incrementality to optimize excessive recomputation in
view of the available computational resources. A final need was
related to quickly accommodating changes to pipeline code, notably,
being able to integrate fixes to bugs and data problems, without
having to wait more than a day to obtain effects. For some of the
less time-critical and less computationally demanding operations
in the pipeline, non-incremental batch computation remained an
option. In this case, our expectation was to share logic used by both
these batch and real-time procedures, to avoid some of the issues of
lambda architecture. Finally, the engine powering the pipeline was
required to be deployable both in client data centers or with major
cloud providers, without cloud provider lock-in. These aspects were
the first motivation in our design of the Pathway data processing
framework.

3 RELATED FRAMEWORKS, BATCH, AND
STREAMING SYSTEMS

MapReduce [10] demonstrated how many high-throughput, high-
reliability batch computing jobs may be implemented using a com-
mon pattern of chaining two user defined operations: a mapper and
a reducer, while handling at the framework level the scheduling of
computations, their restarts and proactive control over stragglers.
It influenced all following data processing systems and defined
the main desiderata for systems: decoupling storage from compute
and preserving timeliness and reliability of computations in the
presence of failing machines.

Flume [7] introduced computation graphs on top of MapRe-
duce, allowing deployment of complex multistep data processing
pipelines expressed using simple operations on large collections of
data. Then, Spark [22] introduced computation graphs over resilient
in-memory datasets, RDDs, for fast and reliable batch computations.
Spark pipelines can be written in Java, Python and SQL. Spark was
also extended to handle simple cases of streaming data [23], imple-
mented using the RDD model conceptually as an infinite sequence

of machines holding batches of a table which come online one-by-
one. Independently, Spark GraphX [21] extension generalizes the
Pregel [12] model for batch computations on graph data.

A major trouble related to stream processing frameworks is
state management: beyond the simplest cases, stream elements are
not processed independently from one another. Instead, a stream
processor maintains a state and updates it with each new consumed
stream element. The MillWheel system [3] introduced a model
for persistent stream processing backing the state to an external
scalable database, such as BigTable [8] or Spanner [9]. Concurrently,
the Flink [6] framework uses barrier snapshotting to maintain
consistent snapshots of the system operation. However, streaming
systems must also deal with the problem of producing consistent
outputs under data late arrivals. The Dataflow [4]model highlighted
the problem and presented practical ways to trade correctness
for response latency by introducing a notion of watermarks and
activation triggers which can be used to precisely control how an
application reacts to late data.

The need to provide real-time answers has motivated the Lambda
[20] architecture. Introduced by Apache Storm [1] creators, it ad-
vocated combining a batch system that processed all historical
data in an exact way with a speed layer that provided approximate
answers to real-time implemented using an event streaming sys-
tem. Many systems took the idea further, introducing Streaming
and Batch APIs similar enough to be interchangeable based on
the needs. The Beam project provides a compiler for computation
graphs into either streaming or batch processing backends. Apache
Flink maintained batch and streaming engines with similar capa-
bilities, with the notable difference of iterations supported only by
the batch layer. Recently, the batch engine was abandoned in favor
of running the streaming engine in a batch runtime context which,
however, lacks iterative computation support. In this context, we
note that Pathway enforces and enables strict parity between batch
and streaming computations, by using a unified execution engine.

A powerful incremental data processing framework was devel-
oped by the Naiad [15] team and later continued in Rust as a pair
of projects, Timely and Differential Dataflow [14]. They propose to
generalize tracking progress in a distributed computational graph
using partially ordered clocks (Timely Dataflow), and adding to
this the capacity of working with deltas (Differential Dataflow).
These capacities are also to varying degrees exploited by projects
transpiling to Differential Dataflow from different API’s, such as
those based on SQL [13] or Datalog [17].

Pathway is also inspired by deep learning frameworks: Theano
[5], Tensorflow [2] and PyTorch [16]. Like Pathway, they are li-
braries for the Python programming language, betting on Python
becoming the language for data wrangling and artificial intelligence.
The lessons learned from Tensorflow’s story across its versions 1
and 2 were behind a lot of design decisions in Pathway’s dataflow
graph-building, as well as Pathway’s decision to adhere to Python
as the primary supported API. At the same time, Pathway more
closely follows PyTorch’s approach of being able to interact with
a partially (dynamically built) computation graph during early ex-
periments.

Pathway team

4 THE PATHWAY FRAMEWORK
Pathway is a Python-based data processing framework which al-
lows expressing data transformations. Pathway was made to be
easy and fast. The implementation has two layers - a runtime engine
written in Rust and a Python layer handling computation graph
(dataflow) building and optimizing. Pathway code can be written
and tested interactively (even in Jupyter notebooks) with the com-
putation graph being built in the background. This allows for quick
prototyping needed in data science tasks. The same code can then
be run on streaming data sources by disabling eager computation
and instead handing the computation graph to the runtime engine.

In any deployment - on either streaming data sources or or
in interactive mode, Pathway calls into the same Rust runtime.
This allows us to obtain the needed computational efficiency while
preserving the fast-paced development of Python code, and also
preserving consistency of results across different modes of deploy-
ment.

In terms of API, a Table is the primary object for expressing data
transformations in Pathway. A Table is a collection of columns that
share an underlying set of identifiers. Internally, the Pathway engine
operates on columns, which are a data storage with a homogenous
type. Columns are indexed with identifiers.

In terms of usability, Tables are directly comparable to Dataframes
in Pandas and PySpark, or Tables in Flink’s Table API. From a user
perspective, this allows to interpret table transformations as hap-
pening on static data, with static columns and tables, while keeping
in mind that the expressed computation supports dynamic data.
That is, inserts, deletions and modification of input data points
are automatically propagated through the dataflow, resulting in
updates to outputs.

Pathway’s approach is meant to eliminate most concerns about
impact of system processing time and out-of-order data arrival on
computational outcomes. Bounded stream workloads can in princi-
ple be replayed in Pathway, obtaining repeatable (identical) final
results in output tables each time. This comes subject to a number
of evident assumptions - such as not calling in user-defined code
external state processing functions or API’s which do not behave
deterministically, which depend on wall clock time, or on data pro-
cessing order. Code written natively in Pathway is transparent to
these concerns, allowing for predictable operation with clean code
logic, and easier testing in CI/CD pipelines.

Functions defined at data row level may be expressed in Pathway
using standard map (apply) and flatmap syntax. A notable extension
of Pathway’s syntax is that of transformer classes which take a
declarative (ORM) view of computed data tables. They allow for the
expression of logic with inter-row dependencies at row-level, per-
mitting e.g. recursive search over rows of a data table representing
a graph or other data structure. This general concept is reminiscent
of Pregel-like interfaces.

A syntax restriction of Pathwaywith respect to local batch frame-
works such as Pandas is that offset-based row indexing is not sup-
ported by Pathway. Instead, Pathway provides fast support for local
iteration over sorted indexes (most efficient over columns arriving
in almost-sorted order, such as event time columns). This restriction
is logical from the point of view of deploying code in a streaming
environment, where offsets in data ordering have little meaning,

particularly for out-of-order data. It also seems logical for batch
workloads which are meant to shard / scale.

Pathway code transpiles from Python to a high-level dataflow
graph which corresponds roughly to the code logic defined by the
user. This high-level dataflow then transpiles to an internal dataflow
assembly. In a precompilation phase, any SQL expressions which
were placed within the Python code via Pathway’s SQL API [18]
are also first decomposed with a parse tree and converted into the
high-level dataflow graph.

In terms of the assembly layer, with respect to incrementally
maintaining the results of iterative algorithms, we originally found
the logic of the Differential Dataflow project to be closest to satisfy-
ing our needs. At the same time, the approach did not provide the
data abstraction layer we needed nor interoperability with other
systems or data sources. Currently, Pathway code transpiles to a
dataflow assembly in Rust relying on a modified subset of Differ-
ential Dataflow. A lot of Pathway’s dataflow assembly consists of
custom operators, built on top of a modified LSM tree implementa-
tion, with extensions allowing for fast handling of event contexts
in sharded time-sorted event streams.

Within the scope of the transformative syntax at a Table level,
the correspondence between Pathway’s Table operators and those
in its dataflow assembly layer is in general many-to-many, and
also affected by optimization settings. The recursion-friendly trans-
former class syntax at data row level is also transpiled in a special
way to the assembly layer.

In the process of deployed code execution, Pathway stays mostly
in its Rust layer. Callbacks through bindings from Rust to the actual
Python interpreter occur only when Pathway’s transpiler is unable
to eliminate them through one of several applied approaches (i.e.,
as a fallback of last resort). The scale of Python-related efficiency
issues has consequently turned out limited, and so we have so far
not needed to deploy Pathway with GIL-free versions of Python.

Pathway is equipped with a connector layer meant for easy use
from Python. It provides a mix of input/output interfaces using
built-in connectors in the Rust/C layer (for interfacing with Kafka,
database CDC over Debezium, file storage formats), as well as
configurable Python layer connectors (covering e.g. REST API and
websockets). Convenience wrappers around these connectors may
be used to perform “asynchronous” callbacks to external API’s.
While dataflow-driven, from a usability perspective, the Pathway
framework provides a hybrid dataflow/event-driven feel in the
connectivity layer, providing a way to describe triggers on events
that occur in the data sources, such as new data arrival or timer
expiration.

Pathway’s engine predictably relies on uniform workers (each
comprising i/o and computational threads), each performing the
same workflow, with data sharding. We remark that in enterprise
deployments, Pathway’s dataflow is logically extended by a data
persistence layer, a control layer based on Kubernetes, and func-
tionalities related to space optimization which are outside the scope
of this work; a typical deployment scheme is presented in Fig. 3 in
the Appendix.

Pathway: a fast and flexible unified stream data processing framework for analytical and Machine Learning applications

Changes to Pathway’s output Tables are then propagated to
down-stream systems through Pathway’s output connectors, con-
figured in the same Python code. In the case of commercial deploy-
ments of Pathway, output tables may also serve to provide consis-
tent data snapshots to outside systems through an SQL server layer
as shown in Fig. 3.

Unlike most streaming frameworks, Pathway provides streaming
consistency guarantees stronger than eventual consistency, and
avoids approximate watermarking. For the simple case of a system
with a single, non-sharded input data source, with input messages
considered atomic (transactional), the user has full control over
the stream progress (offsets) for which outputs must be computed
by Pathway. This happens by way of COMMIT-type control mes-
sages injected through inputs. More generally, Pathway treats in a
rigorous way multiple distributed data sources, each with its own
timestamped control messages, and harmonizes them into a single
output data source which follows an internal Pathway data clock;
we omit the details from this paper.

4.1 Pathway code examples
4.1.1 Simple Wordcount. The code below demonstrates a complete
example for a word counting task:

import pathway as pw
Kafka s e t t i n g s
r d k a f k a _ s e t t i n g s = {

" b o o t s t r a p . s e r v e r s " : " a dd r e s s : 9 0 9 2 " ,
. . .

}
Kafka c o n n e c t o r f e t c h e s j s o n i n p u t s on t h e

" words " t o p i c
words = pw . ka fka . r ead (

r d k a f k a _ s e t t i n g s ,
top i c_names =[" words "] ,
va lue_co lumns =[" word "] ,
format= " j s on " ,
Th i s s e t t i n g c o n t r o l s t h e Pathway ba t ch

s i z e
autocommit_dura t ion_ms =1000

)
Ac t ua l wordcoun t c ompu t a t i o n
r e s u l t = words . groupby (t h i s . word) . reduce (

t h i s . word ,
count=pw . r e du c e r s . count () ,

)
Kafka c o n n e c t o r w r i t e s back computed word

c o u n t s
pw . ka fka . w r i t e (r e s u l t , r d k a f k a _ s e t t i n g s ,

top ic_name= " word_counts " , format= " j s on ")
Launch t h e c ompu t a t i o n
pw . run ()

The code essentially performs four operations. First, it configures
how input data is accessed by Pathway. In this case, we use a Kafka
connector with JSON message encoding. The autocommit duration

determines data batching and controls the tradeoff between system
throughput and latency. Next, the actual computation is defined,
using a groupby-reduce construct. The third step indicates how
Pathway will send its results - again we stream the data to a Kafka
topic. The first three steps build a computation graphwhich encodes
all operations that will be performed during execution. The final
line of the file starts the computation and enters an infinite loop
processing the unbounded data stream.

4.1.2 PageRank. We demonstrate below a basic implementation
of a PageRank computation in Pathway, taken from the documen-
tation [19].

def pagerank (edges , s t e p s : in t = 5) −> pw .
Tab l e [R e s u l t] :
i n _ v e r t i c e s = edges . groupby (id=edges . v) .

reduce (degree =0)
o u t _ v e r t i c e s = edges . groupby (id=edges . u)

. reduce (degree =pw . r e du c e r s . count (
None))

d eg r e e s = pw . Tab l e . update_rows (
i n _ v e r t i c e s , o u t _ v e r t i c e s)

base = o u t _ v e r t i c e s . d i f f e r e n c e (
i n _ v e r t i c e s) . s e l e c t (f low =0)

ranks = deg r e e s . s e l e c t (rank =6 _000)

for s t e p in range (s t e p s) :
ou t f l ow = deg r e e s . s e l e c t (

f low=pw . i f _ e l s e (
d eg r e e s . deg ree == 0 , 0 , (

r anks . rank ∗ 5) / / (
d eg r e e s . deg ree ∗ 6)

))
i n f l ow s = edges . groupby (id=edges . v) .

reduce (
f low=pw . r e du c e r s . int_sum (ou t f l ow

. i x [edges . u] . f low)
)
i n f l ow s = pw . Tab l e . c onca t (base ,

i n f l ow s)
ranks = i n f l ow s . s e l e c t (rank= i n f l ow s .

f low + 1 _000)
return ranks

The PageRank routine takes as an input a single table of edges,
with two columns ‘u‘ and ‘v‘ containing pointers (hashed ver-
tex labels) to respective endpoints, and returns table indexed by
vertices, with the respective number of PageRank surfers com-
puted. In the implementation we see operations that transform
columns, eg: select which is used for row-wise transformation,
groupby-reduce used for aggregation (from edges to vertices), or
operations which allow for manipulation of sets of rows in tables
(called universes) like difference or update_rows. Pathway uses
ColumnExpressions as a basic construct for expressing operations

Pathway team

on columns. Anatomy of expression is as follows: basic constructs
are references to columns, accessed via python attributes of tables,
i.e. table.name and consts. Basic arithmetic and logic operators
applied on expressions are building blocks for higher order expres-
sions, and are used to describe complex vectorized operations.

The indexing operator table.ix[] demonstrates Pathway’s ca-
pabilities to work with pointers. The .ix operator denotes vectorized
dereference, i.e. a join between a key expression and ids of a table.
Pointer support facilitates algorithmic thinking during develop-
ment, internally it is implemented using join, which is of course
also fully supported by Pathway.

Pathway uses strong typing of its columns, expressions and
tables. Specifically, the type of data stored in each column is tracked.
Additionally, row keys (universes) are tracked and used in the type
system.

5 BENCHMARKS
We report performance of Pathway on streaming and batch tasks
which are representative of workloads we want to support: online
streaming tasks and graph processing tasks. We evaluate the graph
processing task in three modes: first, as a batch computation. Next,
as an incremental online computation that should auto-update
its results while streaming changes to the graph. Finally, a mixed
batch-online mode we call backfilling which evaluates the ability
of the engine to switch from batch to online. During backfilling
the engine first computes the solution on a large data set in batch
mode, then has to start responding in real time to streaming updates.
The backfilling scenario simulates e.g. recomputing results after a
change to the algorithm.

5.1 Experiment design
All code needed to reproduce the benchmarks is publicly available
at our GitHub repository1.

All experiments were run on dedicated machines with: 12-core
AMD Ryzen 9 5900X Processor, 128GB of RAM and SSD drives.
For all multithreaded benchmarks we explicitly allocate cores to
ensure that threads maximally share L3 cache. This is important,
as internally the CPU is assembled from two 6-core halves, and
thread communication between halves is impacted. For this reason
we report results on up to 6 cores for all frameworks.

We run all experiments using Docker, enforcing limits on used
CPU cores and RAM consumption.

5.2 Streaming benchmark: wordcount
The benchmark task is a simple variant of the Wordcount bench-
mark in which each line of the input contains a single word, and the
goal is to maintain for each word the total number of occurrences
in the input stream. In particular, we do not require the code to split
the sentences into words, nor to be case insensitive. Instead, we
focus on comparing input/output efficiency and the performance
of groupby-count operations.

We compare all tested frameworks using the same benchmarking
harness which collects all relevant statistics. Test runs are orches-
trated using docker compose, which manages all computations: the
Kafka service, the data producer and result gathering sink, as well
1https://github.com/pathwaycom/

as the wordcount computation to be tested. We manually assign
non-overlapping sets of CPU cores to each service. Last, we rely on
timestamps assigned by Kafka (using the LogAppendTime option)
to compute output latencies.

The streamer is a single-thread Rust binary which simulates a
bursty stream with a predefined mean throughput. We have noticed
that some frameworks respond with a high latency to the initial
messages they produce, but after a while converge to a steady-state
performance. To eliminate benchmarking the transient behaviors
we employ a burn-in period during which the message throughput
is gradually increased. We then discard these events from latency
statistics computation. The input Kafka topic is not partitioned.

5.2.1 Test scenario. For our usual test scenario, we use 76 million
words taken uniformly at random from a dictionary of 5000 random
7-lowercase letter words. We split the dataset into two parts: we use
16 million words as some kind of burn-in period, and we include
towards the final readouts only the latencies of the remaining 60
million words. Each experiment is repeated 5 times; the median of
all runs is reported.

Since many of the tested frameworks employ minibatching, and
guarantee only eventual consistency, we must accordingly define
latency. First, we match each entry of the input stream with the
earliest value in the output stream that has ‘correct’ count - if there
is no exact match, we take the first entry in the output stream that
has a larger count. We then compute the latency as the difference of
Kafka broker timestamps of matched messages. This way of match-
ing messages produces a matching that is optimistic for systems
under consideration. Even if a benchmarked framework processes
messages out-of-order, our matching is optimistic and minimizes
maximum reported latency. Therefore, we believe the proposed
latency definition allows a fair evaluation of all systems using a
black-box approach.

5.2.2 Benchmarked systems and their setup. In our experiments,
we tested several frameworks for stream processing. Each of those
frameworks has multiple parameters and variants that allow a user
to adjust the performance of the framework to the task at hand.
Below, we briefly describe our configuration, and explain why we
choose it for each of the frameworks.

Pathway Setup. For Pathway we control the minibatch size using
the connector autocommit parameter (we have tested 5ms, 10ms,
20ms and 100ms the range is expanded to allow comparison with
the two Flink setups) and set the number of threads to match the
allocated core count.

Flink Setup. We consider two Flink setups: Flink defaults, which
are implemented using the Scala stream API and which process
each message separately, Flink minibatching in which we config-
ure the runtime to process minibatches of messages (similarly to
KafkaStreams, Spark, and Pathway), implemented using Flink Scala
Table API. The two variants provide a control of the throughput-
latency tradeoff: the default setup provides better latency at low
throughputs, while minibatching obtains maximum sustainable
throughput.

We set the parallelism parameter to match the number of allo-
cated cores. The minibatching setup controls batch size using the
mini-batch.allow-latency parameter, whose best settings chosen

https://github.com/pathwaycom/

Pathway: a fast and flexible unified stream data processing framework for analytical and Machine Learning applications

for comparison were 20ms and 100ms. We have compared Flink
performance under the cluster, and single-machine multithreaded
configuration and run all tests in the multithreaded configuration
which was faster.

Kafka Streams Setup. We tune two parameters: the size of a batch
(using autocommit frequency parameter set to 20ms and 100ms) that
is ingested by Kafka Streams and parallelism. Since Kafka Streams
benefits from multithreaded computations only when reading from
multi-partitioned topics, we increase its parallelism instead using
the number of replicas set through docker compose. Finally, we set
the enableObjectReuse flag to speed Flink operations by disabling
copies of objects made by default for code safety.

Spark Structured Streaming. Spark supports two streamingmodes:
Structured Streaming and Continuous Streaming. However, at the
time of preparing the benchmarks Continuous Streaming didn’t
support groupby aggregations and we have restricted ourselves to
benchmark Structured Streaming.

Similarly to other frameworks, we configure parallelism (us-
ing spark-submit –master local[k]) and batch size (setting .trig-
ger(Trigger.ProcessingTime(s"$pTimemilliseconds")) to 20ms or 100ms).

5.2.3 Wordcount benchmark results. The Wordcount task is sub-
modular: with large batch sizes reduce the amount of work needed
and improve throughput while increasing latency. Thus the task
nicely demonstrates the tension between throughput and latency
of streaming systems.

We present experimental results of the observed latency / through-
put curve in Fig. 2. Out of the four tested solutions, Flink and Path-
way obtain results on the Pareto front, clearly dominating Spark
Structured Streaming and Kafka Streams. Pathway clearly domi-
nates the default Flink setup in terms of sustained throughput, and
dominates the Flink minibatching setup in terms of latency for all
of the throughput spectrum we could measure. Actually, for most
throughputs, Pathway also achieves lower latency than the better
of the two Flink setups.

5.3 Batch benchmark: PageRank
We benchmark the total time to complete a batch PageRank com-
putation on the LiveJournal social network dataset graph, which
contains 4,847,571 nodes and 68,993,773 edges.

We then compare implementations in Pathway, Flink, and Spark.
We rely on an equivalent, idiomatic implementation of PageRank
for all three frameworks - noting that In Spark we benchmark
several code variants for PageRank: two different flavors of the
reference implementation (RDD code, Spark SQL code), and also
an implementation proposed in Spark documentation examples,
and finally Spark’s GraphX implementation, which are not strictly
equivalent.

For all frameworks the input is encoded in JSON format. The
output is streamed to /dev/null in order to reduce the influence of
non-essential IO operations. The result of the benchmark is the
total time spent between the start and the end of the PageRank
program. Each experiment is repeated 5 times; the median of all
runs is reported.

Pathway setup. For Pathway we use the implementation pro-
vided in its official documentation and described above in section
4.1.2. We report the results of two versions of Pathway engine: 1)
the publicly available package, and 2) a build with more aggressive
optimizations scheduled for general availability upon extensive
testing (the benchmark release).

Flink setup. For Flink, we implement the same idiomatic logic
into Flink’s Scala Table API. The resulting code is slightly more
verbose than in Pathway, due to the lack of join-based operators
in Flink allowing updating tables more conveniently. Nevertheless,
the implementation is analogous to Pathway’s allowing for fair
comparison.

Spark setup. Spark provides GraphX, a dedicated library for
graph processing. We included the recommended GraphX PageR-
ank routine in the comparison. In an effort to benchmark similar
operations as for the other frameworks, we also implemented the
same logic as for Flink and Pathway using the RDD and SQL API’s.
We have found the SQL API to be about 3 times faster, which
we attribute to optimizations enabled by using a more declarative
specification of computations; subsequently, we do not present the
results for the RDD API. Finally, we also benchmarked a PageRank
Implementation provided in the Spark documentation.

5.3.1 Batch PageRank Results. We report the batch PageRank re-
sults in Table 1. The fastest performance is achieved by the Spark
GraphX implementation and the more aggressively-optimized Path-
way build. The formulation (and syntax) of the GraphX algorithm
is different from the others. Performing an apples-to-apples com-
parison of performance of equivalent logic in Table APIs, Pathway
is the fastest, followed by Flink and Spark.

5.4 Streaming benchmark: PageRank
We now compare two variants of computing PageRank on a dy-
namically changing dataset. In the first scenario, called minibatch
streaming, we start with an empty graph and add edges in batches
of size 1000.

In the second scenario, called backfilling, the system first pro-
cesses a large batch which contains a significant fraction of the
full graph. Then remaining edges are added in batches of size 1000.
This scenario tests the ability of the systems to recompute in batch
the results as necessary e.g. after a code change, but keeping all
state necessary to resume later streaming operation.

The streaming benchmark demands more RAM memory than
the batch case - all streaming operations must keep their state in
memory for the whole duration of the computation. Thus, we report
results on subsets of the live journal dataset containing 400k and
5M edges. For comparison, we also provide timings of batch runs
on these reduced datasets.

In both variants we focus on the total runtime of tested systems.
We evaluate only two systems on the streaming PageRank task:

Pathway and Flink. We don’t test Kafka Streams because it was sub-
optimal on the streaming wordcount task. Moreover, no Spark vari-
ant supports such a complicated streaming computation: GraphX
doesn’t support streaming, Spark Structured Streaming doesn’t

Pathway team

Figure 2: Comparison of latency in the wordcount benchmark for different values of throughput between Flink (default
streaming and minibatching setup), Kafka Streams, Spark Structured Streaming, and Pathway. Plots show the 95th percentile
of latency and may be considered a representative choice among the percentiles we measured in the benchmark (80th to 99th).

Table 1: Results of a batch benchmark for PageRank across Flink, Spark, and Pathway. We report the total running time
in seconds to process the dataset. The standard code logic is an idiomatic (join-based) implementation. Additionally, two
incomparable implementations marked with (*) are benchmarked for Spark.

Framework Engine runtime PageRank code logic 1 core 2 cores 4 cores 6 cores

Flink batch standard 215 132 96 83

Spark batch standard 556 340 193 143
from documentation* 2643 1408 781 571
graphx routine* 130 78 44 35

Pathway unified standard 171 95 54 47
unified, benchmark release** standard 108 63 44 39

Table 2: Benchmark results of streaming PageRank computation. We report the total running time in seconds to process the
dataset by updating the PageRank results every 1000 edges.

Dataset Framework 1 core 2 cores 4 cores 6 cores

livejournal, first
400,000 edges

Flink (streaming) 91.0 56.0 29.0 18.0
Pathway 2.2 1.3 0.7 0.6

livejournal, first
5,000,000 edges

Flink (streaming) 3350.0 3190.0 1286.0 830.0
Pathway 61.0 36.1 21.4 17.3

allow chaining multiple groupby’s and reductions, and Spark Con-
tinuous Streaming is too limited to support even simple streaming
benchmarks.

Pathway Setup. Pathway runs exactly the same code as in the
batch section. Pathway allows external control of batch size by
injecting explicit “COMMIT” control messages into the data stream.
We use this mechanism.

Flink Setup. For Flink the code for the batch and streaming mode
is mostly the same, thanks to Flink’s unified Table API. However,
some changes were needed as some table operations are only avail-
able in batch mode: we have replaced the “minus” operator using
leftjoin+filter and we have enforced task specific batching as de-
scribed in the Appendix A. In scenarios where Flink was unable
to perform as expected, we relaxed the batching requirement and

attempted a variety of setups which could possibly lead Flink’s
streaming engine to completion of the task, in any way.

5.4.1 Streaming updates results. We report the results in the Ta-
ble 2. We see that while both systems are able to run the streaming
benchmark, Pathway maintains a large advantage over Flink. It is
hard to say whether this advantage is “constant” (with a factor of
about 50x) or increases “asymptotically” with dataset size. Indeed,
extending the benchmarks to tests on larger datasets than those re-
ported in Table 2 is problematic as Flink’s performance is degraded
by memory issues.

5.4.2 Backfilling. This scenario greatly reduces the amount of in-
termediate results that must be computed. We once again reduce
the dataset size to accommodate memory requirements.

Pathway: a fast and flexible unified stream data processing framework for analytical and Machine Learning applications

Table 3: Benchmark results of the backfilling PageRank computation. All systems process first a large batch, then stream
additions of remaining edges. We report the total running time in seconds.

Dataset Instance type Framework 1 core 2 cores 4 cores 6 cores

livejournal, first
5,000,000 edges

batch Flink (batch) 27 17 11 10
Pathway 13 7 4 4

backfilling 4,999,999 edges, then streaming
1 edge

Flink (streaming) 380 200 110 85
Pathway 13 8 4 4

backfilling 4,500,000 edges, then streaming
500,000 edges with 1000 edges per update

Flink (streaming) 411 208 113 101
Pathway 22 13 8 7

livejournal, all
68,993,774 edges

batch Flink (batch) 215 132 96 83
Pathway 171 95 54 47

backfilling 68,993,773 edges, then streaming
1 edge

Flink (streaming) Did not finish
Pathway 150 90 58 49

backfilling 68,493,774 edges, then streaming
500,000 edges with 1000 edges per update

Flink (streaming) Did not finish
Pathway 266 160 100 83

As shown in Table 3. Pathway again offers superior performance,
completing the first of the datasets considered approximately 20x
faster than Flink. The first large batch is processed by Pathway
in times comparable to the pure batch scenario. This makes the
backfilling scenario very practical. In this way, Pathway preserves
the ease of defining and updating batch pipelines, while being able
to use them in the streaming context as well. For backfilling on the
complete LiveJournal dataset, Flink either ran out of memory or
failed to complete the task on 6 cores within 2 hours, depending
on the setup.

6 CONCLUSIONS
Motivated by applications in context-sensitive real-time analytics
for the industry, we have put forward Pathway - a unified engine
which can switch mid-way from batch processing to streaming.
This enables, e.g., data backfilling at speed.

As confirmed by the outcomes of all of the benchmarks we have
performed so far on standard tasks, Pathway deployments are able
to consistently achieve performance better than the compared state-
of-the-art frameworks with Table/Dataframe API’s. At the same
time, Pathway extends the scope of algorithms on dynamically
changing data which may be approached with the convenience of
expressing logic through a programming interface focused around
manipulation of tables and table rows in Python - potentially un-
locking new use cases not previously considered in such streaming
frameworks.

It is interesting to reflect on the scope of algorithms and models
which can be described in Pathway and benefit from efficient recom-
putation following data changes. As discussed herein, iterative algo-
rithms on changing data (such as PageRank for a changing graph)
fall into this category. A different case concerns event-streams,
where changes to the streamed data replay only a relatively recent
part of the head of the stream. Convenient handling of such cases
of partially frozen data at a syntactic level is foreseen in future
revisions of Pathway.

We also foresee next steps around tighter integration of Path-
way with Python libraries and API’s, to demonstrate how to fully
leverage the power of the Python ecosystem in Pathway. Concrete
examples include easy-to-setup connectors for external systems

with push-API’s (especially in monitoring and alerting use cases),
and interfacing with Machine Learning libraries suited for working
with online data, including time series.

REFERENCES
[1] 2023. Apache Storm. https://storm.apache.org/.
[2] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
2016. Tensorflow: a system for large-scale machine learning.. In Osdi, Vol. 16.
Savannah, GA, USA, 265–283.

[3] Tyler Akidau, Alex Balikov, Kaya Bekiroğlu, Slava Chernyak, Josh Haberman,
Reuven Lax, Sam McVeety, Daniel Mills, Paul Nordstrom, and Sam Whittle. 2013.
Millwheel: Fault-tolerant stream processing at internet scale. Proceedings of the
VLDB Endowment 6, 11 (2013), 1033–1044.

[4] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael J
Fernández-Moctezuma, Reuven Lax, Sam McVeety, Daniel Mills, Frances Perry,
Eric Schmidt, et al. 2015. The dataflow model: a practical approach to balancing
correctness, latency, and cost in massive-scale, unbounded, out-of-order data
processing. (2015).

[5] James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan Pas-
canu, Guillaume Desjardins, Joseph Turian, David Warde-Farley, and Yoshua
Bengio. 2010. Theano: a CPU and GPU math expression compiler. In Proceedings
of the Python for scientific computing conference (SciPy), Vol. 4. Austin, TX, 1–7.

[6] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,
and Kostas Tzoumas. 2015. Apache flink: Stream and batch processing in a single
engine. The Bulletin of the Technical Committee on Data Engineering 38, 4 (2015).

[7] Craig Chambers, Ashish Raniwala, Frances Perry, Stephen Adams, Robert R
Henry, Robert Bradshaw, and Nathan Weizenbaum. 2010. FlumeJava: easy,
efficient data-parallel pipelines. ACM Sigplan Notices 45, 6 (2010), 363–375.

[8] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah A Wal-
lach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E Gruber. 2008.
Bigtable: A distributed storage system for structured data. ACM Transactions on
Computer Systems (TOCS) 26, 2 (2008), 1–26.

[9] James C Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost,
Jeffrey John Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser,
Peter Hochschild, et al. 2013. Spanner: Google’s globally distributed database.
ACM Transactions on Computer Systems (TOCS) 31, 3 (2013), 1–22.

[10] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data processing
on large clusters. Commun. ACM 51, 1 (2008), 107–113.

[11] Veeral Desai, Tim Fountaine, and Kayvaun Rowshankish. 2022. A Better Way to
Put Your Data to Work. Harvard Business Review (July 2022).

[12] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: a system for large-
scale graph processing. In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data. 135–146.

[13] Frank McSherry. 2022. Materialize: a platform for building scalable event based
systems. In Proceedings of the 16th ACM International Conference on Distributed
and Event-Based Systems. 3–3.

[14] Frank McSherry. 2023. Differential Dataflow. https://github.com/
TimelyDataflow/differential-dataflow.

[15] Derek G Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham,
and Martín Abadi. 2013. Naiad: a timely dataflow system. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles. 439–455.

https://storm.apache.org/
https://github.com/TimelyDataflow/differential-dataflow
https://github.com/TimelyDataflow/differential-dataflow

Pathway team

SQL service

Output stream
connectors

Real time data
processing engine

PATHWAY FRAMEWORK

Input stream
connectors

Input data
schema

Code / data
pipeline

Enriched data
schema

Persistency service

BUSINESS INTELLIGENCE
TOOL

Authentication layer

Real time data
transformation

libraries

Visual
dashboards

SQL
queries

Ex
po

rt
Em

be
d

Push alerts & notifications
Data warehouse outputs (CDC)

Downstream SQL client connections
Other Business Intelligence software

 PATHWAY CONTROL LAYER

Data source
connections

Resource
control

Pod & Services
setup

System health
monitoring

Authentication
setup

Message
queues &

event
brokers

Data
warehouse

inputs
(CDC)

Re
po

rt
s

Li
ve

 re
po

rt
s

W
eb

 a
pp

lic
at

io
ns

Cu
st

om
er

 p
or

ta
ls

Enterprise
IAM

SQL

NOCODE

Figure 3: Schema of typical Pathway framework integration in enterprise deployments.

[16] Adam Paszke, SamGross, FranciscoMassa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019).

[17] Leonid Ryzhyk and Mihai Budiu. 2019. Differential Datalog. Datalog 2 (2019),
4–5.

[18] Pathway team. 2023. Pathway.com. https://pathway.com/ [Online; accessed
4-July-2023].

[19] Pathway team. 2023. Pathway.com pagerank implementation. https://pathway.
com/developers/tutorials/pagerank [Online; accessed 4-July-2023].

[20] Wikipedia contributors. 2023. Lambda architecture — Wikipedia, The Free En-
cyclopedia. https://en.wikipedia.org/w/index.php?title=Lambda_architecture&
oldid=1143890923. [Online; accessed 4-July-2023].

[21] Reynold S Xin, Joseph E Gonzalez, Michael J Franklin, and Ion Stoica. 2013.
Graphx: A resilient distributed graph system on spark. In First international
workshop on graph data management experiences and systems. 1–6.

[22] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, Ion
Stoica, et al. 2010. Spark: Cluster computing with working sets. HotCloud 10,
10-10 (2010), 95.

[23] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, and
Ion Stoica. 2013. Discretized streams: Fault-tolerant streaming computation at
scale. In Proceedings of the twenty-fourth ACM symposium on operating systems
principles. 423–438.

A CONSUMING MINI-BATCHES OF A GIVEN
SIZE IN STREAMING MODE IN FLINK

In order to achieve commits every 1000 edges we used Flink’s mini-
batch optimization. To this end we had to configure table.exec.mini-
batch.allow-latency and table.exec.mini-batch.size parameters (both
are required by Flink).

Initially, we tried to set mini-batch.size=1000, and set a large
allow-latency. This however, resulted in updates occurring much
more frequently than every 1000 edges. It seems that the mini-
batch.size configuration applies to every aggregation operator (and
not input), rendering it useless for the PageRank algorithm which
performs some aggregations in each iteration.

Therefore, we started tuning themini-batch.allow-latency setting.
Flink can work with processing time or event time. It turns out that
this processing mode affects the mini-batching mode (ProcTimeMi-
niBatchAssignerOperator vs RowTimeMiniBatchAssginerOperator,
see Flink’s source code). We therefore aimed to set event time for
the 𝑘-th edge to be equal to 𝑘 with a watermark strategy for as-
cending timestamps. We set “mini-batch.allow-latency” to 1000 and
“mini-batch.size” to something large in order to make it irrelevant –
we used 108.

This however did not work on its own, as Flink’s planner was
automatically choosing mode to use processing time, as our PageR-
ank application has only unbounded aggregations and global joins
(i.e. we don’t have any windowing in the logic). To circumvent this
issue, we added a dummy operator at the beginning of the pipeline
which makes an interval join on input edges with self. This forced
Flink’s planner to use event time (referred to also as RowTime) in
minibatching.

https://pathway.com/
https://pathway.com/developers/tutorials/pagerank
https://pathway.com/developers/tutorials/pagerank
https://en.wikipedia.org/w/index.php?title=Lambda_architecture&oldid=1143890923
https://en.wikipedia.org/w/index.php?title=Lambda_architecture&oldid=1143890923

	Abstract
	1 Introduction
	2 Initial industry motivation
	3 Related frameworks, batch, and streaming systems
	4 The Pathway framework
	4.1 Pathway code examples

	5 Benchmarks
	5.1 Experiment design
	5.2 Streaming benchmark: wordcount
	5.3 Batch benchmark: PageRank
	5.4 Streaming benchmark: PageRank

	6 Conclusions
	References
	A Consuming mini-batches of a given size in streaming mode in Flink

