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IRISA, Université Bretagne Sud, UMR 6074, 56000 Vannes, France

ABSTRACT

The computer vision community is increasingly interested
in exploring hyperbolic space for image representation, as hy-
perbolic approaches have demonstrated outstanding results
in efficiently representing data with an underlying hierar-
chy. This interest arises from the intrinsic hierarchical nature
among images. However, despite the hierarchical nature of
remote sensing (RS) images, the investigation of hyperbolic
spaces within the RS community has been relatively limited.
The objective of this study is therefore to examine the rel-
evance of hyperbolic embeddings of RS data, focusing on
scene embedding. Using a Variational Auto-Encoder, we
project the data into a hyperbolic latent space while ensuring
numerical stability with a feature clipping technique. Exper-
iments conducted on the NWPU-RESISC45 image dataset
demonstrate the superiority of hyperbolic embeddings over
the Euclidean counterparts in a classification task. Our study
highlights the potential of operating in hyperbolic space as a
promising approach for embedding RS data.

Index Terms— Remote sensing, scene embedding,
underlying hierarchy, hyperbolic space, variational auto-
encoder

1. INTRODUCTION

Traditionally, machine learning (ML) researches have fo-
cused mainly on approaches operating in Euclidean space,
with less interest in other spaces, regardless of the nature
of the data being manipulated and their specificities. This
preference can be attributed to the convenient mathematical
properties offered by Euclidean space, such as vectorial struc-
tures and closed forms for distance computations. However,
it is worth noting that in many domains, real-world data does
not have an flat structure but instead tends to exhibit a hier-
archical structure. Recently, this trend has changed following
the work of Nickel & Kiela [1], from which the authors
propose to embed data with a latent hierarchy, particularly
graphs, in hyperbolic space rather than Euclidean space. This
publication marks a turning point in the ML community as it
highlights the potential benefits of utilizing hyperbolic space
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for embedding hierarchical data structures or data with an
underlying hierarchy. As such, several recent works have
used this hyperbolic space to learn data representations in
several applications such as word embedding, text classifi-
cation, or image embedding [2]. Furthermore, various ML
methods have been adapted to this space. Among them, we
can mention hyperbolic Support Vector Machine (SVM) [3]
or hyperbolic neural networks [4]. Other studies have pro-
vided a generalization of normal distributions on hyperbolic
space that can be used to build and learn a probabilistic model
like hyperbolic Variational Auto-Encoder (H-VAE) [5, 6].

Despite the popularity of hyperbolic space in the ML
community, it has received rather limited attention in the
remote sensing (RS) community, in spite of the hierarchical
nature of RS data. The objective of this study is there-
fore to investigate the potential of hyperbolic embeddings in
this context, in particular for scene images, while verifying
whether the promises of the various works using hyperbolic
space can be fulfilled. We rely on H-VAE which has been
successfully used to embed data in hyperbolic space [5, 6]
so that meaningful features can be extracted. H-VAEs are
among the earliest studies dealing with images in a hyper-
bolic space. They were validated on the MNIST and Atari
2600 Breakout datasets by performing a classification step
on the resulting embeddings, which showed that the H-VAE
is able to better embed the data. Furthermore, despite the
absence of an explicit hierarchy within these datasets, in par-
ticular MNIST dataset, a hierarchical structure was induced.
This suggests that even better results can be anticipated for
images that possess a genuine hierarchical arrangement, such
as RS scene images.

2. H-VAE FOR REMOTE SENSING SCENE
EMBEDDINGS

2.1. Motivations

RS scene images are naturally hierarchical. This is supported
by a concept called the Gromov δ−hyperbolicity, referred to
as δ−hyperbolicity for convenience, which enables us to mea-
sure the strength of the hierarchical information in a dataset.
In practice, to quantify this information, we usually compute
the scale-invariant metric δrel (the relative δ−hyperbolicity)



which takes values in [0, 1], the closer to zero the stronger the
hierarchical information [7]. Furthermore, a low δrel value
indicates that the data embedding space has an underlying
hyperbolic geometry and that hyperbolic space would be suit-
able as an embedding space [2].

As we assume that RS data exhibit an underlying hierar-
chy, we adopt the procedure described in [7] and evaluate δrel
for image scene embeddings of various RS scene datasets ex-
tracted by some reference CNNs pretrained on ImageNet.

Dataset VGG16 ResNet18 GoogleNet DenseNet
UCMerced 0.23 0.26 0.25 0.25

WHU-RS19 0.22 0.27 0.25 0.24
NWPU-RESISC45 0.23 0.28 0.24 0.25

AID 0.23 0.27 0.23 0.26
PatternNet 0.20 0.27 0.25 0.25

Table 1. The relative δrel values calculated for different RS
image scene datasets. Results are averaged across 10 sub-
samples of size 1500. The standard deviation for all experi-
ments does not exceed 0.03

Table 1 highlights the obtained δrel values for the five
RS datasets including UCMerced, WHU-RS19, NWPU-
RESISC45, AID and PatternNet [8]. We observe that the δrel
values derived from these scene image datasets are closer to
0 than to 1 which results in a rather high degree of hyperbol-
icity, thus suggesting that hyperbolic space would be suited
as an embedding space.

In this paper, we rely on H-VAE that has been success-
fully used to extract meaningful features from data with an
underlying hierarchy and assess the quality of the embedding
by performing a classification step.

2.2. Overall framework

Inspired from previous studies [5, 6], we adopt a hybrid ar-
chitecture of the H-VAE in which the encoder and decoder
networks are Euclidean networks and only the latent space of
the VAE is hyperbolic. It is therefore necessary to extend the
normal distribution to hyperbolic space. The wrapped nor-
mal distribution [6] is a generalization of this distribution to
hyperbolic space. Furthermore, we add the Euclidean fea-
ture clipping technique [9] to avoid possible numerical insta-
bilities of the model. We provide further details on feature
clipping in the section below. The overall framework of the
approach is illustrated in Figure 1.

2.3. Feature clipping

The majority of studies on hyperbolic space adopt hybrid
“Euclidean-hyperbolic” architectures due to the generaliza-
tion complexity of fundamental operations required for the
extension of deep networks to this hyperbolic space. How-
ever, numerical issues leading to gradient vanishing often
occur due to the passage between Euclidean and hyperbolic

layers in these hybrid architectures. It was suggested in [9]
that the Euclidean features should be clipped before moving
to the hyperbolic layers, which allows to push the hyperbolic
embeddings further away from the Poincaré ball boundary.
The clipping technique allows hybrid architectures to cope
with numerical problems, avoiding the vanishing gradient
problem. Moreover, the behavior of hyperbolic networks
becomes steadier, thus improving their performance. The
feature clipping is defined as follows:

xE
r = min

{
1,

r

||xE ||

}
.xE , (1)

where xE
r is the clipped embedding of xE which lies in the

Euclidean space and r is the clipping value.
The VAE architecture has been extended to two hyper-

bolic models: the Poincaré Ball model [5] and the Lorentz
model [6]. In our study, we consider the later one as it allows
a better generalization of the normal distribution in the hyper-
bolic space [6]. The clipping here constrains the Euclidean
embeddings which are in the origin tangent space to remain
close to the origin in order to ensure the numerical stability of
the Lorentz projection.

3. EXPERIMENTAL STUDY

This study aims to investigate whether hyperbolic space ful-
fills its promise in the context of RS and outperforms the Eu-
clidean space. In this perspective, for both the E-VAE (Eu-
clidean VAE) and the H-VAE, we adopt a very simple VAE
architecture with regard to those used recently in the RS com-
munity [10]. We evaluate the quality of the resulting embed-
dings and the ability to discriminate between classes using a
simple 1−NN classifier.

3.1. Experimental setup

3.1.1. Dataset

The two models are learned on a subset of the NWPU-
RESISC45 [11] RS scene dataset. All 45 classes are consid-
ered; for each of them, we randomly select 100 images for the
training set, 50 images for the validation set and 80 images
for the test set.

3.1.2. Implementation details

For both the E-VAE and the H-VAE, we adopt the same fol-
lowing architecture. Both the encoder and the decoder are
composed of 5 convolutional layers and a linear layer, each
convolutional layer is followed by a batch normalization layer
and a Leaky ReLU activation, except for the decoder’s last
layer which is followed by a tanh activation. The input size
of the encoder network is set to 64× 64. The latent space di-
mension d of the embedding z is set to 8, 16, 32, 64 and 128,
respectively.
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Fig. 1. Overview of the hyperbolic VAE for RS scene embeddings.

We use the Adam optimizer with a constant learning rate
of 1e−3. The models are trained with mini-batches of size
64 for 1500 epochs with an early stopping at 50 epochs. The
clipping hyper-parameter r is cross-validated.

3.2. Experimental Results

We compare our H-VAE with the E-VAE counterpart, as well
as with the reference H-VAE model (without clipping). To do
that, we evaluate the quality of the resulting embeddings of
different VAEs and the ability to discriminate between classes
using a simple 1−NN classifier. Experiments are conducted
on a subset of the NWPU-RESISC45 dataset and reported in
Table 2, results are averaged over 3 runs. The reported scores
correspond to models trained with hyper-parameters provid-
ing the best performance across different dimensions (clip-
ping value r = 1).

Prior studies [5, 6] have demonstrated the superiority of
H-VAE w.r.t. its Euclidean counterpart in various context (im-
ages and graphs). However, this observation does not hold in
our RS context. We further investigate this behavior and we
show that it is due to the numerical problems arising from hy-
perbolic projection operations that result in out-of-space em-
beddings. Our H-VAE, which uses the feature clipping tech-
nique, is therefore considerably steadier, allowing better rep-
resentations to be learned and, consequently, outperforming
the E-VAE. We also note that the low classification accuracy
is obtained for all models due to the choice of the VAE archi-
tecture. RS data are complex and require very deep networks
with a large amount of data to reach high performances. This
was not used in this study since the focus was on compar-
ing hyperbolic and Euclidean spaces rather than achieving the
best results.

Impact of the clipping value

Figure 2 shows the 1−NN classification accuracy values on
the test set in function of the clipping value r.

Fig. 2. 1-NN classification accuracy of different VAE models
on a subset of the NWPU-RESISC45 RS scene dataset w.r.t.
the clipping value r.

We observe that the H-VAE generally performs better
with small values of the clipping hyper-parameter (r < 1.2).
Larger clipping values often result in Euclidean tangent fea-
tures far from the space origin. Nonetheless, in this scenario,
performing such an operation necessitates a remarkably high
floating point precision (i.e., a considerable number of bits) to
adequately represent the resulting embeddings in the Lorentz
model. This, however, is not feasible in PyTorch, as dou-
ble precision is the highest floating-point number available,
occupying 64 bits. The possibility of out-of-space embed-
dings therefore increases, leading to numerical instability of



Space Clip r Metric Latent Space Dimension d
8 16 32 64 128

E-VAE /
Overall acc 12.00± 0.15 13.96± 0.56 13.21± 0.21 12.08± 0.10 12.39± 0.32

L3-acc 18.38± 0.42 20.64± 0.41 19.33± 0.13 17.93± 0.57 17.88± 0.24
L2-acc 28.34± 0.57 31.49± 0.38 30.97± 0.16 29.96± 0.47 29.95± 0.49

H-VAE

None
Overall acc 11.38± 0.58 11.53± 0.30 10.77± 1.02 10.21± 0.96 11.33± 0.53

L3-acc 17.83± 0.58 17.45± 0.45 15.90± 0.66 14.82± 0.90 16.43± 1.02
L2-acc 28.58± 0.68 28.46± 0.33 27.85± 0.83 29.96± 1.71 29, 77± 0, 90

1
Overall acc 12.36 ± 0.53 14.18 ± 0.42 14.17 ± 0.42 14.18 ± 0.44 12.87 ± 0.54

L3-acc 18.80 ± 0.61 20.89 ± 0.59 20.50 ± 0.22 20.00 ± 0.71 18.39 ± 0.82
L2-acc 28.46 ± 0.40 31.54 ± 0.67 31.91 ± 0.43 31.66 ± 0.78 30.11 ± 0.73

Table 2. 1-NN classification results computed on the test set of the NWPU-RESISC45 dataset at different levels of the class
hierarchy: overall acc represents the classification accuracy at the leaves (level 4) and thus the NWPU-RESISC45 classes; L3-
acc and L2-acc give the accuracy at level 3 and level 2, respectively (the higher the better); Results are averaged over 3 runs.

the network, which is reflected by the significant decrease of
classification scores across dimensions.

4. CONCLUSION

In this study, we explore the potential of hyperbolic space
for embedding RS scene images, which typically exhibit an
underlying hierarchical structure. We showed that our hy-
perbolic VAE better encodes the scene images, yielding im-
proved latent space organization and superior performance
compared to the Euclidean VAE. However, achieving this im-
provement requires careful tuning of the clipping value when
learning the hyperbolic networks. As future work, we intend
to investigate the impact of hyperbolic curvature as well as
the Poincaré Ball model. Additionally, we plan to consider
the use of a more dedicated loss function for hyperbolic space
in order to fully take advantage of it ability to handle struc-
tured data such as RS images.
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