
HAL Id: hal-04158896
https://hal.science/hal-04158896

Submitted on 11 Jul 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Two simple but efficient algorithms to recognize
Robinson dissimilarities

M. Carmona, V. Chepoi, G. Naves, Pascal Préa

To cite this version:
M. Carmona, V. Chepoi, G. Naves, Pascal Préa. Two simple but efficient algorithms to recognize
Robinson dissimilarities. 17th conference of the International Federation of Classification Societies (
IFCS 2022), Paula Brito, Jul 2022, Porto, Portugal. �10.1007/s00357-023-09446-y�. �hal-04158896�

https://hal.science/hal-04158896
https://hal.archives-ouvertes.fr

Two simple but efficient algorithms to recognize
Robinson dissimilarities 1

M. Carmonaa,b, V. Chepoia, G. Navesa, and P. Préaa,b

aLIS, Aix-Marseille Université, CNRS and Université de Toulon,
Marseille, France

bÉcole Centrale Marseille, Marseille, France

{mikhael.carmona,victor.chepoi,guyslain.naves,pascal.prea}@lis-lab.fr

Abstract. A dissimilarity d on a set S of size n is said to be Robinson if its matrix can be symmetrically
permuted so that its elements do not decrease when moving away from the main diagonal along any row
or column. Equivalently, S admits a total order < such that i < j < k implies that d(i, j) ≤ d(i, k) and
d(j, k) ≤ d(i, k). Intuitively, d is Robinson if S can be represented by points on a line. Recognizing Robinson
dissimilarities has numerous applications in seriation and classification. Robinson dissimilarities also play an
important role in the recognition of tractable cases for TSP. In this paper, we present two simple algorithms
(inspired by Quicksort) to recognize Robinson dissimilarities. One of these algorithms runs in O(n2 log n),
the other one runs in O(n3) in worst case and in O(n2) on average.

Key Words: Robinson dissimilarity; Classification, Seriation; PQ-Tree, Partition Refinement.

1. Introduction

A major issue in classification and data analysis is to visualize simple geometrical and
relational structures between objects based on their pairwise dissimilarities. Many applied
algorithmic problems ranging from archaeological dating through DNA sequencing and nu-
merical ecology to sparse matrix reordering and overlapping clustering involve ordering a
set of objects so that closely coupled elements are placed near each other. For example,
the classical seriation problem, introduced by Robinson (1951) as a tool to seriate archaeo-
logical deposits, asks to find a simultaneous ordering (or permutation) of the rows and the
columns of the dissimilarity matrix with the objective that small values should be concen-
trated around the main diagonal as closely as possible, whereas large values should fall as
far from it as possible. This goal is best achieved by considering the so-called Robinson
property: a dissimilarity matrix A is said to have the Robinson property if its values increase
monotonically in the rows and the columns when moving away from the main diagonal in
both directions. In case of (0, 1)-matrices, the Robinson property is best known as the Con-
secutive One Property. A dissimilarity matrix A with Robinson property is called a Robinson
matrix (or a R-matrix, see Atkins, Boman and Hendrickson (1998)). A Robinsonian matrix
(called also a pre-R-matrix by Atkins and al. 1998) is a dissimilarity matrix A which can be
transformed by permuting its rows and columns to a dissimilarity matrix having the Robin-
son property. The permutation which leads to a matrix with the Robinson property is called
a compatible order. Instead of dissimilarities, many papers on seriation consider similarities;
in this case, “increase monotonically” is replaced by “decrease monotonically”.

1This research was supported in part by ANR project DISTANCIA (ANR-17 CE40-0015) and has received
funding from Excellence Initiative of Aix-Marseille - A*MIDEX (Archimedes Institute AMX-19-IET-009), a
French ”Investissements d’Avenir” Programme.

1

2

1.1. Related work. Due to the importance of Robinson dissimilarities in seriation and
classification, the algorithmic problem of recognizing Robinsonian dissimilarities on n points
attracted the interest of many authors and several polynomial time algorithms for solving
this problems have been proposed. The existing recognition algorithms can be classified into
combinatorial and spectral. All combinatorial algorithms are based on the correspondence
between Robinson dissimilarities and interval hypergraphs/unit interval graphs. The main
difficulty arising in recognition algorithms is the existence of several compatible orders for
the whole matrix or for some its submatrices (if the whole matrix is Robinson).

Historically, the first recognition algorithm was given in 1984 by Mirkin and Rodin and
consists in testing if the hypergraph of balls of the dissimilarity is an interval hypergraph; it
runs in O(n4) time and uses O(n3) space. Chepoi and Fichet (1997) gave a simple divide-
and-conquer algorithm running in O(n3) time and using O(n2) space algorithms to recognize
Robinson dissimilarities. The algorithm divides the set of points into subsets and conse-
quently refine the obtained subsets into blocks to which the recursion is applied. Seston
(2008) presented another O(n3) time and O(n2) space algorithm, by using threshold graphs
defined by the input dissimilarity. Seston (2008) consequently improved the complexity of
the second algorithm to O(n2 log n). Finally, in 2014 Préa and Fortin (2014) presented an
algorithm running in optimal O(n2) time. The optimal complexity of the algorithm of Préa
and Fortin (2014) is due to the use of the PQ-trees of Booth and Lueker (1976) as a data
structure for encoding all compatible orders. Even if optimal, the algorithm of Préa and
Fortin (2014) is far from being simple and efficient in practice.

Subsequently, two new recognition algorithms were proposed by Laurent and Seminaroti
(2017): they presented an algorithm of complexity O(α · n) based on classical LexBFS
traversal and divide-and-conquer paradigm (where α is the depth of the recursion tree, which
is at most the number of distinct nonzero elements of the input matrix), and an O(n2 log n)
algorithm, which extends LexBFS to weighted matrices and is used as a multisweep traversal.
Finally, Laurent, Seminaroti and Tanigawa (2017) presented a structural characterization of
Robinson matrices in terms of forbidden substructures, extending the notion of asteroidal
triples in graphs to weighted graphs.

The spectral approach to the recognition of Robinson (dis)similarities was originally in-
troduced by Atkins et al. (1998) and was subsequently used in numerous papers (see, for
example, Fogel, d’Aspremont and Vojvonic (2016) and the references therein). The method
is based on the computation of the second smallest eigenvalue of the Laplacian of a similarity
matrix A and of its eigenvector, which are called the Fiedler value and the Fiedler vector of
the matrix A. This leads to an algorithm of complexity O(nT (n)+n2 log n) to recognize if a
similarity matrix is Robinson, where T (n) is the complexity of computing the Fiedler vector
of a matrix. The Fiedler vector is computed by the Lanczos algorithm, which is an iterative
numerical algorithm that at each iteration performs a multiplication of the input matrix A
by a vector. The authors mention that the algorithm converges in fewer than n iterations,
often only O(

√
n). Their algorithm has complexity O(n4) in the worst case and O(n3.5) on

average.
Real data contains errors, therefore the dissimilarity between the objects can be mea-

sured only approximately and the resulting dissimilarity matrix fails to satisfy the Robinson
property. In this case, we are led to the problem of approximating a dissimilarity by a
Robinson dissimilarity. As an error measure one can use the usual ℓp-distance between two
matrices of equal size. However this ℓp-fitting problem has been shown to be NP-hard for

3

p = 1 (see Barthélemy and Brucker (2001)) and for p = ∞ (see Chepoi, Fichet and Seston
(2009)); no efficient algorithm is known for other values of p. Various heuristics for this
optimization problem have been considered in (see Hubert (1974) and Hubert, Arabie and
Meulman (2006) and papers cited therein). The approximability of this fitting problem for
any 1 ≤ p <∞ is open. Chepoi and Seston (2011) presented a polynomial factor 16 approx-
imation for the ℓ∞-fitting problem. Given the input dissimilarity matrix A, the algorithm
uses the fact that the ℓ∞-fitting problem is polynomial when the total order ≺ (which is
derived from the existence of super-dominants) and the fact that the optimal fitting error
belongs to a well-defined list of size O(n4). Running a binary search on this list, for each
potential error value ϵ > 0, the algorithm either detects that there is no Robinson matrix
approximating A with error at most ϵ or returns a Robinson approximation with factor at
most 16ϵ.

Similarly to the classical correspondence between ultrametrics and hierarchies, there is
a one-to-one correspondence between Robinson dissimilarities and pseudohierarchies due to
Diday (1986) and Durand and Fichet (1988). Pseudohierarchies are now classical exam-
ples of classification with overlapping classes. As pseudohierarchies are a generalization of
hierarchies, Robinson dissimilarities are a generalization of ultrametrics.

Robinson dissimilarities are also linked with the Traveling Salesman Problem (TSP).
First, TSP can be polynomially solved on Robinson dissimilarity matrices by returning
any compatible order. Kalmanson (1975) and Demidenko (1976) dissimilarity matrices
are two other types of related dissimilarities on which TSP can be polynomially solved
(see Deineko et al. (2014) for a study of some of these cases). They are defined quite
similarly to Robinson dissimilarities: a dissimilarity on a set S is Demidenko (respec-
tively, Kalmanson) if there exists a linear (respectively, circular) order {x1, . . . , xn} such
that i < j < k < ℓ implies d(xi, xj) + d(xk, xℓ) ≤ d(xi, xk) + d(xj, xℓ) (respectively,
d(xi, xk) + d(xj, xℓ) ≥ max{d(xi, xj) + d(xk, xℓ), d(xi, xℓ) + d(xj, xk)}). Notice that the cur-
rently best algorithm for recognizing Demidenko matrices (and finding a permutation of the
points which lead to the Demidenko condition) is due to Çela et al. (2023) and is based on
the recognition of Robinson dissimilarities as a subroutine.

1.2. Our results. The recognition of Robinson dissimilarities can be viewed as a 2-dimen-
sional version of the classical sorting problem. Therefore, it is natural to investigate in which
way the sorting algorithms can be generalized to this 2-dimensional setting. The goal of this
paper is to propose two new algorithms to recognize Robinson dissimilarities based on the
idea of QuickSort of partitioning the elements with respect to randomly chosen pivots. In
our setting, the pivots are randomly chosen pairs of points {x, y} and the partition consists
in determining, when, say, x < y, which points must be located to the left of x, between x
and y, and to the right of y. At the difference of QuickSort, this partition step is much less
evident because of ambiguity caused by equalities between distances from x to y and from
x or y to other points. We deal with this difficulty in two different ways:

• Do a precise study of the ambiguities and of the use of the PQ-tree structure (see
Section 2.2). This yields to an algorithm which, similarly to QuickSort, is simple and
optimal (O(n2) time) on average but less efficient (O(n3) time) in the worst case.
• Use the partition refinement (see Section 2.3). It appears that partition refinement
was sufficient to recognize Robinson dissimilarities, and so we designed a simple
algorithm without pivots and partitioning. This algorithm runs in O(n2 log n) time.

4

1.3. Paper’s organization. The paper is organized as follows. In Section 2 we recall the
definitions related to Robinson dissimilarities and we recall two classical tools (PQ-trees and
refinement of partitions) that will be used by our algorithms. In Section 3, we will show
how to partition the input S according to a pair of points. This is the main tool of the first
of our algorithms. In Section 4, we describe our first algorithm, which is iterative and that
we called irri for Iterative-Robinson-Recognition-with-Intervals. In Section 5,
we give the second algorithm, which is recursive and that we called rrrr for Recursive-
Robinson-Recognition-by-Refinement. In Appendix A, we show experimentally that
Algorithm irri has complexity O(n2) on average.

2. Preliminaries

2.1. Robinsonian dissimilarities. Let S = {p1, . . . , pn} be a set of n elements, called
points. A partial order ≺ on S is called linear (or total) if any two elements of S are
comparable. A dissimilarity on S is a symmetric function d from S2 to the nonnegative real
numbers and vanishing on the main diagonal, i.e. d(x, y) = d(y, x) ≥ 0 and d(x, y) = 0 if
x = y. Then d(x, y) is called the distance between x and y and (S, d) is called a dissimilarity
space. A dissimilarity d and a linear order ≺ on S are called compatible if x ≺ z ≺ y implies
that d(x, y) ≥ max{d(x, z), d(z, y)}. If d and ≺ are compatible, then d is also compatible
with the linear order ≺op opposite to ≺. A dissimilarity d on S is said to be Robinson if
it admits a compatible order (Robinson 1951). Equivalently, d is Robinson if its distance
matrix D = (d(pi, pj)) can be symmetrically permuted so that its elements do not decrease
when moving away from the main diagonal along any row or column. Such a dissimilarity
matrix D is called Robinson (Crichtley and Fichet 1994, Diday 1986, Durand and Fichet
1988 and Hubert 1974) and we will call (S, d) a Robinson space.

The ball of radius r ≥ 0 and center x ∈ S is the set Br(x) := {y ∈ S : d(x, y) ≤ r}. From
the definition of a Robinson dissimilarity immediately follows that d is Robinson if and only
if there exists a linear order ≺ on S such that all balls Br(x) of (S, d) are intervals of ≺.
Moreover, this property holds for all compatible orders. Finally notice that if S ′ ⊂ S, then
the restriction d|S′ of d to S ′ is Robinsonian and the restriction of any compatible order ≺
of d to S ′ is a compatible order of d|S′ .

Basic examples of Robinson dissimilarities are the ultrametrics. Recall, that d is an ultra-
metric if d(x, y) ≤ max{d(x, z), d(y, z)} for all x, y, z ∈ S. Another basic example of a Robin-
son dissimilarity is provided by the standard line-distance between n points p1 < . . . < pn of
R. Notice that any line-distance has exactly two compatible orders: the order p1 < . . . < pn
defined by the coordinates of the points and its opposite. We say that a Robinson dissimi-
larity d is straight if d has exactly two compatible orders. All line-distances are straight but
the converse is not true.

A set B ⊂ S is called a block if B is an interval in any compatible order, ie, if x, y ∈ B
and x ≺ z ≺ y in some compatible order ≺ implies that z ∈ B. Two disjoint blocks are
consecutive if their union is also a block. More generally, the blocks in a sequence B1, . . . , Bk

are consecutive if Bi and Bi+1 are consecutive blocks for all 1 ≤ i < k.
Let U and V be two disjoints subsets of S. We say that U is independent from V if for

all x, y ∈ U , z ∈ V , we have d(x, z) = d(y, z), i.e. if the points of U cannot be distinguished
from V . If U is independent from S \ U , we say that U is independent.

5

Notice that an independent set may not be a block (if d is the constant dissimilarity on a
set S, every subset of S is independent, but the only blocks of (S, d) are S and the singletons)
and that a block is not necessary independent (if S = [n] and d(i, j) = |i − j|, then every
interval of S is a block but the only independent sets are S and the singletons).

2.2. PQ-trees and the Consecutive One’s Property. A PQ-tree is a tree-based data
structure introduced by Booth and Lueker in 1976 to efficiently encode a family of permu-
tations on a set S in which various subsets of S occur consecutively. A PQ-tree over a set S
is a rooted, ordered tree T whose leaves are the elements of S and whose internal nodes are
distinguished as P-nodes or Q-nodes. The children of a P-node can be arbitrarily permuted.
The children of a Q-node are ordered and the only permutation we can apply to this ordered
list is to reverse it. We use the convention that P-nodes are represented by circles or ellipses
and Q-nodes are represented by rectangles. For a P-node or Q-node α of T , we denote by
S(α) the set of all leaves in the subtree of T rooted at α. Two PQ-trees are said to be
equivalent if one can be transformed into the other by applying a sequence of the following
two equivalence transformations.

(1) Arbitrarily permute the children of a P-node.
(2) Reverse the children of a Q-node.

Example 1. The PQ-tree of Figure 1 has one Q-node (the root) and one P-node α with
S(α) = {1, 2, 3} corresponding to all permutations of the elements 1, 2, 3. Consequently,
the equivalence class represented by this PQ-tree corresponds precisely to the set of 12
permutations of the forms (π, 4, 5, 6, 7) and (7, 6, 5, 4, π), where π is any permutation on
{1, 2, 3}.

f
�� @@
1 2 3

4 5 6 7

Figure 1. A PQ-tree.

PQ-trees are used in DNA sequencing (to create a contig map from DNA fragments),
testing a matrix for the consecutive ones property, recognizing interval graphs, and testing
planarity of a graph (for last three applications see the original paper by Booth and Lueker
(1976). Préa and Fortin (2014) used PQ-trees to encode the compatible orderings of a Robin-
son dissimilarity space (S, d), namely, that the set of all orders (permutations) compatible
with d correspond to the equivalence class represented by a PQ-tree on S. We recall this
correspondence.

A (0, 1)-matrix A has the Consecutive Ones Property (C1P) if its columns can be permuted
in such a way that in all rows the 1s appear consecutively. Such an order is called compatible.
If A is a C1P-matrix, then the sets of all its compatible permutations can be represented by a
PQ-tree (Booth and Lueker 1976). Let B denote the set of all distinct balls of a dissimilarity
space (S, d), i.e. B := {Br(x) : r ∈ Im(d), x ∈ S}, where Im(d) := {δ ∈ R : ∃x, y ∈ S :
d(x, y) = δ}. Let Π be the {0, 1}-matrix whose columns are indexed by the points of S
and rows by the balls of B: for x ∈ S and B ∈ B we define Π(B, x) := 1 if x ∈ B and
Π(B, x) := 0 otherwise. The following simple result establishes a link between Robinson
dissimilarities and C1P-matrices:

6

Proposition 1 (Mirkin and Rodin (1984)). A dissimilarity d on S is Robinson if and only
if the matrix Π satisfies the C1P. There exists a bijection between the orders compatible with
d and the orders compatible with Π.

Since the sets of all compatible permutations of a C1P-matrix can be represented by a
PQ-tree, from Proposition 1 we obtain:

Corollary 1. The set of all orders compatible with a Robinson dissimilarity space (S, d) can
be represented by a PQ-tree.

Booth and Lueker (1976) designed an iterative algorithm which determines if a matrix
M has the C1P. If the answer is “yes”, the algorithm of Booth and Lueker constructs the
corresponding PQ-tree. The algorithm is sketched in Algorithm 1, where:

• Universal-PQ-Tree([n]) returns a PQ-tree representing all n! permutations on
[n]. This PQ-tree has one internal node, which is a P-node.
• Given a PQ-tree T on a set S and L ⊂ S, PQ-Tree-Update(T, L) returns a PQ-
tree representing all permutations encoded by T in which the elements of L are
consecutive (form an interval). If there is no such permutation or if T is None, then
it returns None. PQ-Tree-Update(T, L) mainly goes through T via a bottom-up
traversal and modify (or not) each node accordingly to its type (P-node or Q-node),
the type of its children and the repartition of the elements of L among its children.

Algorithm 1: Booth-Lueker

Input: A (0, 1)-matrix M with n columns and m lines
Output: A PQ-tree T representing all compatible permutations of M if M has the C1P

and None otherwise
begin

T ← Universal-PQ-Tree([n]) ;

forall l line of M do
L← {i : l[i] = 1} ;
T ←PQ-Tree-Update(T, L)

return T

Functions Universal-PQ-Tree and PQ-Tree-Update run in O(n), so Algorithm
Booth-Lueker runs in O(nm).

2.3. Refinement procedures. The general algorithmic paradigm of partition refinement
was introduced by Paige and Tarjan (1987). For recognizing Robinson dissimilarities, this
paradigm has already been used in Chepoi and Fichet (1997), Mirkin and Rodin (1984), and
Préa and Fortin (2014), as well as in some other papers.

Within the field of Robinson dissimilarities, the paradigm of partition refinement can be
expressed in the following way: given a Robinson space (S, d) and two disjoint subsets U
and V of S, refining U (with respect to V) consists in partitioning U into U1 ∪U2 ∪ . . .∪Uk

in such a way that there exists a subset V ′ of V such that:

• for all 0 < i ≤ k and for all x, y ∈ Ui, z ∈ V , the equality d(x, z) = d(y, z) holds.
• for all 0 < i < j ≤ k and for all x ∈ Ui, y ∈ Uj, z ∈ V , if z ∈ V ′, then d(x, z) ≤ d(y, z),
and if z ∈ V \ V ′, then d(x, z) ≥ d(y, z).

7

Notice that this operation is not possible with arbitrary dissimilarity spaces, for example if
U = {u1, u2, u3}, V = {v1, v2} and d(u1, v1) = d(u1, v2) < d(u2, v1) = d(u3, v2) < d(u3, v1) =
d(u2, v2). However if (S, d) is Robinson and U is an interval of U ∪ V when U ∪ V is sorted
along a compatible order, then it is possible to refine U with respect to V . In this case, V ′

is the set of the points to the left of U and V \ V ′ is the set of the points to the right of U
(or vice-versa) or whose position is unknown; in addition, each Ui is an interval of U when
U ∪ V is sorted along a compatible order. More precisely, we will consider the procedure
Refine(U, V), which:

• Takes as input a block U , divided into a sequence of consecutive blocks (U1, . . . , Uk)
and a set V ⊂ S \ U .
• Returns a sequence of consecutive blocks B = (U1,1, . . . , U1,k1 , U2,1, . . . U2,k2 , . . . , Uk,1,
. . . , Uk,kk) and a partition V + ∪ V − ∪ V ◦ of V such that:
(1) for all i, j, Ui,j ⊂ Ui,
(2) for all i, j, x, y ∈ Ui,j, and z ∈ V , d(x, z) = d(y, z) holds,
(3) for all i, j, i′, j′ such that i < i′ or (i = i′ and j < j′), and for all x ∈ Ui,j, y ∈ Ui′,j′ :

(i) if z ∈ V +, then d(x, z) ≥ d(y, z),
(ii) if z ∈ V −, then d(x, z) ≤ d(y, z),

(4) z ∈ V ◦ if and only if for all x, y ∈ U, d(x, z) = d(y, z) holds,
(5) for all i, j, i′, j′ with (i, j) ̸= (i′, j′), there exists z ∈ V such that for all x ∈

Ui,j, y ∈ Ui′,j′ , d(x, z) ̸= d(y, z) holds.

Notice that:

• Refine(U, V) runs in O(mp log p), where p = |U | and m = |V |.
• If V and V ′ are two subsets of S \ U , refining U relatively to V and then refining U
relatively to V ′ is equivalent to refining U relatively to V ∪ V ′.

3. Partitioning S with respect to a pivot-pair

Let (S, d) be a Robinson space with an arbitrary input order on S, which is not compatible
with d. A pivot-pair is any pair {x, y} of distinct points of S. By an xy-order we will mean
any linear order ≺ compatible with d such that x ≺ y. The aim of this section is to
determine how the points of S \ {x, y} can be located relatively to x and y in any xy-order.
This defines a partition of S into 13 classes. We show that some of these classes are blocks
of (S, d). Moreover, we establish the order between the resulting blocks and between the
remaining classes and these blocks.

Given two points z, t ∈ S \ {x, y}, we say that z is before t relatively to the pair {x, y}
(with the notation z ≺xy t or z ≺ t if there is no ambiguity) if z ≺ t for every xy-order ≺.
For two disjoint subsets U, V of S we write U ≺xy V if u ≺xy v for any u ∈ U and any v ∈ V .
Since the reversal of any xy-order is a yx-order and that any compatible order is either an
xy-order or an yx-order, z ≺xy t if and only if t ≺yx z. Thus U is a block of d if and only if
U is an interval of any xy-order. We say that point z2 is d-between two points z1 and z3 if z2
is between z1 and z3 (i.e. z1 ≺ z2 ≺ z3 or z3 ≺ z2 ≺ z1) for any compatible order. As above,
z2 is d-between z1 and z3 if and only if z2 is between z1 and z3 for any compatible xy-order.
Consequently, without loss of generality we will further consider only xy-orders.

3.1. The partition S = L ∪M ∪ R ∪ X ∪ Y ∪ A◦ ∪ A=. Let x, y be any pivot pair of S.
Comparing for each other point z of S the three distances d(z, x), d(z, y), and d(x, y), we

8

partition the set S as follows:

S = L ∪M ∪R ∪X ∪ Y ∪ A◦ ∪ A=,

where:
L = {z ∈ S : d(z, y) > max(d(z, x), d(x, y)},
M = {z ∈ S : d(x, y) > max(d(z, x), d(z, y)},
R = {z ∈ S : d(z, x) > max(d(z, y), d(x, y)},
X = {z ∈ S : d(z, y) = d(x, y) > d(z, x)},
Y = {z ∈ S : d(z, x) = d(x, y) > d(z, y)},
A◦ = {z ∈ S : d(z, y) = d(z, x) > d(x, y)},
A= = {z ∈ S : d(z, y) = d(z, x) = d(x, y)}.

Furthermore, we partition the set L into L = Lℓ∪Lm∪Lr, the setM intoM = Mℓ∪Mm∪Mr,
and the set R into R = Rℓ ∪Rm ∪Rr, where:

Lℓ = {z ∈ S : d(z, y) > d(z, x) > d(x, y)},
Lm = {z ∈ S : d(z, y) > d(z, x) = d(x, y)},
Lr = {z ∈ S : d(z, y) > d(x, y) > d(z, x)},
Mℓ = {z ∈ S : d(x, y) > d(z, y) > d(z, x)},
Mm = {z ∈ S : d(x, y) > d(z, y) = d(z, x)},
Mr = {z ∈ S : d(x, y) > d(z, x) > d(z, y)},
Rℓ = {z ∈ S : d(z, x) > d(x, y) > d(z, y)},
Rm = {z ∈ S : d(z, x) > d(z, y) = d(x, y)},
Rr = {z ∈ S : d(z, x) > d(z, y) > d(x, y)}.

We now continue with properties of these sets. We call the sets L, M , R, X, and Y non-
ambiguous and the sets A◦ and A= ambiguous. In the following three subsections (i.e. until
Lemma 12), we assume that d is Robinson.

3.2. Properties of the non-ambiguous sets. We consider the properties of the non-
ambiguous sets L, M , R, X, and Y . Notice first that x ∈ X and y ∈ Y .

Lemma 1. X and Y are blocks.

Proof. We will prove the result for X. Pick any z ∈ X and let t be any point which is
d-between z and x. We assert that t ∈ X. First notice that z ≺xy y. Indeed, if for an
xy-order ≺ we have x ≺ y ≺ z, then d(x, y) ≤ d(x, z), contrary to the assumption that
z ∈ X. Thus for any xy-order ≺ we have z ≺ t ≺ x ≺ y or x ≺ t ≺ z ≺ y. In both cases, we
have d(y, t) ∈ [d(z, y), d(x, y)], yielding d(y, t) = d(x, y). Since d(x, t) ≤ d(x, z) < d(x, y), we
conclude that t ∈ X. □

Lemma 2. L ≺xy X ≺xy M ≺xy Y ≺xy R.

Proof. We first show that L ≺xy X. Pick any z ∈ L. Since d(x, z) < d(y, z), y cannot be
d-between x and z and since d(x, y) < d(z, y), z cannot be d-between x and y. Consequently,
z ≺xy y and since X is a block, we get L ≺xy X. Similarly, we deduce that Y ≺xy R.

We now show that X ≺xy M . Let z ∈ M . Since d(y, z) < d(x, y), x cannot be d-between
z and y, so x ≺xy z, yielding X ≺xy M . Similarly, we have M ≺xy Y . □

9

Lemma 3. Lℓ ≺xy Lm ≺xy Lr and Rℓ ≺xy Rm ≺xy Rr.

Proof. Pick any u ∈ Lℓ, v ∈ Lm, and w ∈ Lr. Then we have d(x, u) > d(x, v) > d(x,w).
Since L ≺xy x, we obtain z ≺xy v ≺xy w. The proof of the second statement is similar. □

Lemma 4. Mℓ ≺xy Mm ≺xy Mr.

Proof. We prove that Mℓ ≺xy Mm (the proof that Mm ≺xy Mr is similar). Let z ∈ Mℓ and
t ∈Mm and suppose by way of contradiction that for some xy-order≺ we have x ≺ t ≺ z ≺ y.
Since t is between x and z, we must have d(x, t) ≤ d(x, z). Since z is between t and y, we must
have d(y, z) ≤ d(y, t). This is impossible because d(x, t) = d(y, t) and d(x, z) < d(y, z). □

3.3. Properties of the ambiguous set A=. We now provide relationships between the
ambiguous set A= and the non-ambiguous sets. Namely, we show that A= is “mixed” with
the sets Lr, X, M , Y , and Rℓ.

Lemma 5. Lm ≺xy A
= ≺xy Rm.

Proof. We prove that Lm ≺xy A= (the proof that A= ≺xy Rm is similar). Pick any z ∈ Lm

and t ∈ A=. Suppose by way of contradiction that for some xy-order ≺ we have t ≺ z.
Since z ≺xy x, we have z ≺ x, yielding d(y, z) ≤ d(y, t), which is impossible because
d(y, z) > d(x, y) = d(y, t). □

A more precise location of the set A= can be given when one of the sets Lr or Rℓ is
nonempty:

Lemma 6. If Lr ̸= ∅, then X ≺xy A
=. If Rℓ ̸= ∅, then A= ≺xy Y . Consequently, if Lr ̸= ∅

and Rℓ ̸= ∅, then X ≺xy A
= ≺xy Y .

Proof. Let Lr ̸= ∅ (the proof of the case Rℓ ̸= ∅ is similar). Pick any z ∈ Lr and t ∈ A=.
Suppose by way of contradiction there exists an xy-order ≺ such that t ≺ x. Then either
z ≺ t ≺ x ≺ y or t ≺ z ≺ x ≺ y. If z ≺ t ≺ x ≺ y, then we would have d(x, t) ≤ d(x, z),
which is impossible because d(x, z) < d(x, y) = d(x, t). If t ≺ z ≺ x ≺ y, then we would
have d(y, z) ≤ d(y, t), which is impossible because d(y, t) = d(x, y) < d(y, z). □

Lemma 7. If M ̸= ∅, then for all xy-orders ≺ and any z ∈ A=, we have z ≺ x or y ≺ z.

Proof. Suppose by way of contradiction that there exists an xy-order ≺ such that x ≺ z ≺ y.
Pick any t ∈ M . Then either we have x ≺ z ≺ t ≺ y or x ≺ t ≺ z ≺ y. In the
first case we will obtain d(x, t) ≥ d(x, z) = d(x, y) and in the second case we will obtain
d(t, y) ≥ d(z, y) = d(x, y), contrary to the assumption d(x, y) > max{d(x, t), d(t, y)}. □

By Lemma 8 below, A◦ does not “interfere” with X, Y and M . Therefore, from Lemma 7
we obtain:

Corollary 2. If M ̸= ∅, then M and X ∪M ∪ Y are blocks.

From Lemmas 4 and 2, we have:

Corollary 3. The sets Mℓ, Mm and Mr are blocks.

From Lemmas 6—7, we have:

Corollary 4. At least one of the sets Lr, M , Rℓ or A= is empty.

Lemmas 6—7 and Corollary 4 are resumed in Table 1.

10

3.4. Properties of the ambiguous set A◦. We now look at the set A◦. First we show
that A◦ may interfere only with the sets Lℓ and Rr.

Lemma 8. Lm ∪ Lr ∪X ∪M ∪ A= ∪ Y ∪Rℓ ∪Rm is a block.

Proof. Let ≺ be an xy-order and z be a point of Lℓ ∪ A◦ ∪ Rr. Then d(x, z) > d(x, y) and
d(y, z) > d(x, y). Let vℓ and vr be the leftmost and the rightmost points of Lm ∪ Lr ∪X ∪
M ∪ A= ∪ Y ∪ Rℓ ∪ Rm with respect to ≺. Then vℓ ⪯ x ≺ y ⪯ vr. Consequently, vℓ ∈
Lm∪Lr∪X ∪A= and vr ∈ A=∪Y ∪Rℓ∪Rm, from which we conclude that d(x, vℓ) ≤ d(x, y)
and d(y, vr) ≤ d(x, y).

Since d(x, z) > d(x, y) and d(x, vℓ) ≤ d(x, y), z cannot be located between vℓ and x. Since
d(y, z) > d(x, y) and d(y, vr) ≤ d(x, y), z cannot be located between y and vr. Finally, since
d(x, z) > d(x, y), z cannot be located between x and y. □

In order to determine the relations between A◦ and Lℓ, Rr, we pick the points of Lℓ and
Lr farthest from y and x, respectively. Namely, let zℓ be a point of Lℓ such that for all
z ∈ Lℓ, we have d(y, z) ≤ d(y, zℓ) and let zr be a point of Rr such that for all z ∈ Rr, we
have d(x, z) ≤ d(x, zr). Finally, we define the following subsets of A◦:

A◦
ℓ := {z ∈ A◦ : d(y, z) < d(y, zℓ) and d(zℓ, z) ≤ d(zℓ, x)},

A◦
r := {z ∈ A◦ : d(x, z) < d(x, zr) and d(zr, z) ≤ d(zr, y)},

A◦
◦ := A◦ \ (A◦

ℓ ∪ A◦
r).

If Lℓ = ∅, then we set A◦
ℓ := ∅, and if Rr = ∅, then we set A◦

r := ∅.

Lemma 9. There does not exist z ∈ A◦ such that d(y, z) < d(y, zℓ) and d(zℓ, x) < d(zℓ, z) <
d(zℓ, y).

Proof. Suppose by way of contradiction that such a point z exists, however there exists an
xy-order ≺. Since d(y, z) < d(y, zℓ), zℓ ≺ z. As d(zℓ, x) < d(zℓ, z) < d(zℓ, y), z must be
located between x and y, which is impossible because d(x, z) > d(x, y). □

Similarly, we have:

Lemma 10. There does not exist z ∈ A◦ such that d(x, z) < d(x, zr) and d(zr, y) < d(zr, z) <
d(zr, x) .

Lemma 11. Lℓ ∪ A◦
ℓ and Rr ∪ A◦

r are blocks.

Proof. Let ≺ be an xy-order and pick any z ∈ A◦
ℓ . By Lemma 8, z ≺ Lm or Rm ≺ z.

Since d(zℓ, z) ≤ d(zℓ, x) < d(zℓ, y), z cannot be at the right of Rm, hence A◦
ℓ ≺ Lm and so

Lℓ ∪ A◦
ℓ ≺ Lm . Similarly, Rm ≺ Rr ∪ A◦

r.
Let z ∈ Lℓ ∪ A◦

ℓ and t ∈ A◦
◦. We suppose that t ≺ x (otherwise Lℓ ∪ A◦

ℓ ≺ t and we are
done), so, if d(zℓ, t) > d(zℓ, x), we have t ≺ zℓ. We prove now that t ≺ z.

• If d(z, y) < d(zℓ, y), then zℓ ≺ z. So, if d(zℓ, t) > d(zℓ, x), then t ≺ z. If d(zℓ, t) ≤
d(zell, x), then, as t /∈ A◦

ℓ , we have d(y, t) ≥ d(y, zℓ), and so t ≺ zℓ. Thus, in this case
too, t ≺ z.
• If d(z, y) = d(zℓ, y), then z ∈ Lℓ and d(z, x) < d(z, y). As t /∈ A◦

ℓ , we have d(y, t) ≥
d(y, zℓ) or d(zℓ, t) > d(zℓ, x). If d(y, t) ≥ d(y, zℓ), then, as d(t, x) = d(t, y), we have
d(z, x) < d(t, x) and so t ≺ x. If d(zℓ, t) > d(zℓ, x), then t ≺ zℓ and d(t, x) = d(t, y) ≥
d(zℓ, y) = d(z, y) > d(z, x). So t ≺ z.

11

As it is impossible that d(z, y) > d(zℓ, y), Lℓ ∪ A◦
ℓ is an interval. Similarly, Rr ∪ A◦

r is an
interval. □

There may exist many points which, like zℓ or zr, maximize the distance from y or x. By
Lemma 11, the choice of zℓ and zr among these points has no impact on the sets A◦

ℓ and A◦
r.

In addition, from this lemma we obtain:

Corollary 5. A◦
ℓ ∩ A◦

r = ∅.

We conclude this section by showing that the set S \ A◦
◦ defines an block.

Lemma 12. S \ A◦
◦ is a block.

Proof. Let ≺ be an xy-order and pick any z ∈ A◦
◦. First suppose that z ≺ x and let t be

the leftmost point of S \ A◦
◦ for ≺. If Lℓ ∪ A◦

ℓ ̸= ∅, then t ∈ Lℓ ∪ A◦
ℓ and, by Lemma 11,

z ≺ t. If Lℓ ∪ A◦
ℓ = ∅, then d(x, t) ≤ d(x, y) < d(x, z), and so z ≺ t. Similarly, if y ≺ z,

then S \ A◦
◦ ≺ z. Since z cannot be located between x and y, we conclude that S \ A◦

◦ is a
block. □

3.5. Summary. The links between the sets Lr, X, M , Y , Rℓ and A= when A= ̸= ∅ can be
resumed by Table 1. In this case, (Lℓ∪A◦

ℓ , Lm, B, Rm, Rr ∪A◦
r) is a sequence of consecutive

blocks. Notice that Lℓ ∪ A◦
ℓ , Lm, Rm or Rr ∪ A◦

r may be empty.
If A= = ∅, then (Lℓ∪A◦

ℓ , Lm, Lr, X, M , Y , Rℓ, Rm, Rr∪A◦
r) is a sequence of consecutive

blocks (which can all be empty except X and Y).

Table 1. The blocks induced by Lr, X, M , Y , Rℓ and A= when A= ̸= ∅. The
“main sequence” is a sequence B (which may be of length 1) of consecutive blocks.
The “other blocks” are the induced blocks which are not included in the main
sequence. When Lr = Rℓ = ∅ and M ̸= ∅, the three other blocks are consecutive.

Lr M Rℓ Main sequence B Other blocks

∅ ∅ X ∪ Y ∪ A= X ; Y
∅ ̸= ∅ X ∪ A=, Y , Rℓ X

̸= ∅ ∅ X ∪M ∪ Y ∪ A= X, M , Y
̸= ∅ A=, X, M , Y , Rℓ

∅ ∅ Lr, X, Y ∪ A= Y
̸= ∅ ̸= ∅ Lr, X, A=, Y , Rℓ

̸= ∅ ∅ Lr, X, M , Y , A=

̸= ∅ d is not Robinson

Lemmas 9 and 10, Corollaries 4 and 5 can be settled as:

Theorem 1. Let d be a dissimilarity on S. If one of the following conditions is satisfied

• Lr, M , Rℓ and A= are all non empty,
• A◦

ℓ ∩ A◦
r ̸= ∅,

• There exist z ∈ A◦ such that d(y, z) < d(y, zℓ) and d(zℓ, x) < d(zℓ, z) < d(zℓ, y),
• There exist z ∈ A◦ such that d(x, z) < d(x, zr) and d(zr, y) < d(zr, z) < d(zr, x),

then d is not Robinson. In this case, we say that we have an internal contradiction.

It is thus simple to construct, from a pivot-pair (x, y), a set of intervals:

(1) Construct the sets Lℓ, Lm, Lr, X,M, Y,Rℓ, Rm, Rr, A
=, A◦

ℓ , A
◦
r, A

◦
◦

12

(2) From Table 1, transform these sets into sequences of consecutive blocks.
(3) Remove the empty blocks from the sequence.
(4) Take the blocks two by two to form the intervals.

For instance, if after Step (1), we have A=, Lr ̸= ∅ and Rℓ = M = Rm = ∅, then, after
Step (2), we have two sequences of consecutive blocks: (Lℓ ∪A◦

ℓ , Lm, Lr, X, Y ∪A=, Rm, Rr)
and (Y). Since Rm = ∅, we remove it from the first sequence and so, after Step (4), we get
the set {Lℓ ∪ A◦

ℓ ∪ Lm, Lm ∪ Lr, Lr ∪X,X ∪ Y ∪ A=, Y ∪ A= ∪Rr, Y }.
We call this construction (Steps (1)–(4)) Intervals-From-Pivot-Pair(x, y). If, at

Step (1), we have an internal contradiction, then Intervals-From-Pivot-Pair(x, y) re-
turns None. Clearly, Intervals-From-Pivot-Pair runs in O(n).

4. An iterative algorithm using PQ-trees

In this section, we present Algorithm irri (Iterative-Robinson-Recognition-with-
Intervals), which is a direct application of Sections 3 and 2.2. Algorithm irri considers all
pairs {x, y} of S as pivot-pairs and for each of them computes the partition from Section 3 and
its intervals. Then the algorithm updates the current PQ-tree T by subsequently applying
PQ-Tree-Update(T, I) for each occurring interval. We first give a “basic” version of
irri (Algorithm 2) which runs n O(n3) in all cases and then an “elaborate” version of irri
(Algorithm 3) which runs in O(n3) in worst case but in O(n2) on average (this will be
experimentally shown in Appendix A).

Algorithm 2: Iterative-Robinson-Recognition-with-Intervals (Basic Ver-
sion)

Input: A dissimilarity d on a set S
Output: A PQ-tree T which represents all permutations compatible with d if d is

Robinson; None otherwise
begin

T ← Universal-PQ-Tree(S) ;

forall {x, y} ⊂ S do
Ixy ← Intervals-From-Pivot-Pair(x, y);

if Ixy = None then
return None

forall I ∈ Ixy do
T ← PQ-Tree-Update(T, I)

return T

Proposition 2. If d is Robinson, then Algorithm 2 returns a PQ-tree that represents all
compatible orders of d, otherwise, it returns None. Algorithm 2 runs in O(n3) time.

Proof. Clearly, if d is Robinson, then Algorithm 2 returns a PQ-tree T such that all permu-
tations compatible with d are represented by the PQ-trees equivalent to T . In addition, for
every pair {x, y} ⊂ S (x ̸= y), if we denote d(x, y) by δ, thenX∪Lℓ∪Lm∪M∪A=∪Y = Bδ(x).
So all balls of d, for all centers and all radius, are implicitly considered by Algorithm 2 and
the result follows from Proposition 1.

For each pivot-pair {x, y} ⊂ S, Ixy contains at most 13 intervals. Since each interval is
treated by PQ-Tree-Update in O(n), Algorithm 2 runs in O(n3). □

13

At each step of Algorithm 2, we consider several blocks, not only the one defined by the
ball Bδ(x). Therefore, it may happen that the algorithm builds the PQ-tree of d before
checking all pivot-pairs {x, y}. This option is incorporated in Algorithm 3.

Algorithm 3: Iterative-Robinson-Recognition-with-Intervals (irri)

Input: A dissimilarity d on a n-set S
Output: A permutation σ, compatible with d if d is Robinson; None otherwise
begin

T ← Universal-PQ-Tree(S) ;

1 κ← n ; k ← 1 ;

repeat
2 while k < κ do

Randomly chose a new pivot-pair {x, y} ⊂ S ;

Ixy ←Intervals-From-Pivot-Pair(x, y);

if Ixy = None then
return None

forall I ∈ Ixy do
T ← PQ-Tree-Update(T, I) ;

if T = None then
return None

k ← k + 1 ;

σ ← a permutation represented by T ;

3 if σ is compatible with d then
return σ

κ← 2 · κ

Given two points u, v ∈ S, if no pivot-pair chosen by the Algorithm 3 contains u or v,
then the distance d(u, v) is not considered by the algorithm, therefore Algorithm 3 cannot
determine if d is not Robinson. So, Algorithm 3 must consider at least O(n) pivot-pairs.
Thus, at Line 1, we set κ (which is the initial number of tested pivot pairs) to n. Testing
if an order is compatible (line 3) with d can be done in O(n2) time. To avoid making too
many such tests, in the loop beginning at Line 2, we consider 2i−1 × n pivots at the i-th
occurrence of the repeat loop. Consequently, we have:

Proposition 3. Algorithm 3 runs in O(Kn), where K is the total number of considered
pivot-pairs.

Proof. Suppose that Algorithm 3 stops after testing a total number of K pivot-pairs (with a
compatible permutation or None as answer). We set P := K/n. The test at Line 3 is made
for p = 1, 2, 4, 8, . . . , P/2, P , so it is made logP times. As each of these tests runs in O(n2),
the total time taken by the tests at Line 3 is O(logP n2), which is less than O(Kn).

The complexity of the rest of the algorithm is dominated by the calls to Intervals-
From-Pivot-Pair and PQ-Tree-Update. Each of these calls runs in O(n) and there are
K such calls. So Algorithm 3 runs in O(Kn). □

Consequently, Algorithm 3 runs in O(n3) in the worst case. Experimental simulations in
Appendix A show that K = O(n) on average, so Algorithm 3 has an average complexity of
O(n2). In some cases, we can have K = Θ(n2), as the following Examples 2 and 3 show:

14

Example 2. Let S = {1, . . . , n}, d(1, i) = i for i > 1 and d(i, j) = 1 for 1 < i < j. For every
couple (x, y) = (i, j) with 1 < i, j, we have X = {i}, Y = {j}, L = {1} and A= = S\{1, i, j}.
So, to determine a compatible order, the algorithm must consider all pairs of the form {1, i}
as pivot-pairs. Since pivots are selected at random, we have to select O(n2) pairs in order
to consider all pertinent ones.

Example 3. Consider the PQ-tree Tt with 3t leaves, all at depth t and such that all the
internal nodes are Q-nodes with three children; see T3 on Figure 2.

1 2 3 4 5 6 7 8 9

α

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Figure 2. The PQ-tree T3. The subtree with root α is T2.

On S = {1, . . . , 3t} we define the dissimilarity dt in the following way: for i, j ∈ S, let α be
the lowest common ancestor of i and j and β1, β2, β3 be the three children (in this order) of
α. We set dt(i, j) := 2h if i or j is a descendant of β2 and dt(i, j) := 2h+1 otherwise, where
h is the (graph) distance between α and i. Clearly, dt is a Robinson dissimilarity. Recall
that for a node β of Tt, we define S(β) ⊆ S as the set of leaves under β. If we partition S
with respect to the pivot-pair {i, j}, then, up to symmetry, we get:

• X = S(β1), Y = Sβ3 , Mm = S(β2) and A◦
◦ = S \ S(α) if i ∈ S(β1) and j ∈ S(β3).

• X = S(β1), Y = S(β2), Rm = S(β3) and A◦
◦ = S \ S(α) if i ∈ S(β1) and j ∈ S(β2).

To determine an order compatible with dt, we have to consider a pivot-pair {i, j} ∈ S(α)
for every internal node α, so we must check O(n2) pivot-pairs.

5. A recursive algorithm by partition refinement

This section is devoted to Algorithm Recursive-Robinson-Recognition-by-Refine-
ment (rrrr). Contrary to irri, it is recursive and does not use PQ-trees, but partition
refinement.

5.1. Preliminaries. Algorithm rrrr is based on the two following Claims 1 and 2 (whose
proof is elementary) and on the Refine procedure defined in Section 2.3:

Claim 1. Let (S, d) be a Robinson space. If S is partitioned into a sequence of consecutive
blocks (B1,1, . . . , B1,k1 , B2,1, . . . , B2,k2 , . . . , Bk,1, . . . , Bk,kk) such that:

• for all 1 ≤ i ̸= i′ ≤ k, 1 ≤ j ≤ ki, 1 ≤ j′ ≤ ki′, x, y ∈ Bi,j, z ∈ Bi′,j′, we have
d(x, z) = d(y, z),
• for all 1 ≤ i ≤ k, 1 ≤ j1 < j2 ≤ ki, there exist i′ ̸= i, 1 ≤ j′ ≤ ki′ such that for all
x ∈ Bi,j1 , y ∈ Bi,j2 , z ∈ Bi′,j′, we have d(x, z) ̸= d(y, z),
• for all 1 ≤ i < i′ ≤ k, 1 ≤ j1 < j2 ≤ ki, 1 ≤ j′ ≤ ki′ , x ∈ Bi,j1 , y ∈ Bi,j2 , z ∈ Bi′,j′, we
have d(x, z) ≥ d(y, z),
• for all 1 ≤ i′ < i ≤ k, 1 ≤ j1 < j2 ≤ ki, 1 ≤ j′ ≤ ki′ , x ∈ Bi,j1 , y ∈ Bi,j2 , z ∈ Bi′,j′, we
have d(x, z) ≤ d(y, z).

Additionally, if for all 1 ≤ i ≤ k, πi is a permutation of Bi :=
⋃ki

j=1Bi,j such that

15

• πi is a compatible order on (Bi, d|Bi
),

• for all 1 ≤ j1 < j2 ≤ ik, x ∈ Bi,j1 , y ∈ Bi,j2, we have x ≺πi
y,

then π1π2 . . . πk is a compatible order of d.

Claim 2. Let (S, d) be a Robinson space, U be an independent block of S, and u ∈ U . Then,
for every compatible order σ of d|U and π1uπ2 of d|S\U∪{u}, π1σπ2 is a compatible order of
d. Moreover, every compatible order on (S, d) can be decomposed in this way.

5.2. The algorithm. We now describe Algorithm rrrr. It takes as input a pair (S, U)
where (S, d) is a dissimilarity space and U is a subset of S of size ̸= 1 (U may be empty)
and returns, if (S, d) is Robinson, a compatible order of S. Sets S and U are given as
sequences (eventually of length 1) of disjoint subsets (B1, . . . , Bk) and (U1, . . . , Uk′). If (S, d)
is Robinson, then (B1, . . . , Bk) and (U1, . . . , Uk′) will be sequences of consecutive blocks (so
U is a block). The initial call of rrrr will be with U = ∅ and k = k′ = 1.
If |S| ≤ 2 or if d is the constant dissimilarity, then (S, d) is Robinson and rrrr returns

any order such that B1 < . . . < Bk. If all blocks Bi are singletons, then rrrr returns the
total order on these sets. Otherwise:

(1) If U = ∅, then:
(a) If S is given by a sequence (B1, . . . , Bk) with k > 1, then take as U any set Bi

of size > 1.
(b) Otherwise, as d is not constant, then there exist x ∈ S and δ > 0 such that

Bδ(x) ⊊ S. Set U := Bδ(x). (Section 5.3 shows how to find such a ball Bδ(x)
or to decide that d is constant in O(n) time, after a O(n2 log n) preprocessing).
Notice that |Bδ(x)| > 1 and that, if (S, d) is Robinson, then Bδ(x) is a block.

(2) Refine U relatively to V := S \ U .
(3) Two cases may occur:

(a) If V − = V + = ∅, then U is an independent block. By Claim 2, after performing
the following operations (i)-(iii), the algorithm returns a compatible order in
Step (4) if (S, d) is Robinson.

(i) Pick u ∈ U .
(ii) Apply rrrr on (U,∅). We get a permutation σ of U .
(iii) Apply rrrr on (V ∪ {u},∅). We get a permutation π1uπ2 of V ∪ {u}.

(b) If V − ∪ V + ̸= ∅, then U is partitioned into a sequence of disjoint subsets
(U1, . . . , Up) with p > 1.

(i) Randomly choose u1 ∈ U1 and up ∈ Up.
• If V − ̸= ∅, then take v− ∈ V − such that d(v−, u1) is maximal and
set W− := {w ∈ V ◦ : d(u1, w) ≤ d(u1, v

−) ∧ d(v−, w) ≤ d(v−, u1)}.
• If V − = ∅, then W− := ∅.
• If V + ̸= ∅, then take v+ ∈ V + such that d(v+, up) is maximal and
set W+ := {w ∈ V ◦ : d(uk, w) ≤ d(up, v

+) ∧ d(v+, w) ≤ d(v+, up)}.
• If V + = ∅, then W+ := ∅.

By Lemma 13, V − := V − ∪W−, U , and V + := V + ∪W+ are consecutive
blocks.

(ii) Refine V − and V + relatively to U . If these sets are nonempty, then we get
V − as a sequence (B−

1 , . . . , B
−
k−) and V + as (B+

1 , . . . , B
+
k+). Note that in

each case, U is unchanged.

16

(iii) Pick a point u ∈ U and set U ′ := V − ∪ {u} ∪ V +, given as the sequence
(B−

1 , . . . , B
−
k− , {u}, B

+
1 , . . . , B

+
k+).

(iv) Run rrrr on (U = (U1, . . . , Uk),∅) and get a permutation σ of U .
(v) Run rrrr on (V ◦ ∪ U ′, U ′) and get a permutation π := π1uπ2.

(4) Return π1σπ2.

The pseudo-code of Algorithm rrrr is given by Algorithm 4.

Algorithm 4: Recursive-Robinson-Recognition-by-Refinement (rrrr)

Input: A set S, given by an ordered partition (B1, . . . , Bk), a set U ⊂ S with |U | ≠ 1,
given by an ordered partition (U1, . . . , Uk′), a dissimilarity d on S.
If d is Robinson, then (B1, . . . , Bk) and (U1, . . . , Uk′) are sequences of consecutive
blocks. We may have k = 1, k′ = 1 or U = ∅.

Output: A permutation of S which, when (S, d) is Robinson, is compatible with d.
begin

if |S| ≤ 2 or d is a constant dissimilarity or ∀i ∈ {1, . . . , k}, |Bi| = 1 then
return any permutation of S such that B1 ≺ . . . ≺ Bk

if U = ∅ then
if k > 1 then

Let Bi be such that |Bi| > 1 ;
U ← (Bi)

else
Let x ∈ S, δ > 0 be such that Bδ(x) ̸= ∅ ;
U ← (Bδ(x))

Refine(U, S \ U) // We get S \ U partitioned into V +, V −, V ◦

if V + = V − = ∅ then
Let u ∈ U ;

σ ← rrrr(U,∅) ;
π1uπ2 ← rrrr(V ◦ ∪ {u},∅)

else
// In this case, U is partitioned into (U1, . . . , Up) with p > 1

Let u1 ∈ U1, up ∈ Up ;

if V − ̸= ∅ then
Let v− ∈ V − such that d(v−, u1) is maximum ;

V − ← V − ∪ {w ∈ V ◦ : d(u1, w) ≤ d(u1, v
−) and d(v−, w) ≤ d(v−, u1)}

if V + ̸= ∅ then
Let v+ ∈ V + such that d(v+, up) is maximum ;

V + ← V + ∪ {w ∈ V ◦ : d(uk, w) ≤ d(uk, v
+) and d(v+, w) ≤ d(v+, uk)}

Refine(V −, U) // We get V − partitioned into (B−
1 , . . . , B

−
k−)

Refine(V +, U) // We get V + partitioned into (B+
1 , . . . , B

+
k+

)

Let u ∈ U ;

U ′ ← V − ∪ {u} ∪ V + // U ′ = (B−
1 , . . . , B

−
k− , {u}, B

+
1 , . . . , B

+
k+

)

σ ← rrrr(U = (U1, . . . , Up),∅) ;
π1uπ2 ← rrrr(V ◦ ∪ U ′, U ′) // V ◦ ∪ U ′ is considered as a unique block

return π1σπ2

17

Lemma 13. With the notations of Step (3-b-i): A point w ∈ V ◦ is d-between a point of V −

and u1 if and only if w ∈ W−; a point w ∈ V ◦ is d-between a point of V + and up if and only
if w ∈ W+.

Proof. We prove the first assertion (the proof of the second one is similar). For a given
u1up-order, let v

′
ℓ be the leftmost point of V −. Even if v′ℓ ̸= vℓ, we have d(v′ℓ, u1) = d(vℓ, u1).

So the “only if” part is the definition of Robinson dissimilarities.
To prove the converse, we only consider u1up-orders. Since d(w, u1) ≤ d(v−, u1), we

have d(w, up) < d(v−, up), so w is on the right of v−. As d(v−, w) ≤ d(v−, u1), we have
d(v−, w) < d(v−, up) and w is on the left of up. As U is a block, w is on the left of u1. □

When we call rrrr at Step (3-a-ii) or (3-b-iv), U has to be partitioned into a sequence
of consecutive blocks (U1, . . . , Uk) such that, ∀1 ≤ i ≤ k, x, y ∈ Ui, z ∈ S \ U , we have
d(x, z) = d(y, z), i.e. U has to be refined relatively to S \ U .
If there is a sequence of Step (3-b), and so of calls by Step (3-b-iv), then we get a sequence

of sets U0, U1 = U ′0, U2 = U ′1, . . . By Step (2), each U i is refined relatively to S \
⋃

j<i U
j.

But, at Step (3-b-ii), U i is refined relatively to U i−1 but not relatively to
⋃

j<i−1 U
j. But as

∀x, y ∈
⋃

j<i−1 U
j, z ∈ U i, we have d(x, z) = d(y, z) and U i−1 contains a point of

⋃
j<i−1 U

j

(at Step (3-b-iii), we pick u ∈
⋃

j<i−1 U
j), refining U i relatively to U i−1 is equivalent to

refining U i relatively to
⋃

j<i U
j.

So, we have:

Proposition 4. If d is Robinson, rrrr(S,∅) returns a compatible order.

Notice in addition that the construction of W− and W+ at Step (3-b-i) is similar to the
construction of A◦

ℓ and A◦
r for Algorithms 2 and 3 (see Section 3.4)

5.3. Finding a block. Before running rrrr we compute, for each x ∈ S, the balls Bδ(x)
centered in x and of radius δ > 0 that we give as a sequence B(x) := (Bδ(x)), sorted by
increasing values of δ. This takes (for all x ∈ S) O(n2 log n). There are three cases where
rrrr can be called with U = ∅:

• The initial call: finding a ball Bδ(x) which is different from S or determining that
d is a constant dissimilarity takes O(n): we only have to check the first element of
each sequence B(x).
• At Step (3-a-ii) or (3-b-iv). If U is not partitioned into a sequence of consecutive
blocks (U1, . . . , Uk), then for all x, y ∈ U, z ∈ S\U , we have d(x, y) ≤ d(x, z) = d(y, z).
So d|U is constant if and only if for all x ∈ U , the first element Bδ1(x) of B(x) is such
that |Bδ1(x)| ≥ |U |. Thus checking if d is constant or finding a block can be done in
O(n).
• At Step (3-a-iii) with V not partitioned into a sequence of consecutive blocks. For
x ∈ V , as d(x, y) has a constant value for y ∈ U , d(x, y) has a constant value for
y ∈ V ∪{u} if and only if the first element Bδ1(x) of B(x) is such that |Bδ1(x)| ≥ |S|
(It is possible that |Bδ1(x)| > S since the computation of B(x) has been made as a
pre-treatment, on the whole set). We can check that in O(|V |) time.

We now look at the balls centered at u. If one of these balls contains a point not
in U , it contains all of U . So, a ball Bδ(u) corresponds to a block of V ∪ {u} if and
only if |U | < |Bδ(u)| < |U ∪ V |. If such a ball exists, it appears in the first |U ∪ V |
elements of B(u). So checking the existence of such a ball takes O(|U ∪ V |).

18

5.4. Complexity. In this subsection, we prove the following result.

Proposition 5. Algorithm rrrr runs in O(n2 log n) time in worst case.

Proof. We set n := |S|, p := |U | and m := n− p. Apart from the recursive calls, the steps of
rrrr have the following complexity: O(n) for Steps (1), (3-b-i) and (3-b-iii), O(mp log p) for
Step (2), O(mp logm) for Step (3-b-ii), and O(1) for Step (3-a-i). So, apart from the recursive
calls, there exists a constant C such that the number of operations taken by rrrr(S, U) is
at most Cmp log n.

We now show by induction on n that there exists a constant C ′ such that the number
of operations taken by rrrr is at most C ′n2 log n. The property trivially holds for small
values of n. We suppose, with no loss of generality that U ̸= ∅ (when U = ∅, at Step (1),
the algorithm builds in O(n) a non-empty set U). So we have p ≥ 2. We set C ′ > 2C,
Suppose now that, for all n′ < n, rrrr runs on a set S ′ with |S ′| = n′ within at most

C ′n′2 log n′ operations. Since C ′ > 2C and p ≥ 2, we obtain the following bounds for the
total number of operations for rrrr(S, U):

≤ C ′p2 log p+ C ′(m+ 1)2 log(m+ 1) + Cmp log n

≤ (C ′p2 + C ′(m+ 1)2 + Cmp) log n ≤ C ′(p2 + (m+ 1)2 +
mp

2
) log n

≤ C ′(p+m)2 log n = C ′n2 log n.

This concludes the complexity analysis of Algorithm rrrr. □

Remark 1. It is possible to make Refine(U, V) run in O(max(|U |2, |V |2)) but, if we apply
this version of Refine to rrrr, we get an algorithm in O(n3) instead of O(n2 log n), for
instance with a sequence of recursive calls at Step (3-b-v) with, at each time, |U | = 2.

6. Conclusion

In regard to the algorithm of Section 4, one can note that the decomposition of M into
Mℓ ∪Mm ∪Mr changes neither the theoretical complexity nor the results of the empirical
tests. The two examples at the end of Section 4 lead to the following open questions:

Question 1: In these two examples, only O(n) pivots need to be considered and Algorithm 3
checks O(n2) pivots to find O(n) pertinent ones. Does there exist dissimilarities which
actually need O(n2) pivots? Or at least more than O(n) ones?

Question 2: If every dissimilarity needs less than O(n2) pivots (i.e. if the answer of Ques-
tion 1 is “No”), is it possible to derandomize Algorithm 3 in such a way that pertinent
pivots are selected first? In this case, Algorithm irri would be optimal in O(n2).

As mentioned is Section 2.3, partition refinement has already been used to recognize Robin-
son dissimilarities, but the algorithm rrrr is the first one to use only this paradigm. More-
over, although it uses only one tool, it is quite efficient since it runs in O(n2 log n).

Data Availability

The code we use for simulations is available from the corresponding author upon request.
We do not analyze or generate other datasets.

19

References

[1] ATKINS, J.E., BOMAN, E.G., and HENDRICKSON, B. (1998), Spectral algorithm for seriation and
the consecutive ones problem, SIAM Journal on Computing 28, 297–310.

[2] BARTHÉLEMY, J.-P. and BRUCKER, F. (2001), NP-hard approximation problems in overlapping
clustering, Journal of Classification 18, 159–183.

[3] BOOTH, K.S. and LUEKER, G.S. (1976), Testing for the Consecutive Ones Property, interval graphs
and graph planarity using PQ-tree algorithm, Journal of Computer and System Sciences 13, 335–379.

[4] ÇELA, E., DEINEKO, V. and WOEGINGER G.J. (2023), Recognising permuted Demidenko matrices,
ArXiv:2302.05191v1.

[5] CHEPOI, V. and FICHET, B. (1997), Recognition of Robinsonian dissimilarities, Journal of Classifi-
cation 14, 311–325.

[6] CHEPOI, V., FICHET, B. and SESTON, M (2009), Seriation in the presence of errors: NP-hardness
of l∞-fitting Robinson structures to dissimilarity matrices, Journal of Classification 26, 279–296.

[7] CHEPOI, V., and SESTON, M (2011), Seriation in the presence of errors: an approximation algorithm
for fitting Robinson structures to dissimilarity matrices, Algorithmica 59, 521—568.

[8] CRITCHLEY, F. and FICHET, B. (1994), The partial ordre by inclusion of the principal classe of dis-
similarity on a finite set, and some properties of their basic properties, In Classification and Dissimilarity
Analysis, B. van Cutsen Ed., Lecture Notes In Statistics, 5–65.

[9] DEINEKO, V., KLINZ, B., TISKIN, A. and WOEGINGER, G.J. (2014), Four-point conditions for the
TSP: The complete complexity classification, Discrete optimization 14, 147–159.

[10] DEMIDENKO, V.M. (1976), A special case of traveling salesman problem, Izvestiya Akademii Nauk
Belarusi. Seriya Fiziko-Matematicheskikh Nauk 5, 28-32 (in Russian).

[11] DIDAY, E. (1986), Orders and overlapping clusters by pyramids, in Multidimensionnal Data Analysis,
J. de Leeuw, W. Heiser, J. Meulman and F. Critchley Eds., 201–234, DSWO.

[12] DURAND, C. and FICHET, B. (1988), One-to-one correspondences in pyramidal representation: an
unified approach, in Classification and Related Methods of Data Analysis, H.H. Bock Ed., 85–90, North-
Holland.

[13] FOGEL, F., D’ASPREMONT, A., and VOJNOVIC, M. (2016), Spectral ranking using seriation, J.
Mach. Learn. Res., 17: Paper No. 88.

[14] HUBERT, L. (1974), Some applications of graph theory and related nonmetric techniques to problems
of approximate seriation: The case of symmetric proximity measures, British Journal of Mathematical
Statistics and Psychology 27, 133–153.

[15] HUBERT, L., ARABIE, P., and MEULMAN, J. (2006), The structural representation of proximity
matrices with Matlab, ASA-SIAM Series on Statistics and Applied Probability.

[16] KALMANSON, K. (1975), Edgeconvex circuits and the travelling salesman problem, Canadian J. Math.,
27 (1975), 1000–1010.

[17] LAURENT, M. and SEMINAROTI, M. (2017), A Lex-BFS-based recognition algorithm for Robinsonian
matrices, Discr. Appl. Math. 222, 151–165.

[18] LAURENT, M. and SEMINAROTI, M. (2017), Similarity-first search: a new algorithm with application
to Robinsonian matrix recognition, SIAM J. Discr. Math., 31, 1765-1800.

[19] LAURENT, M., SEMINAROTI, M., and TANIGAWA, S.-I. (2017), A structural characterization for
certifying Robinsonian matrices, Electronic J. Combin., 24-2.

[20] MIRKIN, B. and RODIN, S. (1984), Graphs and Genes, Springer-Verlag.
[21] PAIGE, R. and TARJAN, R.E. (1987), Three partition refinement algorithms, SIAM Journal on Com-

puting, 16, 973–989.
[22] PRÉA, P. and FORTIN, D. (2014), An optimal algorithm to recognize Robinsonian dissimilarities,

Journal of Classification, 31, 351–385.
[23] ROBINSON, W.S. (1951), A method for chronologically ordering archeological deposits, American

Antiquity 16, 293–301.
[24] SESTON, M. (2008), A Simple Algorithm to Recognize Robinsonian Dissimilarities, COMPSTAT’2008,

Porto.
[25] SESTON, M. (2008), Dissimilarités de Robinson : Algorithmes de Reconnaissance et d’Approximation,

Ph.D. Thesis, Université de la Méditerranée.

20

Appendix A. Empirical tests

The aim of this appendix is to show, from a practical point of view, that Algorithm 3
runs in O(n2) on average or, at least, is much more efficient than O(n3). More precisely,
we made tests on Algorithm 2 and wrote down the number of pivot-pairs tested before
obtaining a contradiction or getting the PQ-tree of the dissimilarity. Tests have been made
for various generators of “random matrices”. For each kind of generator (except for the
Toeplitz matrices, see Figure 6), we have generated 1000 matrices of size 25 × 25, 50 × 50,
100 × 100, and 200 × 200 and noted the minimum number of pivot-pairs tested, the first
decile (10% of the matrices need less than this number of pivot-pairs), the median, the last
decile, and the maximum number of pivot-pairs tested. Notice that the total number of
pivot-pairs is 300, 1225, 4950, and 19900 for 25 × 25, 50 × 50, 100 × 100, and 200 × 200
matrices respectively.

10
50

100
150
200
250
300
350
400
450

2001005025
(A)

10
50

100
150
200
250
300
350
400
450

2001005025
(B)

10
50

100
150
200
250
300
350
400
450

200

925

100

1033

50

1021

25
(C)

Figure 3. Results of tests on matrices M such that, ∀i, j, M [i, j] = max(M [i, j−
1],M [i+1, j]) with probability p and M [i, j] = 1+max(M [i, j−1],M [i+1, j]) with
probability 1 − p. On (A), p = 0.3, on (B), p = 0.6 and on (C), p = 0.9. On the
abscissa is the size of the matrix and on the ordinate the number of pivot-pairs used
before getting the PQ-tree of the dissimilarity (the five marks corresponds with the
minimum, the first decile, the median, the last decile and the maximum values of
this number for 1000 trials).

We have first tested Algorithm 2 on Robinson matrices generated diagonals-after-diagonals,
i.e. for each i < j, M [i, j] is randomly chosen in {max(M [i, j− 1],M [i+1, j]),max(M [i, j−
1],M [i + 1, j]) + 1} (see Figure 3). Nearly all dissimilarities that are generated in this way
are flat (have only one compatible order and its reverse). Although nearly all Robinson
dissimilarities are flat (the cone of all Robinson dissimilarities on n points is the subspace

of R
n(n−1)

2 which is the union of n! convex cones of Robinson dissimilarities with a given
compatibility order and the flat Robinson dissimilarities correspond to the inner points of
these full cones), we have also generated random Robinson dissimilarities on [n] with several
compatible orders. This has been done in the following way:

(1) Generate k random intervals on [n].
(2) Generate the PQ-tree on [n] which represents the set of permutations such that these

k intervals (and only them) remain intervals for all these permutations. This is done
by k calls of Function PQ-Tree-Update.

(3) Generate a Robinson dissimilarity admitting all these permutations (and only them)
as compatible ones.

21

Such dissimilarities have been generated for k ∈ {⌈n/10⌉, ⌈n/2⌉, n, ⌈3n/2⌉, 2n, 3n} and the
results of the tests are shown in Figures 4 and 5. These dissimilarities have several compatible
orders (see Table 2). We have also tested Algorithm 2 on Toeplitz matrices on {0, 1, 2}. A
{0, 1, 2}-Toeplitz matrix is defined byM [i, i] = 0,M [i, j] = 1 if 0 < |i−j| ≤ k andM [i, j] = 2
otherwise (these matrices are Robinson). For our purpose, the interest for these matrices
is that they are flat and have very few different values, two characteristics which are, at a
first glance, opposite to each other. The result of tests on Toeplitz matrices are shown in
Figure 6.

Table 2. Average number of compatible permutations of the dissimilarities tested
for Figures 4 and 5 for dissimilarities on n points whose compatible orders are
represented by PQ-trees built from k intervals of [n].

n \ k ⌈n/10⌉ ⌈2n/10⌉ ⌈n/2⌉ n ⌈3n/2⌉ 2n

25 3.65 · 1022 8.01 · 1017 4.95 · 108 554 23 8.85
50 1.41 · 1050 1.48 · 1033 2.52 · 1012 7863 80 11.6

100 3.11 · 1086 2.16 · 1051 7.38 · 1019 8.74 · 107 740 32.2
200 6.59 · 10141 1.58 · 1090 1.74 · 1037 3.61 · 1013 89882 161

10
50

100
150
200
250
300
350
400
450

2001005025

859
2828

1364

13461

(A)

10
50

100
150
200
250
300
350
400
450

2001005025

965
713

4405

2981

17768

(B)

10
50

100
150
200
250
300
350
400
450

2001005025

972
982

3493

4028

16065

(C)

Figure 4. Results of tests on matrices generated in the following way: first, we
generate a random PQ-tree by running the Booth and Lueker algorithm with k
random intervals of {1, . . . , n}. Then we generate a Robinson dissimilarity with
this PQ-tree. Tests have been made for n ∈ {25, 50, 100, 200} and k = ⌈n/10⌉ (A),
k = ⌈2n/10⌉ (B) and k = ⌈n/2⌉ (C). For each value of n and k, we have made
1000 tests and we have indicated the minimum number of used pivot-pairs, the first
decile, the median, the last decile and the maximum value.

On Figures 3–6, one can see that the median value of the number of requested pivot-pairs
grows linearly with the number of points. The last decile of the number of used pivot-pairs
also grows linearly, except for dissimilarities generated from k intervals with k < n. In any
case, this last decile is very low when compared with the total number of pivot-pairs.

Finally, we have also tested our algorithm on non-Robinson dissimilarities. On random
dissimilarities, the maximum number of pivot-pairs before getting a contradiction is always
very low: at most 5 for 200×200 matrices. We have also tested non-Robinson dissimilarities
built from Robinson dissimilarities on which a few values have been modified so that the
resulting dissimilarity is not Robinson:

22

10
50

100
150
200
250
300
350
400
450

2001005025

1039
4269

14545

(A)

10
50

100
150
200
250
300
350
400
450

2001005025

772
3374

14429

(B)

10
50

100
150
200
250
300
350
400
450

2001005025

3388

7417

(C)

Figure 5. Results of tests on matrices generated in the following way: first, we
generate a random PQ-tree by running the Booth and Lueker algorithm with k
random intervals of {1, . . . , n}. Then we generate a Robinson dissimilarity with this
PQ-tree. Tests have been made for n ∈ {25, 50, 100, 200} k = n (A), k = ⌈3n/2⌉ (B)
and k = 2n (C). For each value of n and k, we have made 1000 tests and we have
indicated the minimum number of used pivot-pairs, the first decile, the median, the
last decile and the maximum value.

2001501005020

100
200
300
400
500
600
700

.....
...
...
.
..
.
..
.
..
.
.
.
.
..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

(A)
2001501005020

100
200
300
400
500
600
700

.....
.
..
.
..
.
..
.

..

.

..

.
..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

(B)
2001501005020

100
200
300
400
500
600
700

.....
.
..
.
..
.
..
.
..
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

(C)

Figure 6. Results of tests on {0, 1, 2}-Toeplitz matrices. A {0, 1, 2}-Toeplitz ma-
trix is defined by M [i, i] = 0, M [i, j] = 1 if 0 < |i− j| ≤ k and M [i, j] = 2 otherwise
(these matrices are Robinson). Tests have been made for k = 1 (A), k = 5 (B) and
k = 9 (C) and matrix sizes in {20, 30, . . . , 190, 200}. For each k and matrix size,
we have made 100 tests and noted the number of effectively used pivot-pairs (the
minimum value, the first decile, the median, the last decile and the maximum value).

• On matricesM such that, ∀i, j, M [i, j] = max(M [i, j−1],M [i+1, j]) with probability
0.6 and M [i, j] = 1+max(M [i, j−1],M [i+1, j]) with probability 0.4 (as for Figure 3-
B) with 1, 2, 5 or 10 modified elements. The results are shown in Figure 7.
• On n × n matrices such that the set of compatible orders is represented by a PQ-
tree that can be built from ⌈2n/10⌉ intervals (as for Figure 4-B) with 1, 2, 5 or 10
modified elements. The results are shown in Figure 8.
• On n×n matrices such that the set of compatible orders is represented by a PQ-tree
that can be built from ⌈3n/2⌉ intervals (as for Figure 5-B) with 1, 2, 5 or 10 modified
elements. The results are shown in Figure 9.

We can see that if two or more values are modified, then the median value of the number of
pivot-pairs used before getting a contradiction is nearly linear. If there are 5 or 10 modified
values, then this is also the case for the last decile. In any case, even with only one modified
value, the number of pivot-pairs used before getting a contradiction is much smaller than
the total number of pivot-pairs.

23

10
50

100
150
200
250
300
350
400
450

2001005025

1634 1923

5101

(A)

10
50

100
150
200
250
300
350
400
450

2001005025

795
942

3022

(B)

10
50

100
150
200
250
300
350
400
450

2001005025

1494

(C)

10
50

100
150
200
250
300
350
400
450

2001005025
(D)

Figure 7. Results of tests on matrices generated as in Figure 3-(B) on which one
value (A), two values (B), five values (C) and ten values (D) have been changed. All
these dissimilarities are non Robinson. For each matrix size and number of modified
values, we have made 1000 tests and we have indicated the minimum number of
used pivot-pairs, the first decile, the median, the last decile and the maximum value.

10
50

100
150
200
250
300
350
400
450

2001005025

1087
2997

1020

4421

(A)

10
50

100
150
200
250
300
350
400
450

2001005025

1242

4248

(B)

10
50

100
150
200
250
300
350
400
450

2001005025

714

(C)

10
50

100
150
200
250
300
350
400
450

2001005025
(D)

Figure 8. Results of tests on matrices generated as in Figure 4-(B) on which one
value (A), two values (B), five values (C) and ten values (D) have been changed.
All these dissimilarities are non Robinson, except, with one modified value, 246
dissimilarities (on a total of 1000 dissimilarities) on 25 points, 92 on 50 points, 28
on 100 points and 5 on 200 points, and with two modified values: 31 dissimilarities
on 25 points and 4 on 50 points. For each matrix size and number of modified
values, we have made 1000 tests and we have indicated the minimum number of
used pivot-pairs, the first decile, the median, the last decile and the maximum value.

In conclusion, in practice, Algorithm 3 is very efficient and is not distinguishable from the
optimal O(n2) complexity. The running average time in Python 3 on an ordinary desktop
computer (Intel Core i5 at 2.7 GHz with 4 Go of memory) is approximatively 26 ms for a
50×50 matrix, 129 ms for a 100×100 matrix and 686 ms for a 200×200 matrix. In Table 3,
we show the running time for diverse structures of distance corresponding with Figure 3–9.

24

10
50

100
150
200
250
300
350
400
450
500
550
600
650
700
750

2001005025

2455 2141

8050

(A)

10
50

100
150
200
250
300
350
400
450
500
550
600
650
700
750

2001005025

1160

3358

(B)

10
50

100
150
200
250
300
350
400
450

2001005025

1511

(C)

10
50

100
150
200
250
300
350
400
450

2001005025

1034

(D)

Figure 9. Results of tests on matrices generated as in Figure 5-(B) on which one
value (A), two values (B), five values (C) and ten values (D) have been changed. All
these dissimilarities are non Robinson. For each matrix size and number of modified
values, we have made 1000 tests and we have indicated the minimum number of
used pivot-pairs, the first decile, the median, the last decile and the maximum value.

Table 3. Average running time of Algorithm 3 on different structures of dis-
similarities tested in Figures 3–9 for a number n of points in {50, 100, 200}. These
values are the average of 1000 trials.

n 50 100 200

Figure 3 (A) 36 ms 162 ms 729 ms
Figure 3 (B) 39 ms 170 ms 750 ms
Figure 3 (C) 91 ms 275 ms 962 ms
Figure 4 (A) 25 ms 100 ms 427 ms
Figure 4 (B) 28 ms 113 ms 426 ms
Figure 4 (C) 22 ms 81 ms 311 ms
Figure 5 (A) 7 ms 28 ms 109 ms
Figure 5 (B) 7 ms 28 ms 121 ms
Figure 5 (C) 9 ms 32 ms 109 ms
Figure 6 (A) 33 ms 150 ms 637 ms
Figure 6 (B) 25 ms 95 ms 382 ms
Figure 6 (C) 28 ms 99ms 398 ms

n 50 100 200

Figure 7 (A) 38 ms 173 ms 743 ms
Figure 7 (B) 40 ms 184 ms 818 ms
Figure 7 (C) 39 ms 172 ms 759 ms
Figure 7 (D) 38 ms 183 ms 749 ms
Figure 8 (A) 57 ms 391 ms 3.18 s
Figure 8 (B) 29 ms 195 ms 1.45 s
Figure 8 (C) 12 ms 85 ms 616 ms
Figure 8 (D) 7 ms 49 ms 333 ms
Figure 9 (A) 26 ms 201 ms 1.40 s
Figure 9 (B) 12 ms 86 ms 676 ms
Figure 9 (C) 5 ms 31 ms 264 ms
Figure 9 (D) 3 ms 19 ms 121 ms

