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ABSTRACT
Intrusion Detection Systems (IDSs) are essential cybersecurity com-
ponents. Previous cyberattack detection methods relied more on
signatures and rules to detect cyberattacks, although there has been
a change in paradigm in the last decade, with Machine Learning
(ML) enabling more efficient and flexible statistical methods. How-
ever, ML is currently unable to integrate cybersecurity information
into its inner workings. This paper introduces Cyber Informedness,
a new metric taking into account cybersecurity information to give
a more informed representation of performance, influenced by the
severity of the attacks encountered. This metric uses a de facto stan-
dard in cybersecurity: the Common Vulnerability Scoring System
(CVSS). Results on two public datasets show that this new metric
validates results obtained with generic metrics. Furthermore, this
new metric highlights ML-based IDSs that prioritize high perfor-
mance on severe attacks, which is not visible with generic metrics.
Consequently, this new metric nicely completes generic metrics by
bridging the gap between ML and cybersecurity.

CCS CONCEPTS
• Computing methodologies → Machine learning; • Security
and privacy→ Intrusion detection systems.
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1 INTRO
The world is increasingly digitalized, which brings a plethora of
cybersecurity threats. While it is essential to make systems more
secure by design [2], nothing is ever perfectly secure, so alterna-
tive solutions are needed. IDSs are used to monitor and analyze
traffic and system logs to detect anomalies and potential attacks.
Traditional IDSs are signature-based and rather successful in de-
tecting known attacks, with a very low probability of giving false
alarms with sufficiently well-crafted rules, but they can easily miss
zero-day or polymorphic threats [9]. In the last decade, however,
one of the most extensive research directions concerns ML algo-
rithms. Many works [6, 11, 12, 15, 22] have expanded upon ML and
Deep Learning (DL) performance relative to intrusion detection on
popular datasets, and show that those approaches perform well.

As far as metrics are concerned, the intrusion detection problem
is addressed from the ML viewpoint with generic metrics such
as Accuracy, Precision, Recall or F1-Score. While these metrics
are extensively used and tested, they suffer from significant flaws,
particularly when performing multi-class classification. Indeed,
imbalance in the data heavily influences results, and poor results on
underrepresented classes are generally hidden. Furthermore, those
metrics treat all data equally and are unable to cater to differences
in the cost of mistakes (attacks missed or false alarms). Failing
to detect port scans will obviously be less penalizing than failing
to detect the exfiltration of confidential data. Therefore, it will be
beneficial to create a new metric or modify existing ones to add
cybersecurity knowledge to the evaluation process.

In this paper, new metrics based on CVSS will be introduced
to provide a more informed evaluation of the actual performance
of ML-based IDSs. These metrics can benefit both the ML expert
that builds and validates an IDS based on ML algorithms and the
cybersecurity expert that will use and integrate this IDS by showing
results that both sides have more confidence in.

The contribution of this research is twofold:

• Introduce Miss Cost (MC), False Alarm Cost (FAC) and Cyber
Informedness (CI), three cybersecurity-related quantitative
metrics that complete ML-related metrics.

• Evaluate the newly defined metrics, concurrently to other
generic metrics, with various ML algorithms on the UNSW-
NB15 and CIC-IDS2017 public datasets.

https://doi.org/10.1145/3590777.3590786
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The rest of the paper is organized as follows: Section 2 presents
related works. Section 3 describes the proposed approach, while
Section 4 presents the experimental setup. Section 5 presents and
analyzes the results. Finally, Section 6 discusses results and their
limitations, and Section 7 concludes the paper and discusses future
avenues of research.

2 RELATEDWORK
For ML-based IDSs, cybersecurity datasets are required. Unfortu-
nately, it is difficult to obtain realistic data, i.e., with at least a
diversity of up-to-date attacks, a complete environment, as well
as traffic representative of the real world (imbalanced, with errors,
etc.). Using real world data is an obvious choice, but is often impos-
sible to obtain because of confidentiality and/or security reasons.
Another solution is to create a synthetic dataset. While it elimi-
nates the previous problems, it is much more difficult to make it
realistic. It is important to follow a thorough methodology, such as
highlighted by [3, 16], to ensure quality of the data created.

2.1 Datasets
KDD’99 [1] and NSL-KDD [20] are the two most used datasets [9].
However, these datasets, and particularly the former, are heavily
criticized because of their age and various other problems such as
redundancy [5, 18, 21].

The UNSW-NB15 [13] and CIC-IDS2017 [17] datasets are more
recent and based on quite complete environments. CIC-IDS2017
follows the methodology defined in [16] and criteria defined in [7]
to ensure quality of the created dataset. Both being more recent
datasets, it also ensures that the environment and simulated traffic
are more representative of nowadays’ real-world traffic. Further-
more, the UNSW-NB15 dataset has CVE (Common Vulnerability
Exposure) information recorded for six attack categories that can
be helpful in obtaining CVSS scores. While the CIC-IDS2017 dataset
does not have CVE information, it is possible, given the informa-
tion provided in [17], to assign CVSS scores to the respective attack
classes. Although the more recent DAPT dataset [14] appears to
better represent current attack methodologies, it is hard to obtain
CVSS scores for this dataset.

2.2 Metrics
In order to evaluate performance of different ML-based IDSs, vari-
ous metrics are generally used. The most complete representation
of an IDS’s performance and basis for most metrics, e.g., Accuracy,
Precision, Recall, F1-Score, is the full confusion matrix. For intru-
sion detection problems, the metrics that are used share two major
drawbacks. Firstly, they are unable to treat differently different at-
tack classes, and this is problematic because attacks are not equally
dangerous, and remediation mechanisms are different. Secondly,
they are mostly not resistant to imbalance.

Imbalance in the data is a problem already highlighted in the
literature. It has been described in details in [8, 10, 19], showing that
many metrics might be ill-defined in case of heavily imbalanced
datasets. It thus highlights the need to find better metrics, or simply
account for the skewness of class distributions. However, there is
no definite answer concerning the correct methodology to assess
performance on imbalanced datasets.

To solve the imbalance problem, [4] has suggested the use of the
Matthews Correlation Coefficient (MCC) that is probably the most
complete with regard to summarizing the confusion matrix since
it captures all the information contained therein, i.e., both True
and False Positives and Negatives. While it is originally defined
for binary classification, it can also be extended to the multi-class
setting.

Although it was argued in [4] that MCC is resistant to imbalance,
the authors in [23] offer a strong rebuttal to the use of MCC in case
of imbalanced datasets and suggest using metrics that are more
stable with regard to imbalance, such as the geometric mean of TPR
(True Positive Rate) and TNR (True Negative Rate, also equal to
1 − 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒) and Bookmaker Informedness (BM) equal
to 𝑇𝑃𝑅 +𝑇𝑁𝑅 − 1.

According to [23], BM accounts for imbalance and can reflect a
less biased view of performance. Its formula is simple, yet appears
to offer what most other metrics cannot, i.e., it allows to capture
performance on both positive and negative instances with equal
importance, irrespective of the imbalance. It is something that Ac-
curacy or MCC are not capable of doing. However, resistance to
imbalance of the MCC and BM metrics is still relatively unclear in
the multi-class setting, since both [4] and [23] limited their analysis
to the binary setting. Furthermore, although some metrics might
appear more suitable than others, it is advised in [19] to rely on
multiple metrics to correctly compare two algorithms.

Finally, MCC and BM appear to offer a solution to the imbalance
problem. However, there is currently no metric that offers to solve
the problem of attack classes that are inherently not equally impor-
tant. For example, breaches in servers holding classified data need
to be prioritized much more than simple brute forcing attempts.

3 PROPOSED APPROACH
Besides being an evaluation of performance, a given metric (or set
of metrics) should be able to provide objective information about
the actual cost of being mistaken, particularly in critical situations.

From the ML standpoint, all the metrics mentioned in Section 2.2
are already enough to constitute a set of complementary metrics
that quite exhaustively represent a ML-based IDS’s performance.
However, it is still lacking from the cybersecurity standpoint and
difficult to adapt to different monitored systems and goals. More-
over, it does not provide information about the cost of mistakes.

Because the application domain is cybersecurity, it should be
important to consider widely used and consensual cybersecurity-
based metrics relative to the severity of cyberattacks. Two methods
are widely used to characterize cyberattacks: the MITRE ATT&CK
framework and the CVSS. While MITRE ATT&CK is a knowledge
base to classify TTPs (Techniques, Tactics and Procedures), making
it hard to adapt to quantitative metrics, CVSS scores are numerical
values and can be easily integrated into a cybersecurity-aware
metric.

3.1 False Alarm Cost and Miss Cost
Let 𝑐 be a class, with 𝑐 ∈ {0, 1, ...,𝐶} and 0 being the normal class.
For every instance 𝑖 , let𝐺𝑖 be the ground truth value and 𝐷𝑖 be the
decision for this instance. CVSS𝑖 is the CVSS score corresponding
to instance 𝑖 .
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1 stands for the indicator function and • is the averaging operator.
CVSS𝑐 thus corresponds to the mean of CVSS scores for instances
belonging to class 𝑐 , which is necessary when instances of the
same class do not have the same CVSS score (as is the case in the
UNSW-NB15 dataset).

For each attack class 𝑐 (𝑐 ≠ 0), and with 𝑁 the total number of
instances, we define the False Alarm Cost (FAC, Eq. 1) and the Miss
Cost (MC, Eq. 2) as follows:

FAC𝑐
def
=

𝑁∑︁
𝑖=1

1𝐷𝑖=𝑐 · 1𝐺𝑖≠𝐷𝑖

10
𝑁∑︁
𝑖=1

1𝐷𝑖=𝑐

· CVSS𝑐 (1)

MC𝑐
def
=

𝑁∑︁
𝑖=1

1𝐷𝑖≠𝑐 · 1𝐺𝑖=𝑐 · CVSS𝑖

10
𝑁∑︁
𝑖=1

1𝐺𝑖=𝑐

(2)

In both formulae, the number 10 in the denominator represents
the maximum possible value of a CVSS score, thus acting as a
normalizing constant (bounding results between 0 and 1) while also
highlighting the importance of attacks having a higher score.

As such, both formulae are generalizations of Machine Learning
metrics. FAC is the generalization of the False Discovery Rate, the
proportion of mistakes by predicting a specific class. Intuitively,
it represents the frequency of false alarms, weighted by the CVSS
score of these alarms. MC is the generalization of the False Negative
Rate, the proportion of class instances that are incorrectly classified.
Intuitively, it represents the frequency of missed attacks, weighted
by their individual CVSS scores. These newly defined metrics are
equal to their ML metrics counterparts when all CVSS scores are
equal to 10 for classes different from normal traffic.

3.2 Cyber Informedness
For each class 𝑐 (𝑐 ≠ 0), the Cyber Informedness (CI) metric that
contains both FAC and MC is given by (3).

𝐶𝐼𝑐
def
= 1 − FAC𝑐 −MC𝑐 (3)

It is thus defined analogously to BM, although the FPR is replaced by
FAC, a generalization of the FDR. Therefore, although a bit different
from BM, the new metric takes into account both False Positives
and False Negatives, and should therefore exhibit nice properties
regarding class imbalance.

This metric aims to give a cybersecurity-informed idea about
the performance of an IDS, aggregating both FAC and MC, with 1
being the best possible score. It also represents the success of an
IDS to correctly identify a specific attack, with less penalties for
failing to recognize less critical attacks.

3.3 Practical implications of the metrics
In order to use these newly defined metrics, the best case scenario
would be to have, in the data, CVE IDs or CVSS scores related
to the vulnerabilities exploited by attacks. It is, however, rarely
the case. Therefore, another alternative is to directly get the CVSS

scores used in this customizable metric through a publicly available
calculator1, which is doable when given enough details about the
attacks.

Besides being based on a de facto standard in cybersecurity, the
three cyber-related metrics can also provide additional benefits in
practice when protecting a system. First and foremost, it inherently
takes into account the severity of attacks encountered and putsmore
focus on attacks that are dangerous for the system. For example,
failing to detect Heartbleed attacks will have much more impact
than failing to detect port scans.

Secondly, it is possible to adapt the score depending on the
system that needs to be protected. The CVSS score already includes
this possibility with the Environmental score, where it is possible
to specify Confidentiality, Integrity and Availability requirements
of the system, influencing the resulting attack score.

Consequently, it gives the possibility of comparing IDSs by how
adapted they are to a particular system. CVSS scores can also be
modified to take into account the requirements of a system. It can
thus be possible to train multiple IDSs and test their performance
on different systems. This allows to pick different IDSs for different
systems, depending on how adapted they are to a specific system,
because the risk posed by an attack on a particular system is ap-
propriately reflected on the new metrics.

4 EXPERIMENTAL SETUP
4.1 Choice of metrics
The finalized set of metrics chosen, both for comparison purposes
and validation of the newly introduced metrics, is thus:

• Basic ML metrics: Accuracy, F1-score, TPR (Detection Rate,
or Recall), PPV (Precision).

• Metrics presented as resistant to imbalance: MCC and BM.
Both range between −1 and 1.

• Cyber-informed metrics: MC, FAC and CI. The former two
range between 0 and 1 while the latter ranges between −1
and 1.

All metrics, except Accuracy and MCC, were computed on a
per-class basis. The averaging method retained is macro-averaging,
which averages irrespective of the class imbalance and thus reduces
the influence of class imbalance.

4.2 Machine Learning algorithms
In order to evaluate the proposed set of metrics and understand the
differences brought by the introduction of cybersecurity-based met-
rics, experiments were run with a wide range of algorithms, trying
various hyper-parameter combinations to find the best performing
IDS on the two datasets considered. The retained algorithms are:

• A dummy classifier, classifying every instance as of the most
frequent class (normal traffic in both datasets) to serve as a
baseline.

• Relatively simple algorithms that should give an idea about
the complexity of the classification task: Gaussian Naïve
Bayes (GNB), Logistic Regression (LR), Linear Support Vector
Classification (LSVC), K-means, Decision Trees (DT).

1https://www.first.org/cvss/calculator/3.1

https://www.first.org/cvss/calculator/3.1
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Table 1: CVSS scores for CIC-IDS2017

Attacks Attack
Vector

Attack
Com-
plexity

Privileges
Required

User In-
teraction Scope Confiden-

tiality Integrity Availa-
bility

CVSS
score

DoS Slowloris
DoS Slowhttptest
DoS GoldenEye

DoS Hulk

Network Low None None Unchanged None None Low 5.3

Portscan
FTP-Patator

Web Attack Brute
Force

SSH-Patator

Network Low None None Unchanged Low None None 5.3

Web Attack XSS Network Low None None Unchanged None Low None 5.3

Infiltration Local High None Required Changed High None None 5.5

Web Attack SQL
Injection Network Low None None Unchanged Low Low Low 7.5

DDoS Network Low None None Unchanged None None High 7.5

Heartbleed Network Low None None Unchanged High None None 7.5

Botnet Network Low None None Unchanged High High High 9.8

Details about possible values for each category, as well as their signification, can be found at
https://www.first.org/cvss/v3.1/specification-document.

• More complex algorithms that should reflect the expected
performance of IDSs relying on ML: Random Forests (RF),
Multi-Layer Perceptron (MLP), DeepNeural Networks (DNN).

All algorithms are from the scikit-learn2 library except DNNs
that were programmed using the PyTorch3 and PyTorch Lightning4

libraries. In order to evaluate K-means, which is an unsupervised
algorithm and does not predict a label, labels were attributed to
individual clusters by a majority vote, i.e., the class that is the
most represented inside a cluster is the class assigned to it. For
both datasets, the K-means algorithm was parameterized with the
number of classes as the number of clusters. This is due to the fact
that for both datasets, the higher the number of clusters, the better
the performance. This is an extreme behavior that is unwanted
here because it means the algorithm is completely unable to group
instances of the same classes together while excluding other classes.

4.3 Dataset Pre-processing
Both the UNSW-NB15 and CIC-IDS2017 datasets were split using a
stratified scheme into 70% train (60% and 10% validation for DNN)
and 30% test sets.

For the UNSW-NB15 dataset, features such as IP addresses, times-
tamps, attack_cat were removed, while categorical features or fea-
tures having a small number of unique values, were one-hot en-
coded. The resulting dataset has 229 features.

For the CIC-IDS2017 dataset, two features and 5792 instances
were removed because of problematic or missing values. A further
eight features were removed because they only had one value. The
resulting dataset has 70 features.

2https://scikit-learn.org/stable/index.html
3https://pytorch.org/
4https://www.pytorchlightning.ai/

4.4 CVSS Scores for Cyber-related Metrics
Since it is possible to obtain CVSS scores for the UNSW-NB15
dataset with ground truth information, these scores were collected
and assigned to the corresponding instances for the computation
of the new metrics. However, the CVSS scores assigned to attacks
of this dataset used the CVSS 2.1 standard and thus can be a bit
different from the more recent CVSS 3.1 standard used for the other
dataset. CVE IDs were thus used to get CVSS scores following the
3.1 standard when possible.

For the CIC-IDS2017 dataset, however, there is no such informa-
tion. Although this information is missing, the attacks performed
were described in sufficient detail in the original paper [17], al-
lowing to manually craft CVSS scores since the described attacks
seem to exploit the same vulnerabilities for a given attack category.
It is possible because the given classes individually contain very
similar attacks and thus do not suffer much from heterogeneity in a
given class. For this dataset, the scores obtained through the CVSS
calculator5, as well as the vector used for computation, are visible
in Table 1. Some choices can appear misleading because the name
chosen for a given attack class in the original dataset misrepresents
its actual execution mechanisms.

5 RESULTS
Results according to the relevant metrics are presented in Table 2.
For each category of ML algorithm, a coarse grid-search scheme
was used to pick hyper-parameter values and the IDS obtaining the
best results were kept. For those IDSs, results are shown for the
retained metrics. Considering only some of the metrics, particularly
Accuracy and MCC, it is difficult to see which IDS perform better
than others. The most significant differences on both datasets can
be seen with PPV and the newly defined metrics.
5https://www.first.org/cvss/calculator/3.1

https://www.first.org/cvss/v3.1/specification-document
https://scikit-learn.org/stable/index.html
https://pytorch.org/
https://www.pytorchlightning.ai/
https://www.first.org/cvss/calculator/3.1
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Table 2: Performances on the UNSW-NB15 and CIC-IDS2017 datasets

Dataset Algorithm Acc. F1 TPR PPV MCC BM MC FAC CI

UNSW-NB15

Dummy 0.8735 0.0932 0.1 0.0873 NaN −0.1020 0.3959 0.6239 −0.0198
GNB 0.4902 0.1308 0.2965 0.2648 −0.0395 −0.2539 0.3296 0.4947 0.1756

LR 0.9745 0.4478 0.4443 0.5861 0.8880 0.4059 0.2212 0.2862 0.4924

LSVC 0.9728 0.4455 0.4362 0.4806 0.8796 0.3947 0.2643 0.3443 0.3913

K-means 0.8747 0.1594 0.1879 0.1881 0.5216 0.0430 0.3332 0.5582 0.1085

DT 0.9794 0.5864 0.5657 0.6665 0.9102 0.5351 0.1869 0.2289 0.5840

RF 0.9816 0.5713 0.5498 0.7383 0.9197 0.5218 0.2055 0.1801 0.6143

MLP 0.9800 0.5205 0.5189 0.7721 0.9128 0.4889 0.2206 0.1538 0.6254

DNN 0.9789 0.5056 0.5118 0.6277 0.9084 0.4807 0.2068 0.2575 0.5356

CIC-IDS2017

Dummy 0.8030 0.0593 0.0666 0.0535 NaN −0.1725 0.5633 0.5633 −0.1266
GNB 0.7232 0.4997 0.8480 0.4692 0.5729 0.5792 0.0692 0.3211 0.6096

LR 0.9908 0.6394 0.6335 0.7880 0.9733 0.6236 0.2337 0.1474 0.6187

LSVC 0.9865 0.5466 0.5897 0.6021 0.9606 0.5746 0.2564 0.2530 0.4905

K-means 0.8687 0.1460 0.1383 0.1588 0.5499 −0.0196 0.5181 0.5003 −0.0185
DT 0.9984 0.8399 0.8439 0.8367 0.9954 0.8421 0.1013 0.1041 0.7944

RF 0.9986 0.8502 0.8362 0.8707 0.9959 0.8346 0.1064 0.0850 0.8085

MLP 0.9965 0.7254 0.7219 0.8356 0.9898 0.7182 0.1771 0.1035 0.7192

DNN 0.9970 0.7576 0.7393 0.8968 0.9915 0.7361 0.1686 0.0670 0.7643
Values were truncated to the fourth decimal. Best results for a given metric and dataset are in bold.
MCC is undefined (NaN) for dummy because all predictions are the same, causing the denominator to become 0.

5.1 Zoom comparison of two IDS’ performances
Contrarily to generic metrics, a significant difference can be seen
with the newly defined metrics. The following example compares
results presented in Table 2 for the LSVC and MLP on the UNSW-
NB15 dataset.

In the UNSW-NB15 dataset, for attacks that do have CVE IDs
and thus an assigned CVSS score, Exploits is the class with the
highest average CVSS score because most instances have a high
CVSS score (9.3 or 10). DoS attacks, on the contrary, generally have
CVSS scores between 5 and 8.

For this particular case, both IDSs have relatively similar per-
formance (under a 5% difference) on all classes, except Exploits
and DoS. For those two specific classes, LSVC outperforms MLP by
correctly classifying 69% of DoS instances versus 37%. On the other
hand, MLP significantly outperforms LSVC by correctly classifying
74% of Exploits instances versus 46%.

When looking at results, the Accuracy of both IDSs is extremely
close, which is understandable since results on most classes (includ-
ing the overrepresented normal class) are similar. However, when
looking at the FAC and CI metrics, the results are very different.
Exploits attacks are generally more dangerous, i.e., have a higher
CVSS score, which is directly translated into those two metrics.
Indeed, the MLP that performs better on Exploits has results that
are more than two times better for FAC and close to 60% better on
the CI metric. This difference is the most significant on these two
metrics, showing they manage to capture much needed information:
the better performance on more dangerous attacks.

Operationally, it means theMLP-based IDSwill more often detect
attacks that are critical and might endanger the system.When using
such an IDS, automated mitigation strategies can be used with more
confidence, and human operators will be able to divert their energy
in investigating other more relevant alarms.

6 DISCUSSION
In the multi-class setting, most metrics, including the MCC and
BM metrics chosen to resist imbalance, still appear to suffer from
it. It seems that macro-averaging class results also managed to
reduce the influence of imbalance. Results with metrics such as
Accuracy and MCC, that were not macro-averaged appear very
similar for most IDSs. Furthermore, while the new metrics also
seem to suffer from imbalance, their formulation and the use of
CVSS scores managed to reduce this influence further.

Using of CVSS scores to prioritize the correct detection of more
severe attacks also seemed toworkwell, as was shown in Section 5.1.
When models show very similar performance on the newly defined
metrics, it generally means that their performance is similar on
all attacks or that it is different for attacks having similar CVSS
scores. The high performance on critical attacks is thus adequately
highlighted. Another advantage of these newly defined metrics is
that it might be more intuitive to understand what they represent.
The FAC directly shows the potential cost incurred when raising
an alarm, while the MC directly shows the cost of not detecting or
wrongly classifying an actual attack relative to its severity.
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Although these newmetrics are based on a de facto cybersecurity
standard score, research is still ongoing concerning the impact
of using CVSS score to find the optimal way to integrate it into
ML metrics. For example, it would be possible to integrate an 𝛼

parameter to power the CVSS scores, thus increasing their influence
on the results. It might prove to be better at discriminating models’
performance, although choosing optimal value would be difficult.

Finally, some IDSs, although exhibiting relatively poor perfor-
mance in general, can have an unexpectedly good performance
in some aspects, e.g., the GNB-based IDS for CIC-IDS2017 which
is the best attack detector at the cost of more false alarms. Thus,
using those IDSs could be interesting when implementing ensemble
methods for intrusion detection.

7 CONCLUSION AND FUTUREWORK
Common ML metrics are insufficient for cybersecurity and can
bring about a false sense of security. They are generic and do not
take into account the specificity, variety and severity of attacks, nor
are they influenced by the operational context.

Therefore, the MC, FAC and CI metrics that use a standard cyber-
security score are proposed. Results obtained with the new metrics
tend to validate those obtained on two public datasets with generic
ML metrics, although some significant differences do appear.

Research is ongoing about the possibility of using such metrics
to cater to specific systems. Such a possibility is given by the CVSS
standard that allows the definition of Confidentiality, Availability,
and Integrity requirements, as well as other Temporal and Environ-
mental parameters, to refine further the obtained CVSS scores. This
would make the newly introduced metrics adaptable to different
systems, with their requirements directly impacting results.

Finally, it could be interesting to see if these newmetrics could be
integrated into the loss formulation of DNNs, and investigate how
these metrics behave with ensemble methods, most commercial
IDSs based on ML using such methods.
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