
HAL Id: hal-04158998
https://hal.science/hal-04158998v1

Submitted on 11 Jul 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

TwistSLAM++: Fusing multiple modalities for accurate
dynamic semantic SLAM

Mathieu Gonzalez, Eric Marchand, Amine Kacete, Jérome Royan

To cite this version:
Mathieu Gonzalez, Eric Marchand, Amine Kacete, Jérome Royan. TwistSLAM++: Fusing multi-
ple modalities for accurate dynamic semantic SLAM. IROS 2023 - IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, Oct 2023, Detroit, MI, United States. pp.9126-9132,
�10.1109/IROS55552.2023.10341786�. �hal-04158998�

https://hal.science/hal-04158998v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

TwistSLAM++: Fusing multiple modalities for accurate
dynamic semantic SLAM

Mathieu Gonzalez1, Eric Marchand2, Amine Kacete1 and Jérome Royan1

Abstract— Most classical SLAM systems rely on the static
scene assumption, which limits their applicability in real world
scenarios. Recent SLAM frameworks have been proposed
to simultaneously track the camera and moving objects.
However they are often unable to estimate the canonical pose
of the objects and exhibit a low object tracking accuracy.
To solve this problem we propose TwistSLAM++, a semantic,
dynamic, SLAM system that fuses stereo images and LiDAR
information. Using semantic information, we track potentially
moving objects and associate them to 3D object detections in
LiDAR scans to obtain their pose and size. Then, we perform
registration on consecutive object scans to refine object pose
estimation. Finally, object scans are used to estimate the shape
of the object and constrain map points to lie on the estimated
surface within the bundle adjustment. We show on classical
benchmarks that this fusion approach based on multimodal
information improves the accuracy of object tracking.

Index Terms— SLAM, Localization, Mapping

I. INTRODUCTION

The goal of visual Simultaneous Localization and Map-
ping (SLAM) is to estimate the pose of a camera moving
in space while simultaneously building a map of the envi-
ronment. Classical approaches [1] assume the scene to be
static, a condition that is rarely met in real world scenarios.
To solve this problem some systems propose to mask out
dynamic objects in images [2]. While this method enables
SLAM in dynamic scenarios, it also loses an important piece
of information for some applications. Indeed autonomous
vehicles or augmented reality may need an estimate of the
trajectory and pose of objects in the scene. Moreover some
approaches mask out a priori dynamic objects that are in
reality static (e.g. parked cars) which can hurt camera pose
estimation accuracy. To solve this problem, systems such as
[4], [5], have been designed to track both the camera and all
moving objects. They show that they can accurately estimate
camera poses in dynamic scenarios while estimating the
trajectory and velocities of moving objects. However those
approaches are often based solely on RGB information and
are less precise than camera pose estimation. Furthermore,
those approaches suffer from tracking drift that can not be
corrected by loop closure. Finally they do not have access
to the canonical pose of the object but rather to its relative
pose with respect to its initial pose. This can be limitating as

1 Mathieu Gonzalez, Amine Kacete and Jerome Royan
are with the Institute of Research and Technology b<>com,
Rennes, France, {mathieu.gonzalez,amine.kacete,
jerome.royan}@b-com.com

2 Eric Marchand is with Univ Rennes, Inria, IRISA, CNRS, Rennes,
France, Eric.Marchand@irisa.fr

(a)

(b) (c)

(d)

Fig. 1. In our SLAM system we track object (here cars) moving in the
scene. We show here (a) a frame with tracked cars, their speed and repro-
jected bounding boxes. (b) the bounding box and clustered LiDAR points
(red) for the closest car. (c) the reconstruction of the car, using the approach
of DSP-SLAM [3]. (d) the map seen from above, with LiDAR points (black),
road LiDAR points (green), tracked cars and the camera frustum (right).

relative pose alone is insufficient for some use cases, such
as augmented reality applications that need an estimate of
the object pose to seamlessly overlay virtual content on it.
To solve those problems we propose to update our previous
work TwistSLAM [5] by integrating a 3D object detector
based on LiDAR information. This detector is used to predict
the pose and size of 3D bounding boxes corresponding
to potentially moving objects in the scene. Associating
detections to tracked objects allows us to have access to
their canonical pose, i.e. their pose with respect to an a
priori known object coordinate frame. Furthermore, we use
consecutive poses to constrain the displacement of objects,
thus reducing the drift. The obtained bounding boxes are then
used to associate 3D LiDAR points to tracked clusters which
serves two purposes. First they allow us to improve object
tracking by feeding successive scans to a generalized ICP
algorithm. The computed pose is then used as a constraint
in the bundle adjustment (BA). Second, inspired by the
work of DSP-SLAM [3], we use scans to fit a deep-learnt
signed distance function (SDF) [6] that represents the object
geometry. However contrary to DSP-SLAM we do not use
the SDF to estimate the object pose as we already have a
good estimate of it, but we rather use it to constrain the 3D
map points of clusters to lie on the estimated mesh, similarly

to our previous work [7] which was restricted to planes.
To summarize, our contributions are:
• A semantic SLAM system that can robustly estimate

the pose of a camera in dynamic scenes.
• A SLAM framework that can track multiple moving

objects and estimate their canonical pose.
• A SLAM system able to fuse 3D object pose estimation,

object tracking and 3D registration results from LiDAR
scans to reduce tracking drift.

• A SLAM framework that uses the 3D reconstruction
of object from LiDAR data to constrain the geometry
of map points.

We evaluate our approach on sequences from the KITTI
tracking datasets. We compare our results with state of
the art dynamic SLAM systems DynaSLAM 2 [4] and
TwistSLAM [5] and show that we improve object tracking
robustness and accuracy within our SLAM system.

The rest of the paper is described as follows. First we de-
scribe related work on dynamic SLAM, object based SLAM
and LiDAR based SLAM. Then, we rapidly recall the work
of TwistSLAM and present the novelties of our approach: the
use of a LiDAR based object detector, followed by scan reg-
istration and SDF fitting. Finally we demonstrate the benefits
of our approach on multiple sequences from a public dataset.

II.
RELATED WORK: DYNAMIC AND OBJECT BASED SLAM

In this section we first present some semantic dynamic
SLAM systems that tackle the problem of dynamic objects
by tracking them [8], [4], [9], [10], [11] or use them as high
level landmarks [12], [11]. For a additional resources on
classical and semantic SLAM we refer the reader to [13],
[14], [5]. We also present SLAM systems that make use of
LiDAR information and fuse multiple modalities to improve
the accuracy and robustness of camera tracking.

DynaSLAM II [4] uses semantic information to detect
objects. Object 3D points are represented in the object
reference frame and used to estimate the object pose at all
time by minimizing their reprojection error. TwistSLAM,
[5] creates a map of clusters corresponding to objects
in the scene. Static objects are used for camera tracking
while potentially dynamic objects are tracked. Furthermore,
by using mechanical links between clusters, TwistSLAM
constrains the velocity of objects to be coherent with the
structure of the scene, improving object pose estimation.

Some approaches propose to detect objects in the scene
to use them as high level landmarks. The first object based
SLAM systems such as [12], [15] require a specific object
pose estimation algorithm [16], [17] which limits their appli-
cability in real world scenarios. More recent ones, however,
are based on generic object detectors. Those approaches
use quadrics [18] or 3D bounding boxes [11] to represent
objects. Some even more recent approaches have represented
the geometry of objects more accurately using learning based
approaches. NodeSLAM [19] optimizes detected object
poses and shape, represented by an autoencoder. Object poses
are then used in the SLAM system to estimate the camera

pose. DSP-SLAM [3] optimizes the latent code of a deep
learning based SDF [6] and uses it to estimate the pose of
the object and to reconstruct the object shape. Object poses
are then used to constrain camera pose estimation in the BA.

Finally, some approaches [20], [21] have been using
LiDAR scans instead of images as an input for SLAM: [20] is
a full SLAM system based only on LiDAR data, which rep-
resents the map using a set of surfels. 3D LiDAR points are
transformed to the image plane using a spherical projection,
yielding a so-called vertex map. This map is used, together
with a normal map to estimate the updated current pose using
point to plane registration after finding associations in the
image plane. The current scan is then fused with the map to
update it. Finally loop closure is performed. Virtual views
are generated with the surfel map to compute the alignment
with the current scan. After a verification step, a pose graph
optimization is performed and used to update the surfel map.
Some approaches [22], [23], [24], [25] have also injected se-
mantic information into LiDAR based SLAM systems, to im-
prove pose estimation, for example by masking out moving
objects. SuMa++ [22] improves on [20] by integrating a CNN
to segment LiDAR scans [26]. This allows them to obtain a
higher level map. Furthermore semantic information is used
to detect and remove surfels belonging to dynamic objects. It
is also used to guide the ICP by weighting associated points.

III. TWISTSLAM++: MULTIMODAL OBJECT TRACKING

In this section we present our approach for which we show
a pipeline in figure 2. Following the idea of the algorithms
TwistSLAM [5] and S3LAM [7] we use a panoptic neural
network [27] to create a map of clusters corresponding to
objects in the scene. Using points extracted from a priori
static clusters (e.g. road, house, vegetation) we track the
camera. Then, we use the points from remaining potentially
dynamic clusters to track the objects. As we estimate the
geometry of some objects (e.g. a plane for the road) we
are able to constrain the velocity of tracked clusters with
mechanical links. To improve this approach we chose to use
LiDAR scans in several ways. First we feed them to a 3D
object detection network that estimates the pose and size
of objects in the scene. Second we use successive LiDAR
scans corresponding to objects and register them to compute
their relative pose. We inject both detected and registered
poses as constrains in the BA, the first one being free from
any drift and the second one more accurate. Third, we
follow the work of [3] and use DeepSDF [6] to fit a SDF
to objects using LiDAR points. The SDF is then used in the
BA to constrain the SLAM map points to lie on the object
surface, thus improving the estimated map.

A. Clusters creation

To obtain a complete semantic map in which objects are
uniquely identified we estimate the panoptic segmentation of
images, using [27]. Similarly to [7] we fuse 2D observations
of a single 3D point to obtain its class and id. Doing so we
obtain a semantic map and create a set of K clusters O =

Segmentation

Tracking

Camera
tracking

Object
tracking

Stereo Image

Local Mapping

Clusters
creation &

update

Dynamic BA

DeepSDF
fitting

Keyframe
(a)

(b)

(c)

(e)

(g)

2D input data

Computing block

LiDAR
scan

Object
detection

Object ICP

Plane fitting

(d)

(f)

Fig. 2. The pipeline of our approach: (a) keypoints are extracted from stereo images and used for camera tracking and (b) object tracking. (c) LiDAR
scans are fed to a 3D object detector, allowing us to obtain (d) the 3D bounding box of objects in the scene and to cluster LiDAR points, which are then
used in an ICP algorithm. (e) selected keyframes are segmented to create clusters that are augmented with clustered LiDAR points. (f) Object LiDAR
points are then used to fit a per object sdf that constrains the geometry of clusters. (g) The trajectory and geometry of clusters is refined in the BA.

{Ok, k ∈ [1,K]}. A cluster is a set of 3D points correspond-
ing to a single object, grouped according to their class and
instance id. We split the set of clusters into two parts: static
clusters S (such as road, building, ...) and a priori dynamic
clusters D (such as car, bike, human, bus, ...). A static cluster
contains 3D points {wX} expressed in the world frame. On
the other hand each dynamic cluster contains a set of 3D
points {oX} expressed in the object coordinate frame, a set
of poses {wTo} and a set of twists expressed in the world
coordinate frame {wξo} representing the cluster trajectory
and velocity through time. The pose transforms points from
the object coordinate frame to the world coordinate frame:

wX̄ =w To
oX̄ (1)

where X̄ denotes the homogeneous coordinates. The
twist, of object o at the ith timestamp, express in world
coordinates transforms a pose between two timestamps:

wToi+1
= exp(wξoi)

wToi (2)

where exp(.) is the exponential map [28] of se(3). For
simplicity in the remainder of this paper we will omit the
object index k. For some clusters corresponding to a priori
chosen classes (such as the road or the facade of a building)
we estimate a 3D plane, represented by π = (a, b, c, d)>

with ||π||2 = 1, using its 3D points {wX}. The plane
follows the following equation: π>wX = 0 and we estimate
it using a SVD in a RANSAC loop.

B. Dynamic SLAM

Using static clusters we can robustly track the camera:

E(ciTw) =
∑
j∈S

ρ(||ixj − p(ciTw,
w Xj)||Σ−1

i,j
) (3)

where ixj is the 2D keypoint corresponding to the obser-
vation of wXj in the ith frame, p is the pinhole camera
projection function, ρ is a robust cost function (in our case

Huber) [29] and Σi,j is the covariance matrix of the repro-
jection error. The camera pose is correctly estimated, even in
dynamic scenes as it is only based on static parts of the scene.

C. Dynamic object tracking

To track objects we match keypoints extracted from the
current and the previous frame. This can be a challenging
task as we do not initially know the movement of objects.
To facilitate matching of keypoints and robustify it we
estimate the optical flow between consecutive frames with a
CNN [30]. Keypoints are searched in areas defined by their
previous position updated with the optical flow. Furthermore
we ensure that enough keypoints are available for tracking
by extracting more keypoints from areas defined by objects
bounding boxes. The keypoints are then used either to create
new 3D points with stereo triangulation, which are added
to existing clusters or used to create new clusters, or used
to track the existing cluster. The assumption in TwistSLAM
[5] is that many moving clusters can be represented as being
linked to a static parent cluster with a specific mechanical
link. To track the object we thus optimize the twist wξoi :

E(wξoi)=
∑
j

ρ(||ixj−p(ciTwexp(Πwξoi)
wToi−1

,oXj)||Σ−1
i,j

)

(4)
where Π is the projection operator that removes twists
degrees of freedom, which constrains the twist according to
the mechanical link, ρ is the Huber robust estimator [29] and
Σi,j is the covariance matrix of the reprojection error, which
we estimate using the median absolute deviation (MAD)
[29]. For further information about the development of the
projection operator we refer the reader to [5]. We then update
the object pose using equation (2).

We optimize this cost function with the Levenberg-
Marquardt algorithm on matches found between consecutive
frames. We then use the estimated pose to project 3D

map points into the current frame, find new matches and
optimize again the cost function.

D. Injecting LiDAR scans in TwistSLAM

To improve the accuracy of object tracking we propose
to use LiDAR scans, taken at each timestamp and processed
in multiple ways. LiDAR scans are loaded by the tracking
thread and tranformed from the LiDAR to the camera
coordinate frame.

The first way we process the scans is by using a 3D object
detection network (namely 3DSSD [31]). For each scan this
network yields a set of detected objects, with their corre-
sponding size and pose, denoted ciTd

oi where d stands for de-
tection for the estimation at the ith frame. We associate clus-
ters created in our SLAM system to object detections by min-
imizing the 3D distance between the box center and the clus-
ter centroid. A detection is valid if its distance to the cluster
centroid is lower than 2 meters. We then use consecutive de-
tections to compute the relative twist wξdoi linking two poses:

wξdoi = log(ci+1Td
oi+1

(ciTd
oi)
−1) (5)

The estimation of this twist has the advantage of being
free from any drift. It can thus be used to limit the drift
accumulated during tracking, similarly to the action of
a loop closing step for camera tracking. The drawback
however is that it is more noisy than keypoints based
tracking. Indeed, the detector was trained to detect 3D
objects rather to accurately estimate their pose

We show in section III-F how to inject this estimated
twist in the BA to improve object tracking.

One of the main limitations of TwistSLAM [5] is the lack
of canonical pose for objects. Indeed, when an object is first
created, its pose is initialized with an identity matrix for the
rotation, and the centroid of the cluster for the translation.
Thus this pose does not relate to the pose of objects in
their canonical coordinate frame. Using 3D object detection
we can estimate the initial object pose. This initial pose
is then updated by object tracking and by the BA, using
estimated twists. We also fuse the estimated dimensions
of the detection using the median of each dimension for
robustness. Both the pose and the dimensions allow us to
estimate a 3D bounding box for clusters.

Using this box we can associate 3D LiDAR points to
clusters. We thus obtain at each timestamp a precise 3D
scan of each object in the scene. We apply a generalized ICP
algorithm [32] to compute the transformation between con-
secutive timestamps, that we denote oi+1Tr

oi where r stands
for registration. This transformation can be decomposed as:

oi+1Tr
oi =oi+1 Tr

w (oiTr
w)−1 (6)

which allows us to compute the corresponding twist in the
world coordinate frame:

wξroi = log(oi+1Tr
oi) (7)

This twist has the advantage of being accurate compared
to keypoint based twists, particularly when keypoints are

difficult to extract (e.g. on small, far or textureless objects).
We show in section III-F how to inject it in the global BA.

Finally, to improve the estimation of plane parameters we
propose to use LiDAR points that are more precise, denser
and cover more space than triangulated points. We transform
LiDAR scans to world coordinates using the estimated
camera camera pose and project them into the segmented
image. If their class is a priori planar and their score higher
than a threshold, we append them to the cluster and use them
for plane fitting. We apply this strategy to the class road.

E. Estimating clusters geometry

The geometry of objects is an important property that
we can inject in a SLAM system to improve the accuracy
of 3D mapping. To estimate it we use clustered LiDAR
points, that are precise and apply the method developed in
DSP-SLAM [3]. DSP-SLAM uses DeepSDF [6] to represent
the geometry of an object with a signed distance function
generated from its latent code vector:

G(oX, z) = s (8)

where s is the SDF value computed at the 3D points position
oX and z ∈ R64 is the latent code representing the object
shape. They optimize the latent code, object pose and scale
so that the generated geometry tightly fits the object scan.
Doing so it is possible to reconstruct a realistic watertight
mesh and use the object poses as constrains in the BA. As we
already have a good estimate of the object canonical poses
we propose to apply their algorithm on LiDAR points not to
refine the pose but rather to refine the SLAM 3D points. We
use clustered LiDAR scans to fit the latent code z similarly
to DSP-SLAM. However contrary to DSP-SLAM we keep
the object pose and scale fixed, their values being set using
our own estimate of the object pose and length. Then we
seek to constrain 3D map points so that they lie on the object
estimated surface. As we have an estimate of the SDF value
and of its derivative with respect to the 3D points position
we can apply a gradient descent algorithm to project points
on the surface. At the kth step of the algorithm we have:

oX(k+1) = oX(k) − α(k) ∂G(oX(k), z)

∂oX(k)
(9)

where α(k) is the step size, the point initial value is oX(0) =
oX and the derivative of G is obtained through back propaga-
tion. This process is repeated for 10 steps to obtain projected
points that we denote oX̃. Projected points will then be used
as anchors in the bundle adjustment to constrain 3D points
to be coherent with the estimated geometry. LiDAR scans,
which are usually more precise than points triangulated
from stereo images are thus used to constrain the map.

F. Dynamic Bundle Adjustment

In TwistSLAM [5] the bundle adjustment is used to
refine all object and camera poses as well as all static and
dynamic point positions. Furthermore it links consecutive
poses so that their twists follow a constant velocity model.
Doing so dynamic points are used to improve camera

pose estimation. In our new BA we improve upon [5] by
adding new regularization terms, taking into account LiDAR
scans processed in three ways: using a 3D object detection
network, an iterative closest point algorithm and a deep
signed distance function fitting.

Our bundle adjustment cost function can be written as
follows:

E({wξo,c Tw,
wX, oX}) =

∑
i,j

ei,jstat +
∑
i,j

ei,jdyna+∑
i

eiconst +
∑
i

eireg +
∑
i

eidet +
∑
j

ejgeo
(10)

where ei,jstat is the classical static reprojection error:

ei,jstat = ρ(||ixj − p(ciTw,
w Xj)||Σ−1

i,j
)

ei,jdyna is a dynamic reprojection error:

ei,jdyna = ρ(||ixj − p(cTw exp(Πwξoi)
wToi ,

oX)||Σ−1
i,j

)

where Σ−1
i,j is estimated using the MAD as in equation (4).

eiconst is a constant velocity model that penalizes twists
variations by linking 3 consecutive poses:

eiconst = ρ(||Πwξ̃oi+1
−Πwξ̃oi ||Wconst

)

where Wconst is a diagonal weight matrix used to balance
the errors, tuned experimentally, wξ̃oi+1

is the twist linking
the poses exp(Πwξoi)

wToi and exp(Πwξoi+1
)wToi+1

and
wξ̃oi is the twist linking the poses exp(Πwξoi−1

)wToi−1

and exp(Πwξoi)
wToi . Those twists are computed using

the logmap from SE(3) to se(3) defined in [28] and can be
written for wξ̃oi+1

as:

wξ̃oi+1
= log(exp((Πwξoi+1

)wToi+1
)(exp(Πwξoi)

wToi)
−1)

The error eidet penalizes the difference with twists estimated
from the object detection network:

eidet = ρ(||Πwξdoi+1
−Πwξ̃oi+1

||Wdet
)

where Wdet is a diagonal weight matrix. Similarly, the
error eireg penalizes the difference with twists estimated by
registering consecutive point clouds:

eireg = ρ(||Πwξroi+1
−Πwξ̃oi+1

||Wreg
)

where Wreg is a diagonal weight matrix.
Finally, the residual ejgeo constrains points to lie on the esti-
mated geometry surface by penalizing the difference between
the position of 3D points and of their projected counterpart:

ejgeo = ρ(||oX̃j − oXj ||Wgeo) (11)

where Wgeo is a diagonal weight matrix. To avoid
corrupting map points due to wrong pose estimations or
wrong projections, we only apply this constraint if its value
is below some threshold. Note that we could also directly
use the DeepSDF function G(oX, z) to compute the value of
the residual and to obtain the jacobian via back propagation.
This equation refines all camera and object poses as well as
all 3D points. To optimize it in real time we apply the Schur

trick as the Hessian is sparse [4]. For the management of
keyframes, we adopt the same strategy as TwistSLAM [5],
with temporal and spatial keyframes.

IV. EXPERIMENTS

In this section we present the experiments we conducted
to test our approach. We evaluate both the accuracy of the
camera pose estimation and of the object pose estimation.

A. Experiments details

Datasets. We evaluate our approach on the KITTI [33]
tracking dataset as it contains both camera and object trajec-
tories groundtruth. Points segmented by the network as the
unknown class are considered to be static, as the dynamic
classes are often correctly segmented.
Metrics. To evaluate the accuracy of camera pose estimation
we compute the translation and rotation parts of the Relative
Pose Error (RPE) [34], similarly to previous works. We also
evaluate the object pose accuracy using the Absolute Trans-
lation Error (ATE) and RPE. Furthermore we evaluate preci-
sion of objects 3D bounding boxes estimations by computing
the MOTP, similarly to [4] using KITTI evaluation tools. We
evaluate the true positive rate (TP) and the MOTP using the
projected 3D bounding box (2D), in bird view (BV) and in
3D. Those evaluations are done in the easy setting as in [4].

B. Camera pose estimation

In this subsection we evaluate the accuracy of our camera
pose estimation which can be seen in table I. As we obtain
almost exactly the same results as TwistSLAM we only show
here the results on some sequences. This is not surprising
as the sequences only exhibit a mild amount of dynamicity,
that is well dealt even by non dynamic approaches [1].
Furthermore in this approach we rather focused on the
accuracy of object tracking, that we improve compared to
state of the art, as shown in the following paragraph.

C. Object pose estimation.

In this paragraph we evaluate the accuracy of our object
pose estimation, we show the results in tables II and III. As
we can see in table II we obtain better results in terms of ob-
ject tracking accuracy for the ATE and RPE compared to [4]
and [5]. We particularly improve the RPE for both the rota-
tion and translation, which shows that adding constrains from
processed LiDAR data reduces tracking drift. The TP and
MOTP metrics in table III are improved compared to state of
the art on average. On most sequences they show very similar
scores to TwistSLAM, which can be expected as the MOTP
metrics only require an overlap of 0.25 for a detection to be
positive, thus an improvement of even tens of centimeters on
the pose may not translate to new positive detections. A way
to do so would be to decrease the number of points required
for tracking to track objects for longer periods. This however
is out of scope of our work as we focus on improving track-
ing accuracy. On some sequences however we obtain lower
3D and birdview MOTP for a similar 2D MOTP. Those dif-
ferences are mainly due to wrong pose estimates that happen

TABLE I
CAMERA POSE ESTIMATION COMPARISON ON THE KITTI TRACKING DATASET.

seq ORB-SLAM2 [1] DynaSLAM [2] DynaSLAM2 [4] TwistSLAM [5] Ours

RPEt (m/f) RPER (°/f) RPEt (m/f) RPER (°/f) RPEt (m/f) RPER (°/f) RPEt (m/f) RPER (°/f) RPEt (m/f) RPER (°/f)

00 0.04 0.06 0.04 0.06 0.04 0.06 0.04 0.05 0.04 0.05
02 0.04 0.03 0.04 0.03 0.04 0.02 0.03 0.03 0.03 0.02
03 0.07 0.04 0.07 0.04 0.06 0.04 0.06 0.02 0.06 0.03
04 0.07 0.06 0.07 0.06 0.07 0.06 0.06 0.04 0.06 0.04
05 0.06 0.03 0.06 0.03 0.06 0.03 0.06 0.02 0.06 0.02
10 0.07 0.04 0.07 0.04 0.07 0.03 0.07 0.03 0.07 0.02
11 0.04 0.03 0.04 0.03 0.04 0.03 0.03 0.02 0.03 0.02
14 0.03 0.08 0.03 0.08 0.03 0.08 0.03 0.06 0.03 0.06
18 0.05 0.03 0.05 0.03 0.05 0.02 0.04 0.02 0.04 0.02

mean 0.052 0.044 0.052 0.046 0.051 0.041 0.041 0.032 0.041 0.032

when the cluster is first created far from the camera. Those
differences can also be explained by the fact that TwistSLAM
uses the grountruth initial bounding box of objects, which is
noise-free while we use a 3D object detector. Finally on some
sequences (such as 11/35 and 20/0) the additional LiDAR
information allows us to improve tracking stability and thus
to track on longer trajectories, increasing the MOTP.

In addition to the first figure, we also show qualitative
results in figure 3.

V. CONCLUSION

In this paper we proposed TwistSLAM++, an improvement
over our previous work TwistSLAM, able to track the camera
in dynamic scenes and estimate the canonical pose of all
potentially moving objects. By injecting LiDAR data in
our pipeline, we estimate the canonical pose and size of
objects using a 3D object detection network. Then, we use
consecutive clustered LiDAR scans to accurately compute
their relative pose using an ICP algorithm, allowing us to
further constrain their movement. Finally, we use object
scans to estimate the 3D geometry of objects and use it to
constrain the 3D position of map points. We show that adding
those constraints from a new sensor allows us to improve
object pose accuracy compared to the state of the art.

REFERENCES

[1] R. Mur-Artal and J. D. Tardós, “ORB-SLAM2: An open-source
SLAM system for monocular, stereo, and RGB-D cameras,” IEEE
Trans. on Robotics, vol. 33, no. 5, pp. 1255–1262, 2017.

[2] B. Bescos, J. M. Fácil, J. Civera, and J. Neira, “DynaSLAM: Tracking,
mapping, and inpainting in dynamic scenes,” IEEE Robotics and
Automation Letters, vol. 3, no. 4, pp. 4076–4083, 2018.

[3] J. Wang, M. Rünz, and L. Agapito, “Dsp-slam: Object oriented slam
with deep shape priors,” in 2021 International Conference on 3D
Vision (3DV). IEEE, 2021, pp. 1362–1371.

[4] B. Bescos, C. Campos, J. D. Tardós, and J. Neira, “DynaSLAM II:
Tightly-coupled multi-object tracking and SLAM,” IEEE Robotics
and Automation Letters, vol. 6, no. 3, pp. 5191–5198, 2021.

[5] M. Gonzalez, E. Marchand, A. Kacete, and J. Royan, “Twistslam:
Constrained slam in dynamic environment,” IEEE Robotics and
Automation Letters, vol. 7, no. 3, pp. 6846 – 6853, 2022.

[6] J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove,
“Deepsdf: Learning continuous signed distance functions for shape
representation,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2019, pp. 165–174.

[7] M. Gonzalez, E. Marchand, A. Kacete, and J. Royan, “S3LAM:
Structured scene SLAM,” IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, IROS’22, 2021.

[8] M. Runz, M. Buffier, and L. Agapito, “Maskfusion: Real-time recogni-
tion, tracking and reconstruction of multiple moving objects,” in IEEE
Int Symp. on Mixed and Augmented Reality (ISMAR), 2018, pp. 10–20.

[9] J. Huang, S. Yang, T.-J. Mu, and S.-M. Hu, “ClusterVO: Clustering
moving instances and estimating visual odometry for self and
surroundings,” in IEEE/CVF Conf. on Computer Vision and Pattern
Recognition, 2020, pp. 2168–2177.

[10] J. Zhang, M. Henein, R. Mahony, and V. Ila, “VDO-SLAM: a visual
dynamic object-aware SLAM system,” arXiv:2005.11052, 2020.

[11] S. Yang and S. Scherer, “CubeSLAM: Monocular 3-D object SLAM,”
IEEE Trans. on Robotics, vol. 35, no. 4, pp. 925–938, 2019.

[12] R. F. Salas-Moreno, R. A. Newcombe, H. Strasdat, P. H. Kelly, and
A. J. Davison, “SLAM++: Simultaneous localisation and mapping at
the level of objects,” in IEEE Conf. on computer vision and pattern
recognition, 2013, pp. 1352–1359.

[13] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira,
I. Reid, and J. J. Leonard, “Past, present, and future of simultaneous
localization and mapping: Toward the robust-perception age,” IEEE
Trans. on robotics, vol. 32, no. 6, pp. 1309–1332, 2016.

[14] T. Taketomi, H. Uchiyama, and S. Ikeda, “Visual SLAM algorithms:
A survey from 2010 to 2016,” IPSJ Transactions on Computer Vision
and Applications, vol. 9, no. 1, pp. 1–11, 2017.

[15] J. Civera, D. Gálvez-López, L. Riazuelo, J. D. Tardós, and J. M. M.
Montiel, “Towards semantic SLAM using a monocular camera,” in
2011 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2011,
pp. 1277–1284.

[16] M. Rad and V. Lepetit, “BB8: A scalable, accurate, robust to partial
occlusion method for predicting the 3D poses of challenging objects
without using depth,” in IEEE Int. Conf. on Computer Vision, 2017,
pp. 3828–3836.

[17] M. Gonzalez, A. Kacete, A. Murienne, and E. Marchand, “L6dnet:
Light 6 DoF network for robust and precise object pose estimation
with small datasets,” IEEE Robotics and Automation Letters, 2021.

[18] L. Nicholson, M. Milford, and N. Sünderhauf, “QuadricSLAM:
Dual quadrics from object detections as landmarks in object-oriented
SLAM,” IEEE Robotics and Automation Letters, vol. 4, no. 1, pp.
1–8, 2018.

[19] E. Sucar, K. Wada, and A. Davison, “Nodeslam: Neural object
descriptors for multi-view shape reconstruction,” in 2020 International
Conference on 3D Vision (3DV). IEEE, 2020, pp. 949–958.

[20] J. Behley and C. Stachniss, “Efficient surfel-based slam using 3d
laser range data in urban environments.” in Robotics: Science and
Systems, vol. 2018, 2018, p. 59.

[21] C. Park, P. Moghadam, S. Kim, A. Elfes, C. Fookes, and S. Sridharan,
“Elastic lidar fusion: Dense map-centric continuous-time slam,” in
2018 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2018, pp. 1206–1213.

[22] X. Chen, A. Milioto, E. Palazzolo, P. Giguere, J. Behley, and
C. Stachniss, “Suma++: Efficient lidar-based semantic slam,” in 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2019, pp. 4530–4537.

[23] L. Sun, Z. Yan, A. Zaganidis, C. Zhao, and T. Duckett, “Recurrent-
octomap: Learning state-based map refinement for long-term semantic
mapping with 3-d-lidar data,” IEEE Robotics and Automation Letters,
vol. 3, no. 4, pp. 3749–3756, 2018.

TABLE II
OBJECT POSE ESTIMATION COMPARISON ON THE KITTI TRACKING DATASET. ATE IS IN M, RPEt IN M/M, RPER IN °/M

DynaSLAM 2 [4] TwistSLAM TwistSLAM++

seq / obj. id / class ATE RPEt RPER ATE RPEt RPER ATE RPEt RPER

03 / 1 / car 0.69 0.34 1.84 0.31 0.10 0.28 0.23 0.11 0.19
05 / 31 / car 0.51 0.26 13.5 0.58 0.35 0.19 0.09 0.07 0.28
10 / 0 / car 0.95 0.40 2.84 0.77 0.21 1.98 0.05 0.10 0.96
11 / 0 / car 1.05 0.43 12.51 0.17 0.23 0.23 0.15 0.28 0.21
11 / 35 car 1.25 0.89 16.64 0.10 0.03 0.11 0.11 0.02 0.09
18 / 2 / car 1.10 0.30 9.27 0.21 0.27 0.66 0.29 0.09 0.32
18 / 3 / car 1.13 0.55 20.05 0.15 0.21 0.56 0.13 0.10 0.37

19 / 63 / car 0.86 1.45 48.80 0.28 2.17 1.08 0.34 0.21 0.31
19 / 72 / car 0.99 1.12 3.36 0.16 0.05 0.34 0.09 0.03 0.37
20 / 0 / car 0.56 0.45 1.30 0.17 0.20 0.72 0.30 0.21 0.35

20 / 12 / car 1.18 0.40 6.19 0.24 0.20 1.54 0.80 0.54 0.64
20 / 122 / car 0.87 0.72 5.75 0.17 0.02 0.07 0.16 0.02 0.06

mean 0.93 0.61 11.83 0.26 0.32 0.68 0.23 0.15 0.35

TABLE III
OBJECT POSE ESTIMATION COMPARISON ON THE KITTI TRACKING DATASET. TP AND MOTP ARE IN %.

DynaSLAM 2 [4] TwistSLAM TwistSLAM++

seq / obj. id / class 2D TP 2D MOTP BV TP BV MOTP 3D TP 3D MOTP 2D TP 2D MOTP BV TP BV MOTP 3D TP 3D MOTP 2D TP 2D MOTP BV TP BV MOTP 3D TP 3D MOTP

03 / 1 / car 50.0 71.79 39.34 56.61 38.53 48.20 58.02 60.00 58.02 60.00 58.02 45.00 56.79 60.00 56.79 60.00 56.79 60.00
05 / 31 / car 28.96 60.30 14.48 46.84 11.45 34.20 30.84 35.00 30.84 35.00 30.84 35.00 30.00 26.64 16.32 14.95 16.10 14.49
10 / 0 / car 81.63 73.51 70.41 47.60 68.37 40.28 7.20 3.70 6.10 3.10 5.80 2.80 6.48 10.00 6.48 10.00 6.48 10.00
11 / 0 / car 72.65 74.78 61.66 50.74 52.28 47.35 29.61 32.50 29.61 32.50 29.61 32.50 26.82 30.00 26.82 30.00 26.82 30.00
11 / 35 car 53.17 65.25 19.05 31.95 6.35 26.02 65.00 67.50 65.00 67.50 65.00 67.50 73.75 77.50 73.75 77.50 73.75 77.50
18 / 2 / car 86.36 74.81 67.05 45.47 62.12 34.80 84.67 87.50 84.67 87.50 84.67 87.50 85.18 87.50 85.18 87.50 85.18 87.50
18 / 3 / car 53.33 70.94 21.75 41.45 16.84 35.80 28.19 30.00 28.19 30.00 28.19 30.00 21.83 25.00 21.83 25.00 21.83 25.00
19 / 63 / car 35.26 63.50 29.48 45.69 26.48 33.89 65.93 70.00 65.93 70.00 36.26 20.64 65.93 70.00 65.93 70.00 65.93 70.00
19 / 72 / car 29.11 62.59 29.43 55.48 29.43 39.81 16.92 20.00 16.92 20.00 16.92 20.00 5.38 10.00 5.38 10.00 5.38 10.00
20 / 0 / car 63.68 78.54 43.78 45.00 31.84 46.15 84.75 87.50 84.75 87.50 84.75 87.50 93.22 97.50 93.22 97.50 93.22 97.50
20 / 12 / car 42.77 76.77 37.64 49.29 36.23 40.81 14.24 17.5 13.91 17.45 13.04 17.25 32.75 37.5 32.75 37.5 32.75 37.5

20 / 122 / car 34.90 78.76 34.51 48.05 29.02 44.43 84.94 87.50 84.94 87.50 84.94 87.50 84.94 87.50 84.94 87.50 84.94 87.50

mean 55.15 70.96 39.05 47.01 34.08 39.31 45.53 49.89 47.41 49.84 44.84 43.18 49.42 51.6 47.45 50.62 47.43 50.58

(a)

(c)

(b)

Fig. 3. (a) Frame with detected objects, bounding boxes and speed.(b) Map with tracked objects, seen from above. (c) Mesh of reconstructed cars with
bounding boxes, LiDAR points (red) and projected points on the mesh (blue).

[24] X. Chen, S. Li, B. Mersch, L. Wiesmann, J. Gall, J. Behley, and
C. Stachniss, “Moving object segmentation in 3d lidar data: A
learning-based approach exploiting sequential data,” IEEE Robotics
and Automation Letters, vol. 6, no. 4, pp. 6529–6536, 2021.

[25] J. Jeong, T. S. Yoon, and J. B. Park, “Multimodal sensor-based
semantic 3d mapping for a large-scale environment,” Expert Systems
with Applications, vol. 105, pp. 1–10, 2018.

[26] A. Milioto, I. Vizzo, J. Behley, and C. Stachniss, “Rangenet++:
Fast and accurate lidar semantic segmentation,” in 2019 IEEE/RSJ
international conference on intelligent robots and systems (IROS).
IEEE, 2019, pp. 4213–4220.

[27] Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, and R. Girshick, “Detectron2,”
https://github.com/facebookresearch/detectron2, 2019.

[28] J.-L. Blanco, “A tutorial on se (3) transformation parameterizations
and on-manifold optimization,” University of Malaga, Tech. Rep,
vol. 3, p. 6, 2010.

[29] E. Malis and E. Marchand, “Experiments with robust estimation
techniques in real-time robot vision,” in 2006 IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems, 2006, pp. 223–228.

[30] Z. Teed and J. Deng, “Raft: Recurrent all-pairs field transforms for
optical flow,” in Eur. Conf. on Computer Vision, 2020, pp. 402–419.

[31] Z. Yang, Y. Sun, S. Liu, and J. Jia, “3DSSD: Point-based 3d single
stage object detector,” in Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, 2020, pp. 11 040–11 048.

[32] A. Segal, D. Haehnel, and S. Thrun, “Generalized-icp.” in Robotics:
science and systems, vol. 2, no. 4. Seattle, WA, 2009, p. 435.

[33] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in 2012 IEEE Conf. on
computer vision and pattern recognition, 2012, pp. 3354–3361.

[34] Z. Zhang and D. Scaramuzza, “A tutorial on quantitative trajectory
evaluation for visual (-inertial) odometry,” in 2018 IEEE/RSJ Int Conf.
on Intelligent Robots and Systems (IROS), 2018, pp. 7244–7251.

