N

N
N

HAL

open science

Usage of TSN Per-Stream Filtering and Policing

Marc Boyer

» To cite this version:

‘ Marc Boyer. Usage of TSN Per-Stream Filtering and Policing. 2023. hal-04159172v4

HAL Id: hal-04159172
https://hal.science/hal-04159172v4

Preprint submitted on 8 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-04159172v4
https://hal.archives-ouvertes.fr

Usage of TSN Per-Stream Filtering and Policing

Marc Boyer

ONERA/DTIS, Université de Toulouse
F-31055 Toulouse — France
https://www.onera.fr/staff/marc-boyer
Marc.Boyer@onera.fr

—— Abstract

The Per Stream Filtering and Policing mechanism (PSFP) defined in amendment 28 of the
802.1Q standard presents a set of mechanisms designed to protect the network from faults other

than losses (especially to protect from a switch sending more data than expected, leading to latency
increase and buffer overflow).

This report presents a comprehensive survey of the mechanisms, gives advice on its configuration,
but also highlight some limits of the current standard.

2012 ACM Subject Classification Networks — Formal specifications; Networks — Packet-switching
networks; Networks — Cyber-physical networks; Networks — Traffic engineering algorithms

Keywords and phrases TSN, Time Sensitive Networking, PSFP, Per-stream filtering and policing,
802.1Qci

Contents
1 Introduction 2
2 PSFP presentation 2
2.1 On stream, streamID and stream_handle 3
2.2 Per-stream filtering and policing global architecture 4
2.3 The stream filter instance table L 0.)
2.4 The stream gate instance table Lo 7
2.5 The stream meter instance table oL 8
3 PSFP usage 9
3.1 A global remark on the stream control lists 9
3.1.1 Imterleaving 10
3.1.2 Hyper-period 10
3.1.3 The choice of the time base 11
3.2 OnSIZES . . . v i e e e e e 11
3.2.1 On Ethernet frame sizes 12
3.2.2 Physical usage associated to contracts 13
3.3 Using PSFP to implement CQF 14
3.4 Maximal frame size to deal with blocking factor 15
3.5 Always set a default (best effort) rule 15
3.6 Using PSFP to prevent faults 16
3.6.1 Routingerror L 17
3.6.2 Configuring policing elements 17
3.6.3 Time conformance of TAS frames 19
3.6.4 Time conformance of asynchronous flows: the frame size problem . . . 20
3.6.5 Limits on the number of meters 22
3.6.6 Time conformance of in absence of shaper: the routing problem 22

3.6.7 Time conformance in case of CBS shaper 24

https://orcid.org/0000-0003-0344-6991
https://www.onera.fr/staff/marc-boyer
mailto:Marc.Boyer@onera.fr

Usage of TSN Per-Stream Filtering and Policing

3.6.8 Time conformance of ATS streams 26
3.7 Relative position between FRER and PSFP 26
3.8 Equipment tests L 27
4 Conclusion 27
A On CBS slopes 30
History
’ Version ‘ Date ‘ Comment Sections
1 06/27/2023 | Initial version -
2 07/10/2023 | Precision on the number of meters 1, 2.3, 3.6.6, 3.6.7
Add of Thanks section 4
3 6/9/2023 | Typos, Reference to | 3.6.4
portMediaDependentOverhead
Better TAS error scenario 3.6.3
Precisions on steam__handle and input port 2.1 (new), 2.2, 3.6.1
4 8/11/2023 | Update of Figure 10, Missing references.

1 Introduction

The 802.1 TSN working group is in charge of defining as set of extensions transforming
Ethernet into a reliable real-time network.

Among other, the Per Stream Filtering and Policing mechanism has been introduced in
[10], and now part of [6], to increase the reliability of a TSN network.

This report presents PSFP and give some hints on how to configure it. Note that a few
changes have been done between [10] and [6], and the version presented here is the last one.

This report also shows that PSFP does not fulfil the requirements expected by critical
systems, and propose some enhancements to the standard.

Section 2 presents a PSFP overview. Recommendations on PSFP usage are given in
Section 3. In particular, Section 3.6 focuses on the possibility offered by PSFP to contain
local faults. All along the paper, when limitations are listed, some trade-off are presented
and even some extensions to the standard mechanisms are suggested.

2 PSFP presentation

The Per Stream Filtering and Policing mechanism has been introduced in [10]. This mecha-
nism is set as the last step of the filtering pipe between reception port and the queuing of
frames, as shown in [10, Fig. 8-11].

The “Flow metering” stage is going to check each frame, to let it pass or drop it, or even
modify its local priority, and to update some related counters. It is called Per-stream filtering
and policing (PSFP).

PSFP is itself a pipeline of tests and updates, based on three tables:

1. the “Stream filter” instance table,
2. the “Stream gate” instance table, and
3. the “Flow meter” instance table.

Marc Boyer

Reception port

| Active topology enforcement (8.6.1) |

{

| Ingress filtering (8.6.2) |

Frame filtering (8.6.3)
Egress filtering (8.6.4)

Flow metering (8.6.5)

Queuing frames (8.6.6)

|
W,
Queue management (8.6.7):

#7 #6 #0

v

| Transmission selection (8.6.8) |

Transmission port

Figure 1 Forwarding process functions, from [10, Fig. 8-11].

These three tables are not independent.
Also note that a flow in PSPF is identified by its stream_handle, has defined in [3].

2.1 On stream, streamlID and stream_handle

A stream is a “unidirectional flow of data (e.g., audio and/or video) from a Talker to one or
more Listeners” [6, § 3.259], which is identified by a unique 64-bit long StreamID [6, § 3.261].

But a switch/bridge will not use this 64-bits field, but a stream__handle, associated to
each packet, used to identify “the Stream to which the packet belongs” [3, § 6.1]. This
stream__handle is a 32-bits unsigned integer [6, § 48.6.11]. This handle is a local value, i.e.
there is no requirement that the same packet should receive the same stream__handle on
each switch along its path.

The stream__handle is generated by a stream identification function, placed just above
the MAC layer [3, Figure 6-1]. There are four kinds of stream identification function, and
each function generated the stream_ handle of a packet “based on” some packet parameters,
listed in Table 1.

It is still unclear for us if the stream identification function can take into account the
reception port of the packet. In other words, it the stream identification function able to
give different stream__handle to two identical packets received on different ports.

Note 1 of [6, § 8.6.5.3] claims that “the use of stream__handle and priority, along with
the wild-carding rules previously stated, allow configuration possibilities that go beyond the
selection of individual streams, for example [...] per-priority per-reception Port filtering and
policing can be configured using these rules.”. But this is, up to our knowledge, the only

Usage of TSN Per-Stream Filtering and Policing

Stream identification function Examines

Null Stream identification destination_ address, vlan__identifier

Source MAC and VLAN Stream identi- | source_ address, vlan__identifier
fication

Active Destination MAC and VLAN | destination_ address, vlan_ identifier
Stream identification

destination port

IP Stream identification destination__address, vlan__identifier, IP source address, IP
destination address, DSCP, IP next protocol, source port,

Table 1 Stream identification function list (from [3, Table 6-1])

[Gate 1 control list : (0,4)(c,10)(0,2)(c.6) |

[Gate 2 control list : (c,1)(0,3)]

(stream_handle,prio) Ye :drop -
[Gate 3 control list : (c,3)(0,6)(c,5)(0,5)(c,1)(0,1) |
—
= () — es: filter/blockin i meter 1 counters 1
@1 pD) y w o
no N \(—
—{1d2,pr2l—= yesé{ filter/blocking counters 2
meter 2
no
ate 2
=<—Tid3,pr3L—= yesé‘ filter/blocking }\ R 9 \(— counters 3
o Ne
\(— meter 3
= (id4,prd] — yesé{ filter/blocking }\\ N counters 4
no \(— gate 3
<—1d5,proal—= yesé{ filter/blocking }/' meter 4 counters 5
o Ne * N

Figure 2 PSFP architecture, from [10, Fig. 8-12]

reference to the reception port related to stream__handle.

As will be presented in Section 2.3, PSPF has no way to know the input port of a packet
if it is not encoded in the stream__handle, and this may be of interest when considering fault
tolerance (cf. Section 3.6.6).

2.2 Per-stream filtering and policing global architecture

The global architecture of PSFP is presented in [10, Fig. 8-12], but we chose a different
representation, given in Figure 2.

Each frame will cross an (ordered) list of tests (based on its stream_ handle and priority),
each test is part of a “stream filter”. At the first successful match, the frame pass some
stream filter rules and, if succeed, is forwarded to some gate, that may also either drop or
update and forward the frame to a meter, that may also either drop or update and forward
the frame. During the whole process, some metric counters are updated. Some internal
counters of the gate and meter may also been updated at frame crossing. This means that
when several flows share the same gate or meter, they may also have to share some budget.

Note that the relative order the stream filter is of importance (since the first match
apply), but not the one between stream gates and flow meter. It has been drawn in Figure 2
in a way that avoid arrow crossing, but any other numbering will have the same effects (if of

Marc Boyer

course the identifiers in the stream filters are updates accordingly).

That is to say, one can

transform gate stream 1 into gate stream 4,

update, in stream filter 1, the gate identifier from 1 to 4,

transform meter 3 into flow meter 5,

update, in stream filter 4, the meter identifier from 3 to 5,
and get exactly the same behaviour. Whereas inverting stream filters 1 and 2 may change
the behaviour if some flow may match both.

2.3 The stream filter instance table

The stream filter instance table is a table of stream filter. Each stream filter is identified by
an integer identifier (which is of course unique). The order between the identifiers has an
importance since a frame will select the first matching stream filter, in ascending order (i.e.
from smaller values to larger values).
A stream filter is made of several components, listed in the following.
a pair made of stream__handle specification, priority specification: the stream__handle
specification is either a stream__handle value or a wildcard, and the priority value is either
a priority (an integer value in [0, 7]) or a wildcard.

A frame matches the stream__handle specification either if the specification is the wildcard
or if the stream_handle of the frame equals the stream__handle of the rule. The same
applies for the priority.

Examples: (2305,3) matches the specification pairs (2305,3), (2305,*), (*,3) and (*,*).

If a frame matches no rule, it is forwarded to the queuing process as if PSFP was not
implemented in the bridge.

a MazSDUSize, that drops frames exceeding this size (can be disabled by setting value 0)
a stream gate instance identifier that identifies the stream gate to forward the frame if
not dropped. A gate can be shared by several filters.

an optional FlowMeterInstance that identifies the flow meter to forward the frame after
the stream gate, if not dropped by the gate. A flow meter can be shared by several filters.
Note that this part have been clarified when inserting [10] into [6]'.

Having several Maximum SDU size is nonsense since it is sufficient to keep the smallest
one.

a pair of Boolean StreamBlockedDueToOQOuversizeFrameEnable, StreamBlockedDueToQuver-
sizeFrame: if the StreamBlockedDueToQversizeFrameFEnable is true, then, if a frame is
dropped due to a size larger than the Maximum SDU size allowed by a filter, then the
StreamBlockedDueToOversizeFrame is set to true. When StreamBlocked DueToQOversize-
Frame is true, all frame passing the stream filter are dropped (as if the Maximum SDU
size was set to 0).

The standard does not specify any automatic way to set StreamBlockedDueToQuversize-
Frame to false, i.e. to re-open the stream filter. Such operation is a maintenance operation

L n [10], the condition was referring to “zero or more filter specification” allowing to have several flow
meter instance for a single filter. The ability to have a sequence of several flow meters associated with
one stream filter would have been be beneficial to prevent fault propagation, as will be presented in
Sections 3.6.6 and 3.6.7.

Usage of TSN Per-Stream Filtering and Policing

stream filter:
—selection match—
stream_id | *
prio | *

stream gate:

size <= max

size > max

closed by invalid Rx

close on exceed Rx

stream gate control list:
Timelnterval State #Octet
(duration) |[(open/closed) IPV Ma
—filters : seq of— urati P X
max size 20us open 2 64
meter id 200us closed - -
40us open 3 128
counters
match
gate passed closed status
gate drop close on invalid Rx

meter drop
blocking status
block on oversize
blocked by oversize

Figure 3 A single stream filter instance

closed by exceed Rx

Figure 4 A single stream gate instance

(allowed, since this parameter has Read/Write access, [10, Table 13-31] and the MIB
object ieee8021PSFPStreamBlockedDueToOversizeFrame in [10, Table 17-30, § 17.7.24]).
a set of counters:
MatchingFramesCount: number of frames that have matched the pair stream__handle
specification, priority specification
PassingFramesCount: number of frames that have passed the stream gate
NotPassingFramesCount: number of frames that did not passed the stream gate
PassingSDUCount: number of frames that have passed the Maximum SDU size filter
NotPassingSDUCount: number of frames that did not passed the Maximum SDU size
filter
REDFramesCount: number of frames dropped by the flow meter

Also note that the ATS scheduler is also part of the filter instance, even if this part is
not addressed by this report.

On group of flows

Note that there is now way to specify that a stream filter must be applied to a set of flows.
Then, set-based handling must be done using the priority fields of frames or by having a
group of stream filters.

Consider for example a CQF class. As will be shown in Section 3.3, the behaviour of a
CFQ class relies on PSFP mechanism. Then, if a CFQ class handle 100 flows, the PSFP
filter must be able to identify these 100 flows. It could be either by allocating a priority to
the CQF class: all flows with this priority belongs to this class. The other solution consists
in being able to identify each stream, i.e. having one stream filter instance per flow.

This tends to require large-capacity for stream filter instance tables.

Marc Boyer

On relative order between tests

The order in which the different tests are applied seems not to be fixed in the text of the
standard. Our interpretation (stating that the test on maximum size is applied before the
stream gate that is applied before the stream meter) is based on [10, Fig. 8-12], represented
in Figure 2. This is confirmed by [6, Fig. 8-13], reported in this report in Figure 17.

Some tests on the counters value may confirm or inform this order. For example, if the
Maximum SDU size filter is just before the stream gate, all frames going out the size filter
will be forwarded to the gate, where they will either forwarded or dropped. In this case, the
following relation should hold

PassingSDUCount = PassingFramesCount + NotPassingFramesCount. (1)

The same way, if the Maximum SDU filter is the first test, after the section match, and if
StreamBlockedDue To OversizeFrameEnable is not set, the following relation should hold

MatchingFramesCount = PassingSDUCount + NotPassingSDUCount. (2)

2.4 The stream gate instance table

The stream gate instance table is a table of stream gate. Each stream gate is identified by an
integer identifier (which is of course unique). Conversely to the stream filter table, the order
between the identifiers has no importance. A given stream gate may be used (or shared,
depending on the point of view) by several stream filters.
A typical stream gate instance is made of
a stream control list, which is a table. At any moment, a single line/entry is active. Each
entry of the table is made of
a StreamGateState which is either open or closed,
a Timelnterval that states how long this line must be active (at end of active time,
the next line is activated, in a cyclic way)
These two entries are the same than in the Gate Control List (GCL) defined in [8].
The semantics is slightly different: when the gate is in a closed state, the frames are
dropped by PSFP, while a closed gate in an output port just blocks the head of queue
up to next opening.
an IPV (Internal Priority Value) that (if set) locally overrides the frame priority value
when selecting in which traffic class (i.e. queue) the frame must be stored,
an IntervalOctetMax that fixes an upper bound on the number of MSDU octets that
can pass the gate while this entry is active (the difference between frames, SDU and
MSDU will be given in Section 3.2).
Note that this value test is implemented with a counter that is shared by all the stream
filters using this stream gate.
a pair of Booleans GateClosedDueTolnvalidRzEnable, GateClosedDueTolnvalidRzx: if
GateClosedDueTolnvalidRxEnable is true, then, then, if a frame is received by the gate
when the gate is closed, then GateClosedDueTolnvalidRz is set to true and all frames
forwarded to this gate will be dropped, as if the gate was in the closed state.
The standard does not specify any automatic way to set GateClosedDueTolnvalidRzx
to false, i.e. to re-open the gate. Such operation is a maintenance operation (allowed,
since this parameter has Read/Write access, [10, Table 12-32] and the MIB object
ieee8021PSFPStreamBlocked Due To OversizeFrame in [10, Table 17-30, § 17.7.24]).

Usage of TSN Per-Stream Filtering and Policing

MEF meter:

—CIR —EIR
N A N
$ —CF/\yxellow E%S
- ETI
SO

"4
> A

enought
enoug{ g drop on yellow

v

Figure 5 A single stream meter instance

a pair of Booleans GateClosedDueToOctetsFExceededEnable, GateClosedDueToOctetsFEx-
ceeded: like for the previous pair, if GateClosedDueToOctetsFExceededEnable is true, and
if too much octets are received in on interval, then the GateClosedDueToOctetsExceeded
is set to true and all frames forwarded to this gate will be dropped, as if the gate was in
the closed state.

The does not specify any automatic way to set GateClosedDueToOctetsExceeded to false,
but the same as for GateClosedDueTolnvalidRz apply.

A stream gate instance can also have no stream control list, but then it must have a state
(open or closed) and an (optionnal) IPV. We will call such a gate a static gate (this name is
from the author, and does not appear in the standard).

Also note that each stream gate instance has its own time base, the OperBaseTime that
is the origin of time of the stream control list, the reference offset (like for GCL).

In [5], this parameter is renamed as StreamGateOperBase Time.

2.5 The stream meter instance table

The stream meter instance table is a table of stream meter. Each stream meter is identified
by an integer identifier (which is of course unique). Like for stream gate table, the order
between the identifiers has no importance. A given stream meter may be used (or shared,
depending on the point of view) by several stream filters.

A stream meter instance is a sequence of two token-buckets (used as classifier), and the
content of the token-buckets is shared by all flows crossing the token-buckets, i.e. the stream
meter instance is shared by all stream filters using this stream meter.

A stream meter instance has several parameters, given in [10], but the semantics of some
of these parameters is defined in another one, [22]. Note that [22] take into account the
Ethernet frame size (called length) to test the token-buckets. Then, it does not account for
the physical layer overhead (for example, the preamble of an Ethernet Packet and the Inter
Packet Gap, cf. Section 3.2).

Each frame crossing a meter crosses the sequence presented in Figure 5. During this
process, framed will be virtually marked as green, yellow or red. This notion of color is used
only in this meter sub-system and is not visible outside (and in particular not written in the
frame).

The parameters of a stream meter are:

a pair of parameters, Committed information rate (CIR) and Committed burst size (CBS)

are respectively the replenishment rate and the maximal size of the first token-bucket.

Marc Boyer

If there are enough tokens when a frame tests this first token-bucket, the frame is simplify
forwarded. As in any token-bucket, the number of tokens is decremented by the size of
the frame.

Otherwise, the frame is forwarded to the next token-bucket.

Note that the abbreviation CBS also denotes the Credit-Based Shaper shaping algorithms
defined in AVB/TSN [1].

a second pair of parameters, Excess Information Rate (EIR), and Excess burst size (EBS)
are respectively the replenishment rate and the maximal size of the second token-bucket.
If there are enough tokens when a frame tests this first token-bucket, the frame is marked
as yellow. Otherwise, the frame is marked as red.

Red frames are dropped.

The handling of yellow frames depends on the next parameter, DropOn Yellow.

a Boolean parameter DropOn Yellow specifies what to do with yellow frames. If DropOn Yel-
low is true, yellow frames will be dropped. If DropOnYellow is false, the drop _ eligible bit
of the frame is set to true.

The semantics of this drop__eligible bit is given in [4, § 8.6.7]. It just says that any “queue
management algorithm that attempts to improve the QoS provided by deterministically or
probabilistically managing the queue depth” can drop frames, and that the drop__eligible
bit must not decrease the probability of dropping a frame.

a pair or Boolean parameter MarkAllFramesRedEnable, MarkAllFramesRed has the same
kind of semantics of the other Boolean pairs: if MarkAllFramesRedEnable is true, once a
frame is marked red, MarkAllFramesRed is set to true, and all frames are dropped.

a last parameter color mode (CM) has only two possible values, color-aware or color-blind.
In [22, Fig. 27], if the color mode is color-aware, only green frames can test the green
(committed) token-bucket, the yellow frames are directly forwarded to the yellow (exceed)
token-bucket. But in [10], frames have no color at meter entry (in fact, the term “yellow”
does not appear in the whole document [4], except as internal value of PSFP).

This have been signalled in 802.1 maintenance database as item 361, and solved by stating
that if the incoming frame has drop_ eligibile field true, then the frame is yellow, and
green otherwise.

Note that it would have been of interest to allow the PSFP to have an IPV associated to
the colour of the frame. In some context, it could have been better to set a yellow or red
frame in a low priority queue than to drop it. This possibility is not offered by TSN.

3 PSFP usage

This aim of this section is to provide a guideline on the usages of PSFP.

3.1 A global remark on the stream control lists

As presented in Section 2.4, a typical stream gate has a stream control list (SCL), which is a
table of states, executed in a cyclic way, with a static duration for each state. Each state
specifies a gate state (open or close), an optional IPV and a maximal amount of octets.

This system is quite close to the gate control list (GCL) of [8] but is more efficient on
two aspects: the interleaving and the hyper-period.

Also note that the notions presented in the next sections are for illustrative purpose, to
help the reader to see the differences. They are not a qualitative comparison, since SCL and
GCL are for different purposes.

10

Usage of TSN Per-Stream Filtering and Policing

GCL
SCL 1 SCL 2 -
- - Duration Status (1,2)
Duration | Status Duration | Status
4 (Closed,Closed)
6 Closed 4 Closed
2 (Closed,Open)
4 Open 6 Open
4 (Open, Open)
Table 2 One list-based example of interleaving of SCL in GCL.
SCL1 I Closed I Open I SCL1 I Closed I Open I
scL2 | CcClosed | Open | scL2 |[open] c.. | open | cl |
Closed Cl. Open Cl. | Cl. | CI. |Open|Open
GCL GCL
Closed |Open Open Open| Cl. |Open|Open| CI.

Figure 6 Two time-based examples of interleaving of SCL in GCL.

For example, one may consider “exclusive gating” for GCL, i.e. the fact that when the
gate of a traffic class is open, all others are closed (this is a common assumption to implement
a Time Aware Shaper — TAS). Whereas this does not hold for SCL, designed to check arrival
patterns.

3.1.1 Interleaving

Let start with the creation of lines due to interleaving. To illustrate it, consider simply two
gates, each with its own cyclic behaviour. Consider that both gates have the same period,
e.g. 10, and only two states, encoded each with two lines. Consider that the first gate is
closed between 0 and 6, and open between 6 and 10, whereas the second is closed between
0 and 4 and open between 4 and 10. Then, the resulting GCL has three lines, from 0 to 4
where both gates are closes, from 4 to 6, where the first is closed and the second is open,
and a third one, from 6 to 10, where both are open, as encoded in Table 2. A time-based
interpretation is represented on the left part of Figure 6. A more complex situation is given
on right part of this Figure (but the table-based representation is not given).

In fact, merging two SCL of same period and respective length n and n’ lead to a GCL
whose size is between max(n,n’) and n+n’ — 2.

3.1.2 Hyper-period

A second difference between the usage of SCL and GCL appears when considering systems
with different period. A GCL have a unique period, that must represent all behaviours,
whereas each SCL can have its own period, independently of the others.

To illustrate it, consider simply two flows or classes, each with its own cyclic behaviour,
or respective period T and 7.

In a GCL, since both behaviours must be captured in the same table, the GCL length
must be the least common multiple (aka hyper-period) of Ty and T. Let kq, ko be the
minimal integers such that k177 = k975, then if the behaviour of T' requires n lines, the GCL
must have approximately kn lines?, whereas a SCL requires only n lines. Then, the encoding

2 It is not exactly, since if the first and the last line represent the same state, when unrolling, the last

Marc Boyer

<T1—>

scL1
scL2

—1—

GCL Cl. |Open| CI. |Open| CI. |Open
Cl. Cl. |Open| CI. Cl. |Open
€—2¥T2 = Tl —mm>

Figure 7 Two time-based examples of merging of two SCL with different periods in a GCL.

< T > < T > < T >
|CIosed |Open| Closed | |Open| Closed | | Closed |Open|
<€ o>€1> <1> <1>

Figure 8 Three SCLs representing the same behaviour with three different time base.

as two distinct SCL requires ny + nsy lines, whereas the encoding in a single GCL require
about kiny or kon2 lines.
This difference is illustrated in Figure 7.

3.1.3 The choice of the time base

We have shown in the previous paragraphs that an SCL can be build mostly independently
of other SCLs, contrary to the case of a GCL that must find an hyper-period and handle
some interleaving between the behaviours of each gate.

In the previous paragraphs, no origin of time was mentioned. But checking that a periodic
message is received in the expected time window is not only a question of period but also of
origin of time.

Consider a periodic message sent by the previous node with period 1" and some offset
o. If we neglect propagation time and clock accuracy (this will be addressed further), this
behaviour can be captured by a stream gate instance with a null time base (i.e. the same
time reference as the local clock) and three entries in the SCL, as illustrated in Figure 8, left
part. But one can also set OperBaseTime equals to o, and use only two entries, like in the
middle of Figure 8, or symmetrically, set set OperBaseTime equals to T — o, use only two
entries, like in right part of Figure 8. Of course, each value of the OperBaseTime (modulo the
period T') will lead to a different SCL. Only three representative ones have been illustrated.

3.2 On sizes

The size of a frame is of importance mainly in two aspects: the time required to send a
frame, and the memory required to store that frame.

But the exact meaning of the word “frame” is not exactly the same depending on the
authors. Then, this part will recall the naming used in IEEE standards, and also introduce
some specific terms.

In this report, we consider only basic frames, not envelope frames neither jumbo frames.

state and the first state of two consecutive cycles can be merged into a single one.

12

Usage of TSN Per-Stream Filtering and Policing

CT2I3TelsTe 7 8 a2 3 4 5 61 2 3 a5 612321 [2]2] - T TRIETAaIaT2TE 4 s 67 T8 o [rofiafi2]

MAC dest. MAC source 802.1Q tag Type/J : -
| Rlcamble E’ address | address | (optionnal) JLenghy _Pavioad |Padding RS <€——Inter Packet Gap———>

<€—MSDU—>

Ethernet Fram
Ethernet Packet-
Ethernet Physical Usag

Figure 9 Ethernet frame and Ethernet packet (the value of n depends on the kind of frame).

3.2.1 On Ethernet frame sizes

3.2.1.1 Vocabulary: Ethernet frame, Ethernet Packet, MSDU, SDU, Physical
usage

Formally speaking, an Fthernet frame (see [20, § 1.4.315]) is a Layer 2 PDU, made of
a destination MAC address (6 bytes),
a source MAC address (6 bytes),
zero or more 802.1Q option or header (4 bytes each), made by 2 bytes of option type
and 2 bytes of “content”. The most known one is the 802.1Q header, using the 16 bits
of content to encode a priority (PCP — Priority Code Point) on 3 bits, the drop eligible
indicator (DEI) on 1 bit, and the 12 resulting bits encoding the VLAN Identifier (VID)
a 2 bytes field representing either the EtherType or the size of the frame
the payload plus some optional padding (the padding enforce the Ethernet frame to reach
64 bytes, if necessary — the payload must be at most 1500 bytes, cf. [20, Table 4-2]).
an error detecting code (Frame Check Sequence, FCS) on 4 bytes.

This report will consider only Q-tagged frame [20, § 1.4.416,§ 3.2.7], i.e. frames with one
and only one 802.1Q tag.

An FEthernet packet is a Layer 1 PDU, made of

a preamble on 7 bytes,

a Start Frame Delimiter (SFD) on 1 byte,

and an Ethernet Frame.

After the emission of an Ethernet packet is introduced a 12 bytes time called either Inter
Frame Gap (IFG) or Inter Packet Gap (IPG).

In standard related to [4], one also use the term MSDU (Media Access Control Service
Data Unit, [19]) and SDU (Service Data Unit).

Following [19, § 7.2], the MSDU is what is presented as the payload of a frame?®. Indeed,
it appears clearly in [19, § 7.2] that the source and destination MAC addresses are not part
of the MSDU, and [4, § 34.4] explicitly states that the 802.1Q options, the EtherType/Size,
the padding and the FCS are neither not part of the MSDU.

On the SDU, our current interpretation is that the term “SDU” in [4, 10] is the same
thing than the expression “Ethernet frame”.

When considering real-time behaviour, one have to consider non only MSDU or SDU
size, but the time required to send the frame, that is the time required do send the Ethernet
packet plus the IPG (it is partially addressed [4, § 34.4]). We call it “physical usage”, and

3 “The primitives of the MAC Service comprise a data request and a corresponding data indication, each
with MAC destination address, MAC source address, a MAC Service Data Unit (MSDU) comprising
one or more octets of data, and priority parameters. Taken together these parameters are conveniently
referred to as a frame”.

Marc Boyer

MSDU Ethernet Frame | Ethernet Packet | Physical usage
n € [0,1500] min(n,42) + 22 | min(n,42) + 30 | min(n,42) + 42
n—22ifn > 64
n € [64,1522] n+38 n + 20
42 — padding otherwise
- n—=§8 n € [72,1530] n + 12
- n—20 n—12 n € [84,1542]

Ethernet Frame Overhead: dest./src MAC address (6B*2) + 802.1Q tag (4B) + Type/Length (2B) +
Padding + FCS (4B)

Ethernet Packet Overhead: Preamble (8B)
Table 3 Relation between sizes, assuming one 802.1Q tag, in bytes.

for convenience, it will be expressed in bytes, not in a time unit, to get rid of the link speed
parameter. And we may use the term “byte time” as the time required to send a byte.

In this report, we do no consider preemption, and especially the associated overheads [7].

3.2.1.2 Relations between sizes

Once defined the different terms, we can summary the relations between these sizes, also
leading to minimal and maximal sizes.

Remind that we assume one and only one 802.1Q tag.

First, the payload should be in [1,1500]. Note that we found no explicit lower bound
value in the standard document, so we consider 1, like in the Wireshark documentation [25]
but it is unclear for us if a value 0 could be a valid frame.

When considering only Q-tagged frames, a MSDU of size n bytes will be encapsulated in a
SDU/Ethernet frame of size min(n, 42) + 22 bytes (leading to a minimal size of 64 bytes, the
classical 64 minimal Ethernet frame), encapsulated in a Ethernet packet of min(n,42) 4+ 30
bytes, using the link during the emission of min(n, 42) 4+ 42 bytes (leading to a minimal size
of 84 bytes). This is stated in the first line of Table 3.

In this context, an Ethernet Frame of size n is encapsulated into a Ethernet Packet of
size n + 8, using the link during the emission of n + 20 bytes, as stated in the second line of
Table 3.

The same correspondences are given in the third and fourth lines of this table.

3.2.2 Physical usage associated to contracts

Once we have recalled the relations between MDSU, SDU and physical usage, the question
is: what is the total physical usage required to send a given amount of MDSU or SDU.

First, consider each frame of a stream or a set of streams.

If we known that each frame will have a MSDU size in range [s™, s™2%] each frame will
use the output link during [min(s™", 46) + 42, min(s™**,46) + 42] byte time.

If we known that each frame will have a size in range [[™", [M2%] each frame will use the
output link during [[™" + 20, /™% 4 20] byte time.

Now, consider a global amount of MSDU or of SDU sent by a stream of a set of stream,
and have a look on the possible link physical usage (as will be shown later, some contracts
will be given either in terms of amounts of MSDU bytes or of SDU bytes).

Consider an amount of L SDU bytes, and consider that each SDU must have a size in
range [[™ [™8X] (these values always exists, at least with ™" = 64 and [™#* = 1522), then

13

14

Usage of TSN Per-Stream Filtering and Policing

they can be decomposed into at most (lm%} frames and at most (lm%} frames. Since each

frame will generate an overhead of 20 bytes, the total usage time of the link correspond to a
number of bytes time in the range

[L—i—ZO LIHI;J;LHO ernH (3)

Consider an amount of S SDU bytes, and consider that each SDU must have a size in
range [s™" sM2X] (these values always exists, at least with s™" = 1 and s™® = 1500). A

frame of size s will generate an padding of max(0,46 — s) bytes, and another overhead of

1244+2+44=22 bytes. Since an amount of S SDU bytes can generate at most [%1 frames

and at most [S,,,%L the total usage time of the link correspond to a number of bytes in the

range

S . S
S + (22 4 max(0, 46 — s™2X)) LmaJ ;S + (22 + max(0, 46 — s™11)) meH (4)
To shorten expression, in the following, we will use the notations.
SDU L MSDU S
U (L,1) = L+ 20 7 U (S,s) =S+ (22 4+ max(0,46 — s)) " (5)

3.3 Using PSFP to implement CQF

The CQF mechanism has been presented in [12, § 2]. The principle consists in slicing the
time into even and odd intervals, all of the same length, and to forward the frames received
in the even interval in one queue, and the one of the odd interval in the other queue.

This is a cyclic behaviour, with two states, and the most natural way to capture it is a
SCL made of two entries. Assume a CQF class with period T', guard band S, using queues
qo and g1, on an output port of capacity R.

So, a typical SCL is made of two lines. All lines have Open state and duration 7T'. The first
line forwards frames to queue ¢g, the second line forwards frames to queue ¢, as illustrated
in Table 4.

The correct behaviour of CQF relies on the fact that all frames received in an interval will
be emitted in the next interval. This requires that the cycle boundaries of adjacent nodes
are enough aligned [17] and that the amount of data is not too large w.r.t. the cycle time.

One may want to use the IntervalOctetMazx parameter to ensure than not too much date
has been received.

In a cycle, the possible emission time is 7" — 25, minus a blocking time at end of cycle
due to the fact that a frame can not start its emission if it can not ends before the next gate
closing.

But the IntervalOctetMax parameter only allows to check the accumulated size of the
MSDU. Let s™, sM2% he the minimal and maximal MSDU sizes of the streams in the CQF
class. Then, the blocking time at end of cycle can be bounded by UMSPU(gmax gmax) _ 1,

Then, to guarantee that all received frames can be forwarded in the next cycle, one have
to select a value I such that

UMSDU(I, Smin) < R(T _ 25) _ UvMSDU(Smax7 Smax) 41 (6)
Conversely, any amount of MSDU bytes that can I be forwarded respects the relation

UMSDU (1 gmax) < R(T — 25) (7)

Marc Boyer

’ State ‘ Timelnterval ‘ PV ‘ IntervalOctetMax ‘
Open T Qo | I€[IFhs, 7]
Open T | 1€ s, Il
Table 4 Typical configuration of a stream gate list for CQF implementation.

Let I, IImaX o the respective maximal solutions of eq. (6) and eq. (7), Then, depending
on the kind of protection expected, on have to select a value of IntervalOctetMax in the
range [IFM g, [P],

This is what is the fourth row of Table 4.

3.4 Maximal frame size to deal with blocking factor

We have shown in Section 3.2 that the difference between the minimal and maximal frame
size of flow have an impact on the over-provisioning of bandwidth for this flow.

But it may be also important to test the maximal size of a stream to protect higher
priority flows.

Indeed, when a frame tries to access to the output port, it may be blocked by a lower
priority frame. This blocking time is equal to the transmission time of the frame, ie. the size
of the frame divided the output port transmission speed. This blocking time is taken into
account by analysis methods, but they have to make some assumption on the maximal size
of any lower priority frame.

One may consider that the maximal valid SDU size of a TSN frame is 1522 bytes (cf.
Section 3.2), but in other contexts (encapsulation, tunnelling, jumbo frames), it may exists
larger Ethernet frames.

Then, our proposal is to add to each stream filter (and especially the default rule, that
will be proposed in Section 3.5) a filter on the maximal SDU size.

One may get rid of this rule for a flow if preemption is implemented, if this flow is
forwarded to a preemptable queue, and if all higher priority flows are marked as exzpress.

One may also ignore this rule if all higher priority flows have an exclusive access to the
output port implemented with an adequate configuration of gates (this is commonly known,
as “exclusive gating”).

3.5 Always set a default (best effort) rule

It has been shown in Section 2.3 that a frame that did not match any stream filter is
forwarded like if no PSFP was present on the system.

This rule can make sense for flexibility reason: one may want a TSN switch to carry a set
of well identified and registered real-time flows, but also some other flows, without having to
manage the list of these “other” flows.

But these unregistered flows will have an influence on registered ones, and these interfer-
ences can lead to deadline misses or buffer overflows.

Several solutions can exists to avoid interferences between flows.

One may consider that the strongest solution is the temporal and spatial partitioning:
dedicating a specific queue to unregistered flows, with a time partition between this queue
and the others (exclusive gating). But during time windows dedicated to unregistered flows,
the real-time flow will have no access to the output, and this blocking time should be at least
large enough to allow an unregistered frame to be forwarded.

15

16

Usage of TSN Per-Stream Filtering and Policing

A simpler solution consists in using the static priority arbiter to always put a higher
priority to registered frames. The cost related to preemption will be at most the size of one
maximal unregistered frames size, which is smaller that the one implied by the temporal
partitioning.

The ability to set an IPV can help to satisfy both requirements. We propose three rules.
1. The first proposition consists in dedicating the lower priority queue (#7 in a switch with

8 queues) to best effort traffic. Then, the last stream filter of the stream filter table has

(%, %) as matching pair stream__handle specification, priority specification, catching all

frames (that have not been catch before). The state of this rule is Open, and the IPV is

set to the number of the best effort queue. This is one case were a static gate is sufficient.

2. Having a single best-effort queue can be not smart enough. One may want to offer for
example to unregistered frames with high priority a better service than the unregistered
frames with a low priority.

Then, the second proposition reserve n > 2 queues to unregistered frames. Then one

have to define a mapping m : [0,7] — [1,n] and set at the end of the stream filter table

height stream filter rules. For each i € [0, 7], set one filter rule with matching pair (x,1%),

and one static gate with open state and IPV equals to m(i). Note that one may use some

bandwidth sharing mechanisms between these n queues (based on ETS or CBS).
3. Of course, one may want to drop all unexpected frames. Then, the third proposition uses
only a last rule with matching pair (x,*) and a closed state.

3.6 Using PSFP to prevent faults

In this section, we will show how to use PSFP for checking different kinds of errors, depending
on the kind of flow.

In critical systems, it is common to require that some service is provided even in case of
some faults. It is often provided by using redundancy mechanisms, faults detection, recovery,
etc. For a given architecture, safety analysis is in charge of giving a formal definition of
“some faults”, ie. giving explicit definition of the kind of fault (fail silent system, malicious
system, hardware error rate, etc.) and of quantifying “some”.

Such property in general relay on some containment property, that forbid a local fault to
be propagated in the whole system.

For networks, we are using the following “fault containment” definition.

» Definition 1 (Network fault containment). A network is said to “contain faults” if a data
flow crossing only switches in nominal state experiences a quality of service conforms to the
contract established at configuration time (for statically configured systems), or at admission
time.

Of course, some faults are more easier to contain that others. For example, a frame loss
only impacts the receivers of the data (except if this frame embodies network configuration
data), whereas a babbling idiot may use all bandwidth and create buffer overflows in
downstream switches.

The rest of this section will show that PSFP does not provide efficient fault containment
for many kinds of faults.

In particular,

Section 3.6.4 shows that protecting from an upstream switch sending frames smaller than

the minimal SDU frame for a given stream can create a reservation overhead of 95%

without padding and even more if padding is considered,

Marc Boyer

Section 3.6.4 shows that protecting from an upstream switch sending frames smaller than
the minimal SDU frame can create a reservation overhead of 95% (without padding) and
even more

3.6.1 Routing error

In a context where the routing is statically set by design, one may want to prevent routing
errors, and drop frames trying to use an unexpected path.

It exists a set of mechanisms, designed before TSN, that are designed to filter such frames:
[4, § 6.16, § 8.6.1-8.6.4]. Such rules are base on the input port, the source and destination
MAC addresses and the VLAN Identifier (VID). Since they have been designed before TSN,
they have no notion of stream, can not distinguish between two streams having the same
source and destination MAC addresses and VID. Note that such situation is quite common in
a redundant system: one may have two redundant streams, with same source and destination
and VLAN (if the VLAN is not used to encode the stream identifier), but supposed to use
different paths.

The stream filter rules can accept/drop frames on a per stream basic. So, they can drop
any frame which is not supposed to cross this node. But they can no react to the fact that a
frame was received on an unexpected input port, if the stream__handle dos not encode the
input port (cf. 2.1).

This is a difference with AFDX, where the policing rules are set per input port.

As will be shown in Section 3.6.6, this may have an influence on the performances of the
system.

3.6.2 Configuring policing elements

A policing element is in charge of checking that each frame conforms to its contract, and
mark or drop out of contract frames.

This section will first discuss the generic problem, and present how a stream can describe
its contract in TSN. Then, the different ways to configure policing elements in function of
the kind of traffic will be discussed in others sections.

3.6.2.1 Tests and the false positive/negative problems

Then, an ideal policing element must accept any conform frame (i.e. avoid “false positive”)
and mark/drop any out of contract frame (i.e. avoid “false negative”).

The problem is that contracts and policing are expressed in TSN in slightly different
ways, and we can not always avoid such false negative/positive, and we will have to do some
assumptions on the kind of faults that we have to check.

In particular, as already mentioned in Section 3.2, the real-time behaviour of a TSN
system relies on the time used to transmit each frame. But this time is dependant of the
Ethernet payload but also of any additional overhead and silence time (the IFG).

Then, the real-time contracts must take into account any possible overhead, whereas
some TSN policing elements can only check amounts of payload, not the actual number of
frames.

That is to say, if a policing element can forward twice more data than the nominal
behaviour, a bandwidth allocation that is tolerant to fault of upstream nodes must be twice
the one of a bandwidth allocation based only on nominal behaviours.

And the same for the computation of latency, jitters and buffer usage.

17

18

Usage of TSN Per-Stream Filtering and Policing

Also note that clock drift may also require to increase the traffic contract [24], but this
effect is quite small with regards to others aspects of TSN, and is not considered in this
report.

3.6.2.2 Traffic contract in TSN

The traffic specification (T'Spec) defined by SRP consists in a maximal number of frames
MazxFramesPerInterval, with a maximal MSDU size MazFrameSize, on some per-class mea-
surement interval (CMI, which was either 125us or 250 ps in [2, § 35.2.2.8.4], but that have
been renamed in classMeasurementInterval and can now be freely set for each class since [9,
§ 35.2.2.10.6, § 46.2.3.5]).

This contract is either a sliding window or a tumbling window (depending on the presence
of a TSpecTimeAware parameter).

Sliding window If no T'SpecTimeAware parameter is provided, the traffic specification speci-
fies a sliding window.
In general, respecting a sliding window of length L with at most b bytes per sliding
window is equivalent to a token-bucket with replenishment rate % and bucket size b
(also known as “burst”). If such a stream crosses a network element with a jitter J (the
jitter being defined as the difference between the minimal ans maximal crossing time),
at output, it will respect a token-bucket shape of replenishment rate % and bucket size

b%) When crossing a sequence of elements of respective jitters Ji, ..., J,, the bucket

size become bEtltttn)
Then, a stream having experienced a cumulative jitter J will respect a MSDU shape of
token-bucket parameter (rMSPU pMSDU) with

bMSPY — MazFramesPerInterval x MaxzFrameSize (8)

pispu _ yuspu o CMI+ J MSDU _ by"SPY)
o cMI ~oMI

But when considering the amount of bytes (or pseudo byte) at the physical level, like in
[4, § 34.4], and considering Section 3.2, the parameter are

b5PY = MazFramesPerInterval x (MazFrameSize + TSN-Overhead) — (10)

TSN-Overhead = min(46 — MazFrameSize) + 42 (11)
CMI+J
MSDU _ ; MSDU
b = by Vi (12)
I
r = oMl (13)

Tumbling window When a TSpecTimeAware parameter is provided, the contract should
also provide a pair EarliestTransmitOffset, LatestTransmitOffset. The semantics is the
following. The time in divided in intervals of length CMI, that start at “the time epoch
that is synchronized on the network” [10, § 46.2.3.5.1]. Let t; denote the start of the kh
interval. Then, in each interval [ty + Farliest TransmitOffset, ty, + Latest TransmitOffset],
the stream talker can send up to MaxFramesPerInterval frames, each one having a size
not greater than MaxFrameSize.

Such a contract can be used to specify Time-Triggered behaviour. Nevertheless, it should
be noticed that the all streams in the same class must share the same CMI.

Marc Boyer

Nominal case

esi-swi [A T B | closed]

Es2-swi [. [C | closed |

swi-sw2 [closed [A T CJec [B] cl. |

SW2-Es3 [closed [A] cosed [B e

SW2-Es4 [closed [c] closed |
— =5

Clock imperfection

esiswi [a] A1 [B1 | closed o] A2 T B2] closed [a] A3 T B3] closed |
ES2-sw1 | cl. [c1] closed | cl. [c2] closed | cl. [c3] closed |
SW1-sw2
[closed T A1] [Jc1] | cl. [cosed [B1 | [c. [A2] [ak | closed Jc2] [] B2] |
SW2-ES3 [closed [AL] closed | IE| closed | [closed [B1 eI closed | [closed [B2 e
SW2-ES4 I closed I I closed I closed I c-1 I closed I closed I C-1 I closed I
Loss pb
Esi-swi [B1] | closed]
Es2swi [o Jci] closed |
swi-sw2 [closed | [B1 [| [cl. |
SW2-ES3 | closed | [closed [81 o]
SW2-ES4 | closed | | closed |

Figure 10 Time-Triggered communication in TSN: principle and limits

3.6.3 Time conformance of TAS frames

As presented in [12, § 1], the GCL mechanisms can be used to implement a Time-Triggered
communication: such approach is called “Time Aware Shaper”.
One well-known problem is that the loss of frame or some error in clock synchronisations

between adjacent switches may break the expected scheduling [14], as illustrated in Figure 10.

The “Nominal case” represents a system with three flow, A, B, C, all with the same
period P, sharing the same class, and the expected behaviour related to gate closing and
opening during one period. The expected latencies LA, LB, LC related to A, B and C are
also drawn.

In the “clock imperfection” scenario, a frame C-1 is received too late w.r.t. its expected
slot, and then can not be forwarded on this expected slot. Assume that it is not discarded,
then it put in the output queue of SW1. Then, it will be forwarded to SW2 in the slot
devoted to B-1. But it will nevertheless be too late to be forwarded to ES4 during this
period, and it will be sent during the slot devoted to C-2. And so on, each frame of stream C
will suffer a latency LC+P (instead of LC) even if the synchronisation of between elements
is reestablished, until some loss occur between ES2 and SW1, or until the application skip
some emission opportunity.

Moreover, since C-1 uses the slot devoted to B-1, B-1 also stays in the queue, until the
next opening: the slot dedicated to A-2... Then, the fault on the synchronisation of ES2 has
a negative impact on flows send by ES1.

Of course, one may add constraints while building the scheduling to avoid such situation
(e.g. the “flow isolation” [14]), but an adequate configuration of PSFP may also drop the
frame received at unexpected instants to avoid such effects.

This can be done either on a per-stream basic, but it will require to have one stream gate

19

20

Usage of TSN Per-Stream Filtering and Policing

H
A A TA A
ES1-SW1
ES2-5W1
SW1-SW2
SW2-ES3
TA TA TA

Figure 11 Time-Triggered communication in TSN: non strictly periodic schedule for a flow

with one SCL per scheduled stream. And the size of the SCL must be large enough. If the
schedule is strictly periodic, a SCL of length 2 is sufficient.

However, a TAS schedule is generally build on the hyper-period of the set of flows. And
the solver that generates the global schedule may produces a schedule that is not, in the
network, strictly periodic for each flow.

Consider for example the of Figure 11, with only two flows crossing the same network
than in Figure 10. The flow A has a period TA, and the flow C a period 2 times larger.
Assuming a zero offset (imposed by the application for example), one out of two A frame
will be in conflict with a C frame. One possible global schedule is the one represented in
Figure 11. In this schedule, the flow A is no more strictly periodic on the link between the
switches. Then, an SCL at SW2 input must have a size of 4 to capture this behaviour.

Of course, one can in this case build a schedule where A is strictly periodic on this link.
Our claim is just to warn that a small SCL may impose some constraint on the schedule
generation.

Also, note that the length of an SCL may not be the only constraint. One may be limited
by the number of stream gates. In this case, one may use one SCL to check several streams.
If the frames are not too close one to each other, the risk that a frame of one stream use the
time window of another is limited. But it will require a larger SCL, especially if the flow do
not share the same period.

3.6.4 Time conformance of asynchronous flows: the frame size problem

In this section, we will show that a faulty switch can create buffer overflows in the downstream
switches, and that PSFP can not protect from it in the general case, and even in common
case, can lead to a waste of half of the guaranteed bandwidth.

Guaranteed real-time communications can be achieved only with some envelope on each
data flow and static priority, as demonstrated in AFDX.

But to guarantee a bounded waiting time in each queue, one have to check that each
flow conforms to its contract (and drop it otherwise). More precisely, one have to know how
much time will be used by each Ethernet packet and its associated IFG (cf. Section 3.2 and
Section 3.6.2). That is so say, what is the physical usage associated to a stream contract?

As presented in Section 3.6.2.2, an asynchronous stream generates a data flow that
conforms to a token-bucket with parameters given in eq. (8)—(9).

Such contract can be checked by a stream meter with corresponding (CIR,CBS) parame-
ters, and (EIR=0,EBS=0). Such meter will never discard frames of a stream that conforms
to its traffic specification.

The other question is: what is the amount of non-conform traffic that this meter can
forward? What happen if the previous switch sends an infinite sequence of frames with only

Marc Boyer

one byte of payload?

Then, the stream meter will accept all frames has long has there are tokens...

Consider a stream whose contact is to send one Ethernet frame of 480 bytes each
millisecond (and a MSDU of 458). The physical usage is of 500 bytes time, corresponding to
a bandwidth of 500Kb/s. Then, to forward any conform frame, the meter must be configured
with CIR = 458 Kb/s and CBS = 458. Then, a faulty or malicious upstream node can send
458 Ethernet frames per millisecond, each one with a single byte of payload. This flow will
be forwarded by the meter. But it will generating a throughput of 458*84 b/ms = 38.472
Kb/s = 38.472 Mb/s. Of course, one may configure the meter with CIR = 38.472Mb/s, but
this lead to a major waste of capacity at reservation (even if at run time, the difference can
be used by best-effort traffic).

One may consider that sending frames of one byte is an extreme example, but even if the
previous node sends Ethernet frames of 200 bytes (corresponding to a MSDU of 178 bytes),
it can generate % frames per millisecond, leading to % * 200 = 514.60 Kb/s.

More generally, and considering only the throughput, not the burstiness, if a stream uses
at physical level a bandwidth = (in b/s), with frames of MSDU size s > 42, it correspond to
a MSDU bandwidth of ﬁr.

Then, if a fault stream sending frames of MSDU size s’ sends the same amount of MSDU
bytes than a valid same sending frames of size s, and having a reserved physical bandwidth
b, then the faulty stream will use the bandwidth

s'+42 s
T,
s’ s+42

(14)

In the extreme case where s = 1500 and s’ = 42, the faulty stream can use 95% more physical
bandwidth than the nominal one without being detected by the meter.

If s = 100 and s’ = 50, the overhead is 30%, and if s = 1000 and s’ = 500, the overhead
is only 4%.

In conclusion, consider a switch receiving a stream whose nominal behaviour consists in
sending frames with MDSU size in [s™", s™8%] with (physical) throughput R, then, its PSFP

must have a CIR being at least e But to protect himself from an upstream switch

nyaz:
sending frames using this stream id but of size 64 without any padding, every reservation

min

computation mus be done considering that this flow may use 2 7 R-

To avoid, or at least limit this behaviour, one may consider what is done in AFDX. It
provides two solutions.

Per-frame token-bucket one solution is to have a token-bucket where each token corresponds
to a full frame. Combining this semantics with a “Maximum SDU size” filter allows to
upper bound the throughput of each stream forwarded to the output link, whatever the
size of the frames are.

Minimal frame size another solution consists in adding a filter that forbid padding and
requires a minimal size, and otherwise drop the frame. Combining a first test with
minimal SDU size [™" > 64 and a second with maximum SDU size {™#* limit the ratio

jmin_ pmax_ oo

[min_99 [max

between non-conform and conform traffic to a ratio

Note that these solutions are not in the standard, but may be implemented as extension
with a limited effort.

Adding a new filter specification that checks a Minimum SDU size seems simple, it is
just the symmetric of the Mazimum SDU size existing filter.

Counting frames and not MSDU bytes is a major change in the point of view, but looks
quite simple in the implementation itself.

21

22

Usage of TSN Per-Stream Filtering and Policing

Esi| AB
Swi

ES2

Figure 12 Flow convergence example.

Last, another solution can be to monitor not the number of bytes in the MSDU (or
even the SDU) but at the physical usage, i.e. decrease the token not only by the MSDU
size of the frame, but also by the media overhead (the Ethernet Packet size plus the IFG
for IEEE 802.3 point-to-point media). This information exists in the standard, this is the
portMediaDependentOverhead [6, § 12.4.2.2]. This is the solution adopted by ATS, that uses
a function length(frame) computing “the length of the frame, including all media-dependent
overhead” [6, § 8.6.11.3.11].

Nevertheless, it seems to exclude the case when a single stream is forwarded to different
physical layers (for multicast feature, or use of Frame Replication and Elimination for
Reliability [3]).

One trade-off could be to allow this metering overhead to be set by configuration, reporting
the choice to the system designer.

3.6.5 Limits on the number of meters

The name of the amendment, “Per-Stream Filtering and Policing” suggest to look at the
characteristics of each stream. But the number of meters may be less than the number
of streams. Then, it appears possible to share a meter between several streams. From a
pure token-bucket point of view, having two streams f1, fo of conforming to token-buckets
of respective parameter (by,71), (ba,7r2) look equivalent of having a flow f conforming
(bl + bo, 1 + 7‘2).

But since the meter works on MSDU size, but the buffer occupancy is influenced by the
physical usage, the over-provisioning implied by difference in frame size is increased if the
minimal sizes of both streams are different.

Moreover, if a meter is shared by two streams f1, fo one stream may use all the tokens in
the bucket leading to reject nominal frames of the other stream.

To sum up, if it recommended to share meters only for stream with similar frame sizes,
and to enforce network fault containment, it is required to avoid that two stream from
different input ports share the same meter.

3.6.6 Time conformance of in absence of shaper: the routing problem

Routing errors may also lead to over provisioning or deadline violation or even buffer overflow
if the input port is not present in the stream_ handle.

Consider the simple example of Figure 12 and consider that flows A and B have the a low
priority, C a higher priority, they share a common constant frame size, a very large period
w.r.t. other constants of the systems. Consider that the switch has a very short commutation
time and that all links have the same speed. Let T be the transmission time of one frame of
A, Bor C.

Marc Boyer

21— A
ES1-> SW & H ES1-> SW B} & ESL-> SW A
ES2 > SW c ES2 -> SW c ES2-> SW B c

c I a CI| Sw-> £s3 [¢ B T » sw-> £s3 B T ¢ 4
time time time

SW -> ES3

Figure 13 Flow convergence and waiting times

(a) per flow token-bucket arrival (b) input line shaping
(c) multi-input line shaping (d) approximation of multi-input

line shaping

Figure 14 Illustration of line shaping effect

In this case, the flow A will compete on the output port with B or C, but never both,
and its worst latency in the switch is bounded by 2L (L for queue waiting time plus L for it
own transmission time).

Two cases are illustrated in Figure 13: when A and B arrive in the input port back-to-
back, either A if before B, or the opposite, but in both cases, the latency in the switch is
upper-bounded by 2L.

Now, consider that B is received on the same output port than C (due to some routing
error upstream, or even because of a malicious switch that creates malicious frames). Then,
if B is received just before A, and C just after B, then A has to wait the transmission of B
and C before starting its own transmission leading to a traversal of 3L.

By generalising this example to more flows A-1,A-2,..., A-n, B-1,B-2,..., B-n and C, the
expected routing leads to a delay bound (n + 1)L whereas the other one leads to a delay
bound (2n + 1)L.

This is because, when several flows share the same link, they can not arrive at the same
time. This effect is well known in the domain of network latency bounding, and is called
either shaping [13], grouping [15, 26] or serialisation [11].

Consider Figure 14. The sub-diagram 14.a represents the output of a token-bucket, what
can be send by one stream or a group of streams. This is what can for, for example, forwarded
by a stream meter to an output queue. However, this output queue cannot send at a rate
higher than the link speed. Then the next node receives the token-bucket output, which is
limited by the line throughput, leading to a curve with two slopes, illustrated in sub-diagram
14.b. This lead to a smaller burst and it gives smaller delay bounds. It can be illustrated
with a server with a single input port and a single output port: if both input line and output
line have the same speed, and if all frames have the same size, event if frames are sent back
to back, where a frame enters the server, the previous one just finishes its emission, and the
waiting time is only the transmission time, there is not waiting time in queues. When several
input ports converge to the same output ports, the benefit is not so big (since several frames

23

24

Usage of TSN Per-Stream Filtering and Policing

can arrive at the same time), but this effect is still to be considered. In a realistic AFDX
configuration, considering the line shaping decrease the bounds by 40% [16]. The effect is
illustrated sub-diagram 14.c.

The point is that the shape of the curve depends on the input link speed and the routing.
Consider one switch and a stream that, in nominal case, uses a link shared by a lot of streams
(so limiting the burst of this group). If that stream, due to some routing error, enters the
switch by another input port, which, in nominal case, carries a small number of stream, then,
it will increase the global burstiness at switch input, and increase the delay.

Note that even if a different routing may only slightly change the en-to-end delay of a flow
(the competition between A and B should be done somewhere in the network) it nevertheless
changes the local buffer occupancy.

Solutions can be proposed to contain the problem.

The ideal solution rely on the ability for PSFP to drop frames coming from unexpected
input ports. It requires either that the stream identification function can take into account
the reception port when generating stream_ handle, or to give this input port to the stream
filter rules.

Another solution to deal with routing errors is then to consider all possible allocations
of stream to input ports. Another consists in doing an upper-approximation, keeping (and
extending up to intersection) only the first and last segments, as illustrated in sub-diagram
14.d.

But all these solutions leads to over-provisioning. And this over-provisioning can be of a
factor of 100% (going from (n + 1)L to (2n + 1)L is the previous example).

One may rely on existing Ethernet solutions to drop frame B. As presented in Section 3.6.1,
some filtering can be done based on input port, source address, destination address and
VLAN Identifier (VID). But if, unfortunately, it exists another valid stream with the same
source, address and VID which is supposed to goes to the second port (the one receiving
stream C), this will not be sufficient.

Then, one solution could be to impose, at design, that never two flows with the same
source address, the same destination address and the same VID can enter a given switch
through two different ports. But this can be the case with FRER [3, Figure C-15].

3.6.7 Time conformance in case of CBS shaper

The case when a stream comes out from a CBS class is very similar to the case when there
is no shaper, due to the fact that CBS tries to mimic a virtual link with a throughput set
by configuration. It has been shown in [27] that CBS introduced a shaping, similar to the
line-shaping presented in Section 3.6.6, that can be represented as a token-bucket (where the
replenishment rate is the idleSlope parameter, and the burst depends on the maximal credit
value).

Then, consider once more the example of Figure 12. Assume that streams A and B share
the same CBS class in the upstream switch. Let (r,b) be the token-bucket parameters of this
CBS class, and (r4,b4), (r5,bp) the respective parameters of the streams. The interesting
case is when b < by +bg and r > 74 +75* In this example, an efficient algorithm will consider
a workload bound represented by the minimum of both, as illustrated in Figure 15-(a).

Y Ub>ba+b B, it means that CBS is useless. The case r < 74 + rp is a configuration error. The default
configuration is »r = r4 + rp, but for performances reason, one may set r > r4 + rp. An example is
provided in Section A.

Marc Boyer

— —
- —
- -
- -+
~ CBS ~
/ Streams /
— — Minimum Service
(a) (b)

Figure 15 Arrival curve of a set of flows coming from one CBS class.

Since a flow can cross only one meter, there are three possibilities.

One CBS meter One may configure a meter for the CBS class. The two streams share the
meter. Then we have no guarantee that each flow will respect its contract. Then, one
have to consider that a faulty upstream switch may use all the bandwidth, and that the
CBS meter will allow it, leading to a bandwidth consumption larger than the sum of the
bandwidth of the accepted flows.

Our experience in network calculus let us guess that considering only the CBS contract
will often lead to the same delay bound than the full contract, but it may be not the case
for the buffer usage.

This is illustrated in Figure 15-(b): the slope of the CBS contract (its idleSlope) is
in general lower that the residual rate of the output port (the residual rate being the
bandwidth of the port minus the bandwidth of higher priority flows), and the horizontal
deviation (the operator used to measure the delay in network calculus) is the same in bot
cases. But the buffer usage, measured with the vertical deviation, depends on the relative
position of the service latency and the intersection point of the stream token-bucket and
the CBS token-bucket.

This intuition requires of course more studies to be confirmed.

Also note that, as shown in Section 3.6.5, this mean that one flow may use all the tokens
of the shared meter, and lead to frame drop of valid frames of the other stream.

But since both two flows comes from the same upstream switch, this does not violate the
“network fault containment”.

One meter per stream One may either have one meter per stream. In this case, there is
no way to check that the CSB shaping is respected, and a faulty upstream switch may
forward frames without applying any shaping. Then, any analysis trying to cope with
faults has to do as if no CBS was present in the previous switch.

That is to say, CBS is active but it cannot be used for (safe) performance analysis since
there is no way to drop frames that does not respects its shape.

One shared stream meter The worst solution consist in using only one meter for all stream,
whose configuration is based on stream characteristics. As in the case “one meter per
stream”, the benefit of CBS can not be considered, but like in the case “one CBS meter”,
one faulty flow can lead to drop valid frames.

Note that, for illustrative purpose, we have considered a queue receiving only two flows
from the same upstream switch coming from the same CBS class, but the same kind of
behaviour occurs with more flows and several CBS class. The principles are the same, but
the global arrival curve has more segments. For the same simplification purpose, the shaping
due to links is not represented (cf. Section 3.6.4).

25

26

Usage of TSN Per-Stream Filtering and Policing

X

NI

Figure 16 Illustration of FRER configuration: frames A, B are duplicated in the first switch, the
B frame is lost on the upper path, and the recovery function removes one A duplicate.

Like for the routing problem, it an be solved by an extension of the standard. If a stream
can cross several meters during the filtering phase, one may configure one meter per input
stream, and one meter per input CBS class. Each frame will cross both, ensuring that the
global load sent to the queue will respect its contract, even in case of fault of an upstream
faulty switch.

3.6.8 Time conformance of ATS streams

The status of ATS stream checking with PSFP is very specific, and deserves some discussion.
Two uses cases for ATS are considered in this report:
the per-flow shaping, with one ATS shaper per flow, that correspond to the original
proposal [23] and that offers the shaping for free property [21],
the per input port shaping, proposed in [18] that acts has a greedy shaper.

ATS is, by itself, a shaper that can be seen has a way to contain faults: since each flow
will be shaped by ATS (seen as an interleaved regulator), it ensures that any flow competing
to the output port will respects a local contract, independent of any fault in upstream nodes.
But delaying the head-of-queue create a delay on the other frames in the queue. It has been
shown in [23, 21] that, if each flows respects the contract before the previous arbiter, and if
this arbiter uses a FIFO policy, and if the shaping queues are grouped per input port, then
ATS reshaping does not increase the worst case. But we found no way to check, using PSFP
tools, or even with some PSFP extension, to check that these properties are satisfied. It
means that a misbehaviour in the upstream node on one flow can have a negative impact on
the other flows sharing this queue in the local node. But, due to ATS grouping rules, it will
only corrupt flows coming from this upstream node.

That is to say, a non-conform behaviour in the a node can create a misbehaviour on a
downstream node, but this misbehaviour will impact only the flows that have crossed this
node.

In case of per input port shaping, the situation is the same as in absence of shaper,
presented in Section 3.6.6. The waiting time in the shaping queue is computed only on the
per-flow token-bucket curve plus the line shaping.

3.7 Relative position between FRER and PSFP

The Frame Replication and Elimination for Reliability addenda (FRER, [3]) has been designed
to improve the reliability of the network. FRER allows to duplicate frames in the network
and to remove duplicates at joining points (as illustrated in Figure 16).

What is important to notice is that, as illustrated in Figure 17, the removing of duplicates
is done after the PSFP filtering and policing. Then, the configuration of PSFP must be

Marc Boyer

ingress (IEEE 802.1Q 8.6.2)

Frame filtering (IEEE 802.1Q 8.6.3.

| Egress filtering (IEEE 802.1Q 8.6.4) |

Egress filtering (IEEE 802.1Q 8.6.4) |

{—Per-stream classificatior) and metering (8.6.5.2)——
Stream filtering (8.6.5.3)

Maximum SDU Size Filtering (8.6.5.3.1) |

Stream Gating (8.6.5.4)

| Flow metering (IEEE 802.1Q 8.6.5) | Flow metering (8.6.5.5)
Individual recovery (7.5) | ATS Eligibility Time Assignment (8.6.5.6) |

Sequence recovery (7.4.2)

Sequence encode (7.6)

Active Stream identification (6.2)

Queuing frames (IEEE 802.1Q 8.6.6) |

Queuing frames (IEEE 802.1Q 8.6.6) |

Figure 17 Inclusion in the global forwarding process of FRER (left) and ATS (right), inspired
from [3, Fig. 8-2] and [5, Fig. 8-13]

done considering all entering frames, without knowing each or how many will be dropped or
forwarded.
3.8 Equipment tests

Here is a list of a few capacities of a PSFP implementation that have an impact on the
ability of a PSFP system to protect a system from faults in upstream nodes.

1. Testing the ability to have several stream meters associated to a single stream filter (cf.

Section 2.3)

2. Testing the order between the tests in a stream filter (cf. Section 2.3)

3. Testing the absence of confusion between SDU and MSDU in the stream checking rules
(testing that the Mazimum SDU size checks the SDU /frame size, that the meter checks
the SDU/frame size, and that the IntervalOctetMax checks the MSDU)

4. Testing if the capacities (maximal size) of the stream filter instance table, the stream
gate instance table and the stream meter instance table are large enough to implement
all the tests proposed in this report.

4 Conclusion

In this paper, we have presented the mechanisms of PSFP, and shown how they can be used
to guarantee real-time behaviour even in presence of faults. We have proposed, for each kind
of TSN traffic, a PSFP configuration pattern. We have shown that the main problems come
from the fact that the per-frame overhead on the physical layer is hard to take into account
in an accurate way, leading to very large over-provisioning.
We proposed several configuration rules:
if the stream identification function is not able to take into account the input port, to
cope with routing error, a valid configuration may never admit that two flows with the
same source address, destination address and VID enter the same switch by different
ports (but this is a common use can in FRER [3, Figure C-15]),

27

28

Usage of TSN Per-Stream Filtering and Policing

to cope with switches were a stream can cross only one single meter, use CBS only the
benefit in the deadline compensate the increase of the memory bound.

We have highlighted the impact of the limit of the number of meters.

We proposed several simple extensions to the standard:

clarify the possibility for the stream identification function to take into account the input
port of a frame, or pass this information to the stream filter,

add of an IPV to stream meter, to change the class of non-conforming frames,

replace the per-bit semantics of token-buckets in stream meter by a per-frame semantics,
taking into account the media dependant overhead portMediaDependentOverhead in the
token-bucket stream meter (like done by ATS), to limit the difference between MSDU
and bandwidth usage

add of a minimal size filter.

Thanks

The author would like to thank

—— References

1

10

Matheus Ladeira, from RealTime-at-Work (RTaW), for pointing out the evolution of the
interpretation on the number of meters between [10] and [6].

Ludovic Thomas, from LORIA, for useful feedback and especially the existence of
the portMediaDependentOverhead parameter and discussions on stream_handle (and
pointing out [6, Note 1, § 8.6.5.3]).

Virtual Bridged Local Area Networks Amendment 12: Forwarding and Queuing Enhancements
for Time-Sensitive Streams. Technical Report IEEE 802.1Qav, IEEE, 2010. doi:https:
//doi.org/10.1109/IEEESTD.2009.5375704.

Virtual Bridged Local Area Networks Amendment 14: Stream Reservation Protocol (SRP).
Technical Report IEEE 802.1Qat, IEEE, 2010.

IEEE standard for local and metropolitan area networks — frame replication and elimination
for reliability. Technical Report 802.1CB, IEEE, September 2017. doi:https://doi.org/10.
1109/IEEESTD.2017.8091139.

IEEE standard for local and metropolitan area networks — bridges and bridged networks. IEEE
Standard 802.1Q, IEEE, 2018. doi:https://doi.org/10.1109/IEEESTD.2018.8403927.
IEEE standard for local and metropolitan area networks — asynchronous traffic shaping.
Technical Report 802.1Qcr, IEEE, September 2020. doi:https://doi.org/10.1109/IEEESTD.
2020.9253013.

IEEE standard for local and metropolitan area networks — bridges and bridged networks.
IEEE Standard 802.1Q, IEEE, 2022.

IEEE standard for local and metropolitan area networks — bridges and bridged networks —
amendment 26: Frame preemption. IEEE Standard 802.1Qbu, 2016. doi:10.1109/IEEESTD.
2016.7553415.

IEEE standard for local and metropolitan area networks—bridges and bridged networks—
amendment 25: Enhancements for scheduled traffic. IEEE Standard 802.1Qbv, IEEE, 2015.
doi:10.1109/IEEESTD.2016.8613095.

IEEE standard for local and metropolitan area networks— bridges and bridged networks —
amendment 31: Stream reservation protocol (srp) enhancements and performance improve-
ments. Standard 802.1Qcc, IEEE, 2018.

IEEE standard for local and metropolitan area networks—bridges and bridged networks—
amendment 28: Per-stream filtering and policing. Standard 802.1Qci, IEEE, 2017. doi:
10.1109/IEEESTD.2017.8064221.

https://doi.org/https://doi.org/10.1109/IEEESTD.2009.5375704
https://doi.org/https://doi.org/10.1109/IEEESTD.2009.5375704
https://doi.org/https://doi.org/10.1109/IEEESTD.2017.8091139
https://doi.org/https://doi.org/10.1109/IEEESTD.2017.8091139
https://doi.org/https://doi.org/10.1109/IEEESTD.2018.8403927
https://doi.org/https://doi.org/10.1109/IEEESTD.2020.9253013
https://doi.org/https://doi.org/10.1109/IEEESTD.2020.9253013
https://doi.org/10.1109/IEEESTD.2016.7553415
https://doi.org/10.1109/IEEESTD.2016.7553415
https://doi.org/10.1109/IEEESTD.2016.8613095
https://doi.org/10.1109/IEEESTD.2017.8064221
https://doi.org/10.1109/IEEESTD.2017.8064221

Marc Boyer

11

12

13

14

15

16

17

18

19
20
21

22

23

24

25

26

27

Henri Bauer, Jean-Luc Scharbarg, and Christian Fraboul. Improving the worst-case delay
analysis of an AFDX network using an optimized trajectory approach. IEEE Trans. Industrial
Informatics, 6(4):521-533, 2010.

Marc Boyer. Déterminisme tas, tas+cbs et du mécanisme cqf en calcul réseau (v2) — on-2.2.4.
Technical Report RT 6/31136 DTIS, ONERA, March 2022.

Marc Boyer and Christian Fraboul. Tightening end to end delay upper bound for AFDX
network with rate latency FCF'S servers using network calculus. In Proc. of the 7th IEEE Int.
Workshop on Factory Communication Systems Communication in Automation (WFCS 2008),
pages 11-20. IEEE, May 21-23 2008. doi:10.1109/WFCS.2008.4638728.

Silviu S. Craciunas, Ramon Serna Oliver, Martin Chmelik, and Wilfried Steiner. Scheduling
real-time communication in IEEE 802.1Qbv time sensitive networks. In Proceedings of the
24th International Conference on Real-Time Networks and Systems (RTNS’16), RTNS’16,
pages 183-192, New York, NY, USA, 2016. Association for Computing Machinery. doi:
10.1145/2997465.2997470.

Fabrice Frances, Christian Fraboul, and Jéréme Grieu. Using network calculus to optimize
AFDX network. In Proceeding of the 3thd European congress on Embedded Real Time Software
(ERTS06), Toulouse, January 2006.

Jérome Grieu. Analyse et évaluation de techniques de commutation FEthernet pour
Uinterconnexion des systémes avioniques. PhD thesis, Institut National Polytechnique de
Toulouse (INPT), Toulouse, Juin 2004.

Damien Guidolin-Pina, Marc Boyer, and Jean-Yves Le Boudec. Configuration of guard band
and offsets in cyclic queuing and forwarding. Technical Report hal-03772877, HAL, 2022.
URL: https://hal.archives-ouvertes.fr/hal-03772877.

Hao Hu, Qiao Li, Huagang Xiong, and Bingwu Fang. The delay bound analysis based on
network calculus for asynchronous traffic shaping under parameter inconsistency. In 2020
IEEE 20th International Conference on Communication Technology (ICCT), pages 908-915,
2020. doi:10.1109/ICCT50939.2020.9295939.

IEEE. Media access control (mac) service definition. Technical Report 802.1AC, IEEE, 2016.
IEEE. IEEE standard for ethernet. Technical Report 802.3, IEEE, 2018.

Jean-Yves Le Boudec. A theory of traffic regulators for deterministic networks with application
to interleaved regulators. IEEE-ACM Transactions On Networking, 26(6):2721-2733, 2018.
doi:10.1109/TNET.2018.2875191.

MEF. Subscriber ethernet service attributes. Technical Report MEF 10.3; MEF Forum, 2013.
URL: https://www.mef .net/wp-content/uploads/2013/10/MEF-10-3.pdf.

Johannes Specht and Soheil Samii. Urgency-based scheduler for time-sensitive switched
ethernet networks. In Proc. of the 28th FEuromicro Conference on Real-Time Systems (ECRTS
2016), 2016. doi:10.1109/ECRTS.2016.27.

Ludovic Thomas and Jean-Yves Le Boudec. On time synchronization issues in time-sentive
networks with regulators and nonideal clocks. Proceedings of the ACM on Measurement
and Analysis of Computing SystemsJune 2020 Article No.: 27, 4(2), June 2020. URL:
https://dl.acm.org/doi/10.1145/3392145, doi:10.1145/3392145.

Wireshark. Ethernet (IEEE 802.3) - allowed packet lengths.
https://wiki.wireshark.org/Ethernet#allowed-packet-lengths.

Luxi Zhao, Qiao Li, Ying Xiong, Zhong Zheng, and Huagang Xiong. Using multi-link grouping
technique to achieve tight latency in network calculus. In Proc. of the 32nd IEEE/AIAA
Digital Avionics Systems Conference (DASC 2013), pages 2E3-1-2E3-10, East Syracuse, NY,
USA, Oct 2013. doi:10.1109/DASC.2013.6712551.

Luxi Zhao, Paul Pop, Zhong Zheng, Hugo Daigmorte, and Marc Boyer. Latency analysis of
multiple classes of AVB traffic in TSN with standard credit behavior using network calculus.
IEEFE Transactions on Industrial Electronics, 2020. doi:10.1109/TIE.2020.3021638.

https://doi.org/10.1109/WFCS.2008.4638728
https://doi.org/10.1145/2997465.2997470
https://doi.org/10.1145/2997465.2997470
https://hal.archives-ouvertes.fr/hal-03772877
https://doi.org/10.1109/ICCT50939.2020.9295939
https://doi.org/10.1109/TNET.2018.2875191
https://www.mef.net/wp-content/uploads/2013/10/MEF-10-3.pdf
https://doi.org/10.1109/ECRTS.2016.27
https://dl.acm.org/doi/10.1145/3392145
https://doi.org/10.1145/3392145
https://doi.org/10.1109/DASC.2013.6712551
https://doi.org/10.1109/TIE.2020.3021638

30

Usage of TSN Per-Stream Filtering and Policing

Reception [F1 I F-2 I F-3 I F-4 I F-5 I F-6 I F-7 I F-8]

T T

0 0.Lms

' -

- T

0 1ms 40ms
Transmission

F-1 F-2 F-3 F-4 F-5 F-6 F-7 F-8

Figure 18 A CBS port receiving a burst of 8 frames of 1250B each and transmiting with idleSlope
of 2Mb/s on 100Mb/s links.

A On CBS slopes

The part of the bandwidth allocated to a CBS class (the idleSlope of the class) is left to
the network administrator (up to some maximal value, cf [4, § 34.3]), but the all document
presents this parameter as a bandwidth parameter. Then it may appear sufficient to have a
reservation just equal to the bandwidth of the stream using the class. But this may not be
the case, especially in case of bursty stream, since the idleSlope also have an impact on the
latency.

Consider a video stream sending 25 pictures per second (i.e. one picture per 40ms),
each picture having the same size of 10KB, leading to the transmission of 8 frames of 1250
bytes each (ignoring header and any overhead for sake of simplicity). This leads to a 2Mb/s
throughput.

Assume a 50ms deadline requirement, and consider than this flow is the only one in the
CBS class. What is the adequate bandwidth reservation for this class?

One may consider allocating to the class exactly its bandwidth usage, 2Mb/s. Assume
now a network with 100Mb throughput on all links, and look what happen on the first switch.
Consider no interference from any other stream.

The end-systems sends, at time t=0, the burst of 10 frames. It is transmitted in
0.1ms. Consider that the frames goes from input port to output port in negligible time, the
transmission of the first frame by the switch CBS output port starts at time ¢ = 0.01ms.
But since the idleSlope is only 2Mb/s, the next frame is sent only 5ms after the start of the
transmission of this one, i.e. at ¢t = 5.01ms, and the last one at t = 35.01ms.

More generally, if a CBS class may receive a burst of n frames on a periodic interval T,
and if the CBS class have been allocated exactly the corresponding throughput, the delay
between the start of transmission between the first frame and the last frame is ”T_lT. For
systems with implicit deadline (where the latency constraint is the period), it means that
rest of the network must be crossed in less than %

Of course, the next CBS server will not re-impose such large delay, since the frames will
be received already with an inter arrival time conform to the CSB shaping requirement.

This example is of course a toy example, but equivalent situations, with a larger n, have
been known by the author (but not reported for confidentiality consideration). In such
system, it may then be necessary to allocate to the CBS class an idleSlope greater than the
total throughput of the streams using this class.

	Introduction
	PSFP presentation
	On stream, streamID and stream_handle
	Per-stream filtering and policing global architecture
	The stream filter instance table
	The stream gate instance table
	The stream meter instance table

	PSFP usage
	A global remark on the stream control lists
	Interleaving
	Hyper-period
	The choice of the time base

	On sizes
	On Ethernet frame sizes
	Physical usage associated to contracts

	Using PSFP to implement CQF
	Maximal frame size to deal with blocking factor
	Always set a default (best effort) rule
	Using PSFP to prevent faults
	Routing error
	Configuring policing elements
	Time conformance of TAS frames
	Time conformance of asynchronous flows: the frame size problem
	Limits on the number of meters
	Time conformance of in absence of shaper: the routing problem
	Time conformance in case of CBS shaper
	Time conformance of ATS streams

	Relative position between FRER and PSFP
	Equipment tests

	Conclusion
	On CBS slopes

