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ABSTRACT: A dissimilarity d on a set X is said to be Robinson if there exists a total
order, said compatible, on X such that x < y < z =⇒ d(x,z)≥max{d(x,y),d(y,z)}.
Roughly speaking, d is Robinson if the points of X can be represented on a line ie.
Robinson dissimilarities generalize line distances.

In this paper, we define k-dimensional Robinson dissimilarities, which generalize
the possibility, for a metric set (X ,d), to be embedded into a k-dimensional Euclidean
space. This generalization is more flexible than the classical embedding and we show
that every dissimilarity on an n-set X is (logn)-dimensional Robinson. We give an
O(n3) algorithm which builds such an embedding. This algorithm is based on an
incremental algorithm to recognize Robinson dissimilarities.

KEYWORDS: Robinson dissimilarities, embeddings, incremental algorithms.

1 Introduction

Given a finite set set X , a dissimilarity on X is a symmetrical function X ×
X 7−→ R+ such that ∀x ∈ X ,d(x,x) = 0 (we say that (X ,d) is a dissimilarity
space). Dissimilarities generalize distances (a distance is dissimilarity with the
triangular inequality).

Given a dissimilarity on a set X , a fundamental problem is to derive “geo-
metrical” properties of X from d, or to characterize dissimilarities from which
such properties can be obtained. For instance Robinson dissimilarities (Robin-
son 1951) correspond to points on a line. These dissimilarities were invented
to solve seriation problems in Archeology, but they are now a classical tool
for seriation problems in any field. They are also linked with Pyramids (Diday
1986, Durand & Fichet 1988), the standard model with overlapping classes.
Moreover, they play an important role ro recognize tractable cases for TSP
(Çela & al. 2023).

In this paper, we generalize Robinson dissimilarities to k(-dimensional)-
Robinson dissimilarities, which represent the fact for X to be embedded into
a k-dimensional space. This embedding is less strict than the usual Euclidean



embedding. We show that, if d is a dissimilarity on a set X with |X |= n, then
d is (logn)-Robinson and we give a O(n3) algorithm which builds such an
embedding. This algorithm is based on an incremental algorithm to recognize
Robinson dissimilarities which is presented in the last section.

2 Robinson dissimilarities

A dissimilarity space (X ,d) is Robinson if there exists a total order, which is
said to be compatible, on X such that

x < y < z =⇒ d(x,z)≥max{d(x,y),d(y,z)} (1)

Let (X ,d) a dissimilarity space and < be an order on X . Notice that < is a
compatible order of (X ,d) (which is thus a Robinson space) if and only if:

x≤ y < z≤ t =⇒ d(y,z)≤ d(x, t) (2)

Given a total order < on X and x,y,z ∈ X , we say that y is between x and z
for < if x < y < z or z < y < x. The set of the elements between x and z is an
interval for < and we denote it by [x,z]<. Notice that [x,z]< = [z,x]<.

3 Multidimensional Robinson dissimilarities

Let (X ,d) a dissimilarity space and k ∈ N1. We say that (X ,d) is k-Robinson
if there exist k orders <1,<2, . . . ,<k such that:

∀x,y,z, t ∈ X ,(∀1≤ i≤ k, y,z ∈ [x, t]<i) =⇒ d(y,z)≤ d(x, t)

We say that (X ,d) is k-quasi-Robinson if there exist k orders <1,<2, . . . ,<k
such that:

∀x,y,z ∈ X ,(∀1≤ i≤ k, y ∈ [x,z]<i) =⇒ d(x,z)≥max{d(x,y),d(y,z)}

If k = 1, it is equivalent for a dissimilarity space to be Robinson or 1-
quasi-Robinson. For k≥ 2, then if (X ,d) is k-Robinson, then (X ,d) is k-quasi-
Robinson, but the converse is false (see Figure 1). Notice in addition that,
if (X ,d) is k-(quasi-)Robinson, then (X ,d) is k + 1-(quasi-)Robinson. The
smallest k such that (X ,d) is the Robinson dimension of (X ,d).

If a metric space (X ,d) can be embedded into a Rk, then (X ,d) is k-
Robinson. But the Robinson dimension of (X ,d) is generally smaller. For
instance, if |X |= n and d is the constant dissimilarity, then (X ,d) is Robinson
(its Robinson dimension is 1) although it needs an n−1-dimensional Euclidean
space to be embedded. Moreover, we have:



•x

•y
•z

•
t

Figure 1. A set X with four points x,y,z, t. If (X ,d) is 2-quasi-Robinson with the two
orders represented by the two axis, then no condition is imposed on d(y,z) and we
can set d(y,z)> d(x, t). If (X ,d) is 2-Robinson (with the same orders), then d(y,z)≤
d(x, t).

Proposition 1 The Robinson dimension of a dissimilarity space (X ,d) with
|X |= n is ≤ ⌈log2⌈n

3⌉⌉+1.

Algorithm 1 returns an approximate value for the Robinson dimension of
a dissimilarity space.

Algorithm 1: APPROXIMATE-ROBINSON-DIMENSION

Input: (X ,d), a dissimilarity space.
Output: An upper bound on the Robinson dimension of (X ,d).
begin

X ′← X ; k← 0 ;
SORT-LINES(X ,d) ;
while X ′ ̸= /0 do

S← MAXIMAL-ROBINSON-SUBSPACE(X ′,d) ;
X ′← X ′ \S ;
k← k+1 ;

return ⌈log2 k⌉+1 ;

The function SORT-LINES(X ,d), for every x ∈ X , sorts the points of X
by increasing values of their distance from x. This function runs in O(n2 logn)
where n= |X |. The function MAXIMAL-ROBINSON-SUBSPACE returns a sub-
set S of X ′, maximal for inclusion and such that (S,d) is Robinson. This can be
easily implemented by a greedy algorithm. We will see in Section 4 that, af-
ter SORT-LINES, such a greedy version of MAXIMAL-ROBINSON-SUBSPACE
runs in O(|X ′|2). So, as there is at most n/3 iterations of the while loop, Algo-
rithm 1 runs in O(n3).



4 An incremental algorithm to recognize Robinson dissimilarities

In order to implement MAXIMAL-ROBINSON-SUBSPACE, we need a function
ADD-AND-TEST which takes as entry a dissimilarity space (X ,d), a set S⊂ X
such that (S,d) is Robinson, the PQ-tree TP(S,d) and a point x ∈ X \ S. A
PQ-tree (Booth & Lueker 1976) is a data structure which can encode all the
compatible orders of a Robinson dissimilarity. ADD-AND-TEST returns the
PQ-tree TP(S∪{x},d) (If (S∪{x},d) is not Robinson, then TP(S∪{x},d) =
none). The algorithm of ADD-AND-TEST can be sketched as follows:

1. Compute the sets BS
δ

:= Bδ(x)∩S.
2. Insert the sets BS

δ
into TP (S,d). We get a PQ-tree TP

x(S,d).
3. Add the point x to TP

x(S,d). We get the PQ-tree TP (S∪{x},d). This
will be done in two steps:

(a) Consider only the points of S the closest from x.
(b) Consider the other points of S.
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