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Abstract

Uncertainty reduction has recently been introduced in the robust optimization literature as a relevant special case of decision-
dependent uncertainty. Herein, we first show that when the uncertainty reduction decisions are constrained, the resulting opti-
mization problem is NP-hard. We further show that relaxing these constraints leads to solving a linear number of deterministic
problems in certain special cases and illustrate the numerical relevance of this result. We further provide insights into possible
MILP reformulations and the strength of their continuous relaxations.

Keywords: combinatorial optimization, robust optimization, NP-hardness, reformulation

1. Introduction

In this paper, we are interested in robust optimization prob-
lems of the form:

min
y∈Y

f⊤y (Static-Robust)

s.t. H(ξ)y ≤ g ∀ξ ∈ Ξ

where the set Y ⊆ Rn defines the deterministic structure of solu-
tions y and may incorporate integrality restrictions, Ξ ⊆ Rq is a
polytope, H(ξ) for ξ ∈ Ξ, f and g are real matrices and real vec-
tors of conforming dimensions, respectively. We assume that,
all uncertain parameters are affine functions of ξ ∈ Ξ. Using
well-known reformulation techniques (Static-Robust) encom-
passes the cases where f and g may depend affinely on ξ.

(Static-Robust) is typically well-solved by using classical
reformulation techniques based on linear programming dual-
ity [2]. However, it does not model applications in which it is
possible for the decision-maker to take some proactive actions
to reduce uncertainty. As such, Nohadani and Sharma [12]
introduce decision-dependent polyhedral uncertainty sets that
model uncertainty reduction, defined as follows:

Ξ(x) =
{
ξ ∈ Rq

+ | Dξ ≤ d, ξ ≤ v + w ◦ (e − x)
}
, (1)

where v,w ∈ Rq
+, x ∈ X ⊆ {0, 1}q is a binary vector, and e is the

vector of all ones.
In (1), x is a decision variable that controls the upper bounds

of uncertain parameters. When xi = 0, the uncertain variable
ξi can be as large as vi + wi, whereas when xi = 1 its value re-
duces to vi. We write the decision-dependent robust uncertainty
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reduction problem as:

min
x∈X⊆{0,1}q,y∈Y

c⊤x + f⊤y (UR-Robust)

s.t. Ax + H(ξ)y ≤ g ∀ξ ∈ Ξ(x).

We also dedicate a particular interest to the min-max combina-
torial variant of the above robust problem with binary optimiza-
tion variables y and only objective uncertainty. We write

min
x∈X⊆{0,1}q,y∈Y⊆{0,1}n

max
ξ∈Ξ(x)

c⊤x + ( f + ξ)⊤y, (UR-Min-Max)

where q = n. In the following, q is understood to be equal to n
in the context of (UR-Min-Max).

The first mention of decision-dependent uncertainty sets in
the robust optimization literature dates back to [16] where the
authors use its expressive power to better model the applica-
tion at hand, specifically, a software partitioning problem in-
volving multiple instantiations. The notion has also been used
by [13, 14], who show how the use of decision-dependent bud-
gets can reduce the conservatism of the so-called budgeted un-
certainty set [4], sometimes at no extra computational cost.
In yet another context, [7] rely on decision-dependent uncer-
tainty sets to model K-adaptable policies, wherein variables x
allow to partition set Ξ optimally. The authors of [12] intro-
duce the uncertainty reduction model (UR-Robust), for which
they propose different formulations as well as detailed numer-
ical experiments that illustrate the possible impact of uncer-
tainty reduction. They additionally consider MILP reformu-
lations and a hardness proof for robust optimization problems
with a more general decision-dependent uncertainty set struc-
ture. More recently, [17] has extended the scope of decision-
dependent uncertainty sets to two-stage robust optimization
problems, proposing different decomposition algorithms.

Our main result, presented in Section 3, shows that, when
X = {0, 1}q, solving (UR-Min-Max) amounts to solving n + 1

Preprint submitted to Operations Research Letters January 31, 2024



deterministic optimization problems

min
y∈Y⊆{0,1}n

f̃⊤y, (Combinatorial)

in line with the seminal result of [3], and, in particu-
lar, that (UR-Min-Max) is polynomially solvable whenever
(Combinatorial) is for any vector f̃ ∈ Rq. We complement that
positive result by showing in Section 2 that (UR-Min-Max) re-
mains NP-hard when a general set X ⊆ {0, 1}q is considered
(thereby echoing the results of [12] even when the decision-
dependence is restricted to the special case of uncertainty re-
duction and Y is restricted to be a combinatorial set). In Sec-
tion 4, we consider the more general model (UR-Robust) for
which we generalise a previous MILP formulation proposed
by [12] and develop a new reformulation in the case where
D ≥ 0 and show that its linear relaxation can be arbitrarily better
than the former for certain problems. Finally, we numerically
illustrate our theoretical result in Section 5 on the shortest path
instances described by [12] and compare it to the reformula-
tions proposed therein. We also show that the linear program-
ming relaxations of all formulations coincide for these specific
instances. We close with some conclusions in Section 6.

2. Hardness

Theorem 1. The optimization problem

min
x∈X⊆{0,1}q,y∈Y

max
ξ∈Ξ(x)

c⊤x + ( f + ξ)⊤y (2)

is NP-hard even when Y ⊆ {0, 1}n, (Combinatorial) is polyno-
mially solvable, and D = 0.

Proof. We construct a reduction from the Budgeted Minimum
Cost Flow Problem with Unit Upgrading Cost, denoted BM-
CFP, studied in [5]. Let G = (V, A) be a digraph, bv ∈ Z be the
demand or supply at each node v ∈ V , ca and ca be upper and
lower costs for each arc a ∈ A and ua be the capacity of each arc
a ∈ A. Finally, let K be a budget parameter. A solution to the
BMCFP is a flow z ∈ Z|A| in G, which satisfies the flow conser-
vation and capacity constraints, together with a set of arcs A∗ of
cardinality less than K. The cost of (z, A∗) is given by

cost(z, A∗) =
∑
a∈A∗

caza +
∑

a∈A\A∗
caza.

The objective of BMCFP is to find a solution of minimum cost.
It is proved in Theorem 2 of [5] that the problem is NP-hard,
even when

|bv| ≤ |A| + |V | (3)

for v ∈ V .
Our reduction works as follows. Consider first that Y ⊆

Z|A| is the feasibility set of the aforementioned flow vectors
z, X =

{
x ∈ {0, 1}|A| |

∑
a∈A xa ≤ K

}
, f = c, c = 0, Ξ(x) ={

ξ ∈ R|A|+
∣∣∣ ξ ≤ (c − c) ◦ (e − x)

}
. Given a solution (z, A∗) to

BMCFP, we construct a solution (x, y) to (2) by setting y = z
and xa = 1 iff a ∈ A∗. Thus, we obtain that

max
ξ∈Ξ(x)

c⊤x + ( f + ξ)⊤y =
∑
a∈A∗

caza +
∑

a∈A\A∗
caza = cost(z, A∗).

We can similarly construct a solution (z, A∗) from any feasible
solution (x, y) to (2), thereby providing the reduction.

To obtain the result whenever Y ⊆ {0, 1}n, it suffices to de-
compose the integer flow in terms of binary variables. Thanks
to condition (3), the proposed reduction can be done in polyno-
mial time and the resulting problem still contains polynomially
many variables.

3. A polynomial-time algorithm

In this section, we focus on (UR-Min-Max) and show that if
X = {0, 1}q then the problem is polynomially solvable whenever
(Combinatorial) is polynomially solvable for any vector f̃ . We
remark that in contrast to the complexity proof of Section 2,
the problem we consider here does not have any constraints on
vector x that represents uncertainty reduction.

We assume, for ease of exposition, that, v j = 0 for j ∈ [q],
i.e., the parameter ξ j for j ∈ [q] can be completely reduced to
0 by setting variable x j = 1 and that the uncertainty set has
a single constraint with D a row vector and d a scalar. The
results of this section can be extended to uncertainty sets with
multiple constraints [15]. They can similarly be extended to
multiple constraints affected by uncertainty [1]. However, the
complexity of the resulting algorithms will be exponential in
the number of constraints of the uncertainty set as well as the
number of constraints affected by uncertainty.

We start by reformulating the inner maximization problem
using linear programming duality to obtain:

min
x∈{0,1}q ,y∈Y⊆{0,1}n ,

θ≥0,π∈Rn
+

c⊤x + f⊤y + dθ +
∑
j∈[n]

w j(1 − x j)π j (UR-Min)

s.t. D jθ + π j ≥ y j ∀ j ∈ [n].

Theorem 2. An optimal solution of (UR-Min) can be obtained
by solving at most n+1 deterministic problems of the same form
as (Combinatorial).

Proof. Starting from (UR-Min), let θ ≥ 0 be fixed. Then, the
expression of π j for j ∈ [n] simplifies to [y j − D jθ]+. We next
plug this expression into the objective function of (UR-Min) to
obtain:

min
x∈{0,1}q ,y∈Y⊆{0,1}n ,

θ≥0

c⊤x + f⊤y + diθ +
∑
j∈[n]

w j(1 − x j)[y j − D jθ]+ (4)

which can be solved by searching over possible values of θ.
Further, since y j is binary, it can be taken out of [·]+, giving rise
to

min
x∈{0,1}q ,y∈Y⊆{0,1}n ,

θ≥0

c⊤x + f⊤y + diθ (5)

+
∑
j∈[n]

w j(1 − x j)
(
[1 − D jθ]+y j + [−D jθ]+(1 − y j)

)
.

We remark that for fixed x and y, because w j ≥ 0 for j ∈ [n], the
objective function of the above problem is a positive-weighted
sum of piecewise affine convex functions of θ and is therefore
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piecewise affine convex in θ. Its minimum can be obtained as
one of the breakpoints of the piecewise affine functions which
are obtained either at θ = 0 when D j ≤ 0 or at θ = 1

D j
when

D j > 0. As such, (UR-Min) can be solved as a series of prob-
lems each time with a fixed value of θ. Since there are at most
|{ j | D j > 0}| + 1 different values of θ, at most n + 1 such prob-
lems need to be solved. Consider now one of these problems
with θ fixed, where we make the notational distinction of using
θ̄ for fixed values:

min
x∈{0,1}q,y∈Y⊆{0,1}n

c⊤x + f⊤y + diθ̄ (6)

+
∑
j∈[n]

w j(1 − x j)
(
[1 − D jθ̄]+y j + [−D jθ̄]+(1 − y j)

)
.

We remark that this problem is bilinear due to the presence of
terms (1 − x j)y j. We next show that for a fixed vector y, the
optimal solution over the vector x can be calculated in closed
form.

To this end, we write the problem at hand a little differently
in order to better reveal its combinatorial structure:

diθ̄ +
∑
j∈[n]

w j[−D jθ̄]+ (7)

+ min
y∈Y⊆{0,1}n

∑j∈[n]

(
f j + w j[1 − D jθ̄]+ − w j[−D jθ̄]+

)
y j

+ min
x∈{0,1}q

c⊤x −
∑
j∈[n]

w jx j

(
[1 − D jθ̄]+y j + [−D jθ̄]+(1 − y j)

) .
Assume, now, that the vector y is fixed. Then the optimiza-

tion problem over the vector x decomposes over its elements,
the problem over x j reading

min
x j∈{0,1}

[
c j − w j

(
[1 − D jθ̄]+y j + [−D jθ̄]+(1 − y j)

)]
x j. (8)

When y j = 1, we obtain the optimal value of this
problem as

[
c j − w j[1 − D jθ̄]+

]−
, otherwise we obtain it as[

c j − w j[−D jθ̄]+
]−

. As such, its optimal value can be written
linearly in y as

=
[
c j − w j[1 − D jθ̄]+

]−
y j +
[
c j − w j[−D jθ̄]+

]−
(1 − y j). (9)

Now integrating into the outer optimization problem over y, we
obtain:

diθ̄ +
∑
j∈[n]

w j[−D jθ̄]+ +
[
c j − w j[−D jθ̄]+

]−
(10)

+ min
y∈Y⊆{0,1}n

∑
j∈[n]

(
f j + w j[1 − D jθ̄]+ − w j[−D jθ̄]+

+
[
c j − w j[1 − D jθ̄]+

]−
−
[
c j − w j[−D jθ̄]+

]−)
y j.

This problem is in the same form as (Combinatorial) which
completes the proof.

Theorem 2 extends to the general case where v , 0 expressed
by (1). To do so, it suffices to introduce the uncertain parame-
ters ξ1j and ξ2j for ξ j, j ∈ [q] to obtain:

Ξlifted(x) =

ξ, ξ
1, ξ2 ∈ Rq

+

∣∣∣∣∣∣∣∣∣∣∣
Dξ ≤ d
ξ = ξ1 + ξ2

ξ1 ≤ v
ξ2 ≤ w ◦ (e − x)


which recovers the set Ξ(x) by projecting out the variables
ξ1, ξ2. Further, by projecting out the variables ξ, we obtain:

Ξ̄(x) =
{
ξ1, ξ2 ∈ Rq

+

∣∣∣ D(ξ1 + ξ2) ≤ d, ξ1 ≤ v, ξ2 ≤ w ◦ (e − x)
}
.

We remark that, in the set Ξ̄(x), reducible uncertain parameters
ξ2j for j ∈ [q], are completely reduced to 0 when x j = 1 in
line with our initial assumption. The preceding developments
then can be repeated in the same manner, the only difference
being the addition of the term v j[1 − D jθ̄]+ − v j[−D jθ̄]+ to the
coefficient of each variable y j.

Remark 1. The dependence of the uncertainty set on the deci-
sion variables is here motivated by uncertainty reduction. How-
ever, it has been suggested in the literature to let, addition-
ally, the right-hand-side vector d depend on y, motivated, for
instance, by the probabilistic guarantees of the budgeted un-
certainty set [4, 13, 14]. In particular, combining Theorem 3
from [14] with Theorem 2 still leads to solving n + 1 determin-
istic problems of the form (Combinatorial) whenever d depends
affinely on y.

4. Reformulations

In this section, we focus on reformulations of (UR-Robust)
in the case where D ≥ 0. We consider a single robust constraint
written as:

a⊤i x + hi(ξ)⊤y ≤ gi ∀ξ ∈ Ξ(x), (11)

where ai and hi(ξ) for ξ ∈ Ξ are the ith row of matrices A and
H(ξ) for ξ ∈ Ξ, respectively. Since hi(ξ) is an affine function of
ξ, we can express it as hi(ξ) = h̄i + H̄iξ where h̄i and H̄i are of
conforming dimensions.

Constraint (11) is a semi-infinite constraint that is com-
monly treated in robust optimization using classical reformu-
lation techniques based on linear programming duality. To do
so, we write it equivalently as:

max
ξ∈Ξ(x)

ξ⊤H̄⊤i y ≤ gi − a⊤i x − h̄⊤i y (12)

integrating the definition of hi(ξ) and gathering the constant
terms (in ξ) on the right-hand-side of the constraint. Then, us-
ing classical linear programming duality arguments, we obtain
the deterministic equivalent expression of constraint (11) as the
system of constraints:

σ⊤d + π⊤(v + w ◦ (e − x)) ≤ gi − a⊤i x − h̄⊤i y (13)
D⊤σ + π ≥ H̄⊤i y (14)
π, σ ≥ 0, (15)
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where σ and π are dual variables corresponding, respectively,
to constraints Dξ ≤ d and ξ ≤ v + w ◦ (e − x). Although deter-
ministic, this reformulation is nonlinear due to the presence of
the term π⊤(v + w ◦ (e − x)) which involves the multiplication
between variables π and x. Since variables x are assumed to be
binary these terms can be linearized using the big-M technique
where the big-M should be tailored based on upper bounds of
dual variables π. The linear relaxation of such a formulation
can be quite weak. Nevertheless, Nohadani and Sharma [12]
proposed such a formulation for the general case of decision-
dependent uncertainty sets where they additionally discussed
conditions under which the upper bound constraints can be re-
moved (which they call the modified big-M formulation).

The authors additionally proposed a formulation for
(UR-Robust), which they called the Π̄ formulation, where the
decision-dependence of (1) can be transferred to the objective
function of the problem through a big-M coefficient. Their re-
sult was stated in the case where H̄i = I for i ∈ [m]. We gener-
alize it here to any H̄i ∈ Rq.

Proposition 1. We have that

max
ξ∈Ξ(x)

ξ⊤H̄⊤i y = max
ξ1,ξ2∈Ξ̄(0)

y⊤H̄iξ
1 + (H̄⊤i y − Π̄x)⊤ξ2 (16)

where Π̄ = diag(πmax) is a diagonal matrix with πmax a vector of
component-wise upper bounds on dual variables π in (13)-(15).

In (16), Π̄ acts as a big-M coefficient so that when x j = 1
the corresponding uncertain parameter ξ2j is equal to zero at op-
timality while the uncertainty set now becomes independent of
decisions x. Nohadani and Sharma [12] further prove that when
H̄i = I for i ∈ [m] and D, y ≥ 0 this upper bound can be esti-
mated using the upper bounds on variables y. We next general-
ize this result to any H̄i ∈ Rq further removing the assumption
that y ≥ 0:

Proposition 2. If D ≥ 0 then πmax
j for j ∈ [q] can be set to:

max
{

0,max
y∈Y

(H̄⊤i y)⊤e j

}
. (17)

The proofs of Proposition 1 and 2 proceed very similarly to
those presented in [12]. Proposition 1 provides a way to ob-
tain a linear formulation for (UR-Robust), and Proposition 2
provides a way to estimate the big-M coefficients necessary for
this formulation based on the knowledge of the primal problem.
However, in order to calculate these coefficients one might need
to solve n, potentially difficult, optimization problems.

We next propose an alternative formulation that allows us to
better capitalize on the knowledge of the primal formulation.
To this end, we remark that in Ξ̄(x) each uncertain parameter
ξ2j is bounded by w j ≥ 0 when x j = 0, and by 0 when x j = 1.
Since ξ2j is also lower-bounded by 0, this implies that ξ2j = 0
when x j = 1, i.e., the effect of ξ2j is completely eliminated from
the constraints. The following result closely follows from this
observation.

Theorem 3. If D ≥ 0, constraint (11) can be equivalently ex-
pressed as:

a⊤i x + hi(ξ1 + (e − x) ◦ ξ2)⊤y ≤ gi ∀ξ1, ξ2 ∈ Ξ̄(0). (18)

Proof. The proof consists in showing that (18) has at least one
worst case realization ξ1, ξ2 such that ξ2j = 0 whenever x j = 1
for j ∈ [q]. To this end, consider the optimization problem

max
ξ1,ξ2∈Ξ̄(0)

hi(ξ1 + (e − x) ◦ ξ2)⊤y (19)

and let (ξ1, ξ2) be an optimal solution such that there exists k ∈
[q] with ξ2k = ϵ > 0 and xk = 1. Construct now the solution
(ξ̄1, ξ̄2) such that ξ̄1 = ξ1, ξ̄2j = ξ

2
j for j ∈ [q]\{k} and ξ̄2k = ξ

2
k−ϵ.

Clearly, 0 ≤ ξ̄1 ≤ v and 0 ≤ ξ̄2 ≤ w. Further,

D(ξ̄1 + ξ̄2) = D(ξ1 + ξ2 − ϵek) ≤ d − ϵDek ≤ d

where the last inequality holds since we assume that D ≥ 0.
The feasible solution (ξ̄1, ξ̄2) has additionally the same objec-
tive value as the solution (ξ1, ξ2) since the objective coefficient
of variable ξ2k is equal to zero when xk = 1 which concludes the
proof.

As a result of Theorem 3, the uncertainty set becomes free
of variables x whereas the effect of uncertainty reduction is ac-
counted for through the term (e − x) ◦ ξ2. We remark that the
condition D ≥ 0 is necessary for Theorem 3 to hold since oth-
erwise the value of ξ2j can be increased in order to increase the
value of another uncertain parameter even when x j = 1 which
results in (11) and (18) no longer being equivalent.

In order to proceed with the derivation of our reformulation,
we first write constraints (18) equivalently as:

max
ξ1,ξ2∈Ξ̄(0)

(ξ1 + (e − x) ◦ ξ2)⊤H̄⊤i y ≤ gi − a⊤i x − h̄⊤i y. (20)

Then, using linear programming duality, we obtain the system
of inequalities:

π⊤d + q⊤v + r⊤w ≤ gi − a⊤i x − h̄⊤i y (21)
D⊤π + q ≥ H̄⊤i y (22)
D⊤π + r ≥ H̄⊤i y − H̄⊤i (y ◦ x) (23)
π, q, r ≥ 0, (24)

which can then be linearized using the big-M technique in order
to eliminate the bilinear terms y ◦ x where the big-M should be
tailored based on lower and upper bounds of variables y which
can be deduced from the knowledge of the problem. This for-
mulation is advantageous compared to the previous one espe-
cially when y are binary in which case the big-M coefficient
can be set to 1. We next illustrate this point with an example.

Example 1. Consider the “box” uncertainty set Ξ(x) ={
ξ ∈ Rq

+ | ξ ≤ e − x
}

for the robust problem

z = min
x∈X⊆{0,1}q,y∈Y

max
ξ∈Ξ(x)

y⊤H̄ξ, (25)

where we assume, for simplicity, that y⊤H̄ ≥ 0 for y ∈ Y.
On the one hand, the alternative approach proposed in The-
orem 3 reformulates (25) as minx∈X⊆{0,1}q,y∈Y y⊤H̄(e − x) since
Ξ(0) = [0, 1]q and y⊤H̄ ≥ 0 for y ∈ Y by assumption. The
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linear programming relaxation of the linearization of this for-
mulation is

znew
LR = min

x∈rel(X),y∈rel(Y)

∑
j∈[n],k∈[q]

H̄ jk(y j − η jk)

s.t. η jk ≤ xk ∀ j ∈ [n],∀k ∈ [q]
η jk ≤ y j ∀ j ∈ [n],∀k ∈ [q]
η jk ≥ xk + y j − 1 ∀ j ∈ [n],∀k ∈ [q]
η ≥ 0,

where rel(P) denotes the linear programming relaxation of for-
mulation P. On the other hand, the linear programming relax-
ation obtained through Proposition 1 is

zΠ̄LR = min
x∈rel(X),y∈rel(Y)

max
ξ∈Ξ(0)

(H̄⊤y − πmax ◦ x)⊤ξ,

where πmax
j can be replaced by maxy∈Y (H̄⊤y)⊤e j as a result of

Proposition 2 and the assumption that y⊤H̄ ≥ 0 for y ∈ Y.
We show next an example in which zΠ̄LR = 0 <

znew
LR = z. Consider X =

{
x ∈ {0, 1}q

∣∣∣ e⊤x = 1
}
, Y ={

y ∈ {0, 1}n
∣∣∣ e⊤y = n − 1

}
, H̄1k = M for each k ∈ [q], where

M > 0 is large enough, and H̄ jk = 1 for each j > 1 and
k ∈ [q]. We first remark that the definitions of Y and H̄ im-
ply that an optimal solution to both relaxations satisfy y1 = 0
and y j = 1 for j > 1. Therefore, η1k = 0 for each k ∈ [q]
and η jk = min(xk, y j) = xk for each j > 1 and k ∈ [q], so the
problem simplifies to

znew
LR = min

x∈rel(X)

∑
j∈[n]\{1},k∈[q]

(1 − xk) =
∑

j∈[n]\{1},k∈[q]

1 −
∑

j∈[n]\{1}

1

= (n − 1)(q − 1),

where the second equality holds since e⊤x = 1. This value is
also matched by the the integral optimal solution of the prob-
lem. On the other hand, maxy∈Y (H̄⊤y)⊤ek ≥ M for each k,
so Proposition 2 implies that πmax

k = M for each k and zΠ̄LR = 0
since (H̄⊤y−πmax◦x) can be rendered negative by setting xk =

1
q

for k ∈ [q] for M sufficiently large.

As illustrated by Example 1 the linear relaxation of (21)-(24)
can be significantly stronger than that of the formulation pro-
posed by [12].

5. Numerical experiments

In this section, we illustrate the numerical relevance of our
complexity result presented in Theorem 2 on the robust short-
est path problem. This problem was introduced by [12] in its
generic form:

min
x∈X⊆{0,1}|A|,y∈Y

max
ξ∈ΞSP(x)

c⊤x + (d̄ +
1
2
ξ ◦ d̄)⊤y

where set X expresses the constraints imposed on variables x
and set Y contains the flow constraints describing the shortest
path problem, and ΞSP(x) is given as:

ΞSP(x) =

ξ ∈ R|A|+
∣∣∣∣∣∣∣∣
∑

(i, j)∈A

ξi j ≤ Γ, ξi j ≤ 1 − γi jxi j ∀(i, j) ∈ A

 .

In the following, we assume, without loss of generality, that
d̄ > 0 since otherwise the corresponding components of ξ are
always equal to 0 in the inner maximization problem.

We concentrate on the variant where X = {0, 1}|A|. Nohadani
and Sharma [12] proposed three different formulations for this
problem. Among those, Π̄ and modified big-M formulations
are the most numerically promising based on their results. We
repeat these formulations here for completeness:

min
x∈X,y∈Y,
p,q,r≥0

c⊤x + d̄⊤y + Γp +
∑

(i, j)∈A

(1 − γi j)qi j + γi jri j (Π̄)

s.t. p + qi j ≥
d̄i jyi j

2
∀(i, j) ∈ A

p + ri j ≥
d̄i j(yi j − xi j)

2
∀(i, j) ∈ A,

and

min
x∈X,y∈Y,
p,q,r≥0

c⊤x + d̄⊤y + Γp +
∑

(i, j)∈A

(1 − γi j)qi j + ri j

(mod. big-M)

s.t. p + qi j ≥
d̄i jyi j

2
∀(i, j) ∈ A

ri j ≥ γi jqi j −
γi jd̄i jxi j

2
∀(i, j) ∈ A.

In the above formulations, big-M and π̄i j are omitted as their

values have already been set to γi j
d̄i j

2 and 1, respectively. We
also corrected small typos from Table 3 of [12]. For the same
problem, the formulation we proposed in Section 4 is given as:

min
x∈X,y∈Y,
p,q,r,v≥0

c⊤x + d̄⊤y + Γp +
∑

(i, j)∈A

(1 − γi j)qi j + γi jri j (new)

s.t. p + qi j ≥
d̄i jyi j

2
∀(i, j) ∈ A

p + ri j ≥
d̄i j(yi j − vi j)

2
∀(i, j) ∈ A

vi j ≤ xi j ∀(i, j) ∈ A

vi j ≤ yi j ∀(i, j) ∈ A,

from which we have removed the redundant constraints vi j ≥

xi j + yi j − 1 for (i, j) ∈ A.

Remark 2. Let zΠ̄, zM , and znew denote the optimal values
of the linear programming relaxations of (Π̄), (mod. big-M),
and (new), respectively. It holds that zΠ̄ = zM = znew.

Proof. First, let us consider the formulation (mod. big-M). Let
r
′

i j = qi j −
d̄i j xi j

2 and note that ri j = γi jr
′

i j at optimality. We may
therefore replace ri j by γi jr

′

i j in (mod. big-M) and impose the

constraint r
′

i j ≥ qi j −
d̄i j xi j

2 for (i, j) ∈ A. Further, renaming r′i j as
ri j, the second set of constraints becomes:

ri j ≥ qi j −
d̄i jxi j

2
∀(i, j) ∈ A,
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and the objective coefficient of ri j is now γi j so the objective
functions of all formulations coincide. Next, because of the
positive cost coefficients of q and r, we can substitute these
variables in (Π̄) by

qΠ̄i j =

[
d̄i jyi j

2
− p
]+

and rΠ̄i j =

[
d̄i j(yi j − xi j)

2
− p
]+

and we obtain similarly for (mod. big-M) that

qM
i j =

[
d̄i jyi j

2
− p
]+

and rM
i j =

[ d̄i jyi j

2
− p
]+
−

d̄i jxi j

2

+ .
Now, d̄i j xi j

2 ≥ 0 implies that[ d̄i jyi j

2
− p
]+
−

d̄i jxi j

2

+ = [ d̄i jyi j

2
− p −

d̄i jxi j

2

]+
,

so the set of optimal solutions coincide for the linear program-
ming relaxations of both formulations.

To prove the equivalence with the last formulation, we ob-
serve first that in any optimal solution to (new), we have vi j =

min(xi j, yi j). Next we remark that if min(xi j, yi j) = yi j the con-

straint p + ri j ≥
d̄i j(yi j−vi j)

2 becomes redundant in (new), as does

the constraint p + ri j ≥
d̄i j(yi j−xi j)

2 in (Π̄) since yi j − xi j ≤ 0. Oth-
erwise, if min(xi j, yi j) = xi j the two constraints are equivalent.
We therefore conclude that the set of optimal solutions for the
linear relaxations of both formulations coincide, proving the re-
sult.

Following Remark 2, we disregard formulation (new) of
our numerical experiments as it is significantly larger than
the other two. We implemented the MILP formulations (Π̄)
and (mod. big-M) in JuMP [10], using the commercial solver
CPLEX 20.1 as well as the open source solver HiGHs [8]. Our
implementation of Theorem 2 benefited from Graphs.jl [6] as
well as RobustShortestPath.jl [9]. The experiments are run us-
ing a single thread on a Intel Xeon E312xx (Sandy Bridge).

Instances were randomly generated following the procedure
described in [12]. To do so, we created n points in the 100×100
square and connected them to create a complete graph. We then
used euclidean distances for d̄ and kept only the 40% shortest
edges of the resulting complete graph in order to obtain the fi-
nal graph. We set γi j = 0.2 and ci j = 1 for each (i, j) ∈ A,
and Γ = 2. For each n ∈ {25, 50, . . . , 300}, we generated 10
instances. While CPLEX could sove all instances within a little
less than 2 hours, that was not the case for HiGHS for which
some instances with n = 150 required between 2 and 3 hours of
solution time, so we limited its results to n ∈ {25, 50, . . . , 150}.

We report in Figure 1 the geometric averages of the ratios
between the solution times of Theorem 2 divided by those of
formulations mod. big-M and (Π̄). The results illustrate that the
numerical efficiency of the two MILP formulations are compa-
rable, both being between 3 and nearly 200 times slower than
the polynomial algorithms obtained from Theorem 2, depend-
ing mostly on the performance of the MIP solver. The results
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60 80 100 120 140
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100
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Figure 1: Geometric averages of the solution times obtained using Theorem 2
divided by those of formulations mod. big-M and (Π̄).

thus offer an interesting practical takeaway on the benefit of
using Theorem 2 depending on the available solver. On the
one hand, if one is unable to use high performance commer-
cial solvers such as CPLEX and Gurobi, then the polynomial
approach from Theorem 2 is more than 2 orders of magni-
tude faster than the reformulation approaches, with a slightly
increasing tendency as the number of nodes increases. On
the other hand, the advantage of Theorem 2 is less important
against a high performance solver such as CPLEX. Interest-
ingly, the speed-up versus CPLEX was much more marked
in [14], for which the MILP reformulations were orders of
magnitude slower than the polynomial-time algorithms (see Re-
mark 1).

6. Conclusions

In this paper, we consider robust optimization problems with
uncertainty reduction where the upper bounds on the uncertain
parameters are adjusted by the binary decision variables con-
trolled by the decision-maker. We particularly focus on the min-
max version of this problem where the decisions are described
by combinatorial sets. For these problems, we first show that
they are NP-hard in the general case, specializing an earlier
hardness result by [12] which was stated under a more gen-
eral decision-dependence structure. We further show that they
can be solved as a series of deterministic problems, and in par-
ticular, have the same complexity as the ground combinatorial
problem, whenever the uncertainty reduction decisions are not
constrained. We finally demonstrate the numerical interest of
this result on the robust shortest path problem with uncertainty
reduction which was first considered by [12]. Our results indi-
cate that depending on the performance of the MIP solver the

6



approach we propose can be significantly more efficient than
reformulation approaches proposed by [12]. We further remark
that the shortest path problem is well-suited for reformulation
approaches given the rather small formulations available for the
problem. Results could be different for problems less suited
to MILP formulations, such as the minimum spanning tree for
which formulations are typically much larger [11]. Our algo-
rithmic approach could be expected to perform even more fa-
vorably in that context. We also propose an alternative MILP
formulation for the problems under consideration in the case
where D ≥ 0. We show that these formulations provide a sig-
nificantly stronger linear relaxation compared to the formula-
tions proposed in the literature in certain cases although for the
shortest path problem considered in our numerical study all for-
mulations are shown to have the same relaxation value.
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