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Hearing loss is the most common sensory deficit experienced
by humans and represents one of the largest chronic health
conditions worldwide. It is expected that around 10% of the
world’s population will be affected by disabling hearing
impairment by 2050. Hereditary hearing loss accounts for
most of the known forms of congenital deafness, and over
25% of adult-onset or progressive hearing loss. Despite the
identification of well over 130 genes associated with deafness,
there is currently no curative treatment for inherited deafness.
Recently, several pre-clinical studies in mice that exhibit key
features of human deafness have shown promising hearing
recovery through gene therapy involving the replacement
of the defective gene with a functional one. Although the
potential application of this therapeutic approach to humans is
closer than ever, substantial further challenges need to be
overcome, including testing the safety and longevity of the
treatment, identifying critical therapeutic time windows and
improving the efficiency of the treatment. Herein, we provide
an overview of the recent advances in gene therapy and
highlight the current hurdles that the scientific community
need to overcome to ensure a safe and secure implementation
of this therapeutic approach in clinical trials.
1. Introduction
The sense of hearing is key for our daily life, ranging from the
appreciation of music to the ability to localize sound in space and
being able to communicate with friends and family. Severe or
profound deafness in children impacts on the development of
spoken language and the ability to read, which has consequences
for academic performance and ultimately employability. In cases
where hearing loss occurs later in life, such as with progressive
hearing loss, people tend to become socially isolated, leading to
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feelings of loneliness and depression. When untreated, midlife-acquired hearing loss represents the largest
modifiable risk factor for cognitive decline and dementia [1,2].

Currently, hearing loss is the most common sensory disorder in humans and represents one of the most
prevalent chronic dysfunctions in older adults. Based on the World Health Organization [3], about 432
million adults and 34 million children worldwide have disabling hearing impairment, which is predicted
to reach 700 million by 2050 (about 10% of the world’s population). With age, the percentage of people
with hearing impairment rises to about 60% for adults over the age of 50 [4]. Although the aetiology
underlying hearing loss can be quite diverse, genetic mutations cause about 70–75% of congenital
deafness ([5,6]; Hereditary Hearing Loss homepage: https://hereditaryhearingloss.org/). Much less is
known about the genetics underlying progressive, late-onset hearing loss, since it is influenced by
environmental factors such as noise, drugs and past infection [7–9]. However, studies of twins and
families have shown that genetic predisposition represents an important risk factor for age-related
hearing loss (ARHL), reporting heritability of up to 0.9 [10–12]. Moreover, genome-wide association
studies in adults affected by hearing loss are continuously discovering new candidate genes for ARHL.
These studies are also identifying new variants in several genes known to be involved in childhood
deafness [13–16].

Although hearing loss can target different cell types within the auditory pathway (e.g. [17–19]), one of
themost common forms of hearing loss is causedby the damage and/or loss of the sensory hair cells and the
associated auditory neurons that make synaptic connections within the cochlea, which is collectively called
sensorineural hearing loss (SNHL: [8,20–22]). Currently, the only available options for ameliorating SNHL
are hearing aids or cochlear implants. While these are very beneficial (e.g. [23–25]), they cannot restore
important features of natural sound perception, such as temporal processing and frequency tuning,
especially in noisy environments, leading to poor speech recognition. Recent developments in the
methods available for modifying and correcting genetic abnormalities, together with our increased
understanding of the genes responsible for deafness, have meant that gene-based therapy has become an
appealing approach for addressing hearing loss. Although gene therapy is the primary focus of this
article, other alternative therapeutic approaches are being developed for hearing loss, such as the use of
stem cells and other molecular strategies [26–28].
2. Gene-based therapy for hereditary hearing loss
Gene therapy is primarily aimed at either replacing, suppressing or editing faulty genes to treat disease
[29,30]. The cochlea is well suited for these therapeutic approaches due to its anatomical isolation and the
presence of the blood-labyrinth barrier, which separates it from the systemic blood circulation. This
unique feature makes it an ideal target for gene therapy as it helps to reduce the risk of any potential
off-target systemic dissemination. In addition, the therapeutic vector can be delivered directly into the
fluid space of the cochlea where it can easily diffuse throughout its entire length to reach the targeted
cell type. Among the different gene-based approaches, the replacement of a faulty gene with a normal
copy has been the most widely used to treat monogenic hearing loss [31,32]. Currently, more than 20
pre-clinical studies using knockout mice or mouse models for human forms of deafness have shown
varying degrees of functional hearing recovery following the replacement of the defective gene in the
cochlea (up-to-date list available in: [32]). The success of some of these initial studies in tackling
recessive deafness DFNB9 [33,34], a form of congenital deafness caused by mutation in the Otof gene,
has facilitated the development of the first adeno-associated virus (AAV) vector for OTOF-mediated
deafness in human patients. In late 2022, three separate clinical trials have been approved for DFNB9:
OTOF-GT by Sensorion (https://www.sensorion.com/en/our-approach/restore-treat-prevent/), DB-
OTO by Decibel Therapeutics (https://www.decibeltx.com/pipeline/) and AK-OTOF by Akouos
(https://akouos.com/our-focus/).

Despite the recent success, further research is necessary before AAV-based gene therapy can be FDA
and EMA approved and used as a therapeutic treatment for hearing loss. This is primarily dictated by the
limitations and challenges associated with this recently developed approach in the field. Most of the
research reporting successful hearing recovery in mice suffering from hereditary deafness has focused
on genes primarily contributing to the development and/or function of the postnatal mouse cochlea,
e.g. Tmc1 [35,36], Vglut3 [37,38], Otof [33,34] and Pjvk [39]. However, the reinstatement of hearing
function has proven to be more difficult for AAV-based replacement of genes required for early stages
of cochlear development. For example, hearing recovery is absent or very minimal for genes involved
in the initial growth of the hair cell stereociliary bundles, such as Eps8 or those causing Usher
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syndrome when mutated (Harmonin: Usher 1C; Sans: Usher 1G; Whrn: Usher 2, Clarin-1: Usher 3A: [40–
45]). This could be due to the low transduction rate of the AAVs in the hair cells at more mature stages or
possibly because the cochlea has incurred irreversible damage making gene therapy treatment
ineffective. The earlier delivery of genes in utero, instead of neonatal stages, appears to improve the
transduction rate of the inner hair cells and to some extent functional hearing recovery (e.g. Gjb6:
[46,47]). In addition, several lines of evidence show that the transduction efficiency of the AAV gene
replacement approach in the adult mouse cochlea is reduced compared to that performed at early
postnatal stages [45,48]. Therefore, it may only be possible to achieve a comparable restoration in the
mature cochlea by using AAV variants that possess a high tropism to hair cells.

Another important consideration is the different developmental timelines between mice and humans.
In humans, the auditory system is fully functional at birth, with auditory startle reflexes appearing from
around 24 weeks gestation [49]. Therefore, the majority of cochlear maturation in humans occurs in utero.
In mice, the cochlea is immature at birth and requires at least another two–three weeks to reach full
maturity [50]. The consequence of this is that, even though the use of mice has provided strong
evidence for the viability of gene therapy to treat at least some forms of deafness, which are
important findings, it is still difficult to predict the likely outcome in humans. A related complication
is that almost all the pre-clinical work has been performed in pre-hearing mice, which, if translated to
the equivalent therapeutic window in humans, would fall at around 20 weeks gestation. Of course,
any therapeutic intervention during human pregnancy would pose several potential risk factors and
safety issues for both baby and mother. This issue could present a substantial hurdle for FDA and
EMA approval and for the recruitment of patients to clinical trials.

An additional solution would be to identify the forms of congenital deafness that would be amenable
to gene therapy at later stages, once the cochlea has fully developed (curing hearing loss rather than
preventing it). This could also include the identification of deafness genes that, when defective, cause
a more progressive deterioration of cochlear function, such as those involved in ARHL. In both cases,
the gene therapy approach would benefit from a longer therapeutic window for intervention. The
success of this approach will depend on further fundamental and pre-clinical research being carried
out, including the identification of novel AAV variants that can efficiently target inner ear hair cells,
as well as the optimization of their delivery into both neonatal and adult mice. Moreover, further
development is required in the use of cell-specific promoters, which will also help to reduce the
ectopic expression of genes in off-target cell types. Finally, more research is required to determine the
possible side effects of the therapy in the cochlea in terms of inflammation and immunotoxicity.
The immune response to AAVs in humans is still largely unknown [51], but ongoing clinical trials in
the eye indicate that viral gene therapy may trigger an adaptive immune response [52–54].
3. Conclusion
Considering that pre-clinical research for the use of gene-based therapy to treat hearing loss only began
about 15 years ago, there has been substantial progress made with three groups advancing towards
clinical trials for the OTOF gene. Given current knowledge and progress, AAV gene therapy
represents a promising prospect for ameliorating, preventing or even curing hereditary hearing loss
that affects millions of people worldwide. However, we have to remain aware that several challenges
need to be overcome before any gene therapy for hearing loss can be applied to patients, which could
take several years after the successful completion of clinical trials (e.g. AAV-based gene therapy for
the eye was FDA-approved 10 years after successful clinical trials: [55]). Some of these challenges
include overcoming limitations imposed by critical therapeutic time windows, the use of more specific
capsids and promoters to increase transduction efficiency and specificity of treatment, finding the
most effective delivery methods, and ways of expanding the modest packaging capacity of viral
vectors. In addition, we need a better understanding of the potential side effects of the treatment,
including the immune response to it and the longevity of the treatment, for which very little is
known, especially with regard to use in humans. The current research and planned clinical trials will
be instrumental for addressing at least some of these unknowns.
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