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Uncertainty reduction in robust optimization

Ayşe Nur Arslan and Michael Poss

Abstract

Uncertainty reduction has recently been introduced in the robust optimization literature as a relevant special case of decision-
dependent uncertainty. Herein, we first show that when the uncertainty reduction is constrained, the resulting optimization problem
is NP-hard. We further show that relaxing these constraints leads to solving a linear number of deterministic problems in certain
special cases. We provide insights into possible MILP reformulations and illustrate the practical relevance of our theoretical results
on the shortest path instances from the literature.

Keywords: combinatorial optimization, robust optimization, NP-hardness, reformulation

1. Introduction

In this paper, we are interested in robust optimization prob-
lems of the form:

min
y∈Y

f⊤y (Static-Robust)

s.t. H(ξ)y ≤ g ∀ξ ∈ Ξ

where the set Y ⊆ Rn defines the deterministic structure of solu-
tions y and may incorporate integrality restrictions, Ξ ⊆ Rq is a
polytope, H(ξ) for ξ ∈ Ξ, f and g are real matrices and real vec-
tors of conforming dimensions, respectively. We assume that,
all uncertain parameters are affine functions of ξ ∈ Ξ. Using
well-known reformulation techniques (Static-Robust) encom-
passes the cases where f and g may depend on ξ.

(Static-Robust) is typically well-solved by using classical
reformulation techniques based on linear programming dual-
ity [2]. However, it does not model applications in which it is
possible for the decision maker to take some proactive actions
to reduce uncertainty. As such, Nohadani and Sharma [12]
introduce decision-dependent polyhedral uncertainty sets that
model uncertainty reduction, defined as follows:

Ξ(x) =
{
ξ ∈ Rq

+ | Dξ ≤ d, ξ ≤ v + w ◦ (e − x)
}
, (1)

where v,w ≥ 0, x ∈ X ⊆ {0, 1}q is a binary vector, and e is the
vector of all ones.

In (1), x is a decision variable that controls the upper bounds
of uncertain parameters. When xi = 0, the uncertain variable
ξi can be as large as vi + wi, whereas when xi = 1 its value re-
duces to vi. We write the decision-dependent robust uncertainty
reduction problem as:

min
x∈X⊆{0,1}q,y∈Y

c⊤x + f⊤y (UR-Robust)

s.t. Ax + H(ξ)y ≤ g ∀ξ ∈ Ξ(x).

We also dedicate a particular interest to the min-max variant of
the above robust problem with binary optimization variables y,

namely

min
x∈X⊆{0,1}q,y∈Y⊆{0,1}n

max
ξ∈Ξ(x)

c⊤x + ( f + ξ)⊤y. (UR-Min-Max)

The first mention of decision-dependent uncertainty sets in
the robust optimization literature dates back to [16] where the
authors use its expressive power to better model the applica-
tion at hand, specifically, a software partitioning problem in-
volving multiple instantiations. The notion has also been used
by [13, 14], who show how the use of decision-dependent bud-
gets can reduce the conservatism of the so-called budgeted un-
certainty set [4], sometimes at no extra computational cost. In
yet another context, [7] rely on decision-dependent uncertainty
sets to model K-adaptable policies, wherein variables x allow
to partition set Ξ optimally. The authors of [12] introduce the
uncertainty reduction model (UR-Robust), for which they pro-
pose different formulations as well as detailed numerical ex-
periments that illustrate the possible impact of uncertainty re-
duction. Their paper additionally considers MILP reformula-
tions and a hardness proof for robust optimization problems
with a more general decision-dependent uncertainty set struc-
ture. More recently, [17] has extended the scope of decision-
dependent uncertainty sets to two-stage robust optimization
problems, proposing different decomposition algorithms.

Our main result, presented in Section 3, shows that, when
X = {0, 1}q, solving (UR-Min-Max) amounts to solve n + 1
deterministic optimization problems

min
y∈Y⊆{0,1}n

f̃⊤y, (Combinatorial)

in line with the seminal result of [3], and, in particu-
lar, that (UR-Min-Max) is polynomially solvable whenever
(Combinatorial) is for any vector f̃ ∈ Rq. We complement that
positive result by showing in Section 2 that (UR-Min-Max) re-
mains NP-hard when a general set X ⊆ {0, 1}q is considered.
In Section 4, we consider the more general model (UR-Robust)
for which we propose a new reformulation in the case where
D ≥ 0, which does not involve big-M coefficients whenever y is
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binary. Finally, we numerically illustrate our theoretical result
in Section 5 on the shortest path instances described by [12]
and compare it to the reformulations proposed therein. We also
show that the linear programming relaxations of all formula-
tions coincide for these specific instances. We close with some
conclusions in Section 6.

2. Hardness

Theorem 1. The optimization problem

min
x∈X⊆{0,1}q,y∈Y

max
ξ∈Ξ(x)

c⊤x + ( f + ξ)⊤y (2)

is NP-hard even when Y ⊆ {0, 1}n, (Combinatorial) is polyno-
mially solvable, and D = 0.

Proof. We construct a reduction from the Budgeted Minimum
Cost Flow Problem with Unit Upgrading Cost, denoted BM-
CFP, studied in [5]. Let G = (V, A) be a digraph, bv ∈ Z be the
demand or supply at each node v ∈ V , ca and ca be upper and
lower costs for each arc a ∈ A and ua be the capacity of each arc
a ∈ A. Finally, let K be a budget parameter. A solution to the
BMCFP is a flow z ∈ Z|A| in G, which satisfies the flow conser-
vation and capacity constraints, together with a set of arcs A∗ of
cardinality less than K. The cost of (z, A∗) is given by

cost(z, A∗) =
∑
a∈A∗

caza +
∑

a∈A\A∗
caza.

The objective of BMCFP is to find a solution of minimum cost.
It is proved in Theorem 2 of [5] that the problem is NP-hard,
even when

|bv| ≤ |A| + |V | (3)

for v ∈ V .
Our reduction works as follows. Consider first that Y ⊆

Z|A| is the feasibility set of the aforementioned flow vectors
z, X =

{
x ∈ {0, 1}|A| |

∑
a∈A xa ≤ K

}
, f = c, c = 0, Ξ(x) ={

ξ ∈ R|A|+
∣∣∣ ξ ≤ (c − c) ◦ (e − x)

}
. Given a solution (z, A∗) to

BMCFP, we construct a solution (x, y) to (2) by setting y = z
and xa = 1 iff a ∈ A∗. Thus, we obtain that

max
ξ∈Ξ(x)

c⊤x + ( f + ξ)⊤y =
∑
a∈A∗

caza +
∑

a∈A\A∗
caza = cost(z, A∗).

We can similarly construct a solution (z, A∗) from any feasible
solution (x, y) to (2), thereby providing the reduction.

To obtain the result whenever Y ⊆ {0, 1}n, it suffices to de-
compose the integer flow in terms of binary variables. Thanks
to condition (3), the resulting problem still contains polynomi-
ally many variables.

3. Binary decision variables

In this section, we focus on (UR-Min-Max) and show that if
X = {0, 1}q then the problem is polynomially solvable whenever
(Combinatorial) is polynomially solvable for any vector f̃ . We
remark that in contrast to the complexity proof of Section 2,

the problem we consider here does not have any constraints on
vector x that represents uncertainty reduction.

We assume, for ease of exposition, that, v j = 0 for j ∈ [n],
i.e., the deviation w j can be completely reduced by setting vari-
able x j = 1 and that the uncertainty set has a single constraint
expressed in the form of a knapsack constraint with D a row
vector and d a scalar. The results of this section can be extended
to sets with multiple knapsack constraints as long as their num-
ber is constant in problem parameters [15]. They can simi-
larly be extended to uncertain robust constraints [1] although
the complexity of the resulting algorithms will be exponential
in the number of constraints affected by uncertainty.

We start by reformulating the inner maximization problem
using liner programming duality to obtain:

min
x∈{0,1}q ,y∈Y⊆{0,1}n ,

θ≥0,π≥0

c⊤x + f⊤y + dθ +
∑
j∈[n]

w j(1 − x j)π j (UR-Min)

s.t. D jθ + π j ≥ y j ∀ j ∈ [n].

Theorem 2. An optimal solution of (UR-Min) can be obtained
by solving at most n+1 deterministic problems of the same form
as (Combinatorial).

Proof. Starting from (UR-Min), let θ ≥ 0 be fixed. Then, the
expression of π j simplifies to [y j − D jθ]+. We next plug this
expression into the objective function of (UR-Min) to obtain:

min
x∈{0,1}q ,y∈Y⊆{0,1}n ,

θ≥0

c⊤x + f⊤y + diθ +
∑
j∈[n]

w j(1 − x j)[y j − D jθ]+ (4)

which can be solved by searching over possible values of θ.
Further, since y j is binary, it can be taken out of [·]+, giving rise
to

min
x∈{0,1}q ,y∈Y⊆{0,1}n ,

θ≥0

c⊤x + f⊤y + diθ (5)

+
∑
j∈[n]

w j(1 − x j)
(
[1 − D jθ]+y j + [−D jθ]+(1 − y j)

)
.

We remark that for fixed x and y, because w j ≥ 0 for j ∈ [n], the
objective function of the above problem is a sum of piecewise
affine convex functions of θ and is therefore piecewise affine
convex in θ. Its minimum can be obtained as one of the break-
points of the piecewise affine functions which are obtained ei-
ther at θ = 0 when D j ≤ 0 or at θ = 1

D j
when D j > 0. As such,

(UR-Min) can be solved as a series of problems each time with
a fixed value of θ. Since there are at most |{ j | D j > 0}|+1 differ-
ent values of θ, at most n + 1 such problems need to be solved.
Consider now one of these problems with θ fixed, where we
make the notational distinction of using θ̄ for fixed values:

min
x∈{0,1}q,y∈Y⊆{0,1}n

c⊤x + f⊤y + diθ̄ (6)

+
∑
j∈[n]

w j(1 − x j)
(
[1 − D jθ̄]+y j + [−D jθ̄]+(1 − y j)

)
.

We remark that this problem is bilinear due to the presence of
terms (1 − x j)y j. We next show that for a fixed vector y, the
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optimal solution over the vector x can be calculated in closed
form.

To this end, we write the problem at hand a little differently
in order to better reveal its combinatorial structure:

diθ̄ +
∑
j∈[n]

w j[−D jθ̄]+ (7)

+ min
y∈Y⊆{0,1}n

∑j∈[n]

(
f j + w j[1 − D jθ̄]+ − w j[−D jθ̄]+

)
y j

+ min
x∈{0,1}q

c⊤x −
∑
j∈[n]

w jx j

(
[1 − D jθ̄]+y j + [−D jθ̄]+(1 − y j)

) .
Assume, now, that the vector y is fixed. Then the optimiza-

tion problem over the vector x decomposes over its elements,
the problem over x j reading

min
x j∈{0,1}

[
c j − w j

(
[1 − D jθ̄]+y j + [−D jθ̄]+(1 − y j)

)]
x j. (8)

When y j = 1, we obtain the optimal value of this
problem as

[
c j − w j[1 − D jθ̄]+

]−
, otherwise we obtain it as[

c j − w j[−D jθ̄]+
]−

. As such, its optimal value can be written
linearly in y as

=
[
c j − w j[1 − D jθ̄]+

]−
y j +
[
c j − w j[−D jθ̄]+

]−
(1 − y j). (9)

Now integrating into the outer optimization problem over y, we
obtain:

diθ̄ +
∑
j∈[n]

w j[−D jθ̄]+ +
[
c j − w j[−D jθ̄]+

]−
(10)

+ min
y∈Y⊆{0,1}n

∑
j∈[n]

(
f j + w j[1 − D jθ̄]+ − w j[−D jθ̄]+

+
[
c j − w j[1 − D jθ̄]+

]−
−
[
c j − w j[−D jθ̄]+

]−)
y j.

This problem is in the same form as (Combinatorial) which
completes the proof.

Theorem 2 extends to the general case where v ≥ 0 expressed
by (1). To do so, it suffices to introduce the uncertain parame-
ters ξ1j and ξ2j for ξ j, j ∈ [q] to obtain:

Ξlifted(x) =
{
ξ = (ξ1, ξ2) ∈ R2q

+

∣∣∣ Dξ ≤ d, ξ1 ≤ v, ξ2 ≤ w ◦ (e − x)
}
.

The preceding developments then can be repeated in the same
manner, the only difference being the addition of the term v j[1−
D jθ̄]+ − v j[−D jθ̄]+ to the coefficient of each variable y j.

Remark 1. The dependency of the uncertainty set in the de-
cision variables is here motivated by uncertainty reduction.
However, other works have suggested to let, additionally, the
right-hand-side vector d depend on y, for instance motivated
by the probabilistic guarantees of the budgeted uncertainty
set [4, 13, 14]. In particular, combining Theorem 3 from [14]
with Theorem 2 still leads to solving n + 1 deterministic prob-
lems of the form (Combinatorial) whenever d depends affinely
on y.

4. Reformulations

In this section, we focus on reformulations of (UR-Robust)
in the case where D ≥ 0. We consider a single robust constraint
written as:

a⊤i x + hi(ξ)⊤y ≤ gi ∀ξ ∈ Ξ(x), (11)

where ai and hi(ξ) for ξ ∈ Ξ are the ith row of matrices A and
H(ξ) for ξ ∈ Ξ, respectively. Since hi(ξ) is an affine function of
ξ, we can express it as hi(ξ) = h̄i + H̄iξ where h̄i and H̄i are of
conforming dimensions.

Constraint (11) is a semi-infinite constraint that is com-
monly treated in robust optimization using classical reformu-
lation techniques based on linear programming duality. To do
so, we write it equivalently as:

max
ξ∈Ξ(x)

ξ⊤H̄⊤i y ≤ gi − a⊤i x − h̄⊤i y (12)

integrating the definition of hi(ξ) and gathering the constant
terms (in ξ) on the right-hand-side of the constraint. Then, us-
ing classical linear programming duality arguments, we obtain
the deterministic equivalent expression of constraint (11) as the
system of constraints:

σ⊤d + π⊤(v + w ◦ (e − x)) ≤ gi − a⊤i x − h̄⊤i y (13)
D⊤σ + π ≥ H̄⊤i y (14)
π, σ ≥ 0, (15)

where σ and π are dual variables corresponding, respectively, to
constraints Dξ ≤ d and ξ ≤ v +w ◦ (e − x). Although determin-
istic, this reformulation is nonlinear due to the presence of the
term π⊤(v+w◦(e−x)) which involves the multiplication between
variables π and x. Since variables x are assumed to be binary
these terms can be linearized using the big-M technique where
the big-M should be tailored based on upper bounds of dual
variables π. The linear relaxation of such a formulation can be
quite weak. Nevertheless, Nohadani et al. [12] proposed such
a formulation for the general case of decision-dependent uncer-
tainty sets where they additionally discussed conditions under
which the upper bound constraints can be removed (which they
call the modified big-M formulation).

The authors additionally proposed a formulation for
(UR-Robust), which they called the Π̄ formulation, where the
decision-dependence of (1) can be transferred to the constraints
of the problem through a big-M coefficient. Their result was
stated in the case where H̄i = I for i ∈ [m]. We generalize it
here to any H̄i ∈ Rq.

Proposition 1. We have that

max
ξ∈Ξ(x)

ξ⊤H̄⊤i y = max
Ξlifted(0)

y⊤H̄iξ
1 + (H̄⊤i y − Π̄x)⊤ξ2 (16)

where Π̄ = diag(πmax) with πmax a vector of component-wise
upper bounds on dual variables π in (13)-(15).

In (16), Π̄ acts as a big-M coefficient so that when x j = 1 the
corresponding uncertain parameter ξ2j is equal to zero at opti-
mality. Nohadani et al. [12] prove that when H̄i = I for i ∈ [m]
and D, y ≥ 0 this upper bound can be estimated using the upper
bounds on variables y. We next generalize this result:
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Proposition 2. When D ≥ 0 and H̄⊤i y ≥ 0 for y ∈ Y, πmax
j for

j ∈ [q] can be set to:

max
y∈Y

(H̄⊤i y)⊤e j. (17)

The proofs of Proposition 1 and 2 generalize directly from
those of Nohadani et al. [12]. Proposition 1 provides a way to
obtain a linear formulation for (UR-Robust), and Proposition 2
provides a way to estimate the big-M coefficients necessary for
this formulation. However, the condition H̄⊤i y ≥ 0 for y ∈ Y
may be too restrictive and difficult to verify. Further, in order
to calculate these coefficients one might need to solve n, poten-
tially difficult, optimization problems.

We next propose an alternative formulation that allows us to
better capitalize on the knowledge of the primal formulation. To
this end, we remark that in Ξlifted(x) each uncertain parameter
ξ2j is bounded by w j ≥ 0 when x j = 0, and by 0 when x j = 1.
Since ξ2j is also lower-bounded by 0, this implies that ξ2j = 0
when x j = 1, i.e., the effect of ξ2j is completely eliminated from
the constraints. The following result closely follows from this
observation.

Theorem 3. If D ≥ 0, constraint (11) can be equivalently ex-
pressed as:

a⊤i x + hi(ξ1 + (e − x) ◦ ξ2)⊤y ≤ gi ∀ξ
1, ξ2 ∈ Ξlifted(0). (18)

Proof. The proof consists in showing that (18) has at least one
worst case realization ξ1, ξ2 such that ξ2j = 0 whenever x j = 1
for j ∈ [n]. To this end, consider the optimization problem

max
ξ1,ξ2≥0

hi(ξ1 + (e − x) ◦ ξ2)⊤y (19)

s.t. D(ξ1 + ξ2) ≤ d (20)

ξ1 ≤ v (21)

ξ2 ≤ w (22)

and let (ξ1, ξ2) be an optimal solution such that there exists k ∈
[n] with ξ2k = ϵ > 0 and xk = 1. Construct now the solution
(ξ̄1, ξ̄2) such that ξ̄1 = ξ1, ξ̄2j = ξ

2
j for j ∈ [n]\{k} and ξ̄2k = ξ

2
k−ϵ.

Clearly, 0 ≤ ξ̄1 ≤ v and 0 ≤ ξ̄2 ≤ w. Further,

D(ξ̄1 + ξ̄2) = D(ξ1 + ξ2 − ϵek) ≤ d − ϵDek ≤ d

where the last inequality holds since we assume that D ≥ 0.
The feasible solution (ξ̄1, ξ̄2) has additionally the same objec-
tive value as the solution (ξ1, ξ2) since the objective coefficient
of variable ξ2k is equal to zero when xk = 1 which concludes the
proof.

We remark that the condition D ≥ 0 is necessary for Theo-
rem 3 to hold since otherwise the value of ξ2j can be increased in
order to increase the value of another uncertain parameter even
when x j = 1.

In order to proceed with the derivation of our reformulation,
we first write constraints (18) equivalently as:

max
ξ1,ξ2∈Ξlifted(0)

hi(ξ1 + (e − x) ◦ ξ2)⊤y ≤ gi − a⊤i x, (23)

and replace hi(ξ1+ (e− x)◦ξ2) by its affine expression to obtain:

max
ξ1,ξ2∈Ξlifted(0)

(ξ1 + (e − x) ◦ ξ2)⊤H̄⊤i y ≤ gi − a⊤i x − h̄⊤i y. (24)

Then, using linear programming duality, we obtain the system
of inequalities:

π⊤d + q⊤w + r⊤v ≤ gi − a⊤i x − h̄⊤i y (25)
D⊤π + q ≥ H̄⊤i y (26)
D⊤π + r ≥ H̄⊤i y − H̄⊤i (y ◦ x) (27)
π, q, r ≥ 0, (28)

which can then be linearized using the big-M technique in order
to eliminate the bilinear terms y ◦ x where the big-M should be
tailored based on lower and upper bounds of variables y which
can be deduced from the knowledge of the problem. This for-
mulation is advantageous compared to the previous one espe-
cially when y are binary in which case the big-M coefficient
can be set to 1.

Example 1. Consider the “box” uncertainty set Ξ(x) ={
ξ ∈ Rq

+ | ξ ≤ e − x
}

for the robust problem

z = min
x∈X,y∈Y

max
ξ∈Ξ(x)

y⊤H̄ξ, (29)

with y⊤H̄ ≥ 0 for y ∈ Y. On the one hand, the alter-
native approach proposed in Theorem 3 reformulates (29) as
minx∈X,y∈Y y⊤H̄(e − x), so the linear programming relaxation of
its linearization is

znew
LR = min

x∈rel(X),y∈rel(Y)

∑
j∈[n],k∈[q]

H̄ jk(y j − η jk)

s.t. η jk ≤ xk ∀ j ∈ [n],∀k ∈ [q]
η jk ≤ y j ∀ j ∈ [n],∀k ∈ [q]
η ≥ 0,

where rel(P) denotes the linear programming relaxation of for-
mulation P. On the other hand, the linear programming relax-
ation obtained through Proposition 1 is

zΠ̄LR = min
x∈rel(X),y∈rel(Y)

max
ξ∈Ξ(0)

(H̄⊤y − πmax ◦ x)⊤ξ.

We show next an example in which zΠ̄LR = 0 < znew
LR = z. Con-

sider X =
{
x ∈ Rq

+

∣∣∣ e⊤x = 1
}
, Y =

{
y ∈ Rn

+

∣∣∣ e⊤y = n − 1
}
,

H̄1k = M for each k ∈ [q], where M is large enough, and
H̄ jk = 1 for each j > 1 and k ∈ [q]. We first remark that the
definitions of Y and H̄ imply that an optimal solution to both
relaxations satisfy y1 = 0 and yk = 1 for k > 1. Therefore,
η1k = 0 for each k ∈ [q] and η jk = min(xk, y j) = xk for each
j > 1 and k ∈ [q], so the problem simplifies to

znew
LR = min

x∈rel(X)

∑
j,1,k∈[q]

(1− xk) =
∑

j,1,k∈[q]

1−
∑
j,1

1 = (n−1)(q−1),

where the second equality holds since e⊤x = 1. This value is
also matched by the the integral optimal solution of the prob-
lem. On the other hand, maxy∈Y (H̄⊤y)⊤ek ≥ M for each k,
so Proposition 2 implies that πmax

k ≥ M for each k and zΠ̄LR = 0
since (H̄⊤y−πmax◦x) can be rendered negative by setting xk =

1
q

for k ∈ [q] for M sufficiently large.
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5. Numerical experiments

In this section, we illustrate the numerical relevance of our
complexity result presented in Theorem 2 on the robust shortest
path problem. This problem was also studied by [12] in its
form:

min
x∈X⊆{0,1}|A|,y∈Y

max
ξ∈ΞSP(x)

c⊤x + (d̄ +
1
2
ξ ◦ d̄)⊤y

where set X expresses the constraints imposed on variables x
and set Y contains the flow constraints describing the shortest
path problem, and ΞSP(x) is given as:

ΞSP(x) =

ξ ∈ R|A|+
∣∣∣∣∣∣∣∣
∑

(i, j)∈A

ξi j ≤ Γ, ξi j ≤ 1 − γi jxi j ∀(i, j) ∈ A

 .
In the following, we assume, without loss of generality, that
d̄ > 0 since otherwise the corresponding components of ξ are
always equal to 0 in the inner maximization problem.

Following [12], we concentrate on the variant where X =
{0, 1}|A|. Nohadani and Sharma [12] proposed three different
formulations for this problem. Among those, Π̄ and modified
big-M formulations are the most numerically promising based
on their results. We repeat these formulations here for com-
pleteness:

min
x∈X,y∈Y,
p,q,r≥0

c⊤x + d̄⊤y + Γp +
∑

(i, j)∈A

(1 − γi j)qi j + γi jri j (Π̄)

s.t. p + qi j ≥
d̄i jyi j

2
∀(i, j) ∈ A

p + ri j ≥
d̄i j(yi j − xi j)

2
∀(i, j) ∈ A,

and

min
x∈X,y∈Y,
p,q,r≥0

c⊤x + d̄⊤y + Γp +
∑

(i, j)∈A

(1 − γi j)qi j + ri j

(mod. big-M)

s.t. p + qi j ≥
d̄i jyi j

2
∀(i, j) ∈ A

ri j ≥ γi jqi j −
γi jd̄i jxi j

2
∀(i, j) ∈ A.

In the above formulations, big-M and π̄i j are omitted as their

values have already been set to γi j
d̄i j

2 and 1, respectively. We
also corrected small typos from Table 3 of [12]. For the same
problem, the formulation we proposed is Section 4 is given as:

min
x∈X,y∈Y,
p,q,r,v≥0

c⊤x + d̄⊤y + Γp +
∑

(i, j)∈A

(1 − γi j)qi j + γi jri j (new)

s.t. p + qi j ≥
d̄i jyi j

2
∀(i, j) ∈ A

p + ri j ≥
d̄i j(yi j − vi j)

2
∀(i, j) ∈ A

vi j ≤ xi j ∀(i, j) ∈ A

vi j ≤ yi j ∀(i, j) ∈ A,

from which we have removed the redundant constraints vi j ≥

xi j + yi j − 1 for (i, j) ∈ A.

Remark 2. Let zΠ̄, zM , and znew denote the optimal values
of the linear programming relaxations of (Π̄), (mod. big-M),
and (new), respectively. It holds that zΠ̄ = zM = znew.

Proof. Let us replace ri j by γi jri j in (mod. big-M). Renaming
r′i j as ri j, the second set of constraints becomes

ri j ≥ qi j −
d̄i jxi j

2
∀(i, j) ∈ A,

and the objective coefficient of ri j is now γi j so the objective
functions of all formulations coincide. Next, because of the
positive cost coefficients of q and r, we can substitute these
variables in (Π̄) by

qΠ̄i j =

[
d̄i jyi j

2
− p
]+

and rΠ̄i j =

[
d̄i j(yi j − xi j)

2
− p
]+

and we obtain similarly for (mod. big-M) that

qM
i j =

[
d̄i jyi j

2
− p
]+

and rM
i j =

[ d̄i jyi j

2
− p
]+
−

d̄i jxi j

2

+ .
Now, d̄i j xi j

2 ≥ 0 implies that[ d̄i jyi j

2
− p
]+
−

d̄i jxi j

2

+ = [ d̄i jyi j

2
− p −

d̄i jxi j

2

]+
,

so the set of optimal solutions coincide for the linear program-
ming relaxations of both formulations.

To prove the equivalence with the last formulation, we ob-
serve first that in any optimal solution to (new), we have vi j =

min(xi j, yi j). Next we remark that if min(xi j, yi j) = yi j the con-

straint p + ri j ≥
d̄i j(yi j−vi j)

2 becomes redundant in (new), as does

the constraint p + ri j ≥
d̄i j(yi j−xi j)

2 in (Π̄) since yi j − xi j ≤ 0. Oth-
erwise, if min(xi j, yi j) = xi j the two constraints are equivalent.
We therefore conclude that the set of optimal solutions for the
linear relaxations of both formulations coincide, proving the re-
sult.

Following Remark 2, we disregard formulation (new) of
our numerical experiments as it is significantly larger than
the other two. We implemented the MILP formulations (Π̄)
and (mod. big-M) in JuMP [10], using the commercial solver
CPLEX 20.1 as well as the open source solver HiGHs [8]. Our
implementation of Theorem 2 benefited from Graphs.jl [6] as
well as RobustShortestPath.jl [9]. The experiments are run us-
ing a single thread on a Intel Xeon E312xx (Sandy Bridge).

Instances were randomly generated following the procedure
described in [12]. To do so, we created n points in the 100×100
square and connected them to create a complete graph. We then
used euclidean distances for d̄ and kept only the 40% shortest
edges of the resulting complete graph in order to obtain the fi-
nal graph. We set γi j = 0.2 and ci j = 1 for each (i, j) ∈ A,
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Figure 1: Geometric averages of the solution times obtained using Theorem 2
divided by those of formulations mod. big-M and (Π̄).

and Γ = 2. For each n ∈ {25, 50, . . . , 300}, we generated 10
instances. While CPLEX could sove all instances within a little
less than 2 hours, that was not the case for HiGHS for which
some instances with n = 150 required between 2 and 3 hours of
solution time, so we limited its results to n ∈ {25, 50, . . . , 150}.

We report in Figure 1 the geometric averages of the ratios be-
tween the solution times of Theorem 2 divided by those of for-
mulations mod. big-M and (Π̄). The results illustrate that the
numerical efficiency of the two MILP formulations are com-
parable, both being between 3 and nearly 200 times slower
than the polynomial algorithms obtained from Theorem 2, de-
pending mostly on the performance of the MIP solver. The re-
sults thus offer an interesting practical takeaway on the bene-
fit of using Theorem 2 depending on the available solver. On
the one hand, if one is unable to use high performance com-
mercial solvers such as CPLEX and Gurobi, then the poly-
nomial approach from Theorem 2 is more than 2 orders of
magnitude faster than the reformulation approaches, with a
slightly increasing tendency as the number of nodes rises. On
the other hand, the advantage of Theorem 2 is less important
against a high performance solver such as CPLEX. Interest-
ingly, the speed-up versus CPLEX was much more marked
in [14], for which the MILP reformulations were orders of
magnitude slower than the polynomial-time algorithms (see Re-
mark 1).

6. Conclusions

In this paper, we consider robust optimization problems with
uncertainty reduction where the upper bounds on the uncertain
parameters are adjusted by the binary decision variables con-
trolled by the decision-maker. We particularly focus on the

min-max version of this problem where the decisions are de-
scribed by combinatorial sets. For these problems, we first
show that they are NP-hard in the general case, specializing an
earlier result by [12]. We further show that they can be solved
as a series of deterministic problems, and in particular, have the
same complexity as the ground combinatorial problem, when-
ever the uncertainty reduction decisions are not constrained. We
finally demonstrate the numerical interest of this result on the
robust shortest path problem with uncertainty reduction which
was first considered by [12]. Our results indicate that depend-
ing on the performance of the MIP solver the approach we pro-
pose can be significantly more efficient than reformulation ap-
proaches proposed by [12]. We further remark that the shortest
path problem is well-suited for reformulation approaches given
the rather small formulations available for the problem. Results
could be different for problems less suited to MILP formula-
tions, such as the minimum spanning tree for which formula-
tions are typically much larger [11]. Our algorithmic approach
could be expected to perform even more favorably in that con-
text. We also propose an alternative MILP formulation for the
problems under consideration in the case where D ≥ 0. We
show that these formulations provide a significantly stronger
linear relaxation compared to the formulations proposed in the
literature in certain cases although for the shortest path problem
considered in our numerical study all formulations are shown to
have the same relaxation value.
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