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ABSTRACT: Robust projections of the Indian summer monsoon rainfall (ISMR) are critical as it provides 80% of the
annual precipitation to more than 1 billion people who are very vulnerable to climate change. However, even over the his-
torical period, state-of-the-art climate models have difficulties in reproducing the observed ISMR trends and are affected
by a large intermodel spread, which questions the reliability of ISMR projections. Such uncertainty could come from inter-
nal variability or model biases. Here, we study the impact of the latter on the historical forced change of ISMR in 34 mod-
els from CMIP6. First, we show that models’ biases over India do not significantly impact how they simulate the historical
change of ISMR. However, we do find statistically significant relationships between ISMR historical forced changes and
remote rainfall and temperature biases within the tropics by using a maximum covariance analysis (MCA). Our results
highlight the key role of tropical Pacific sea surface temperature (SST) mean state biases as an important source of inter-
model spread in the ISMR change. The physical mechanisms underlying these statistical relationships between ISMR
change and the intermodel spread of Pacific SST biases are finally explored. We found that models having El Niño/
La Niña–like mean SST bias in the Pacific tend to exhibit El Niño/La Niña–like changes over the historical period, impacting
ISMR through a shift in the Walker circulation and Rossby wave propagation across the Pacific.

KEYWORDS: Monsoons; Climate change; ENSO

1. Introduction

Indian summer monsoon rainfall (ISMR) plays a critical
role for India as it provides up to 80% of the annual precipita-
tion from June to September (Ramage 1971; Jain and Kumar
2012) in a country that represents about 20% of today’s world
population. ISMR changes have profound impacts on local
livelihood, economic development, and social stability. As an
illustration, in 2002, India suffered an unusually weak summer
monsoon with a 20% ISMR decrease. This resulted in billions
of dollars in economic damages (Gadgil et al. 2004) and af-
fected more than a billion people through drinking and sanita-
tion. In this context, the weakening trend of the Indian
summer monsoon at the end of the twentieth century and its
possible recovery during the last 20 years are of great concern
for India (Raghavan et al. 2016; Jin and Wang 2017).

Consequently, predicting ISMR evolution is critically im-
portant for India, and the Indian government launched the
“Monsoon Mission” in 2012, a national initiative which aims
to tackle scientific and economic challenges raised by the pre-
dictability and future of the Indian monsoon (Rao et al.

2019). One of the major achievements of this ongoing project
is that an Indian coupled model [Indian Institute of Technol-
ogy Madras Earth System Model, version 2 (IITM-ESMv2)]
contributed to phase 6 of the Coupled Model Intercompari-
son Project (CMIP6) (Swapna et al. 2018). More generally,
the will to better understand monsoon variability at different
time scales is illustrated by the coordination of a monsoon-
dedicated international cooperation program in CMIP6 called
the Global Monsoon Model Intercomparison Project (Zhou
et al. 2016).

Understanding the unfolding challenges of the future ISMR
evolution relies on coupled atmosphere–ocean general circula-
tion models (CGCMs) and climate projections. However, even
over the historical period, large uncertainties remain about the
ability of CGCMs to reproduce ISMR seasonal cycles and
trends (Saha et al. 2014; Annamalai et al. 2017). To improve
the reliability of CGCMs, it is necessary to identify the factors
that are responsible for their inaccuracy in reproducing the
evolution of the ISMR over the historical period and to distin-
guish between the part of this failure that is related to system-
atic errors and other factors such as internal variability.

In terms of radiative forcing, the first main anthropogenic
forcing is the increase of atmospheric GHGs. The thermody-
namic effect of GHGs on precipitation refers to the increase of
precipitable water in the atmosphere induced by the increase in
temperature. This implies that moisture convergence must in-
crease in response to global warming if one assumes unchanged
atmospheric circulation. This is called the “wet-get-wetter”
mechanism (Vecchi and Soden 2007). The impact of GHG forc-
ing on circulation is also of critical importance. In recent deca-
des, the Indian subcontinent has warmed faster than the Indian
Ocean (IO), thereby reinforcing the meridional thermal gradient
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in the lower troposphere, which enhances ISMR (Lau and Kim
2017; Singh et al. 2019; Jin et al. 2020). However, reducing
GHGs’ impact over ISMR to surface temperature gradient
would be erroneous (Ma and Yu 2014; Lau and Kim 2017).
Indeed, latent heating also modulates the land–ocean thermal
contrast and the monsoon circulation in the mid–upper tropo-
sphere according to the thermal wind relationship (Dai et al.
2013). This overview illustrates the complexity of ISMR re-
sponse to GHG forcing and possible sources of uncertainty in
the way models represent the evolution of ISMR.

The second main anthropogenic forcing is the increase
of atmospheric aerosols, which have on average a cooling
effect at the surface (Ming et al. 2011). Aerosol emission rose
sharply during the 1950s in the Northern Hemisphere, leading
to an asymmetric cooling at the end of the twentieth century.
This cooling may have caused a reduction in the summer in-
terhemispheric energy imbalance resulting in an equatorward
shift of the intertropical convergence zone (ITCZ) and hence
of ISMR (Salzmann et al. 2014; Polson et al. 2014). At the
regional scale, aerosols have furthermore compensated for
GHG-induced temperature increases over South Asia, but
not over the IO (Lau and Kim 2017; Li et al. 2018; Singh et al.
2019; Seth et al. 2019), leading to a reduced land–sea thermal
contrast, which has contributed to slowing down the monsoon
circulation and led to a decrease in precipitation during the
twentieth century (Li et al. 2015). Even if the direct effect is
dominant, the indirect effect of aerosols, which refers to
changes induced in clouds’ radiative properties, their fre-
quency, and their lifetimes, should not be overlooked. Indeed,
CGCMs including both processes tend to reproduce better
temperature and precipitation records over the twentieth cen-
tury (Wilcox et al. 2013; Wang et al. 2015).

In addition to uncertainty coming from these complex pro-
cesses, the recent ISMR changes in models may also be signif-
icantly influenced by internal variability (Huang et al. 2020).
The interdecadal variability of the IO SST, which refers to a
basinwide warm (cold) phase, is linked to ISMR through
increased (decreased) southwesterly winds (Vibhute et al.
2020). The interdecadal Pacific oscillation (IPO), which is
characterized by a tropical Pacific warmer or colder than aver-
age, also has remote impacts on ISMR variations (Chinta et al.
2022). The positive IPO phase weakens the Walker and Hadley
circulations, which results in decreased ISMR (Joshi and
Kucharski 2017). A transition from a cold to a warm phase of
the IPO is thus another factor that may have contributed to
the drying trend of ISMR over the last half of the twentieth
century (Salzmann and Cherian 2015; Huang et al. 2020).

The relative roles of these different factors may not be sta-
tionary in time, both in the observations and CGCMs, and
they may be altered in the latter due to systematic errors in
simulating Indian summer monsoon (ISM) (Hurley and Boos
2013; Annamalai et al. 2017; Terray et al. 2018) or because of
missing key physical processes, for example, those related to
clouds (Oueslati et al. 2016). As noted by Oueslati et al.
(2016), present-day climatological biases in specific humidity
and profile of vertical velocity are important sources of inter-
model spread in the tropics, both over land and ocean, in CMIP5
models. The parameterizations of convection or orography are

also sources of uncertainty to reproduce ISMR and its long-term
trend (Hurley and Boos 2013; Sabeerali et al. 2015). Continental
errors, including large cold biases over Eurasia and the subtropi-
cal deserts adjacent to India, can also affect ISMR and its long-
term behavior by modulating the ISM circulation and the fast
ISM response to GHG forcing (Endo et al. 2018; Terray et al.
2018; Sooraj et al. 2019). Biases in adjacent or remote regions
can also impact ISMR. As an illustration, errors in the SST
climatology of the eastern equatorial IO have been shown to be
linked to errors in ISM simulation through Bjerknes feedback
(Annamalai et al. 2017), and cold SST biases in the Arabian Sea
can weaken humidity transport toward India (Levine et al.
2013). Beyond climatological errors, biases in simulated modes
of interannual variability, like El Niño–Southern Oscillation
(ENSO) or the Indian Ocean dipole (IOD), can also induce
errors in ISMR projections (Li et al. 2017).

The skill of CGCMs at reproducing ISM climatology has
increased from CMIP3 to CMIP6 (Rajendran et al. 2022;
Choudhury et al. 2022). However, most current CGCMs still
exhibit a large and persistent dry ISMR bias and a strong in-
termodel spread for ISMR projections (Sperber et al. 2013;
Jain et al. 2019; Jin et al. 2020; Katzenberger et al. 2021). It is
thus necessary to reduce models’ uncertainties so as to
strengthen our confidence in the models’ projections. The
main goal of this study is to provide a systematic assessment
of the statistical and physical relationships between intermo-
del spread of ISMR changes and models’ biases. A few previ-
ous studies have already discussed some aspects of these
relationships but have been restricted to the possible influ-
ence of one basin or region and using CMIP5 future projec-
tions (Li et al. 2017; Shamal and Sanjay 2021). Here, we focus
on the influence of precipitation and surface temperature
biases over the whole tropical band on the historical changes
of ISMR in the new CMIP6 database. We choose to focus on
the historical period in order to take advantage of the larger
number of models, each of them including more members
than over the future period. The underlying questions are as
follows: 1) Is there a local link between climatological biases
over India and ISMR change? 2) Are there links with some
remote biases over land or the tropical oceanic basins? 3) By
which physical processes do local and/or remote biases influ-
ence ISMR historical evolution? Section 2 describes observa-
tional data, model simulations, and analysis methods used in this
study. In section 3, we evaluate historical simulations against ob-
servations and investigate local relationships. Section 4 extends
the scope of section 3 to assess relationships with remote biases
over the whole tropics with the help of maximum covariance
analysis (MCA). The last section presents a summary and future
perspectives.

2. Data and methods

a. Coupled simulations and validation datasets

This study is based on the outputs of 34 CGCMs from
CMIP6 (see supplemental Table S1 in the online supplemental
material; Eyring et al. 2016). Most models have multiple members
of the “historical” experiment (herein referred to as “historical,”
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covering the period from 1850 to 2014). All these historical inte-
grations are forced by the same time-varying external radiative
forcings (both natural and anthropogenic) derived from observa-
tions, but they have different initial conditions. The monthly
mean outputs used in our analysis include rainfall (Pr), precipita-
ble water (PRW), surface temperature (Ts), near-surface air tem-
perature (Tas), sea level pressure (SLP), and horizontal winds
(U andV) at different levels.

For model validation of the precipitation field, we use the
Global Precipitation Climatology Project (GPCP) monthly
mean precipitation flux dataset from 1979 to 2017 (Adler et al.
2003). For surface temperature, precipitable water, and hori-
zontal winds we use ERA-Interim (Dee et al. 2011). We also
use the all-India rainfall (AIR) index, which is an area-
weighted mean from a fixed ensemble of 306 rain gauge sta-
tions over India (Parthasarathy et al. 1994), and an ISMR
index derived from the India Meteorological Department
(IMD) rainfall dataset to monitor the observed ISMR evolu-
tion over the historical period. This last index is based on
about 6329 stations (with least 90% data availability over the
period) for the period 1901–2013 (Mohapatra et al. 2018).

b. Climate and ISMR indices

To understand how models’ biases interact with the change
of ISM rainfall and circulation, we define several indices,
which serve as proxies for the main thermodynamic and dy-
namic components of the moisture budget (Seager et al.
2010). The different climate and dynamical indices used in
this study are defined in Table 1. The overall thermodynamic
change is approximated by averaging the change of the PRW
change over the domain. It corresponds to the evolution of
humidity integrated over the whole atmospheric column. The
dynamical changes are split into zonal and meridional contri-
butions by using the Webster–Yang index (WYI) and the
monsoon meridional circulation index (MMCI), respectively
(Webster and Yang 1992; Goswami et al. 1999). These indices
are measures of the vertical shear of zonal and meridional
winds between the 850- and 200-hPa levels, respectively.
These shears are well related to the strength of the monsoon
circulation and to tropospheric temperature gradients (Dai
et al. 2013). Finally, we use the difference of surface tempera-
ture between part of the Eurasian continent and the sur-
rounding oceans, later referred to as Eurasian land–ocean
thermal contrast (ELOTC), to determine whether or not the

large-scale surface thermal contrast is a key factor in shaping
the ISM change during the historical period, as it is in projec-
tions (Jin et al. 2020). Note that thereafter, “ISMR change”
refers to regionally averaged ISM rainfall (defined above as
ISMR) change over the historical period (see Table 1), while
ISM rainfall change refers to change in the rainfall pattern
over India over the historical period. The former is an index,
while the latter is a spatial pattern.

c. Methods

We define climate change over the historical period as the
difference of climatological means between the end of the his-
torical period (1979–2014) and the early industrial period
(1850–75). This definition will be justified in section 3a in
which we demonstrate that ISMR changes are most promi-
nent during the last decades of the historical period. Model
biases are defined as the differences between model and vali-
dation data climatologies over the 1979–2014 period during
which the quality of observations and reanalysis products has
greatly improved as compared to the early period. Model var-
iability is defined as the average over the various available
members of the temporal standard deviation computed over
1979–2014. Among the available datasets, we choose GPCP
(ERA-Interim) to define precipitation (temperature) biases,
while AIR and IMD are used to evaluate ISMR trends over the
historical period. Our analysis will focus on June–September
(JJAS) as it is the monsoon season and all datasets were inter-
polated onto a common 2.88 3 2.88 horizontal resolution by bi-
linear interpolation prior to the analysis. It should be noted that
due to the specific focus on JJAS season, the time-lagged links
between ISM changes and biases are not explored in this study.
However, our results are robust if annual rather than JJAS
averages are considered for the tropical SST and rainfall biases
in the analysis.

For both observations and simulations, velocity potential,
streamfunction, and divergent and rotational winds were calcu-
lated at different levels from horizontal winds with the spectral
method (Tanaka et al. 2004). Furthermore, in order to accu-
rately describe the low-frequency variations in the observed
and simulated ISMR time series in Fig. 1, a locally weighted re-
gression called locally estimated scatterplot smoothing (LOESS;
Cleveland and Devlin 1988) was applied to the ISMR index
(only for this time series). LOESS is a nonparametric method
for fitting a smoothed regression curve to data through local

TABLE 1. Definition of the indices used in the present study. Angle brackets h?i stand for spatial averaging; the superscript indicates
the surface type or the atmospheric level over which the average is taken, when relevant, and the subscript the domain.

Indices Domain and variable used

ISMR hPriLand[78N;308N],[658E;958E]
Precipitable water content over India (PRWI) hPRWiLand[78N;308N],[658E;958E]
Webster–Yang index (WYI) hUi850hPa[08N;208N],[408E;1108E] 2 hUi200hPa[08N;208N],[408E;1108E]
Monsoon meridional circulation index (MMCI) hVi850hPa[108N;308N],[708E;1108E] 2 hVi200hPa[108N;308N],[708E;1108E]
Eurasian land–ocean thermal contrast (ELOTC) hTasiLand[08N;608N],[308E;1808] 2 hTasiOcean

[108S608N],[308E;1808]
Pacific equatorial SST gradient hSSTi[58S;58N],[1308E;1708W] 2 hSSTi[58S;58N],[808W;1408W]
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smoothing. We applied LOESS with a moving time window of
20 years (equivalent to a low-pass filter eliminating fluctuations
with periodicities less than 20 years) to the full time series, and
we chose to show the low-pass-filtered time series on the period
1901–2012, which is the common period for the observations
and the simulations. The ISMR climatology over this period
was then calculated for each dataset in order to express the
smoothed time series as anomalies (in percentages) with respect
to this climatology. Note that all other computations use the
raw data without any filtering.

To investigate the first-order linear relationships between
changes over the historical period and model biases as seen
from climate indices, we use scatterplots and regressions. For
a more systematic exploration, we use MCA, which extracts
the dominant covariability patterns from two geophysical
datasets (Bretherton et al. 1992; Cherry 1997). MCA calcula-
tion is described in detail in supplemental Text S1.

3. ISMR trends, tropical biases, and changes over the
historical period

a. ISMR trends over the historical period

First, we document the skill of CMIP6 models in simulating
the ISMR modulations over the historical period. It has been
demonstrated that CMIP5 models were not skillful in this

respect (Saha et al. 2014). AIR and IMD are used for obser-
vations, as they cover the whole twentieth century, and the
ISMR index as defined in Table 1 is used for simulations.

AIR and IMD oscillate mainly between 25% and 5% be-
tween 1900 and 2012, except at the beginning and end of this
period when variations are stronger (Fig. 1a; see the thick
blue and orange lines). The correlation between AIR and
IMD is significant (r 5 0.70; p , 0.01), which proves an over-
all good agreement between our validation datasets. How-
ever, even if both observation datasets show an increase of
ISMR over the recent period (2000–12; Jin and Wang 2017),
there is a surprising disagreement on the magnitude of this
wetting trend. This difference could possibly be related to the
variable network of stations used in IMD or a too-coarse net-
work in AIR (Lin and Huybers 2019; Singh et al. 2019). This
highlights strong uncertainty on the observed recent ISMR
trend and potential problems in the validation datasets.

This recent recovery of the monsoon has been attributed to
an increase in atmospheric moisture content coupled to a
favorable land–sea thermal contrast between East Asia and the
western North Pacific Ocean (Huang et al. 2020; Rajendran
et al. 2022) and between the Indian subcontinent and the IO
(Jin and Wang 2017; Roxy 2017). Such evolution may also arise
from the sustained increase of GHG emissions. Recent studies
furthermore showed that, as sulfate aerosol mitigation policies
are now applied, GHG forcing is overtaking the aerosol forcing

FIG. 1. (a) Low-pass-filtered ISMR time series represented as normalized anomalies and expressed in percent of the respective mean
over 1901–2012 for each time series. The thin lines represent the first historical member of each of the 34 models available from the
CMIP6 repository (see supplemental Table S2), while bold lines represent the MMM of these 34 first historical members (red) and the ob-
served AIR (blue) and IMD (orange) indices, respectively. (b) As in (a), but where thin lines represent the multimember average for all
models with more than one member (25 of 34 models; see supplemental Table S1 for details), and MMM is calculated on these multimem-
bers only. (c) Mean anomalies over the 1979–2014 period relative to 1901–2012. The first column is for observations, with the same color
code as in (a) and (b). The last three columns are whisker plots for three different ensembles of simulations. The first whisker column is
for the multimember average for all the 34 available models, even those with only one member available. The second whisker column con-
siders only the first member for each model [see (a)]. The third whisker column considers the multimember average for the 25 models
with more than one member available [see (b)]. In all panels, the observed and simulated ISMR raw time series have been low-pass
filtered with LOESS (Cleveland and Devlin 1988). See text and section 2 for details.
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after the 1980s (Seth et al. 2019; Allan et al. 2020). If GHGs
are responsible for the recent wetting ISMR trend, the latter is
likely to become more prominent in the future (Katzenberger
et al. 2021).

Figure 1a also shows the first (single for models proposing
only one member; see supplemental Table S2) member of his-
torical realizations taken from all the 34 CMIP6 models avail-
able from the Earth System Grid Federation repository.
Taken as a whole, this ensemble of simulations yields rela-
tively large multidecadal variations of ISMR with an ampli-
tude generally comparable to those found in observations
(Fig. 1a). The multimodel ensemble mean (MMM) (thick red
line) typically yields weaker variations than the validation
datasets (from 22% to 14%), which is expected as simulated
internal variability is damped by the model averaging. The rel-
ative amplitude of the drying ISMR trend during the 1950–90
period seen in both AIR and IMD (Bollasina et al. 2011; Saha
et al. 2014; Salzmann et al. 2014; Roxy et al. 2015) is not well
reproduced by the MMM, as in CMIP5. This result is consis-
tent with the partial attribution of this drying trend to internal
variability (Huang et al. 2020). After the 2000s, the MMM in-
creases and peaks around 14%, which is comparable to the
observed ISMR interannual variability (which is typically
about 10% of the ISMR mean).

This recent recovery of ISM thus appears consistently in
the MMM (computed from single or first member for each
model), IMD, and AIR (Fig. 1a). This is in line with the partial
attribution of this wetting trend to external forcings. However,
consistent with the weaker amplitude, the slope of MMM re-
cent trend is much weaker than the observed one. Further-
more, the single-member intermodel spread increased from
the 1980s until the end of the period. Indeed, in single realiza-
tions, the anomalies are spanning from 28% to 121% toward
the end of the period, while they were earlier approximately
ranging between27% and16%.

Since the single members are influenced both by natural
variability and external forcings, it is difficult to distinguish
their respective contributions to the increase in the intermo-
del spread. To get further insights about the origin of this in-
crease, Fig. 1b presents the temporal evolution of ISMR in
multimember average for all models with more than one
member (25 of 34 models). The multidecadal variability of
ISMR modeled over the twentieth century is largely reduced
in these multimember ensembles as expected from the aver-
aging which damps the internal variability. The MMM is nev-
ertheless very close to the one computed from single-member
only for the whole period (r 5 0.93), including the recent wet-
ting period. Interestingly, the increase in the intermodel
spread is still present in the multimember averages. This sug-
gests that this spread is also associated with a biased and vari-
able response of the models to external forcings.

To validate more quantitatively this hypothesis, we now focus
on the distributions of the mean averages over the 1979–2014
period for the single-member versus multimember model sets as
these time averages are used to define the climate changes (see
section 2 for details) in the following sections. The two right-
hand columns in Fig. 1c show that, when averaged over the
1979–2014 period, the spread of ISMR change as represented in

the CMIP6 database is slightly weaker when considering only
the 25 models offering multiple members of historical simula-
tions than when considering all the 34 single or first historical
realizations. Nevertheless, a two-sample version of the Smirnov–
Kolmogorov test (Hodges 1958) applied to the two empirical
distributions leads to the rejection of the hypothesis that these
two distributions differ even at a very low confidence level
(p value is 0.80).

Taking into account this result and in order to keep the model
panel as large as possible to maximize the significance of our re-
sults, we consider in the following the multimember average for
each of our 34 models even when only one member is available
without any weighting (second column of Fig. 1c). Figure 1c
illustrates that this ensemble only shows small differences with
the two other ones. By using a Smirnov–Kolmogorov test as
above, we could furthermore show that all these distributions
are similar (p . 0.80). This allows us to use a multimember
average for all of our models despite the fact that some of
them have only one member, because the time average over
the last 35 years is sufficient to damp the effect of internal vari-
ability in all cases. This also justifies our choice to give the
same weight to each of the models in the rest of the study,
regardless of their number of members. Finally, in order to
have an overview of the relative importance of this intermodel
spread with respect to internal variability, we have assessed
the intramodel spread (related to internal variability) for CMIP6
models with more than one member (see supplemental Fig. S3).
Interestingly, for the majority of models, the intramodel spread
is lower than the intermodel spread, with the exception of the
CanESM5 model.

b. Contributions to ISMR change and spread

To gain more insights into the physical mechanisms under-
lying the ISMR changes over the historical period and its
intermodel spread, we now study its links with dynamical or
large-scale indices (see section 2 and Table 1).

MMMs of WYI (Fig. 2a) and MMCI (Fig. 2d) changes aver-
aged over the multimodel ensemble described above show a
decrease over the historical period (see the crosses in the pan-
els), while MMM of precipitable water content over India
(PRWI) change shows a strong increase (Fig. 2e). This indi-
cates that the small decrease in the MMM of ISMR seen in
the y axis of each panel in Fig. 2 is due to a decrease in the dy-
namic component, which is partially compensated by the ther-
modynamic component. This may explain why, even if global
warming and ISMR are both significantly correlated with the
change in PRWI, they are not correlated with each other (Fig. 2b;
r 5 0.25; p . 0.10). On the other hand, the intermodel spread of
PRWI is significantly correlated with the global surface tempera-
ture change among models (r5 0.50; p, 0.01; not shown), illus-
trating the link between thermodynamics of ISMR and global
warming in agreement with the Clausius–Clapeyron relationship.
Consistently, there is also a significant relationship between the
intermodel spread of ISMR and PRWI changes (Fig. 2e).

The intermodel spread is also significantly related to dy-
namical changes with a very strong relationship between the
ISMR and MMCI changes (Fig. 2d) and a weaker, but still
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significant, relationship with the WYI change (Fig. 2a). How-
ever, the origin of the dispersion of the dynamic component
of the ISMR remains unexplained. Indeed, in the future pro-
jections, ISMR and WYI changes are both significantly corre-
lated with ELOTC (Jin et al. 2020), indicating a role for land–
sea thermal contrast. This is not the case over the historical
period (Fig. 2c for IMSR and not shown for WYI). This sug-
gests that the mechanisms in the historical period and in pro-
jections differ. This difference may be due to the fact that
aerosol forcing is strong over the historical period and does
not allow for the emergence of a strong land–sea contrast.

We have shown that the intermodel spread of ISMR
change is mainly related to the intermodel spread of the dy-
namic component. However, we lack explanations as to the
origin of the intermodel spread of this dynamic component. A
first approach is to look at the local scale. Hence, in the next
subsection we investigate the role of the model’s mean biases
and variability over India to explain ISMR changes.

c. Local relationships between ISMR bias and change
over the historical period

Figure 3 explores the linear dependence between ISMR change
with local precipitation and temperature biases over India.
Figures 3a and 3d show that in spite of the strong intermodel
spread of ISMR biases in mean and temporal variability (e.g.,
standard deviation), there is no significant relationship between
these biases and the ISMR change at the 95% confidence level.
Hence, selecting models based on their performance in repro-
ducing the present-day precipitation climatology and variability

(Katzenberger et al. 2021) is not a discriminating criterion for
how they simulate ISMR change. As for precipitation, there is
also no significant relationship (p . 0.05) between climatologi-
cal and variability biases of Indian surface temperature and
ISMR change (Figs. 3b,e). On the other hand, Fig. 3c highlights
a significant and expected relationship between climatological
biases of surface temperature and precipitation over India. This
can be explained by a reduced cooling effect (e.g., less clouds
and evaporation) due to a deficit of local precipitation over
India. Note, nevertheless, that an anomalous land warming
could enhance the regional land–sea contrast, thereby inducing
an opposite precipitation bias (Jin and Wang 2017), but this
effect does not seem to dominate here, consistent with the weak
correlation between ISMR and ELOTC changes (Fig. 2c).

To conclude, no obvious link was found at the local scale
between the spread of local rainfall/temperature biases and
ISMR change. This lack of linkage could be due to the fact
that the changes in precipitation and biases are averaged over
India where there are potentially inhomogeneities and error
compensations for both biases and changes. It could also be
that there are simply no relationships at the local scale. To
discriminate between these two hypotheses, we need to zoom
out from the local scale.

d. Global changes of surface temperature and
precipitation over the historical period

Figure 4a displays the JJAS precipitation historical changes
over the whole globe. Central America, Sahel, and East Asia,
which are three major monsoon regions, all exhibit a strong

FIG. 2. Scatterplots of ISMR change (mm day21; defined in section 2 as the difference of JJAS means between 1979–2014 and 1850–1875),
respectively, with changes of (a) the WYI (m s21), (b) global mean surface temperature (K), (c) ELOTC (K), (d) MMCI (m s21), and
(e) PRWI (kg m22), computed over the same periods. All indices are defined in section 2. The black cross in each scatterplot marks the
MMM. As explained in the text, all the 34 available CMIP6 models are used here, with 1 to 50 simulations (see Table S1). For each panel, the
correlation and the corresponding p value are computed as described in section 2. The red outline of the panel means that the correlation is
significant at the 95% confidence level (p , 0.05). Temperature and precipitation change are computed as the difference of climatological
means between the end of the historical period (1979–2014) and the early industrial period (1850–75).
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drying over the historical period. Figure 4a also displays a
strong drying over the north subtropical Atlantic and over the
Maritime Continent, both accompanied with a strong spread
across models (Fig. 4b). The Pacific Ocean presents notable
wetting over the South Pacific convergence zone (SPCZ) and
over the western part of the ITCZ, which is located at 108N
over this region during the boreal summer and some drying in
between. Furthermore, the intermodel spread of precipitation
change in the Pacific Ocean is particularly strong over the
warm pool and the convergence zones (SPCZ and ITCZ)
forming a double ITCZ structure (Fig. 4b). Figures 4a and 4b
also display a large intermodel spread of precipitation change
over India, while the MMM change is not very strong and
quite inhomogeneous. These features indicate a strong dis-
agreement between models, but also indicate that averaging
precipitation change over India may not be representative of
ISMR change. This justifies the need to take into account the
spatial pattern of rainfall changes over India when looking for
relationships between biases and ISMR change.

Looking at the warming signal (Fig. 4c), an interesting fea-
ture is that the SST gradient along the equatorial Pacific (see
its definition in Table 1) is enhanced toward the end of the
historical period in 25 of 34 models (not related to the models
with more than one member) and in the MMM (0.1 K). This
latter result is at odds with the CMIP5 MMM, but it is in line
with observed trends (Lian et al. 2018). Hence, CMIP6 mod-
els show a better agreement with observations than the previ-
ous generation, but they still underestimate the enhancement
of the equatorial Pacific SST gradient (0.3 K). This pattern is

complex and not “La Niña–like” or “El Niño–like” as dis-
cussed in Lian et al. 2018. It is rather “El Niño Modoki–
like” (Ashok et al. 2007) with a stronger warming over the
central Pacific, an intermediate warming over the warm
pool, and a weaker warming signal over the eastern equa-
torial Pacific. Furthermore, the Pacific warming pattern,
and hence the change in the SST gradient, is quite different
between annual and JJAS mean averages (supplemental
Fig. S4), highlighting that focusing on yearly ENSO pat-
terns only may be misleading for understanding ISMR
changes. It is necessary to look at the seasonal scale of
change in the Pacific to fully understand the interactions
with ISMR.

There is a strong intermodel spread of surface tempera-
ture change over the whole Eurasian continent and specifi-
cally over the Tibetan Plateau, which have both been
suggested as important driving factors for ISMR projec-
tions (Fig. 4d; Ge et al. 2017; Wang et al. 2020). The largest
spread of land temperature changes among models occurs
over central Africa, North America, and north of India.
Over the ocean, intermodel spread is high at mid- to high
latitudes of both hemispheres and also in the eastern equa-
torial Pacific.

We now have an overview of the MMM spatial changes in
surface temperature and precipitation over the historical pe-
riod, as well as an idea of the areas with the highest disagree-
ment between the models. In the following subsection, we will
focus on the biases of these two variables and highlight the re-
gions where the intermodel spread is important in CMIP6

FIG. 3. Scatterplots of ISMR change (mm day21), respectively, with (a) mean ISMR bias (mm day21), (b) mean temperature bias over
India (K), (d) ISMR standard deviation bias (mm day21), and (e) temperature standard deviation bias over India (K). Temperature biases
are calculated over India, which corresponds to the same domain as the one used for ISMR. Temporal standard deviation in (d) and (e) is
computed for each individual historical member and averaged for each model in case of several members. (c) Scatterplot of mean ISMR
bias and mean surface temperature bias over India to illustrate local interaction between temperature and precipitation bias over India.
The correlation and its associated p value for each pair of model series are indicated in each panel. The red outline means that the correla-
tion is significant at the 95% confidence level (p, 0.05). Crosses indicate the MMM position in each scatterplot.
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models, as we seek to establish a link with the spread in the
ISMR change.

e. An overview of climatological rainfall and temperature
biases in CMIP6 models

Figures 5a and 5b first show that India suffers on average
from an important dry bias with a large intermodel spread.
This dry bias is very pronounced over northern India, while it
is almost absent in the south. This is consistent with the ten-
dency of models to produce an ITCZ located 108 south of the
observed location in most monsoon regions (Choudhury et al.
2022). In the Indian sector, this southward shift of the ITCZ
may be due to warm SST biases over the southwest IO or
along the equator (Bollasina and Ming 2013; Prodhomme
et al. 2014; Annamalai et al. 2017) and/or to cold surface tem-
perature biases over adjacent deserts (Fig. 5c; Terray et al.
2018; Sooraj et al. 2019). Both the arid regions to the west of
India and the western IO have large mean biases and present
a strong intermodel spread of surface temperature (Fig. 5d);
they are therefore potential candidates for modulating ISMR
changes.

Focusing now on remote regions, the Pacific Ocean displays
an erroneous double ITCZ structure in both MMM (Fig. 5a)
and intermodel spread (Fig. 5b) of precipitation bias. These
errors have been typical and prominent biases of CGCMs
from CMIP3 to CMIP6 even if they have been shown to be
slightly reduced in CMIP6 (Tian and Dong 2020). Interest-
ingly, both the mean and intermodel spread patterns of rain-
fall changes in Figs. 4a and 4b are also reminiscent of this
double ITCZ bias. The equatorial Pacific is also characterized

by a cold tongue bias extending from the warm pool to the
eastern Pacific, and the Maritime Continent is marked by a
warm bias. The upwelling regions off the Chilean and Peru-
vian coasts show an important warm bias that spreads north-
ward and meets the cold tongue bias at the equator. The
equatorial Atlantic also presents an important wet bias. It is
attributed to the strong warm bias over the southeastern At-
lantic (Fig. 5c), which causes a southeastward shift of the
ITCZ over the Atlantic (Richter and Tokinaga 2020). How-
ever, as the warm Atlantic bias does not present an important
intermodel spread, it is unlikely to explain the equatorial
spread of precipitation alone at least in a simple linear frame-
work. Again, continental biases, especially those over the Sahara,
or erroneous combined land–ocean temperature gradients are
more plausible candidates (Terray et al. 2018; Sooraj et al. 2019).
Using CMIP5 models, Shamal and Sanjay (2021) have suggested
that these intermodel spreads of temperature and rainfall biases
in the Atlantic sector may provide a strong observational con-
straint for reducing the uncertainties of ISMR projections. We
will test this hypothesis with CMIP6 and the historical period in
the next section. Finally, Fig. 5d displays a very strong intermodel
spread along with a cold bias in the MMM over the Himalayas,
which may arise from the variety of the model’s resolution and
orography as it is a limiting factor in this region of complex orog-
raphy (Lalande et al. 2021).

To conclude, given the large intermodel spread of surface
temperature and rainfall biases, including both land and
ocean, and the complexity in existing teleconnections to ISMR
(Chowdary et al. 2021), we will next track the origins of the
spread of ISMR change within the whole tropics. To this end,

FIG. 4. JJAS MMM and intermodel spread of (top) precipitation (mm day21) and (bottom) surface temperature (K) changes computed
for the 34 CMIP6 models. (a) MMM precipitation change. (b) Intermodel spread of precipitation. (c) MMM surface temperature change.
(d) As in (b), but for surface temperature. Contours in (a) are for JJAS mean precipitation from GPCP (contour interval is 3 mm day21)
and in (c) are for JJAS mean surface temperature from ERA-Interim (285 K, blue; 295 K, green; 300 K, orange contours). Temperature
and precipitation changes are computed as the difference of climatological means between the end of the historical period (1979–2014) and
the early industrial period (1850–75). See section 2 for details.
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we will investigate the dominant modes of covariance between
tropical temperature or precipitation biases and ISMR changes
with the help of MCAs. This method allows us to move away
from spatial averaging over India and to explore the possible
link between the pattern of precipitation change over India and
tropical biases elsewhere.

4. Remote impact of biases on ISMR historical changes

a. Spatial patterns of biases and rainfall changes from
maximum covariance analysis

We computed two MCAs, one between rainfall changes over
India (78–208N and 658–958E; land only) and surface tempera-
ture biases within the tropical band (308S–308N) (Figs. 6a,b),
and the other between rainfall change over India (same region)
and tropical precipitation biases (Figs. 6c,d). A brief introduction
to MCA is provided in Text S1 of the supplemental material for
convenience, and more details can be found in Bretherton et al.
(1992). We only study the leading coupled mode for each of
these MCAs, as they describe a major part of the covariability
between the original fields (Table 2), and they are well separated
from the remaining MCAmodes (not shown).

The heterogeneous maps of rainfall changes over India are
spatially homogeneous and very similar in both computations
(Figs. 6a,c). Consistently, the correlation between the singular
variable (SV) series (e.g., expansion coefficient series) associ-
ated with the rainfall change patterns over India in both MCAs
is 0.99. The SV series of precipitation changes over India in
each MCA are also strongly correlated with the average index
ISMR (r5 0.95 and 0.94; see Table 2). This latter result confirms

that tropical precipitation and surface temperature biases
(Figs. 6b,d) are covarying with the Indian monsoon as a whole
despite the fact that MMM rainfall changes are inhomoge-
neous over India (Fig. 4a). The rainfall change patterns from
the MCAs (Figs. 6a,c) are also very close to the first EOF
mode of ISM rainfall change (not shown). The spatial struc-
tures of the leading modes from EOF and MCA are correlated
with r 5 0.99, and the explained variances by these modes are
again very close (42% for the first mode of EOF and 39% for
both MCAs). These features suggest that the patterns of bias
identified in Figs. 6a and 6c are linked with the main mode of
intermodel spread of ISM rainfall change, which further moti-
vates a detailed analysis of these modes.

The first modes of the MCAs between surface temperature
and precipitation biases with ISM rainfall changes have a
square covariance fraction (SCF) of 47% and 40%, respec-
tively, and they have similar normalized root-mean-square co-
variance (NC) statistics (see Text S1 in the supplemental
material for a more detailed definition of this MCA statistic),
suggesting that the precipitation and surface temperature
biases have a statistical relationship with Indian rainfall
change of similar strength (Table 2). Moreover, the correla-
tions between the SV series corresponding to the leading pat-
terns of precipitation and temperature biases and those of
rainfall changes in each MCA are quite similar too (0.75 and
0.67; see Table 2), which corroborates that a similar strong
relationship exists between biases and ISMR changes. Note
that the correlation between the SV series associated with the
leading bias pattern in each MCA is r 5 0.67 (p , 0.01). This
further shows that a linear relationship may also exist be-
tween the leading patterns of rainfall and temperature biases

FIG. 5. Boreal summer MMM and intermodel spread of (top) precipitation (mm day21) and (bottom) temperature (K) biases computed
over the 1979–2014 period for 34 CMIP6 models. (a) MMM precipitation bias with respect to GPCP. (b) Intermodel spread of precipita-
tion. (c) MMM temperature bias with respect to ERA-Interim. (d) As in (b), but for temperature. Contours in (a) are for JJAS mean pre-
cipitation from GPCP (contour interval is 3 mm day21) and in (c) are for JJAS mean temperature from ERA-Interim (285 K, purple;
295 K, orange; 300 K, green contours).
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associated with ISM rainfall changes. In other words, this
suggests the existence of coupled ocean–atmosphere and/or
land–atmosphere biases, which may modulate ISMR changes
over the historical period.

Associated with an increase of precipitation over India from
the beginning to the end of the historical period (Fig. 6a), Fig. 6b
exhibits a strong cooling over the Sahara and Arabian Deserts
extending to the west of India, while the rest of India presents a
strong warm bias. This spatial inhomogeneity of the intermodel
temperature bias over India could explain the lack of relationship
between the intermodel spread of ISMR change and Indian sur-
face temperature bias shown in Fig. 3b. The warm bias extends
to eastern and southeastern Asia, which, as mentioned earlier,

experience a significant drying trend. From an oceanic perspec-
tive, Fig. 6b presents a well-defined equatorial SST gradient in
the Pacific, with a cooling in the east and a warming in the west,
but mainly off the equator and up to the subtropics. This pattern
of SST bias in the Pacific is reminiscent of a La Niña–like SST
mean pattern. Interestingly, from a statistical perspective, this
La Niña–like SST pattern is significant (e.g., see the dotted areas
in the Pacific) in contrast to the temperature gradient over land
described above. This is physically consistent with the increase of
precipitation over India in Fig. 6a as seen for the interannual
time scale framework (Chowdary et al. 2021).

From the atmospheric perspective, the leading pattern of
model precipitation biases presents strong signals over the

TABLE 2. Statistics of the MCAs between surface temperature or precipitation biases with Indian rainfall change shown in Fig. 6.
All correlations in the last four columns are significant at the 99% confidence level. See text and Text S1 in the supplemental
material for more details on the SCF and NC statistics.

Explained
variance of

Indian rainfall
change SCF NC

Correlation
between SVs of
rainfall change
over India and
ISMR change

Correlation
between SV of
bias and SV of
rainfall change
over India

Correlation
between SVs
of surface

temperature and
precipitation bias
from the two

MCAs

Correlation
between SVs of
rainfall change
over India from
the two MCAs

Pr bias; Indian
rainfall change

39.4% 40% 12.5% 0.95 0.75 0.67 0.99

Ts bias; Indian
rainfall change

39.5% 47% 12.9% 0.94 0.67

FIG. 6. (a) Heterogeneous and (b) homogeneous maps obtained from the MCA performed between the surface temperature bias of the
34 climate models and the ISM precipitation changes detected over the historical period in the same 34 models. (c),(d) As in (a) and (b),
but for the MCA computed between the precipitation bias and the ISM precipitation change. Dotted points indicate significant correla-
tions at the 95% confidence level between the respective SV and gridpoint time series. See Text S1 in the supplemental material for a
short introduction to MCA or Bretherton et al. (1992) for more details on SVs (e.g., expansion coefficient series), heterogeneous and ho-
mogeneous maps, and the various statistics produced by MCA.
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whole tropics. First, Fig. 6d shows a double ITCZ structure
over the Pacific Ocean consistent with the intermodel spread
of precipitation biases discussed in section 3e. Statistical signif-
icance is moreover well defined along the equatorial Pacific
and the SPCZ (Fig. 4d). Models showing a positive ISM rain-
fall change typically also present a strong dry bias (more
precisely a reduced wet bias; see Fig. 5a) over the equatorial
Atlantic, accompanied by a wet bias (e.g., a reduced dry bias)
over the Sahel and central Africa, which corresponds to a
northward shift of the ITCZ. This signal therefore strongly
modulates the MMM rainfall bias shown in Fig. 5a over the
Atlantic region. The bias pattern is complex over the IO, with
a tripolar structure composed of an enhanced wet bias be-
tween 08 and 108N, surrounded by a dry bias north and south
of this band. Note that over the Indian and Atlantic regions,
not many areas exhibit statistically significant gridpoint corre-
lation in contrast to what is detected over the tropical Pacific.

To further illustrate the leading role of the tropical Pacific
biases in generating intermodel spread in ISMR changes over
the historical period, we computed MCAs with surface tem-
perature and precipitation biases restricted to the tropical
Pacific (see supplemental Fig. S5). The results are very similar
to the Pacific structure described in Figs. 6b,d, but with higher
correlations (r . 0.85) between the SV model series associ-
ated with the patterns of biases in each MCA. This points out
the importance of Pacific biases described above and also
again to the key role of ocean–atmosphere coupling in this
basin for ISM rainfall changes as simulated by CMIP6 models.

As mentioned above, there is a strong relationship between
the pattern of surface temperature and precipitation biases in
the Indo-Pacific domain. Figure 7 explores this relationship
by correlating precipitation and surface temperature biases
at every grid point. The negative correlations over land are
expected and consistent with the analysis of section 3c. They
arise from a reduced cooling effect associated with a deficit of
local precipitation and indicate that the atmosphere drives
the coupling between surface temperature and precipitation
biases. Over the ocean, the sign and the intensity of the cor-
relation between these two variables are spatially variable
due to the complexity of local ocean/atmosphere processes
in each basin. Correlations are highest over the equatorial

and subtropical areas in the Pacific. The Pacific Ocean mostly
displays a positive correlation except along the Mexican coast,
the Philippine Sea, and off the coast of Australia. The correla-
tion is particularly strong in the same regions, which exhibit
gridpoint statistical significance in Figs. 6b and 6d. This is
especially true over the eastern Pacific, indicating that en-
hanced oceanic warm bias is associated with a wet bias over
this region and vice versa across the models. This suggests
that surface temperature biases drive the atmosphere biases
over this region.

Therefore, since the biases in the tropical Pacific Ocean,
particularly along the equator, are correlated with the ISM
rainfall changes (Figs. 6b,d), and there is a tight coupling
between the ocean and atmosphere biases over the Pacific
(Fig. 7), we will focus in the following subsection on the im-
pact of the bias affecting the equatorial Pacific SST gradient
as a possible key factor for explaining the intermodel spread
of historical change of this SST gradient over the equatorial
Pacific and, in turn, ISMR changes.

b. Relationship between intermodel spread of ISMR
change and the equatorial SST gradient in the Pacific

To explore the role of equatorial Pacific SST gradient
biases, we first define an index of the zonal SST gradient as
the SST difference between the western and eastern equato-
rial Pacific (see Table 1). A positive value of this zonal SST
gradient index indicates a La Niña–like situation in both the
SST bias and change spatial patterns over the tropical Pacific.
There is a significant correlation between the SST gradient
bias index and ISMR change (r 5 20.47; p , 0.01), which
confirms our previous interpretations on the role of tropical
Pacific biases, especially along the equator, from the MCAs,
and this subsection will look at the underlying mechanisms
behind this statistical relationship.

First, Fig. 8a shows that models that present a La Niña–like
bias have a tendency to produce a strong cooling over the
equatorial eastern Pacific and a warming over the equatorial
western Pacific by the end of the historical period. The corre-
lation between the equatorial Pacific SST gradient (as defined
in Table 1) bias and change confirms the existence of this
strong and significant linear relationship between bias and

FIG. 7. Intermodel correlation between surface temperature and precipitation biases computed at every grid point
in the Indo-Pacific region for the 34 CMIP6 models (see supplemental Table S2 for the list of models). Dotted points
indicate grid points where the correlation is significant at the 95% confidence level.
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historical changes (r 5 0.66; p , 0.01). In other words, mod-
els that simulate a La Niña–like SST gradient (positive
gradient bias) tend to produce La Niña–like SST change
over the Pacific Ocean and vice versa. According to Fig. 8,
the SST gradient bias correlates more strongly with SST
changes in the eastern equatorial Pacific. Furthermore, the
bias of the Pacific SST gradient is more correlated with
the SST bias in the eastern Pacific than in the western (sup-
plemental Fig. S6). This suggests that, over the historical
period and for CMIP6 models, the eastern equatorial Pacific
plays a dominant role in shaping the change of the equato-
rial SST gradient as compared to the west. This is reminis-
cent of the ocean dynamical thermostat (ODT) mechanism
(Clement et al. 1996).

Consistently, models with a La Niña–like SST gradient bias
also show an increase in the SLP gradient across the Pacific
via an increase in pressure in the east and a decrease in the
west during the historical period (Fig. 8a). These changes in
SLP and SST gradients are accompanied with an increase in
easterly winds over the tropical Pacific, with all three variables

being related to each other through the Bjerknes feedback
(Bjerknes 1969).

These changes in surface variables are accompanied by
changes at higher levels in the atmosphere (Fig. 8b) as the sur-
face communicates with higher atmospheric levels via the la-
tent heat release and the Walker circulation. An anomalous
positive equatorial SST gradient in the Pacific induces an in-
tensification of the Walker circulation, as well as a westward
shift of its ascending branch (see supplemental Fig. S7).
Indeed, Fig. 8b shows an increase in upper-level wind diver-
gence over the Bay of Bengal and India, which implies more
intense convective activity and release of latent heat. On the
other hand, over the eastern Pacific we observe an increase in
upper-level wind convergence, which is accompanied by an in-
crease in subsidence and therefore a reduction in precipitation
by enhanced atmospheric stability.

The intermodel spread of precipitation changes over the
eastern and central Pacific, associated with the intermodel
spread of the equatorial Pacific SST gradient, induces an in-
termodel spread of latent heat release aloft which propagates

FIG. 8. Intermodel regressions against the equatorial Pacific SST gradient bias of (a) changes in SST (color shaded;
K K21), sea level pressure (contour interval: 2 hPa K21) and wind at 850 hPa (vectors; m s21 K21); (b) historical changes
of velocity potential at 200 hPa (color shaded; m2 s21 K21), precipitation (contour interval: 0.1 mm day21 K21), and diver-
gent wind at 200 hPa (vectors; m s21 K21); and (c) historical changes in 200–500-hPa thickness (color shaded; m K21),
850-hPa streamfunction (contour interval: 30000 m2 s21 K21), and rotational wind at 850 hPa (vectors; m s21 K21). The
colors of the arrows in all three panels vary from purple to cyan according to the intensity of the wind speed for readability.
In (a), only one vector of two is shown also for readability.
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eastward in the form of a Kelvin wave over the Atlantic (not
shown in Fig. 8c) and westward across the subtropical Pacific
in the form of Rossby waves. The latter can be seen in Fig. 8c
with the equatorially symmetric response of the tropospheric
thickness change. Models that tend to show a positive bias in
the SST equatorial gradient (e.g., La Niña–like anomalous
pattern) are associated with an anticyclonic circulation around
158N in the western Pacific at the end of the historical period
(Fig. 8a), which promotes the moisture transport across the
Bay of Bengal to India through enhanced southerlies at the
surface (Figs. 8a,c). This increase of the meridional circulation
can also be evidenced by the increase of the zonal tropo-
spheric thickness gradient around India, which strengthens
the vertical shear of the meridional wind according to the
thermal wind relationship (Dai et al. 2013). Note that these
relationships work conversely for models showing a negative
bias of the SST equatorial gradient in the Pacific, as our analy-
sis is linear. This mechanism is further supported by the corre-
lation between the change in precipitation over the central
Pacific (58S–58N; 1808–1008W) and the change in the MMCI
(r 5 20.45; p , 0.01), which was itself significantly linked to
the intermodel spread of ISMR change in section 3b.

In summary, a mean bias in the equatorial Pacific SST
gradient seems to modulate the ISMR change (r 5 20.47;
p , 0.01) by physical mechanisms very similar to those oper-
ating in the ENSO–monsoon teleconnection (Roy et al.
2019). Indeed, the intermodel spread of the equatorial Pa-
cific SST gradient bias in the CMIP6 models modulates the
historical change in this gradient, which is accompanied by
cascading effects through the Bjerknes feedback, leading to
a change in the Walker circulation that favors convection
over India when the initial bias is more La Niña–like and vice
versa. In other words, models that simulate a La Niña (El Niño)–
like SST gradient tend to produce La Niña (El Niño)–like
changes over the Pacific Ocean.

5. Conclusions

The impact of tropical temperature and precipitation biases
on simulated changes of ISMR has been analyzed here using
historical simulations of 34 coupled models from CMIP6 in
order to unravel the potential roles of these biases in the large
uncertainties and intermodel spread affecting ISMR simula-
tions and projections.

a. Summary

Our results first confirm that the skill of CGCMs at repro-
ducing ISMR climatology and trend has increased from
CMIP3 to CMIP6, but the latest models still exhibit significant
biases during JJAS (Jin et al. 2020; Wang et al. 2020). In par-
ticular, ISMR still suffers from a persistent mean dry bias. In
terms of historical changes, the MMM from CMIP6 models
still struggles to reproduce the observed post-1950 drying
trend of ISMR, but the agreement of CMIP6 MMM with ob-
servations is better over the recent decades (1990–2014) dur-
ing which both AIR and IMD datasets present a significant
wetting trend (Jin and Wang 2017; Roxy 2017). However, both
observed datasets and individual CMIP6 models disagree on

the amplitude of this wetting trend. Over this wetting period,
the models present a very large intermodel spread, and 40%
of them produce a (nonobserved) drying trend. Our analysis
demonstrates that this cannot simply be attributed to internal
variability as the intermodel spread is also prominent in multi-
member averages in which internal variability plays a second-
ary role.

On a broader scale, CMIP6 models also present similar
errors as previous generations: the Pacific Ocean displays
an erroneous double ITCZ (Tian and Dong 2020), an equa-
torial Pacific cold tongue bias (Li et al. 2016), and warmer-
than-observed SST in eastern boundary upwelling systems,
especially in the southeast Pacific and Atlantic Oceans
(Farneti et al. 2022). On an annual basis, but even more so
in boreal summer, the Pacific Ocean shows an El Niño
Modoki pattern of change in the historical period. How-
ever, the east–west equatorial SST gradient is increased
in the MMM, suggesting also a La Niña–like pattern of
change. These results are not in line with those of CMIP5,
where many models agreed on an El Niño–like warming
over the historical period, nor are they consistent with ob-
servations (Lian et al. 2018).

Following this assessment of the performance of the models
in CMIP6, we answered the three questions that had been
raised in the introduction concerning the intermodel spread
of historical change ISMR:

1) Is there a local link between climatological biases over
India and ISMR change? We demonstrated that tempera-
ture and rainfall climatology (and variability) biases over
India cannot be used to constrain the intermodel spread
of ISMR changes despite that these local biases also pre-
sent a large intermodel spread. This is consistent with past
investigations on CMIP5 (Racherla et al. 2012).

2) Are there links with some remote biases over land or the
tropical oceanic basins? The MCAs suggest that tropical
rainfall and temperature biases play a leading role in the
intermodel spread of ISMR rainfall changes over the his-
torical period, producing a similar and uniform rainfall
change over India. The MCA results also confirm that the
local biases are not key to reducing the uncertainties in
ISMR changes. Further analysis demonstrates that remote
coupled ocean–atmosphere biases in the Pacific Ocean play
a dominant role. Furthermore, the strong positive correla-
tion between local temperature and precipitation biases in
the Pacific suggests that the ocean is driving the coupled
biases. Consequently, we focused on the role of the bias of
the equatorial SST gradient and found that the climatologi-
cal background state for each model plays a pivotal role in
determining the Pacific mean state change over the histori-
cal period with the eastern equatorial Pacific playing a lead-
ing role in these interactions (Fig. 6b).

3) By which physical processes do local and/or remote biases
influence ISMR historical evolution? Our analysis sug-
gests that models having a La Niña–like SST gradient bias
tend to favor a La Niña–like change and, conversely, an
El Niño–like bias promotes an El Niño–like change.
Therefore, by modulating the change of the SST gradient
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in the Pacific, the bias of this gradient impacts the local
rainfall and the Walker circulation changes, which result
in ISM rainfall changes through teleconnection mecha-
nisms very similar to those associated with the ENSO–

ISM teleconnection (Roy et al. 2019; Chowdary et al.
2021). The equatorial Pacific SST gradient bias also mod-
ulates changes of latent heat release (associated with the
local rainfall changes) that propagate westward in the
form of Rossby waves into the subtropical North Pacific
Ocean. For La Niña–like models, this creates low-level
anticyclonic anomalies 108 north of the Maritime Conti-
nent and changes the midtropospheric temperature gradi-
ent westward of the rainfall change in the central Pacific.
Conversely, for El Niño–like models in which the Pacific
equatorial SST gradient is reduced, the changes of this
midtropospheric temperature gradient are reversed dur-
ing the historical period. This finally leads to a modulation
of the meridional monsoon circulation across the CMIP6
models, which also results in an intermodel spread of ISM
rainfall and MMCI changes. The modulation of the merid-
ional monsoon circulation by biases in the Pacific Ocean
has already been suggested to play a key role in the inter-
model spread of ISMR projections in CMIP5 (Li et al.
2017). However, and although the circulation patterns in-
volved here are similar, the underlying mechanisms we
suggest for the historical period are different; they involve
mainly the eastern equatorial Pacific, while the role of
the western Pacific is dominant in the future as diagnosed
by Li et al. (2017).

b. Discussion and perspectives

As summarized in Lian et al. (2018), the changes of the
equatorial Pacific SST gradient can be understood in an atmo-
spheric or oceanic framework. On the one hand, the atmo-
spheric framework links a reduction of the equatorial Pacific
gradient to the weakening of the tropical and Walker circula-
tions under a GHG forcing scenario (Held and Soden 2006).
On the other hand, the oceanic framework leads to an in-
crease of the gradient under global warming (Clement et al.
1996). The oceanic framework is based on the ODT mecha-
nism, which refers to the damping effect of the oceanic up-
welling in the eastern equatorial Pacific for a given forcing
through heat divergence (Clement et al. 1996). Here, we sug-
gest that a positive SST gradient bias is associated with an
overly pronounced upwelling in the eastern Pacific, which
causes an overestimation of the ODT mechanism, leading to
a reinforcement of the Pacific equatorial SST gradient over
the historical period and vice versa for models with a negative
SST gradient bias in the equatorial Pacific. Note that a poor
sampling of “observed” internal variability can also play an
important additional role in the mismatch between observa-
tions and simulations. Recent results show that a correct rep-
resentation of the internal variability requires large ensemble
simulations, and when this is done the observed Pacific
trend lies in the spread of the simulated internal variability
(Watanabe et al. 2021).

Future studies should investigate in more detail how the
equatorial biases in the Pacific can lead to a misrepresentation
of the forced response (Lian et al. 2018) and whether these
biases can be understood solely by intrinsic modeled errors of
the Pacific coupled system or if these biases can be induced by
remote errors, for example, those in the Atlantic or Indian ba-
sins (McGregor et al. 2018; Shamal and Sanjay 2021; Terray
et al. 2021, 2023).

In a future study, the relationship between the Pacific
equatorial SST gradient bias and ISMR change could be fur-
ther tested using SST nudging experiments to corroborate
the mechanisms that we proposed. We could also investigate
whether the relationships we found over the historical pe-
riod between the Pacific equatorial SST gradient biases and
ISMR would still hold in CMIP projections. Indeed, we
have suggested that the ODT mechanism links the equato-
rial Pacific gradient bias and change, but this relationship
may diminish on longer time scales because the ODT mech-
anism is described as a rapid response of the Pacific Ocean
to radiative forcing (Heede et al. 2020), as the ODT mecha-
nism is weakening with the progressive warming of the
equatorial thermocline (Luo et al. 2017).
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