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A dissimilarity d on a set X is said to be Robinson if there exists a total order, said compatible, on X such that x < y < z =⇒ d(x, z) ≥ max{d(x, y), d(y, z)}. Roughly speaking, d is Robinson if the points of X can be represented on a line ie. Robinson dissimilarities generalize line distances.

In this paper, we define k-dimensional Robinson dissimilarities, which generalize the possibility, for a metric set (X, d), to be embedded into a k-dimensional Euclidean space. This generalization is more flexible than the classical embedding and we show that every dissimilarity on an n-set X is (log n)-dimensional Robinson. We give an O(n 3 ) algorithm which builds such an embedding. This algorithm is based on an incremental algorithm to recognize Robinson dissimilarities.

Introduction

Given a finite set set X, a dissimilarity on X is a symmetrical function X × X -→ R + such that ∀x ∈ X, d(x, x) = 0 (we say that (X, d) is a dissimilarity space). Dissimilarities generalize distances (a distance is dissimilarity with the triangular inequality).

Given a dissimilarity on a set X, a fundamental problem is to derive "geometrical" properties of X from d, or to characterize dissimilarities from which such properties can be obtained. For instance Robinson dissimilarities (Robinson 1951) correspond to points on a line. These dissimilarities were invented to solve seriation problems in Archeology, but they are now a classical tool for seriation problems in any field. They are also linked with Pyramids [START_REF] Diday | Orders and overlapping clusters by pyramids in Multidimensionnal Data Analysis[END_REF][START_REF] Durand | One-to-one correspondences in pyramidal representation: an unified approach[END_REF], the standard model with overlapping classes. Moreover, they play an important role ro recognize tractable cases for TSP (C ¸ela & al. 2023).

In this paper, we generalize Robinson dissimilarities to k(-dimensional)-Robinson dissimilarities, which represent the fact for X to be embedded into a k-dimensional space. This embedding is less strict than the usual Euclidean embedding. We show that, if d is a dissimilarity on a set X with |X| = n, then d is (log n)-Robinson and we give a O(n 3 ) algorithm which builds such an embedding. This algorithm is based on an incremental algorithm to recognize Robinson dissimilarities which is presented in the last section.

Robinson dissimilarities

A dissimilarity space (X, d) is Robinson if there exists a total order, which is said to be compatible, on X such that

x < y < z =⇒ d(x, z) ≥ max{d(x, y), d(y, z)} (1)
Let (X, d) a dissimilarity space and < be an order on X. Notice that < is a compatible order of (X, d) (which is thus a Robinson space) if and only if:

x ≤ y < z ≤ t =⇒ d(y, z) ≤ d(x,t) (2) 
Given a total order < on X and x, y, z ∈ X, we say that y is between x and z for < if x < y < z or z < y < x. The set of the elements between x and z is an interval for < and we denote it by

[x, z] < . Notice that [x, z] < = [z, x] < . 3 Multidimensional Robinson dissimilarities Let (X, d) a dissimilarity space and k ∈ N 1 . We say that (X, d) is k-Robinson if there exist k orders < 1 , < 2 , . . . , < k such that: ∀x, y, z,t ∈ X, (∀1 ≤ i ≤ k, y, z ∈ [x,t] < i ) =⇒ d(y, z) ≤ d(x,t)
We say that (X, d) is k-quasi-Robinson if there exist k orders < 1 , < 2 , . . . , < k such that:

∀x, y, z ∈ X, (∀1 ≤ i ≤ k, y ∈ [x, z] < i ) =⇒ d(x, z) ≥ max{d(x, y), d(y, z)} If k = 1, it is equivalent for a dissimilarity space to be Robinson or 1- quasi-Robinson. For k ≥ 2, then if (X, d) is k-Robinson, then (X, d) is k-quasi- Robinson, but the converse is false (see Figure 1). Notice in addition that, if (X, d) is k-(quasi-)Robinson, then (X, d) is k + 1-(quasi-)Robinson. The smallest k such that (X, d) is the Robinson dimension of (X, d).
If a metric space (X, d) can be embedded into a R k , then (X, d) is k-Robinson. But the Robinson dimension of (X, d) is generally smaller. For instance, if |X| = n and d is the constant dissimilarity, then (X, d) is Robinson (its Robinson dimension is 1) although it needs an n-1-dimensional Euclidean space to be embedded. Moreover, we have: Proposition 1 The Robinson dimension of a dissimilarity space (X, d) with

• x • y • z • t Figure 1. A set X
|X| = n is ≤ ⌈log 2 ⌈ n 3 ⌉⌉ + 1.
Algorithm 1 returns an approximate value for the Robinson dimension of a dissimilarity space.

Algorithm 1: APPROXIMATE-ROBINSON-DIMENSION

Input: (X, d), a dissimilarity space.

Output: An upper bound on the Robinson dimension of (X, d). begin

X ′ ← X ; k ← 0 ; SORT-LINES(X, d) ; while X ′ ̸ = / 0 do S ← MAXIMAL-ROBINSON-SUBSPACE(X ′ , d) ; X ′ ← X ′ \ S ; k ← k + 1 ; return ⌈log 2 k⌉ + 1 ;
The function SORT-LINES(X, d), for every x ∈ X, sorts the points of X by increasing values of their distance from x. This function runs in O(n 2 log n) where n = |X|. The function MAXIMAL-ROBINSON-SUBSPACE returns a subset S of X ′ , maximal for inclusion and such that (S, d) is Robinson. This can be easily implemented by a greedy algorithm. We will see in Section 4 that, after SORT-LINES, such a greedy version of MAXIMAL-ROBINSON-SUBSPACE runs in O(|X ′ | 2 ). So, as there is at most n/3 iterations of the while loop, Algorithm 1 runs in O(n 3 ).

In order to implement MAXIMAL-ROBINSON-SUBSPACE, we need a function ADD-AND-TEST which takes as entry a dissimilarity space (X, d), a set S ⊂ X such that (S, d) is Robinson, the PQ-tree T P (S, d) and a point x ∈ X \ S. A PQ-tree [START_REF] Booth | Testing for the Consecutive Ones Property, Interval Graphs and Graph Planarity Using PQ-Tree Algorithm[END_REF] 3. Add the point x to T P

x (S, d). We get the PQ-tree T P (S ∪ {x}, d). This will be done in two steps:

(a) Consider only the points of S the closest from x.

(b) Consider the other points of S.

  is a data structure which can encode all the compatible orders of a Robinson dissimilarity. ADD-AND-TEST returns the PQ-tree T P (S ∪ {x}, d) (If (S ∪ {x}, d) is not Robinson, then T P (S ∪ {x}, d) = none). The algorithm of ADD-AND-TEST can be sketched as follows: 1. Compute the sets B S δ := B δ (x) ∩ S. 2. Insert the sets B S δ into T P (S, d). We get a PQ-tree T P x (S, d).
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