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Abstract—We study model-based end-to-end learning in the
context of integrated sensing and communication (ISAC) under
hardware impairments. A monostatic orthogonal frequency-
division multiplexing (OFDM) sensing and multiple-input single-
output (MISO) communication scenario is considered, incorpo-
rating hardware imperfections at the ISAC transceiver antenna
array. To enable end-to-end learning of the ISAC transmitter
and sensing receiver, we propose a novel differentiable version
of the orthogonal matching pursuit (OMP) algorithm that is
suitable for multi-target sensing. Based on the differentiable
OMP, we devise two model-based parameterization strategies
to account for hardware impairments: (i) learning a dictionary
of steering vectors for different angles, and (ii) learning the
parameterized hardware impairments. For the single-target case,
we carry out a comprehensive performance analysis of the
proposed model-based learning approaches, a neural-network-
based learning approach and a strong baseline consisting of
least-squares beamforming, conventional OMP, and maximum-
likelihood symbol detection for communication. Results show that
learning the parameterized hardware impairments offers higher
detection probability, better angle and range estimation accuracy,
lower communication symbol error rate (SER), and exhibits
the lowest complexity among all learning methods. Lastly, we
demonstrate that learning the parameterized hardware impair-
ments is scalable also to multiple targets, revealing significant
improvements in terms of ISAC performance over the baseline.

Index Terms—Hardware impairments, integrated sensing and
communication (ISAC), joint communication and sensing (JCAS),
machine learning, model-based learning, orthogonal matching
pursuit (OMP).

I. INTRODUCTION

NEXT-generation wireless communication systems are ex-
pected to operate at higher carrier frequencies to meet the

data rate requirements necessary for emerging use cases such
as smart cities, e-health, and digital twins for manufacturing
[1]–[4]. Higher carrier frequencies also enable new function-
alities, such as integrated sensing and communication (ISAC).
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ISAC aims to integrate radar and communication capabilities
in one joint system, which enables hardware sharing, energy
savings, communication in high-frequency radar bands, and
improved channel estimation via sensing-assisted communi-
cations, among other advantages [5]–[9]. ISAC has been
mainly considered by means of dual-functional waveforms.
For instance, radar signals have been used for communication
[10], [11], while communication waveforms have proven to
yield radar-like capabilities [8], [12]. Furthermore, optimiza-
tion of waveforms to perform both tasks simultaneously has
also been studied [5], [13]–[18], where the results depend
on the cost function to optimize and the ISAC optimization
variables. However, conventional ISAC approaches degrade
in performance under model mismatch, i.e., if the underlying
reality does not match the assumed mathematical models. In
particular at high carrier frequencies, hardware impairments
can severely affect the system performance and hardware
design becomes very challenging [19], [20]. This increases
the likelihood of model mismatch in standard approaches, and
problems become increasingly difficult to solve analytically if
hardware impairments are considered.

Deep learning (DL) approaches based on large neural net-
works (NNs) have proven to be useful under model mismatch
or complex optimization problems [21], [22]. DL does not
require any knowledge about the underlying models as it is
optimized based on training data, which inherently captures the
potential impairments of the system. DL has been investigated
in the context of ISAC for a vast range of applications, such
as predictive beamforming in vehicular networks [23]–[25],
waveform design [26] and channel estimation [27] in intelli-
gent reflecting surface (IRS)-assisted ISAC scenarios, multi-
target sensing and communication in THz transmissions [28],
or efficient resource management [29], [30]. However, most
previous works on DL for ISAC consider single-component
optimization, either at the transmitter or receiver. On the
other hand, end-to-end learning [31] of both the transmitter
and receiver has proven to enhance the final performance
of radar [32] and communication [33] systems. End-to-end
learning in ISAC was applied by means of an autoencoder
(AE) architecture in [34], to perform single-target angle esti-
mation and communication symbol estimation, under hardware
impairments. This was recently extended to multiple targets
in [35], although without considering impairments, where
the AE outperformed conventional ESPRIT [36] in terms of
angle estimation for single- and dual-snapshot transmissions.
Nevertheless, DL approaches often lack interpretability and
require large amounts of training data to obtain satisfactory
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performance.
To overcome the disadvantages of large DL models, model-

based machine learning (MB-ML) [37] instead parameterizes
existing models and algorithms while maintaining their overall
computation graph as a blueprint. This allows training ini-
tialization from an already good starting point, requiring less
training data to optimize, and typically also offers a better
understanding of the learned parameters. A popular example
of MB-ML learning is deep unfolding [38]–[40], where iter-
ative algorithms are “unrolled” and interpreted as multi-layer
computation graphs. In the context of sensing, deep unfolding
of the fixed-point continuation algorithm with one-sided l1-
norm was applied to angle estimation of multiple targets [41],
showing enhanced accuracy with respect to DL and model-
based benchmark approaches. In [42], the iterative shrinkage-
thresholding algorithm (ISTA) was unfolded to perform angle
estimation in the presence of array imperfections. Related to
communications, deep unfolding has been applied to massive
multiple-input multiple-output (MIMO) channel estimation in
[43], where classical steering vector models are used as a start-
ing point and then optimized to learn the system hardware im-
pairments, by unfolding the matching pursuit algorithm [44].
This approach was later refined to reduce the required number
of learnable parameters in [45]. Previous MB-ML approaches
[41]–[43], [45] exhibit three primary shortcomings that can
limit their effectiveness in practical scenarios. Firstly, they
focus only on receiver learning; however, end-to-end learning
of transmitter and receiver, which holds great potential given
its promising performance in model-free DL applications [32],
[33], remains unexplored in MB-ML. Secondly, sensing works
[41], [42] only investigate angle estimation, although range
estimation is also required to estimate target locations. Hence,
end-to-end MB-ML for multi-target positioning has not been
studied before. Finally, while MB-ML has been utilized to
address individual challenges related to sensing and communi-
cations, its untapped potential to significantly improve system
performance in ISAC applications remains undiscovered.

In view of the current literature on DL and MB-ML for
ISAC, three questions arise: (i) How can efficient end-to-end
MB-ML strategies be developed for multi-target positioning?
(ii) What computational and performance benefits can be
harnessed by employing MB-ML in ISAC systems compared
to large DL models and model-based approaches? (iii) To
what extent can ISAC trade-offs be improved under hardware
impairments by employing MB-ML strategies compared to
large DL models and model-based approaches?

This paper aims to answer the above questions by studying
end-to-end MB-ML for ISAC, focusing on the effect of
hardware impairments in the ISAC transceiver uniform linear
array (ULA). Considering a MIMO monostatic sensing and
multiple-input single-output (MISO) communication scenario
(as depicted in Fig. 1), we propose novel end-to-end MB-ML
strategies for joint optimization of the ISAC transmitter and
sensing receiver, suitable for both single- and multi-target
scenarios. Building upon our preliminary analysis in [46], the
main contributions of this work can be summarized as follows:
• Multi-target position estimation via end-to-end learn-

ing of orthogonal frequency-division multiplexing

Fig. 1: Considered scenario, where an impaired multi-antenna ISAC trans-
mitter is optimized based on prior information of the location of the targets
and the communication receiver. The co-located sensing receiver estimates
the targets’ states (target probability and position), while the single-antenna
communication receiver retrieves the transmitted communication data.

(OFDM) ISAC systems: For the first time in the lit-
erature, we investigate end-to-end learning of OFDM
ISAC systems under hardware impairments at the ISAC
ULA. To combat these hardware imperfections, we in-
troduce novel learning architectures to simultaneously
optimize the ISAC beamformer and sensing receiver.
OFDM transmission enables joint angle and range (and,
hence, position) estimation of multiple targets, signifi-
cantly extending the single-carrier models and methods
in our previous work [46], and the recent works [34],
[35].

• MB-ML via differentiable orthogonal matching pur-
suit (OMP): Expanding upon the foundation laid by
[43], [45], we propose a differentiable version of the
OMP algorithm that is suitable for single- and multi-
target sensing. This new algorithm allows for end-to-
end gradient-based optimization, where we consider two
different MB-ML parameterization approaches. The first
approach learns a dictionary of steering vectors at each
OMP iteration, extending our results in [46] to joint
range-angle estimation and multiple targets. The second
approach is new compared to [46] and directly learns the
parameterized ULA impairments at each iteration. This
offers the advantage of drastically reducing the number
of parameters to be learned.

• Single- and multi-target performance comparison and
ISAC trade-off characterization: We first consider
the single-target case (corresponding to one OMP it-
eration) and compare different solutions based on the
extent of model knowledge: (i) neural-network-based
learning (NNBL)1, representing no knowledge of the
system model, (ii) the two MB-ML approaches, where
model knowledge is utilized, but impairments are learned,
and (iii) a strong baseline, which fully relies on the
mathematical description of the system model under no
hardware impairments. Our results show that under hard-
ware impairments, the new MB-ML ULA impairment
learning outperforms all other approaches in terms of
target detection and range-angle estimation, with fewer
trainable parameters. Lastly, we show that impairment
learning scales smoothly also to multiple targets, where it

1Note that the neural-network architectures in [34], [35] do not directly
apply to the scenario considered here due to the use of OFDM signals.
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Comm. Channel
yc ∼ p(yc|f ,x)
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Ỹr = Yr ⊘ 1x⊤(m)

Sensing
Estimator

Comm.
Decoder

m ∈ MS

{θmin, θmax}

{φmin, φmax}

fr ∈ CK

fc ∈ CK

f ∈ CK

x(m) ∈ CS

Yr ∈ CK×S

{θmin, θmax, Rmin, Rmax}

û ∈ [0, 1]Tmax
t̂

r̂ ∈ RTmax
≥0

θ̂ ∈ [−π
2 , π

2 ]Tmax

yc ∈ CS
m̂ ∈ MS

κ = βf⊤a(φ)

Fig. 2: Block diagram of the ISAC system model. The colored blocks can be implemented following standard neural-network-based learning [34], [35], the
baseline of Secs. III-A, III-B, or model-based learning of Sec. IV. The precoding block applies the same mapping function for sensing and communication.
Note that the sensing estimator is co-located with the ISAC transmitter.

achieves better sensing and communication performance
than the baseline.

In the rest of this paper, we first describe the mathematical
ISAC system model in Sec. II. Then, we describe the two
approaches to perform target positioning and communication:
the baseline in Sec. III, and MB-ML in Sec. IV. The main
ISAC results are presented and discussed in Sec. V before the
concluding remarks of Sec. VI.

Notation. We denote column vectors as bold-faced lower-
case letters, a, and matrices as bold-faced upper-case letters,
A. A column vector whose entries are all equal to 1 is denoted
as 1. The identity matrix of size N × N is denoted as IN .
The transpose and conjugate transpose operations are denoted
by (·)⊤ and (·)H, respectively. The i-th element of a vector
and the (i, j)-th element of a matrix are denoted by [a]i
and [A]i,j . The element-wise product between two matrices
is denoted by A⊙B, while ⊘ denotes element-wise division,
and ⊗ denotes the Kronecker product. vec(·) denotes matrix
vectorization operator. Sets of elements are enclosed by curly
brackets and intervals are enclosed by square brackets. The set
{x ∈ R|x ≥ 0} is denoted as R≥0. The cardinality of a set X is
denoted by |X |. The uniform distribution is denoted by U , and
CN denotes the circularly-symmetric complex distribution.
The Euclidean vector norm is represented by ∥·∥2, while the
matrix Frobenius norm is denoted by ∥·∥F . The indicator
function is denoted by I{·}.

II. SYSTEM MODEL

This section provides the mathematical models for the
received sensing and communication signals, the ISAC trans-
mitted signal and the hardware impairments. In Fig. 2, a block
diagram of the considered ISAC system is depicted.

A. Multi-target MIMO Sensing
We consider an ISAC transceiver consisting of an ISAC

transmitter and a sensing receiver sharing the same ULA of K
antennas, as shown in Fig. 1. The transmitted signal consists
of an OFDM waveform across S subcarriers, with an inter-
carrier spacing of ∆f Hz. In the sensing channel, we consider
at most Tmax possible targets. Then, the backscattered signal
impinging onto the sensing receiver can be expressed over
antenna elements and subcarriers as [47]–[49]

Yr =
1√
S

T∑
t=1

ψta(θt)a
⊤(θt)f [x(m)⊙ ρ(τt)]

⊤ +W , (1)

where Yr ∈ CK×S collects the observations in the spatial-
frequency domains, T ∼ U{0, ..., Tmax} is the instantaneous
number of targets in the scene, and ψt ∼ CN (0, σ2

r) represents
the complex channel gain of the t-th target. The steering vector
of the ISAC transceiver ULA for an angular direction θ is,
under no hardware impairments, [a(θ)]k = exp(−ȷ2π(k −
(K − 1)/2)d sin(θ)/λ), k = 0, ...,K − 1, with d = λ/2,
λ = c/fc, c is the speed of light in vacuum and fc is the
carrier frequency2. The precoder f ∈ CK permits to steer the
antenna energy into a particular direction. Target ranges are
conveyed by ρ(τt) ∈ CS , with [ρ(τt)]s = exp(−j2πs∆fτt),
s = 0, ..., S − 1, and where τt = 2Rt/c represents the
round-trip time of the t-th target at Rt meters away from
the transmitter. Moreover, the communication symbol vector
x(m) ∈ CS conveys a vector of messages m ∈ MS ,
each uniformly distributed from a set of possible messages
M. Finally, the receiver noise is represented by W , with
[W ]i,j ∼ CN (0, N0). Note that if T = 0, only noise is
received. From the complex channel gain and the noise, we
define the integrated sensing signal-to-noise ratio (SNR) across
antenna elements as SNRr = Kσ2

r/N0.
The angles and ranges of the targets are uniformly dis-

tributed within an uncertainty region, i.e., θt ∼ U [θmin, θmax]
and Rt ∼ U [Rmin, Rmax]. However, uncertainty regions might
change at each new transmission. The position of each target
is computed from target angle θt and range Rt as

pt =

[
Rt cos (θt)
Rt sin (θt)

]
. (2)

The transmitter and the sensing receiver are assumed to have
knowledge of {θmin, θmax, Rmin, Rmax}. In the considered
monostatic sensing setup, the receiver has access to communi-
cation data x(m), which enables removing its impact on the
received signal (1) via reciprocal filtering [50], [51]

Ỹr = Yr ⊘ 1x⊤(m) =

T∑
t=1

αta(θt)ρ
⊤(τt) +N , (3)

where αt =
1√
S
a⊤(θt)fψt and N = W⊘1x⊤(m). The goal

of the sensing receiver is to estimate the presence probability
of each target in the scene, denoted as û ∈ [0, 1]Tmax , which
is later thresholded to provide a hard estimate of the target
presence, t̂ ∈ {0, 1}Tmax . For all detected targets, the sensing

2In case of different ULAs for transmitting and receiving, different steering
vector models should be used in (1).
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receiver estimates their angles, θ̂ ∈ [−π/2, π/2]Tmax , and
their ranges, R̂ ∈ RTmax

≥0 , from which target positions can
be estimated according to (2).

B. MISO Communication

In the considered ISAC scenario, communication and sens-
ing share the same transmitter. We assume that the communi-
cation receiver is equipped with a single antenna element. In
this setting, the received OFDM signal at the communication
receiver in the frequency domain is given by [52]

yc = [x(m)⊙ β]f⊤a(φ) + n, (4)

with β ∈ CS denoting the S-point discrete Fourier transform
(DFT) of the channel taps [β0, β1, ..., βL−1, 0, ..., 0], where
each tap is distributed as βl ∼ CN (0, σ2

l ). Complex Gaussian
noise n ∼ CN (0, N0IS) is added at the receiver side. The
average communication SNR per subcarrier is defined as
SNRc =

∑L
l=1 σ

2
l /(SN0).

The communication receiver is assumed to be always
present at a random position, such that φ ∼ U [φmin, φmax].
The transmitter has also knowledge of {φmin, φmax}. The
receiver is fed with the channel state information (CSI)
κ = βf⊤a(φ). The goal of the receiver is to retrieve the
communication messages m that were transmitted.

C. ISAC Transmitter

ISAC scenarios require the use of a radar-communication
beamformer to provide adjustable trade-offs between the two
functionalities. Using the multi-beam approach from [53], we
design the ISAC beamformer, based on a sensing precoder
fr ∈ CK , and a communication precoder fc ∈ CK , as

f(η, ϕ) =
√
P

√
ηfr +

√
1− ηeȷϕfc

∥√ηfr +
√
1− ηeȷϕfc∥

, (5)

where P is the transmitted power, η ∈ [0, 1] is the ISAC
trade-off parameter, and ϕ ∈ [0, 2π) is a phase ensuring
coherency between multiple beams. By sweeping over η and ϕ,
we can explore the ISAC trade-offs of the considered system.
The sensing precoder fr points to the angular sector of the
targets, {θmin, θmax}, whereas the communication precoder fc

points to the angular sector of the communication receiver,
{φmin, φmax}. In Secs. III-A and IV-A, we detail how fr and
fc are computed for the baseline and MB-ML, respectively.
However, the same precoding function is applied for sensing
and communication, as represented in Fig. 2.

D. Hardware Impairments

We study the effect of hardware impairments in the ULA
in the ISAC transceiver, which affect the steering vectors of
(1), (3), (4). Impairments in the antenna array include mutual
coupling, array gain errors, or antenna displacement errors,
among others [54]. Following the impairment models of [55],
we consider two types of impairments:

1) Unstructured impairments: In this case, the true steering
vector apert(θ) is unknown for all angles θ, while the
methods for beamforming design and signal processing

assume the nominal steering vector a(θ). If we consider
a grid of possible angles with Nθ points, then the
steering vectors require K × Nθ complex values to be
described.

2) Structured impairments: In this case, the steering vector
model is known, conditional on an unknown perturbation
vector d. We can thus write apert(θ;d), where the
meaning and dimensionality of d depend on the type
of impairment. In contrast to the unstructured impair-
ments, the impairments are often described with a low-
dimensional vector, independent of Nθ.

Example 1 (Impact of structured impairments): Consider
the example of inter-antenna spacing errors, where d ∈ CK

and [apert(θ;d)]k = exp(−ȷ2π(k−(K−1)/2)[d]k sin(θ)/λ),
k = 0, ...,K − 1. In Fig. 3, the angle-delay map (defined in
Sec. III-B) is depicted under ideal conditions (top) and hard-
ware impairments (bottom), when T = 4 targets are present.
The main effect of hardware impairments is to expand target
lobes in the angle domain. In the example shown in Fig. 3, two
targets become indistinguishable due to impairments, and the
appearance of spurious lobes hinders the detection of the target
at the highest range. Another effect of hardware impairments
is that the magnitude of the target lobes is decreased, which
makes them harder to differentiate from noise. These results
highlight the relevance of addressing hardware impairments in
our sensing scenario.

III. BASELINE

In this section, we derive the baseline method according to
model-based benchmarks, which will later be compared with
end-to-end learning approaches in Sec. V.

A. ISAC Beamformer

We design the baseline for the precoding mapping in Fig. 2,
which affects both the sensing precoder fr, and the commu-
nication precoder fc in (5), by resorting to the beampattern
synthesis approach in [56], [57]. We define a uniform angular
grid covering [−π/2, π/2] with Nθ grid locations {θi}Nθ

i=1. For
a given angular interval θinterval (i.e., θinterval = [φmin, φmax]
for communications, and θinterval = [θmin, θmax] for sensing),
we denote by b ∈ CNθ×1 the desired beampattern over the
defined angular grid, given by

[b]i =

{
K, if θi ∈ θinterval

0, otherwise.
(6)

The problem of beampattern synthesis can then be formulated
as min

fbs
∥b − A⊤fbs∥22, where A = [a(θ1) . . . a(θNθ

)] ∈

CK×Nθ denotes the transmit steering matrix evaluated at the
grid locations. This least-squares (LS) problem has a simple
closed-form solution

fbs = (A∗A⊤)−1A∗b, (7)

which yields, after normalization according to the transmit
power constraints, a communication-optimal beam fc or a
radar-optimal beam fr, which can then be used to compute
the joint ISAC beam in (5).
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(a) Ideal conditions

(b) Hardware impairments

Fig. 3: Example of the angle-delay map when T = 4 targets are present,
under ideal conditions (top) and hardware impairments in the form of inter-
antenna spacing mismatch (bottom), for an integrated sensing SNR of 20 dB.
Both maps are normalized with respect to the maximum value of the angle-
delay map under ideal conditions. More details about the specific simulation
parameters can be found in Sec. V-A.

B. Multi-target Sensing Receiver

We propose to formulate the multi-target sensing problem
based on the received signal Yr in (3) as a sparse signal
recovery problem [58] and employ the OMP algorithm [44],
[59], [60] to solve it, which represents our model-based
benchmark. To construct an overcomplete dictionary for OMP,
we specify an angular grid {θi}Nθ

i=1 and a delay grid {τj}Nτ
j=1

depending on the region of interest for target detection (i.e.,
the a priori information {θmin, θmax, Rmin, Rmax}). Then, a
spatial-domain and a frequency-domain dictionary covering
angular and delay grids can be constructed as

Φa = [a(θ1) · · · a(θNθ
)] ∈ CK×Nθ , (8a)

Φd = [ρ(τ1) · · · ρ(τNτ
)] ∈ CS×Nτ . (8b)

Algorithm 1 Baseline OMP for Multi-Target Sensing

1: Input: Observation Ỹr in (3), dictionaries Φa and Φd in
(8), termination threshold δ.

2: Output: Set A, which contains the angle and delay
estimates of multiple targets {(θ̂t, τ̂t)}It=1.

3: Initialization: Set I = 0, A = ∅, Ψa = Ψd = [ ].
4: Set the residual to Ỹ

(0)
r = Ỹr.

5: Compute angle-delay map Li,j(Ỹ
(I)
r ) =∣∣[Φa]

H
:,iỸ

(I)
r [Φd]

∗
:,j

∣∣2.
6: while maxi,j Li,j(Ỹ

(I)
r ) > δ

7: Angle-delay detection:

(̂i, ĵ) = argmax
i,j
Li,j(Ỹ

(I)
r ) . (10)

8: Update angle-delay pairs: A ← A∪ {(θî, τĵ)}.
9: Update atom sets:

Ψa ← [Ψa [Φa]:,̂i] , (11)

Ψd ← [Ψd [Φd]:,ĵ ] . (12)

10: Update gain estimates:

α̂ = argmin
α

∥∥∥Ỹr −
I+1∑
t=1

αt[Ψa]:,t([Ψd]:,t)
⊤
∥∥∥2
F
. (13)

11: Update residual:

Ỹ (I+1)
r = Ỹr −

I+1∑
t=1

α̂t[Ψa]:,t([Ψd]:,t)
⊤ . (14)

12: I = I + 1.
13: end while

Using (8), the problem of multi-target sensing based on the
observation in (3) becomes a sparse recovery problem

Ỹr =

Nθ∑
i=1

Nτ∑
j=1

[S]i,j [Φa]:,i([Φd]:,j)
⊤ +N , (9)

where S ∈ CNθ×Nτ . Here, the goal is to estimate the T -sparse
vector vec(S) ∈ CNθNτ×1 under the assumption T ≪ NθNτ .
The baseline OMP algorithm [43], [58], [60] to solve this
problem is summarized in Algorithm 1, which will serve as a
foundation to the proposed MB-ML approaches in Sec. IV-B.

C. Communication Receiver

We assume that the communication receiver has access to
the CSI κ = βf⊤a(φ). Hence, the received signal can be
expressed as yc = κ ⊙ x(m) + n. Optimal decoding in
this case corresponds to subcarrier-wise maximum likelihood
estimation according to

m̂s = arg min
ms∈M

|[yc]s − [κ]sx(ms)|2, (15)

for s = 0, ..., S−1. Since communication decoding is already
optimal, given the CSI, learning methods described in Sec. IV
apply (15) for communication message estimation.
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Ỹ (I)
r

Mask Li,j(Ỹ
(I)
r )

Softmax

Weighted sum of
(θgrid,Rgrid)

(θ̂I , τ̂I)

Mask creation based
on δθ and δR.

argmaxi,j Li,j(Ỹ
(I)
r )

ϕ̂a = a(θ̂I)

ϕ̂d = ρ(τ̂I)

Ψa ← [Ψa ϕ̂a]

Ψd ← [Ψd ϕ̂d]

α̂ = argminα

∥∥∥Ỹr−
∑I+1

t=1 αt[Ψa]:,t([Ψd]:,t)
⊤
∥∥∥2

F

∑I+1
t=1 α̂t[Ψa]:,t([Ψd]:,t)

⊤

Ỹ (0)
r = Ỹr

Ỹ (I+1)
r

No gradient

Gradient flow

Fig. 4: Block diagram of the I-th iteration of the differentiable OMP algorithm for model-based learning. Continuous lines indicate where the gradient of
the loss function flows during backpropagation. Colored blocks highlight modified operations with respect to conventional OMP. The algorithm stops when
maxi,j Li,j(Ỹ

(I)
r ) drops below a threshold.

IV. MODEL-BASED LEARNING

MB-ML is inspired by the baseline of Sec. III, although
we need to develop differentiable beamforming and estima-
tion algorithms that permit end-to-end learning, as well as
a suitable loss function for multiple targets. This section
describes the two MB-ML methods developed for multi-target
sensing: (i) dictionary learning, which learns a dictionary of
steering vectors for different angles as in [46], and is suitable
for unstructured impairments, as defined in Sec. II-D; (ii)
impairment learning, which directly learns a parameterization
of the hardware impairments and thus is suitable for structured
impairments, also defined in Sec. II-D. This section also
defines the loss function to train them.

A. Beamformer

MB-ML follows the same operations (6) and (7) to compute
the precoding vector fr or fc, given an angular interval
θinterval. Dictionary learning considers A ∈ CK×Nθ from (7)
as a free learnable parameter to account for unstructured im-
pairments, which is comprised of KNθ complex parameters.

The new proposed impairment learning considers instead
as a free learnable parameter the vector d ∈ CK , which rep-
resents a parameterization of the structured hardware impair-
ments. From d, the dictionary of steering vectors is computed
as Apert(d) = [apert(θ1;d) . . . apert(θNgrid

;d)], such that
Apert(d) is used in (7) instead of A. Impairment learning
reduces the number of learnable parameters by taking into
account the structured hardware impairments of Sec. II-D.
Indeed, it has only K complex parameters, which can be
several order of magnitudes less than the dictionary learning
approach, since the dictionary of steering vector needs a rela-
tively large number of columns Nθ to perform well. Note that
the operation in (7), which involves the learning parameters
of both MB-ML methods, is already differentiable.

B. Sensing Receiver

Range-angle estimation of targets is based on Algorithm 1.
However, the argmax operation in line 7 of Algorithm 1
is not differentiable and the gradient of no loss function
could be backpropagated in MB-ML. To circumvent this issue,
we develop a differentiable algorithm which is represented
in Fig. 4. The difference with the conventional OMP in
Algorithm 1 is that we replace the operations of lines 7-9
by the following steps:

1) argmaxi,j Li,j(Ỹ
(I)
r ): We still perform this nondiffer-

entiable operation as a temporary result to obtain the
final estimation. Note that Li,j(Ỹ

(I)
r ) is based on an

angular grid θgrid = {θi}Nθ
i=1 and a delay grid τgrid =

{τj}Nτ
j=1. In line 7 in Algorithm 1, this calculation

yields the estimated angle-delay pair, which serves as
foundation for the following step of the differentiable
OMP algorithm.

2) Mask the angle-delay map, Li,j(Ỹ
(I)
r ), based on angle

and range resolution: in order to consider elements of
Li,j(Ỹ

(I)
r ) that solely correspond to a single target, we

select the elements around the maximum of the angle-
delay map that are within the angle and range resolution.
This operation also helps to obtain a differentiable angle-
delay estimation, similar to line 7 in Algorithm 1. We
create the mask based on the angle and range resolution,
since it determines the minimum angle or range for
which two targets are indistinguishable. The angle and
range resolutions in our case are

δθ ≈
2

K
δR ≈

c

2B
=

c

2S∆f
, (16)

with B the bandwidth of the transmitted signal. The
resolutions are considered in terms of the number of
pixels of the angle-delay map, depending on Nθ and
Nτ .
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3) Softmax: We apply a softmax operation to the masked
matrix from the previous operation, so that the sum of its
elements is equal to 1. Unlike line 7 in Algorithm 1, the
softmax function is differentiable, enabling end-to-end
learning.

4) Weighted sum: A weighted sum of θgrid and τgrid is
implemented, where each weight corresponds to the
output of the previous softmax operation, and they
represent an estimate of the probability that a certain
angle-delay pair is the true value. From this interpolation
operation, an angle-delay pair (θ̂I , τ̂I) is obtained, which
may not be included in θgrid or τgrid. From this com-
putation, the angle-delay pairs are updated, as in line 8
in Algorithm 1. Note that these four first steps (center
column of Fig. 4), amount to looking in the dictionary
for the most correlated atoms with the input, and then
estimating the angle-delay pair as a convex combination
of the corresponding angle-delays on the grid. This kind
of similarity-based learning has been applied to other
tasks within MIMO systems [61], and is reminiscent of
the attention mechanism [62].

5) Compute estimated spatial-domain and frequency-
domain vectors a(θ̂I), ρ(τ̂I): unlike line 9 in Al-
gorithm 1, we recompute the spatial-domain and
frequency-domain vectors based on the estimated angle-
delay pair of the previous step, since the estimated
angle-delay pair (θ̂I , τ̂I) might not be contained in
(θgrid, τgrid). The sets Ψa and Ψd are updated with the
new vectors, as represented in Fig. 4.

After the previous steps, differentiable OMP continues as
lines 10-12 in Algorithm 1 to obtain the new residual Ỹ (I+1)

r ,
as depicted in Fig. 4. This differentiable OMP algorithm still
involves looking over a grid of possible angles. We utilize as
the dictionary of angles Φa the same matrices A and Apert(d)

from the beamformer of Sec. IV-A to compute Li,j(Ỹ
(I)
r ),

which allows parameter sharing between the co-located trans-
mitter and receiver. The gradient of the loss function does not
flow through the argmax operation, as illustrated in Fig. 4.
To further improve memory efficiency, gradient flow is also
discarded when computing the new residual Ỹ (I+1)

r from the
estimates (θ̂I , τ̂I).

C. Loss Function

As loss function for MB-ML multi-target sensing, we select
the generalized optimal sub-pattern assignment (GOSPA) loss
from [63]. In our case, the GOSPA loss is defined as follows.
Let γ > 0, 0 < µ ≤ 2 and 1 ≤ p <∞. Let P = {p1, ...,p|P|}
and P̂ = {p̂1, ..., p̂|P̂|} be the finite subsets of R2 correspond-
ing to the true and estimated target positions, respectively, with
0 ≤ |P| ≤ Tmax, 0 ≤ |P̂| ≤ Tmax. Let d(p, p̂) = ∥p − p̂∥2
be the distance between true and estimated positions, and
d(γ)(p, p̂) = min(d(p, p̂), γ) be the cut-off distance. Let Πn

be the set of all permutations of {1, ..., n} for any n ∈ N
and any element π ∈ Πn be a sequence (π(1), ..., π(n)). For

|P| ≤ |P̂|, the GOSPA loss function is defined as

d(γ,µ)p (P, P̂) =(
min

π∈Π|P̂|

|P|∑
i=1

d(γ)(pi, p̂π(i))
p +

γp

µ
(|P̂| − |P|)

) 1
p

. (17)

If |P| > |P̂|, d(γ,µ)p (P, P̂) = d
(γ,µ)
p (P̂,P). The parameter p is

proportional to the penalization of outliers, and the value of γ
dictates the maximum allowable distance error. The role of µ,
together with γ, is to control the detection penalization. This
loss function becomes suitable for multiple targets, since it
considers the association between estimated and true positions
that gives the minimum loss, tackling the data association
problem of multiple targets. In terms of target detection, we
follow the same principle as the baseline, i.e., we stop the
OMP algorithm when the maximum of the angle-delay map
drops below a threshold. Sweeping this threshold over different
values yields a trade-off in terms of detection and false alarm
rates.

V. RESULTS

This section details the simulation parameters and the results
for single- and multi-target ISAC.3 Four methods will be
evaluated and compared:
• The model-based baseline from Sec. III, working under

the mismatched assumption of no hardware impairments.
• A NNBL method, extending [34], [35], which replaces the

precoding and sensing estimation mappings in Fig. 2 by
NNs, and can operate in the absence of any knowledge of
the ISAC system (including the hardware impairments).
More details can be found in Appendix A.

• Dictionary learning from Sec. IV, where the unstructured
impaired steering vectors apert(θ) are learned for both
precoding and sensing.

• Impairment learning from Sec. IV, where the structured
impairment vector d is learned for precoding and sensing.

A. Simulation Parameters

We consider a ULA of K = 64 antennas, S = 256
subcarriers, and a subcarrier spacing of 120 kHz. We set
the maximum number of targets in the scene as Tmax = 5.
The transmitted power is P = 1 and the carrier frequency
is fc = 60 GHz. The sensing SNR across antenna elements
was set to SNRr = Kσ2

r/N0 = 15 dB, and the average
communication SNR per subcarrier was fixed to SNRc =∑L

l=1 σ
2
c,l/(SN0) = 20 dB. The number of channel taps in

the communication channel is L = 5, with an exponential
power delay profile, i.e., σ2

l = exp (−l), l = 0, ..., L− 1. The
power delay profile is later normalized to obtain the desired
average SNR. The number of grid points for angle and range
is set as Nθ = 720 and Nτ = 200.

To train the learning methods for a wide range of angles,
we randomly draw {θmin, θmax} as in [64], i.e., we draw a

3Source code to reproduce all numerical results in this paper will be
made available at https://github.com/josemateosramos/MBE2EMTISAC after
the peer-review process.

https://github.com/josemateosramos/MBE2EMTISAC
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realization of θmean ∼ U [−60◦, 60◦] and ∆ ∼ U [10◦, 20◦], for
each new transmission. The target angular sector is computed
as θmin = θmean − ∆/2, θmax = θmean + ∆/2. The
communication angular sector and the range uncertainty region
are set as {φmin, φmax} = {30◦, 50◦}, {Rmin, Rmax} =
{10, 190} m, for all transmissions. For hardware impairments,
we consider the model of [34], [64], i.e., we assume structured
hardware impairments where the antenna elements in the ULA
array are spaced as d ∼ CN ((λ/2)1, σ2

λIK). We select a
standard deviation of σλ = λ/25 = 0.2 mm. MB-ML is
initialized with the same knowledge as the baseline, i.e., the
steering vector models firstly assume that d = (λ/2)1.

In the GOSPA loss, we set µ = 2, as recommended
in [63], p = 2, and γ = (Rmax − Rmin)/2 = 90 m.
The cardinality mismatch term in (17) implies the use of a
threshold during training. However, our goal is to train the
learning methods regardless of the threshold, and then explore
sensing performance by changing the threshold. Hence, during
training it is assumed to know the actual number of targets T ,
which means that |P| = |P̂| = T , and the GOSPA loss during
training becomes

d(γ,µ)p (P, P̂) =
(

min
π∈Π|P̂|

|P|∑
i=1

d(γ)(pi, p̂π(i))
p

) 1
p

. (18)

However, there is no detection penalization term in (18), which
implies that the detection probability estimation NN of NNBL
cannot be optimized. Hence, we adopt a two-step training
approach for NNBL, as follows:

1) We first train fε and fξ based on the simplified GOSPA
loss of (18).

2) While freezing the parameters ξ, we then train fε and
fζ by minimizing

d(γu,µ)
u (D, D̂) =

(
min

π∈Π|D̂|

|D|∑
i=1

d(γu)(ui, ûπ(i))
p

) 1
p

,

(19)

where D = {u1, ..., u|D|} and D̂ = {û1, ..., û|D̂|}
are the true and estimated sets of target probabil-
ities, d(γu)(ui, ûπ(i)) = min(d(ui, ûπ(i)), γu), and
d(ui, ûπ(i)) = −ui log(ûπ(i))− (1− ui) log(1− ûπ(i)).
That is, we replace the position distance error in (18)
with the binary cross-entropy (BCE) loss. Note that in
(19) we also assume that |D| = |D̂| = T .

The previous two-step training approach was observed to yield
better performance, compared to joint training of all NN
parameters ε, ξ, ζ based on the sum of the losses (18) and
(19).

Network optimization is performed using the Adam opti-
mizer [65], with a batch size of B = 3000 and 100,000
training iterations. The learning rate of dictionary and impair-
ment learning was set to 5 · 10−3 and 10−7, respectively. In
the two-step training approach for NNBL, 100,000 training
iterations are applied to each of the steps. Position estimation
training used a learning rate of 10−2, while target detection
utilized 10−3 as learning rate. The architecture of NNBL is
described in Appendix A-B. NNBL also benefited from using

a scheduler, to reduce the learning rate when the loss function
has reached a plateau. Details of the scheduler parameters can
be found in Appendix A-B.

B. Performance Metrics

Concerning testing, we compute as detection performance
metrics a measure of the probability of misdetection and the
probability of false alarm, for multiple targets. We use the
same definitions as in [35], which correspond to

pmd = 1−
∑B

i=1 min{Ti, T̂i}∑B
i=1 Ti

, (20)

pfa =

∑B
i=1 max{Ti, T̂i} − Ti∑B

i=1 Tmax − Ti
, (21)

where Ti, T̂i are the true and estimated number of targets in
each batch sample, respectively. The regression performance
is measured via the GOSPA (for multiple targets sensing) and
root mean squared error (RMSE) (for single target sensing).

As communication performance metric, we use the average
symbol error rate (SER) across subcarriers, computed as

SER =
1

BS

B∑
i=1

S∑
j=1

I{[mi]j ̸= [m̂i]j}, (22)

with mi and m̂i the true and estimated message vectors at
the i-th batch sample. All described methods in this paper
(baseline of Sec. III, MB-ML of Sec. IV, and NNBL) use
a quadrature phase shift keying (QPSK) encoder, and the
message estimation rule in (15).

C. Single-target ISAC

In single-target ISAC, the maximum number of targets is
Tmax = 1, which implies that the GOSPA loss function
in (18) becomes d(γ)(p, p̂). However, in order to compare
with our previous work [46], we train MB-ML and position
estimation of NNBL using the mean squared error (MSE) loss
d(p, p̂)p = ∥p−p̂∥22, and detection estimation of NNBL using
the BCE loss, d(u, û) = −u log(û)− (1−u) log(1− û). Posi-

tion estimation is assessed by the angle RMSE,
√

E[(θ − θ̂)2],

and the range RMSE,
√
E[(R− R̂)2].

ISAC performance results are represented in Fig. 5, where
we sweep over [0, 1] and [0, 7π/4], taking 8 uniformly spaced
values, to set η and ϕ in (5), respectively. For testing,
we fixed {θmin, θmax} = {−40◦,−20◦}4. The probability
of false alarm was set to pfa = 10−2. Result show that
under no complexity limitations (solid lines) and hardware
impairments, learning methods outperform the baseline in
terms of misdetection probability, angle and range estimation,
and SER, which implies that learning methods have adapted
to hardware impairments. Communication performance, even
in the case of optimal symbol estimation, is enhanced by
learning approaches, which suggests that the impairments have

4Unless otherwise stated, the authors also tested other values of
{θmin, θmax}, and the results were qualitatively the same.
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Fig. 5: Single-target ISAC trade-offs under hardware impairments.

a significant impact on the optimal communication precoder.
In addition, dictionary learning outperforms NNBL for range
estimation, although the converse happens for misdetection
probability. Impairment learning yields the best performance
among all learning methods, and with fewer parameters, which
usually implies less training time. Indeed, NNBL is composed
of a total of 7.78 million real learnable parameters, while dic-
tionary learning uses KNθ = 40, 080 complex parameters, and
impairment learning consists of K = 64 complex parameters.

Under limited complexity, the number of parameters of
dictionary learning and NNBL are restricted. We follow
the approach of [34], and restrict the number of (complex)
parameters of dictionary learning by setting Nθ = 156,
which reduces the number of parameters to 9,984 complex
parameters. The complexity constraints applied to NNBL-
learning are detailed in Appendix A-B, which decreases the
number of real parameters to 10,555. From Fig. 5, it is
observed that while NNBL drops in performance, especially
for angle and range estimation, dictionary learning still yields
better results than the baseline. However, dictionary learning
also decreased in performance compared to the unconstrained
approach, which means that dictionary learning cannot achieve
the same performance as impairment learning for the same
number of parameters.
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Neural-network-based learning Impairment learning
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R

Fig. 6: Single-target ISAC generalization trade-offs under hardware impair-
ments and new (unseen) testing data. The target lies in the angular sector
{θmin, θmax} = {−20◦, 20◦}. The complexity of the networks is not
limited.

Lastly, we test all learning approaches for a scenario that
was not encountered during training, to assess their gener-
alization capabilities. Fig. 6 depicts the performance of the
learning methods for {θmin, θmax} = {−20◦, 20◦}, which
includes a span of the angular uncertainty region wider than
expected. The complexity of the networks is not restricted. The
performance of all learning approaches has dropped compared
to Fig. 5. However, while NNBL performs worse than the
baseline, and dictionary learning yields similar results to the
baseline, impairment learning is the only approach that still
outperforms the baseline. NNBL and dictionary learning ap-
pear to overfit to the training data and degrade for unexpected
inputs. This means that for new testing scenarios, impairment
learning is the learning approach that best generalizes in
terms of performance. This is due to the fact that impairment
learning is the only method for which parameters are shared
between all directions (all columns of the dictionary are
affected each time the parameters are updated). Dictionary
learning does not exhibit this feature, since each column of
the dictionary (corresponding to a direction) is considered an
independent set of parameters.

D. Multi-target ISAC

Based on the results of Sec. V-C, impairment learning
performs the best among all considered learning methods
for the simpler case of single-target ISAC. Hence, we only
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Fig. 7: Sensing performance for standard and differentiable OMP algorithms,
when perfect impairment knowledge is available. The transmitter in both cases
is implemented as the baseline of Sec.III-A.

consider impairment learning to compare against the baseline
for multi-target sensing. The batch size for MB-ML is de-
creased to B = 1500 due to memory restrictions. The number
of iterations was also reduced to 25,000, since finding the
association between estimated and true data that minimizes
the GOSPA loss of (18) increases training time. In addition,
ISAC results perform very close to perfect knowledge of
impairments, as observed in the following.

We first compare the performance of the differentiable OMP
algorithm of Sec. IV-B with the baseline, when hardware
impairments are perfectly known. In Fig. 7, the sensing
performance of both approaches is depicted. Results show
that differentiable OMP performs closely to the baseline. The
difference in performance might be because the dictionary Φa

in the baseline only covers the angular range {θmin, θmax},
while differentiable OMP uses a fixed dictionary that covers
[−π/2, π/2]. However, this allows for efficient parameter
sharing in MB-ML. Differentiable OMP takes a weighted sum
of angles and ranges, which permits to select an angle or range
outside the predefined dictionaries, unlike the baseline. The
GOSPA loss in Fig. 7 achieves a minimum for different false
alarm probabilities, since it takes into account both position
and detection errors. For high pfa, OMP estimates a higher
number of targets than the true value, and conversely for low
pfa.

Fig. 8 shows the results of the baseline without impair-
ment knowledge, differentiable OMP with perfect impairment
knowledge, and impairment learning. Impairment learning
outperforms the baseline, which illustrates the adaptability of
impairment learning to antenna imperfections in multi-target
sensing. Moreover, the performance is very close to perfect
knowledge of the impairments, which suggests that the learned
spacing is quite similar to the underlying reality. In terms
of ISAC trade-off, Fig. 9 presents the ISAC trade-offs in
case of multiple targets when pfa = 10−2. In this case, we
sweep in (5) over η and fixed ϕ = 0, since in Figs.5 and
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Fig. 8: Sensing performance of diffferentiable OMP and impairment learning.
The transmitter of differentiable OMP is implemented as the baseline of
Sec.III-A.
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Fig. 9: Multi-target ISAC trade-offs, when the false alarm probability is set to
10−2. The transmitter of differentiable OMP is implemented as the baseline
of Sec.III-A.

6 we observed that the effect of ϕ is not very significant.
Compared to Fig. 8, it is observed that impairment learning
also outperforms the baseline when impairments are not known
in terms of communication performance, due to the impact of
hardware impairments in the communication precoder.

VI. CONCLUSIONS

In this work, we studied the effect of antenna spacing
impairments in multi-target ISAC, and different learning ap-
proaches to compensate for such impairments. A new efficient
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MB-ML approach to perform end-to-end learning and impair-
ment compensation was proposed, based on a differentiable
OMP algorithm. Simulation results showed that learning ap-
proaches outperform the baseline and they can compensate
for hardware impairments. Among learning methods, the new
proposed impairment learning approach outperformed all other
considered methods, also exhibiting better generalization ca-
pabilities to new testing data, with much fewer parameters to
optimize. Simulations results verify that injection of the system
and impairment knowledge in learning methods improves their
performance and reduces their complexity.

APPENDIX A
NEURAL-NETWORK-BASED LEARNING (NNBL)

Since the optimal detection and estimation rules might not
be tractable, NNBL can be trained based on data to achieve
optimality. Moreover, when no information about the impair-
ments is available, NNBL can provide data-driven solutions to
account for them. This appendix describes the principles and
architecture of the considered NNBL approach.

A. Principles

NNBL replaces the precoding and sensing estimation map-
pings in Fig. 2 by NNs. The precoding network, fε : R2 →
R2K , takes θinterval as input and produces a precoder as
output, where ε corresponds to the learnable parameters. NNs
in this work are considered to work with real-valued numbers,
hence, the output dimension is doubled. The same mapping
fε is applied to both sensing and communication precoders,
to obtain fr and fc, which are later used to design the ISAC
precoder according to (5).

Sensing estimation is divided into two tasks, each corre-
sponding to a different NN: (i) detection probability esti-
mation, and (ii) position estimation. As input to both NNs,
we use Li,j(Ỹ

(I)
r ) ∈ RNθ×Nτ defined in Sec. III, instead

of Ỹr, since we observed a better sensing performance. In
addition to the angle-delay map, the input is also composed of
the a priori information {θmin, θmax, Rmin, Rmax}, as shown
in Fig 2, to improve network performance. The output of
each NN is task-dependent. The detection probability network,
fζ : RNθ×Nτ×R4 → [0, 1]Tmax , outputs a probability vector û
whose elements correspond to the probability that each target
is present in the scene, which is later thresholded to provide
an estimate of the number of targets. The position estimation
network, fξ : RNθ×Nτ × R4 → RTmax×2, outputs a matrix
P̂ whose columns represent the position estimation of each
potential target. The learnable parameters of each network
are ζ and ξ, respectively. Both NNs are trained based on the
GOSPA loss function of Sec. IV-C.

B. NN Architectures

The precoding operation of Fig. 2 was implemented as
a multilayer perceptron (MLP), whose input is an angular
sector ({θmin, θmax} or {φmin, φmax}), with 3 hidden layers
of 8K neurons and an output layer of 2K neurons, where
we recall that K = 64 is the number of antennas in the
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Fig. 10: Block diagram of the residual bottleneck block with Cin input
channels and Cout output channels.

ULA transceiver. The activation function after each layer is
the Rectified Linear Unit (ReLU) function, except for the final
layer, which contains a normalization layer to ensure a unit-
norm output, i.e., ∥fbs∥2 = 1.

For the receiver side, we resort to convolutional neural
networks (CNNs) given the 2-dimensional nature of the input
Li,j(Ỹ

(I)
r ), as represented in Fig. 3. The receiver architecture

repeats a set of layers, represented in Fig. 10, which we
call residual bottleneck block. This block was inspired by
the ResNet architecture [66]. A convolutional layer is first
introduced with some stride to decrease the number of pixels to
process. Then, 2 bottleneck blocks with skipped connections
similar to [66] follow. However, we reduce the number of
activation functions and normalization layers, as suggested
in [67]. Another residual connection is introduced from the
beginning to the end of both bottleneck blocks to help with
gradient computation.

We observed that splitting position estimation into angle
and range estimation, each of them involving a CNN, yielded
better results than using a single network. Angle and range
estimates are later combined into a position vector following
(2). The common architecture for all CNNs (detection, angle
and range estimation) is shown in Table I. Convolutional
layers introduce zero-padding so that the number of pixels
is preserved. After the first and last convolutional layers,
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TABLE I: Common architecture of the convolutional neural networks.

Layer type Kernel Size Stride In. CHs Out. CHs
Convolutional 5x5 1 1 8

Maxpool 2x2 - 8 8
Residual Bottleneck 3x3 1 8 16
Residual Bottleneck 3x3 2 16 32
Residual Bottleneck 3x3 2 32 64
Residual Bottleneck 3x3 2 64 128
Residual Bottleneck 3x3 2 128 256
Residual Bottleneck 3x3 2 256 512

Convolutional 3x3 1 512 1

TABLE II: Multi-layer perceptron architecture for each task.

Task Input layer Hidden layers Output layer
Angle estimation

NθNτ

212
(4K, 4K)

1 (tanh·90)
Range estimation 1 (ReLU)
Target detection 1 (sigmoid)

a 2-dimensional batch normalization and a ReLU activation
function are also applied. The resulting feature map of the
CNN has NθNτ/2

12 elements. For NNBL, Nθ = 320 and
Nτ = 128 due to memory constraints. The resulting fea-
ture map from the convolutional layers, together with the
a priori information {θmin, θmax, Rmin, Rmax} of the target
locations, are processed by MLPs. The angle estimation net-
work only uses {θmin, θmax}, the range estimation network
{Rmin, Rmax}, and the detection network utilizes both of
them. The architecture of each MLP is described in Table II.
The activation function after each fully-connected layer is the
ReLU function. Unless stated otherwise, all NN architectures
were optimized to give the best ISAC performance, where we
explored, for instance, kernel sizes up to 13x13, the number
of residual bottleneck blocks from 3 to 7, or the number of
layers of the MLP of Table II, from K to 64K, among others.

When training NNBL, a scheduler is used to reduce the
learning rate if the loss function plateaus. The patience of the
scheduler was set as 104 iterations. If the loss function was
regarded to plateau, the learning rate was decreased by half,
with a minimum attainable learning rate of 10−6.

When complexity limitations are considered, in the trans-
mitter network the number of neurons in each hidden layer
was reduced to 4. At the receiver side, the kernel size of the
Maxpool layer is increased to 4x4, the number of residual
bottleneck blocks is changed from 6 to 3, the number of
channels in the network is reduced by a factor of 4, and the
number of neurons in the hidden layer of the last MLP are
constrained to 4.
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F. Tufvesson, “6G wireless systems: Vision, requirements, challenges,
insights, and opportunities,” Proc. IEEE, vol. 109, no. 7, pp. 1166–1199,
Jul. 2021.

[3] M. Matthaiou, O. Yurduseven, H. Q. Ngo, D. Morales-Jimenez, S. L.
Cotton, and V. F. Fusco, “The road to 6G: Ten physical layer challenges
for communications engineers,” IEEE Commun. Mag., vol. 59, no. 1,
pp. 64–69, Feb. 2021.

[4] W. Saad, M. Bennis, and M. Chen, “A vision of 6G wireless systems:
Applications, trends, technologies, and open research problems,” IEEE
Netw., vol. 34, no. 3, pp. 134–142, Oct. 2019.

[5] A. R. Chiriyath, B. Paul, and D. W. Bliss, “Radar-communications
convergence: Coexistence, cooperation, and co-design,” IEEE Trans.
Cogn. Commun. Netw., vol. 3, no. 1, pp. 1–12, Feb. 2017.

[6] D. K. P. Tan, J. He, Y. Li, A. Bayesteh, Y. Chen, P. Zhu, and W. Tong,
“Integrated sensing and communication in 6G: Motivations, use cases,
requirements, challenges and future directions,” in Proc. 1st IEEE Int.
Symp. Joint Commun. & Sens. (JC&S), Dresden, Germany, 2021, pp.
1–6.

[7] H. Wymeersch, D. Shrestha, C. M. De Lima, V. Yajnanarayana,
B. Richerzhagen, M. F. Keskin, K. Schindhelm, A. Ramirez, A. Wolf-
gang, M. F. De Guzman et al., “Integration of communication and
sensing in 6G: A joint industrial and academic perspective,” in Proc.
32nd IEEE Annu. Int. Symp. Personal Indoor Mobile Radio Commun.
(PIMRC), Helsinki, Finland, 2021, pp. 1–7.

[8] F. Liu, Y. Cui, C. Masouros, J. Xu, T. X. Han, Y. C. Eldar, and S. Buzzi,
“Integrated sensing and communications: Towards dual-functional wire-
less networks for 6G and beyond,” IEEE J. Sel. Areas Commun., vol. 40,
no. 6, pp. 1728–1767, Mar. 2022.

[9] S. Lu, F. Liu, Y. Li, K. Zhang, H. Huang, J. Zou, X. Li, Y. Dong,
F. Dong, J. Zhu et al., “Integrated sensing and communications: Recent
advances and ten open challenges,” arXiv preprint arXiv:2305.00179,
2023.

[10] F. Lampel, R. F. Tigrek, A. Alvarado, and F. M. Willems, “A perfor-
mance enhancement technique for a joint FMCW RADCOM system,”
in Proc. IEEE 16th Eur. Radar Conf. (EuRAD), Paris, France, 2019, pp.
169–172.

[11] A. Lazaro, M. Lazaro, R. Villarino, D. Girbau, and P. de Paco, “Car2car
communication using a modulated backscatter and automotive FMCW
radar,” Sensors, vol. 21, no. 11, p. 3656, May 2021.

[12] J. A. Zhang, M. L. Rahman, K. Wu, X. Huang, Y. J. Guo, S. Chen, and
J. Yuan, “Enabling joint communication and radar sensing in mobile
networks—a survey,” IEEE Commun. Surv. & Tut., vol. 24, no. 1, pp.
306–345, Oct. 2021.

[13] L. Chen, F. Liu, W. Wang, and C. Masouros, “Joint radar-communication
transmission: A generalized pareto optimization framework,” IEEE
Trans. Signal Process., vol. 69, pp. 2752–2765, May 2021.

[14] S. D. Liyanaarachchi, C. B. Barneto, T. Riihonen, M. Heino, and
M. Valkama, “Joint multi-user communication and MIMO radar through
full-duplex hybrid beamforming,” in Proc. 1st IEEE Int. Online Symp.
Joint Commun. & Sens. (JC&S), Dresden, Germany, 2021, pp. 1–5.

[15] S. H. Dokhanchi, M. B. Shankar, M. Alaee-Kerahroodi, and B. Ottersten,
“Adaptive waveform design for automotive joint radar-communication
systems,” IEEE Trans. Veh. Technol., vol. 70, no. 5, pp. 4273–4290, Apr.
2021.

[16] J. Johnston, L. Venturino, E. Grossi, M. Lops, and X. Wang, “MIMO
OFDM dual-function radar-communication under error rate and beam-
pattern constraints,” IEEE J. Select. Areas Commun., vol. 40, no. 6, pp.
1951–1964, Mar. 2022.

[17] F. Liu, L. Zhou, C. Masouros, A. Li, W. Luo, and A. Petropulu, “To-
ward dual-functional radar-communication systems: Optimal waveform
design,” IEEE Trans. Signal Process., vol. 66, no. 16, pp. 4264–4279,
Jun. 2018.

[18] M. F. Keskin, V. Koivunen, and H. Wymeersch, “Limited feedforward
waveform design for OFDM dual-functional radar-communications,”
IEEE Trans. Signal Process., vol. 69, pp. 2955–2970, Apr. 2021.

[19] M. Z. Chowdhury, M. Shahjalal, S. Ahmed, and Y. M. Jang, “6G wire-
less communication systems: Applications, requirements, technologies,
challenges, and research directions,” IEEE Open J. Commun. Soc., vol. 1,
pp. 957–975, Jul. 2020.

[20] W. Jiang, B. Han, M. A. Habibi, and H. D. Schotten, “The road towards
6G: A comprehensive survey,” IEEE Open J. Commun. Soc., vol. 2, pp.
334–366, Feb. 2021.

[21] E. Mason, B. Yonel, and B. Yazici, “Deep learning for radar,” in Proc.
IEEE Radar Conf. (RadarConf), Seattle, WA, USA, 2017, pp. 1703–
1708.
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