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We study model-based end-to-end learning in the context of integrated sensing and communication (ISAC) under hardware impairments. A monostatic orthogonal frequencydivision multiplexing (OFDM) sensing and multiple-input singleoutput (MISO) communication scenario is considered, incorporating hardware imperfections at the ISAC transceiver antenna array. To enable end-to-end learning of the ISAC transmitter and sensing receiver, we propose a novel differentiable version of the orthogonal matching pursuit (OMP) algorithm that is suitable for multi-target sensing. Based on the differentiable OMP, we devise two model-based parameterization strategies to account for hardware impairments: (i) learning a dictionary of steering vectors for different angles, and (ii) learning the parameterized hardware impairments. For the single-target case, we carry out a comprehensive performance analysis of the proposed model-based learning approaches, a neural-networkbased learning approach and a strong baseline consisting of least-squares beamforming, conventional OMP, and maximumlikelihood symbol detection for communication. Results show that learning the parameterized hardware impairments offers higher detection probability, better angle and range estimation accuracy, lower communication symbol error rate (SER), and exhibits the lowest complexity among all learning methods. Lastly, we demonstrate that learning the parameterized hardware impairments is scalable also to multiple targets, revealing significant improvements in terms of ISAC performance over the baseline.

I. INTRODUCTION

N EXT-generation wireless communication systems are ex- pected to operate at higher carrier frequencies to meet the data rate requirements necessary for emerging use cases such as smart cities, e-health, and digital twins for manufacturing [START_REF] Wang | On the road to 6G: Visions, requirements, key technologies and testbeds[END_REF]- [START_REF] Saad | A vision of 6G wireless systems: Applications, trends, technologies, and open research problems[END_REF]. Higher carrier frequencies also enable new functionalities, such as integrated sensing and communication (ISAC).

ISAC aims to integrate radar and communication capabilities in one joint system, which enables hardware sharing, energy savings, communication in high-frequency radar bands, and improved channel estimation via sensing-assisted communications, among other advantages [START_REF] Chiriyath | Radar-communications convergence: Coexistence, cooperation, and co-design[END_REF]- [START_REF] Lu | Integrated sensing and communications: Recent advances and ten open challenges[END_REF]. ISAC has been mainly considered by means of dual-functional waveforms. For instance, radar signals have been used for communication [START_REF] Lampel | A performance enhancement technique for a joint FMCW RADCOM system[END_REF], [START_REF] Lazaro | Car2car communication using a modulated backscatter and automotive FMCW radar[END_REF], while communication waveforms have proven to yield radar-like capabilities [START_REF] Liu | Integrated sensing and communications: Towards dual-functional wireless networks for 6G and beyond[END_REF], [START_REF] Zhang | Enabling joint communication and radar sensing in mobile networks-a survey[END_REF]. Furthermore, optimization of waveforms to perform both tasks simultaneously has also been studied [START_REF] Chiriyath | Radar-communications convergence: Coexistence, cooperation, and co-design[END_REF], [START_REF] Chen | Joint radar-communication transmission: A generalized pareto optimization framework[END_REF]- [START_REF] Keskin | Limited feedforward waveform design for OFDM dual-functional radar-communications[END_REF], where the results depend on the cost function to optimize and the ISAC optimization variables. However, conventional ISAC approaches degrade in performance under model mismatch, i.e., if the underlying reality does not match the assumed mathematical models. In particular at high carrier frequencies, hardware impairments can severely affect the system performance and hardware design becomes very challenging [START_REF] Chowdhury | 6G wireless communication systems: Applications, requirements, technologies, challenges, and research directions[END_REF], [START_REF] Jiang | The road towards 6G: A comprehensive survey[END_REF]. This increases the likelihood of model mismatch in standard approaches, and problems become increasingly difficult to solve analytically if hardware impairments are considered.

Deep learning (DL) approaches based on large neural networks (NNs) have proven to be useful under model mismatch or complex optimization problems [START_REF] Mason | Deep learning for radar[END_REF], [START_REF] Demir | Channel estimation in massive MIMO under hardware non-linearities: Bayesian methods versus deep learning[END_REF]. DL does not require any knowledge about the underlying models as it is optimized based on training data, which inherently captures the potential impairments of the system. DL has been investigated in the context of ISAC for a vast range of applications, such as predictive beamforming in vehicular networks [START_REF] Mu | Integrated sensing and communication-enabled predictive beamforming with deep learning in vehicular networks[END_REF]- [START_REF] Wang | CAP-Net: A deep learning-based angle prediction approach for ISAC-enabled RIS-assisted V2I communications[END_REF], waveform design [START_REF] Zhong | DOL-net: a decoupled online learning network method for RIS-assisted ISAC waveform design[END_REF] and channel estimation [START_REF] Liu | Deep-learning channel estimation for IRS-assisted integrated sensing and communication system[END_REF] in intelligent reflecting surface (IRS)-assisted ISAC scenarios, multitarget sensing and communication in THz transmissions [START_REF] Wu | Sensing integrated DFTspread OFDM waveform and deep learning-powered receiver design for terahertz integrated sensing and communication systems[END_REF], or efficient resource management [START_REF] Yao | Joint sensing and communications for deep reinforcement learning-based beam management in 6G[END_REF], [START_REF] Wang | Reinforcement learning-based UAVs resource allocation for integrated sensing and communication (ISAC) system[END_REF]. However, most previous works on DL for ISAC consider single-component optimization, either at the transmitter or receiver. On the other hand, end-to-end learning [START_REF] Hoydis | An introduction to deep learning for the physical layer[END_REF] of both the transmitter and receiver has proven to enhance the final performance of radar [START_REF] Jiang | Joint design of radar waveform and detector via end-to-end learning with waveform constraints[END_REF] and communication [START_REF] Aoudia | End-to-end learning for OFDM: From neural receivers to pilotless communication[END_REF] systems. End-to-end learning in ISAC was applied by means of an autoencoder (AE) architecture in [START_REF] Mateos-Ramos | End-to-end learning for integrated sensing and communication[END_REF], to perform single-target angle estimation and communication symbol estimation, under hardware impairments. This was recently extended to multiple targets in [START_REF] Muth | Autoencoder-based joint communication and sensing of multiple targets[END_REF], although without considering impairments, where the AE outperformed conventional ESPRIT [START_REF] Roy | ESPRIT-estimation of signal parameters via rotational invariance techniques[END_REF] in terms of angle estimation for single-and dual-snapshot transmissions. Nevertheless, DL approaches often lack interpretability and require large amounts of training data to obtain satisfactory performance.

To overcome the disadvantages of large DL models, modelbased machine learning (MB-ML) [START_REF] Shlezinger | Model-based deep learning[END_REF] instead parameterizes existing models and algorithms while maintaining their overall computation graph as a blueprint. This allows training initialization from an already good starting point, requiring less training data to optimize, and typically also offers a better understanding of the learned parameters. A popular example of MB-ML learning is deep unfolding [START_REF] Gregor | Learning fast approximations of sparse coding[END_REF]- [START_REF] Monga | Algorithm unrolling: Interpretable, efficient deep learning for signal and image processing[END_REF], where iterative algorithms are "unrolled" and interpreted as multi-layer computation graphs. In the context of sensing, deep unfolding of the fixed-point continuation algorithm with one-sided l 1norm was applied to angle estimation of multiple targets [START_REF] Xiao | Deepfpc: A deep unfolded network for sparse signal recovery from 1-bit measurements with application to doa estimation[END_REF], showing enhanced accuracy with respect to DL and modelbased benchmark approaches. In [START_REF] Wu | DOA estimation using an unfolded deep network in the presence of array imperfections[END_REF], the iterative shrinkagethresholding algorithm (ISTA) was unfolded to perform angle estimation in the presence of array imperfections. Related to communications, deep unfolding has been applied to massive multiple-input multiple-output (MIMO) channel estimation in [START_REF] Yassine | mpNet: Variable depth unfolded neural network for massive MIMO channel estimation[END_REF], where classical steering vector models are used as a starting point and then optimized to learn the system hardware impairments, by unfolding the matching pursuit algorithm [START_REF] Mallat | Matching pursuits with time-frequency dictionaries[END_REF]. This approach was later refined to reduce the required number of learnable parameters in [START_REF] Chatelier | Efficient deep unfolding for SISO-OFDM channel estimation[END_REF]. Previous MB-ML approaches [START_REF] Xiao | Deepfpc: A deep unfolded network for sparse signal recovery from 1-bit measurements with application to doa estimation[END_REF]- [START_REF] Yassine | mpNet: Variable depth unfolded neural network for massive MIMO channel estimation[END_REF], [START_REF] Chatelier | Efficient deep unfolding for SISO-OFDM channel estimation[END_REF] exhibit three primary shortcomings that can limit their effectiveness in practical scenarios. Firstly, they focus only on receiver learning; however, end-to-end learning of transmitter and receiver, which holds great potential given its promising performance in model-free DL applications [START_REF] Jiang | Joint design of radar waveform and detector via end-to-end learning with waveform constraints[END_REF], [START_REF] Aoudia | End-to-end learning for OFDM: From neural receivers to pilotless communication[END_REF], remains unexplored in MB-ML. Secondly, sensing works [START_REF] Xiao | Deepfpc: A deep unfolded network for sparse signal recovery from 1-bit measurements with application to doa estimation[END_REF], [START_REF] Wu | DOA estimation using an unfolded deep network in the presence of array imperfections[END_REF] only investigate angle estimation, although range estimation is also required to estimate target locations. Hence, end-to-end MB-ML for multi-target positioning has not been studied before. Finally, while MB-ML has been utilized to address individual challenges related to sensing and communications, its untapped potential to significantly improve system performance in ISAC applications remains undiscovered.

In view of the current literature on DL and MB-ML for ISAC, three questions arise: (i) How can efficient end-to-end MB-ML strategies be developed for multi-target positioning? (ii) What computational and performance benefits can be harnessed by employing MB-ML in ISAC systems compared to large DL models and model-based approaches? (iii) To what extent can ISAC trade-offs be improved under hardware impairments by employing MB-ML strategies compared to large DL models and model-based approaches?

This paper aims to answer the above questions by studying end-to-end MB-ML for ISAC, focusing on the effect of hardware impairments in the ISAC transceiver uniform linear array (ULA). Considering a MIMO monostatic sensing and multiple-input single-output (MISO) communication scenario (as depicted in Fig. 1), we propose novel end-to-end MB-ML strategies for joint optimization of the ISAC transmitter and sensing receiver, suitable for both single-and multi-target scenarios. Building upon our preliminary analysis in [START_REF] Mateos-Ramos | Model-driven end-to-end learning for integrated sensing and communication[END_REF], the main contributions of this work can be summarized as follows:

• Multi-target position estimation via end-to-end learning of orthogonal frequency-division multiplexing (OFDM) ISAC systems: For the first time in the literature, we investigate end-to-end learning of OFDM ISAC systems under hardware impairments at the ISAC ULA. To combat these hardware imperfections, we introduce novel learning architectures to simultaneously optimize the ISAC beamformer and sensing receiver. OFDM transmission enables joint angle and range (and, hence, position) estimation of multiple targets, significantly extending the single-carrier models and methods in our previous work [START_REF] Mateos-Ramos | Model-driven end-to-end learning for integrated sensing and communication[END_REF], and the recent works [START_REF] Mateos-Ramos | End-to-end learning for integrated sensing and communication[END_REF], [START_REF] Muth | Autoencoder-based joint communication and sensing of multiple targets[END_REF]. • MB-ML via differentiable orthogonal matching pursuit (OMP): Expanding upon the foundation laid by [START_REF] Yassine | mpNet: Variable depth unfolded neural network for massive MIMO channel estimation[END_REF], [START_REF] Chatelier | Efficient deep unfolding for SISO-OFDM channel estimation[END_REF], we propose a differentiable version of the OMP algorithm that is suitable for single-and multitarget sensing. This new algorithm allows for end-toend gradient-based optimization, where we consider two different MB-ML parameterization approaches. The first approach learns a dictionary of steering vectors at each OMP iteration, extending our results in [START_REF] Mateos-Ramos | Model-driven end-to-end learning for integrated sensing and communication[END_REF] to joint range-angle estimation and multiple targets. The second approach is new compared to [START_REF] Mateos-Ramos | Model-driven end-to-end learning for integrated sensing and communication[END_REF] and directly learns the parameterized ULA impairments at each iteration. This offers the advantage of drastically reducing the number of parameters to be learned. 
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Fig. 2: Block diagram of the ISAC system model. The colored blocks can be implemented following standard neural-network-based learning [START_REF] Mateos-Ramos | End-to-end learning for integrated sensing and communication[END_REF], [START_REF] Muth | Autoencoder-based joint communication and sensing of multiple targets[END_REF], the baseline of Secs. III-A, III-B, or model-based learning of Sec. IV. The precoding block applies the same mapping function for sensing and communication. Note that the sensing estimator is co-located with the ISAC transmitter.

achieves better sensing and communication performance than the baseline. In the rest of this paper, we first describe the mathematical ISAC system model in Sec. II. Then, we describe the two approaches to perform target positioning and communication: the baseline in Sec. III, and MB-ML in Sec. IV. The main ISAC results are presented and discussed in Sec. V before the concluding remarks of Sec. VI.

Notation. We denote column vectors as bold-faced lowercase letters, a, and matrices as bold-faced upper-case letters, A. A column vector whose entries are all equal to 1 is denoted as 1. The identity matrix of size N × N is denoted as I N . The transpose and conjugate transpose operations are denoted by (•) ⊤ and (•) H , respectively. The i-th element of a vector and the (i, j)-th element of a matrix are denoted by [a] i and [A] i,j . The element-wise product between two matrices is denoted by A ⊙ B, while ⊘ denotes element-wise division, and ⊗ denotes the Kronecker product. vec(•) denotes matrix vectorization operator. Sets of elements are enclosed by curly brackets and intervals are enclosed by square brackets. The set {x ∈ R|x ≥ 0} is denoted as R ≥0 . The cardinality of a set X is denoted by |X |. The uniform distribution is denoted by U, and CN denotes the circularly-symmetric complex distribution. The Euclidean vector norm is represented by ∥•∥ 2 , while the matrix Frobenius norm is denoted by ∥•∥ F . The indicator function is denoted by I{•}.

II. SYSTEM MODEL

This section provides the mathematical models for the received sensing and communication signals, the ISAC transmitted signal and the hardware impairments. In Fig. 2, a block diagram of the considered ISAC system is depicted.

A. Multi-target MIMO Sensing

We consider an ISAC transceiver consisting of an ISAC transmitter and a sensing receiver sharing the same ULA of K antennas, as shown in Fig. 1. The transmitted signal consists of an OFDM waveform across S subcarriers, with an intercarrier spacing of ∆ f Hz. In the sensing channel, we consider at most T max possible targets. Then, the backscattered signal impinging onto the sensing receiver can be expressed over antenna elements and subcarriers as [START_REF] Pucci | System-level analysis of joint sensing and communication based on 5G new radio[END_REF]- [START_REF] Sanson | High-resolution delay-doppler estimation using received communication signals for OFDM radar-communication system[END_REF] 

Y r = 1 √ S T t=1 ψ t a(θ t )a ⊤ (θ t )f [x(m) ⊙ ρ(τ t )] ⊤ + W , (1) 
where Y r ∈ C K×S collects the observations in the spatialfrequency domains, T ∼ U{0, ..., T max } is the instantaneous number of targets in the scene, and ψ t ∼ CN (0, σ2 r ) represents the complex channel gain of the t-th target. The steering vector of the ISAC transceiver ULA for an angular direction θ is, under no hardware impairments, [a(θ)] k = exp(-ȷ2π(k -(K -1)/2)d sin(θ)/λ), k = 0, ..., K -1, with d = λ/2, λ = c/f c , c is the speed of light in vacuum and f c is the carrier frequency 2 . The precoder f ∈ C K permits to steer the antenna energy into a particular direction. Target ranges are conveyed by ρ(τ t ) ∈ C S , with [ρ(τ t )] s = exp(-j2πs∆ f τ t ), s = 0, ..., S -1, and where τ t = 2R t /c represents the round-trip time of the t-th target at R t meters away from the transmitter. Moreover, the communication symbol vector x(m) ∈ C S conveys a vector of messages m ∈ M S , each uniformly distributed from a set of possible messages M. Finally, the receiver noise is represented by W , with [W ] i,j ∼ CN (0, N 0 ). Note that if T = 0, only noise is received. From the complex channel gain and the noise, we define the integrated sensing signal-to-noise ratio (SNR) across antenna elements as SNR r = Kσ 2 r /N 0 . The angles and ranges of the targets are uniformly distributed within an uncertainty region, i.e., θ t ∼ U[θ min , θ max ] and R t ∼ U[R min , R max ]. However, uncertainty regions might change at each new transmission. The position of each target is computed from target angle θ t and range R t as

p t = R t cos (θ t ) R t sin (θ t ) . ( 2 
)
The transmitter and the sensing receiver are assumed to have knowledge of {θ min , θ max , R min , R max }. In the considered monostatic sensing setup, the receiver has access to communication data x(m), which enables removing its impact on the received signal (1) via reciprocal filtering [START_REF] Mercier | Comparison of correlation-based OFDM radar receivers[END_REF], [START_REF] Rodriguez | Supervised reciprocal filter for OFDM radar signal processing[END_REF] 

Y r = Y r ⊘ 1x ⊤ (m) = T t=1 α t a(θ t )ρ ⊤ (τ t ) + N , (3) 
where

α t = 1 √ S a ⊤ (θ t )f ψ t and N = W ⊘1x ⊤ (m).
The goal of the sensing receiver is to estimate the presence probability of each target in the scene, denoted as û ∈ [0, 1] Tmax , which is later thresholded to provide a hard estimate of the target presence, t ∈ {0, 1} Tmax . For all detected targets, the sensing receiver estimates their angles, θ ∈ [-π/2, π/2] Tmax , and their ranges, R ∈ R Tmax ≥0 , from which target positions can be estimated according to [START_REF] Tataria | 6G wireless systems: Vision, requirements, challenges, insights, and opportunities[END_REF].

B. MISO Communication

In the considered ISAC scenario, communication and sensing share the same transmitter. We assume that the communication receiver is equipped with a single antenna element. In this setting, the received OFDM signal at the communication receiver in the frequency domain is given by [START_REF] Zhang | An overview of signal processing techniques for joint communication and radar sensing[END_REF] 

y c = [x(m) ⊙ β]f ⊤ a(φ) + n, (4) 
with β ∈ C S denoting the S-point discrete Fourier transform (DFT) of the channel taps [β 0 , β 1 , ..., β L-1 , 0, ..., 0], where each tap is distributed as β l ∼ CN (0, σ 2 l ). Complex Gaussian noise n ∼ CN (0, N 0 I S ) is added at the receiver side. The average communication SNR per subcarrier is defined as

SNR c = L l=1 σ 2
l /(SN 0 ). The communication receiver is assumed to be always present at a random position, such that φ ∼ U[φ min , φ max ]. The transmitter has also knowledge of {φ min , φ max }. The receiver is fed with the channel state information (CSI) κ = βf ⊤ a(φ). The goal of the receiver is to retrieve the communication messages m that were transmitted.

C. ISAC Transmitter

ISAC scenarios require the use of a radar-communication beamformer to provide adjustable trade-offs between the two functionalities. Using the multi-beam approach from [START_REF] Zhang | Multibeam for joint communication and radar sensing using steerable analog antenna arrays[END_REF], we design the ISAC beamformer, based on a sensing precoder f r ∈ C K , and a communication precoder

f c ∈ C K , as f (η, ϕ) = √ P √ ηf r + √ 1 -ηe ȷϕ f c ∥ √ ηf r + √ 1 -ηe ȷϕ f c ∥ , ( 5 
)
where P is the transmitted power, η ∈ [0, 1] is the ISAC trade-off parameter, and ϕ ∈ [0, 2π) is a phase ensuring coherency between multiple beams. By sweeping over η and ϕ, we can explore the ISAC trade-offs of the considered system. The sensing precoder f r points to the angular sector of the targets, {θ min , θ max }, whereas the communication precoder f c points to the angular sector of the communication receiver, {φ min , φ max }. In Secs. III-A and IV-A, we detail how f r and f c are computed for the baseline and MB-ML, respectively. However, the same precoding function is applied for sensing and communication, as represented in Fig. 2.

D. Hardware Impairments

We study the effect of hardware impairments in the ULA in the ISAC transceiver, which affect the steering vectors of (1), ( 3), [START_REF] Saad | A vision of 6G wireless systems: Applications, trends, technologies, and open research problems[END_REF]. Impairments in the antenna array include mutual coupling, array gain errors, or antenna displacement errors, among others [START_REF] Schenk | RF imperfections in high-rate wireless systems: impact and digital compensation[END_REF]. Following the impairment models of [START_REF] Chen | Modeling and analysis of 6G joint localization and communication under hardware impairments[END_REF], we consider two types of impairments:

1) Unstructured impairments: In this case, the true steering vector a pert (θ) is unknown for all angles θ, while the methods for beamforming design and signal processing assume the nominal steering vector a(θ). If we consider a grid of possible angles with N θ points, then the steering vectors require K × N θ complex values to be described. 2) Structured impairments: In this case, the steering vector model is known, conditional on an unknown perturbation vector d. We can thus write a pert (θ; d), where the meaning and dimensionality of d depend on the type of impairment. In contrast to the unstructured impairments, the impairments are often described with a lowdimensional vector, independent of N θ . Example 1 (Impact of structured impairments): Consider the example of inter-antenna spacing errors, where

d ∈ C K and [a pert (θ; d)] k = exp(-ȷ2π(k -(K -1)/2)[d] k sin(θ)/λ), k = 0, ..., K -1.
In Fig. 3, the angle-delay map (defined in Sec. III-B) is depicted under ideal conditions (top) and hardware impairments (bottom), when T = 4 targets are present. The main effect of hardware impairments is to expand target lobes in the angle domain. In the example shown in Fig. 3, two targets become indistinguishable due to impairments, and the appearance of spurious lobes hinders the detection of the target at the highest range. Another effect of hardware impairments is that the magnitude of the target lobes is decreased, which makes them harder to differentiate from noise. These results highlight the relevance of addressing hardware impairments in our sensing scenario.

III. BASELINE

In this section, we derive the baseline method according to model-based benchmarks, which will later be compared with end-to-end learning approaches in Sec. V.

A. ISAC Beamformer

We design the baseline for the precoding mapping in Fig. 2, which affects both the sensing precoder f r , and the communication precoder f c in [START_REF] Chiriyath | Radar-communications convergence: Coexistence, cooperation, and co-design[END_REF], by resorting to the beampattern synthesis approach in [START_REF] Alkhateeb | Channel estimation and hybrid precoding for millimeter wave cellular systems[END_REF], [START_REF] Tranter | Fast unit-modulus least squares with applications in beamforming[END_REF]. We define a uniform angular grid covering [-π/2, π/2] with N θ grid locations {θ i } N θ i=1 . For a given angular interval θ interval (i.e., θ interval = [φ min , φ max ] for communications, and θ interval = [θ min , θ max ] for sensing), we denote by b ∈ C N θ ×1 the desired beampattern over the defined angular grid, given by

[b] i = K, if θ i ∈ θ interval 0, otherwise. (6) 
The problem of beampattern synthesis can then be formulated as min

fbs ∥b -A ⊤ f bs ∥ 2 2
, where A = [a(θ 1 ) . . . a(θ N θ )] ∈ C K×N θ denotes the transmit steering matrix evaluated at the grid locations. This least-squares (LS) problem has a simple closed-form solution

f bs = (A * A ⊤ ) -1 A * b, (7) 
which yields, after normalization according to the transmit power constraints, a communication-optimal beam f c or a radar-optimal beam f r , which can then be used to compute the joint ISAC beam in ( 5). Both maps are normalized with respect to the maximum value of the angledelay map under ideal conditions. More details about the specific simulation parameters can be found in Sec. V-A.

B. Multi-target Sensing Receiver

We propose to formulate the multi-target sensing problem based on the received signal Y r in (3) as a sparse signal recovery problem [START_REF] Tropp | Signal recovery from random measurements via orthogonal matching pursuit[END_REF] and employ the OMP algorithm [START_REF] Mallat | Matching pursuits with time-frequency dictionaries[END_REF], [START_REF] Berger | Sparse channel estimation for multicarrier underwater acoustic communication: From subspace methods to compressed sensing[END_REF], [START_REF] Lee | Channel estimation via orthogonal matching pursuit for hybrid MIMO systems in millimeter wave communications[END_REF] to solve it, which represents our model-based benchmark. To construct an overcomplete dictionary for OMP, we specify an angular grid {θ i } N θ i=1 and a delay grid {τ j } Nτ j=1 depending on the region of interest for target detection (i.e., the a priori information {θ min , θ max , R min , R max }). Then, a spatial-domain and a frequency-domain dictionary covering angular and delay grids can be constructed as

Φ a = [a(θ 1 ) • • • a(θ N θ )] ∈ C K×N θ , (8a) 
Φ d = [ρ(τ 1 ) • • • ρ(τ Nτ )] ∈ C S×Nτ . ( 8b 
)
Algorithm 1 Baseline OMP for Multi-Target Sensing Angle-delay detection:

( î, ĵ) = arg max i,j L i,j ( Y (I) r ) . (10) 8: 
Update angle-delay pairs: A ← A ∪ {(θ î, τ ĵ )}.

9:

Update atom sets:

Ψ a ← [Ψ a [Φ a ] :, î] , (11) 
Ψ d ← [Ψ d [Φ d ] :, ĵ ] . ( 12 
)
10:

Update gain estimates:

α = arg min α Y r - I+1 t=1 α t [Ψ a ] :,t ([Ψ d ] :,t ) ⊤ 2 F . (13) 11: 
Update residual:

Y (I+1) r = Y r - I+1 t=1 α t [Ψ a ] :,t ([Ψ d ] :,t ) ⊤ . (14) 12: 
I = I + 1. 13: end while Using [START_REF] Liu | Integrated sensing and communications: Towards dual-functional wireless networks for 6G and beyond[END_REF], the problem of multi-target sensing based on the observation in (3) becomes a sparse recovery problem

Y r = N θ i=1 Nτ j=1 [S] i,j [Φ a ] :,i ([Φ d ] :,j ) ⊤ + N , (9) 
where S ∈ C N θ ×Nτ . Here, the goal is to estimate the T -sparse vector vec(S) ∈ C N θ Nτ ×1 under the assumption T ≪ N θ N τ .

The baseline OMP algorithm [START_REF] Yassine | mpNet: Variable depth unfolded neural network for massive MIMO channel estimation[END_REF], [START_REF] Tropp | Signal recovery from random measurements via orthogonal matching pursuit[END_REF], [START_REF] Lee | Channel estimation via orthogonal matching pursuit for hybrid MIMO systems in millimeter wave communications[END_REF] to solve this problem is summarized in Algorithm 1, which will serve as a foundation to the proposed MB-ML approaches in Sec. IV-B.

C. Communication Receiver

We assume that the communication receiver has access to the CSI κ = βf ⊤ a(φ). Hence, the received signal can be expressed as y c = κ ⊙ x(m) + n. Optimal decoding in this case corresponds to subcarrier-wise maximum likelihood estimation according to

m s = arg min ms∈M |[y c ] s -[κ] s x(m s )| 2 , (15) 
for s = 0, ..., S -1. Since communication decoding is already optimal, given the CSI, learning methods described in Sec. IV apply [START_REF] Dokhanchi | Adaptive waveform design for automotive joint radar-communication systems[END_REF] for communication message estimation. 

IV. MODEL-BASED LEARNING

MB-ML is inspired by the baseline of Sec. III, although we need to develop differentiable beamforming and estimation algorithms that permit end-to-end learning, as well as a suitable loss function for multiple targets. This section describes the two MB-ML methods developed for multi-target sensing: (i) dictionary learning, which learns a dictionary of steering vectors for different angles as in [START_REF] Mateos-Ramos | Model-driven end-to-end learning for integrated sensing and communication[END_REF], and is suitable for unstructured impairments, as defined in Sec. II-D; (ii) impairment learning, which directly learns a parameterization of the hardware impairments and thus is suitable for structured impairments, also defined in Sec. II-D. This section also defines the loss function to train them.

A. Beamformer

MB-ML follows the same operations ( 6) and ( 7) to compute the precoding vector f r or f c , given an angular interval θ interval . Dictionary learning considers A ∈ C K×N θ from (7) as a free learnable parameter to account for unstructured impairments, which is comprised of KN θ complex parameters.

The new proposed impairment learning considers instead as a free learnable parameter the vector d ∈ C K , which represents a parameterization of the structured hardware impairments. From d, the dictionary of steering vectors is computed as A pert (d) = [a pert (θ 1 ; d) . . . a pert (θ N grid ; d)], such that A pert (d) is used in (7) instead of A. Impairment learning reduces the number of learnable parameters by taking into account the structured hardware impairments of Sec. II-D. Indeed, it has only K complex parameters, which can be several order of magnitudes less than the dictionary learning approach, since the dictionary of steering vector needs a relatively large number of columns N θ to perform well. Note that the operation in [START_REF] Wymeersch | Integration of communication and sensing in 6G: A joint industrial and academic perspective[END_REF], which involves the learning parameters of both MB-ML methods, is already differentiable.

B. Sensing Receiver

Range-angle estimation of targets is based on Algorithm 1. However, the arg max operation in line 7 of Algorithm 1 is not differentiable and the gradient of no loss function could be backpropagated in MB-ML. To circumvent this issue, we develop a differentiable algorithm which is represented in Fig. 4. The difference with the conventional OMP in Algorithm 1 is that we replace the operations of lines 7-9 by the following steps:

1) arg max i,j L i,j ( Y (I) r ): We still perform this nondifferentiable operation as a temporary result to obtain the final estimation. Note that L i,j ( Y (I) r ) is based on an angular grid θ grid = {θ i } N θ i=1 and a delay grid τ grid = {τ j } Nτ j=1 . In line 7 in Algorithm 1, this calculation yields the estimated angle-delay pair, which serves as foundation for the following step of the differentiable OMP algorithm.

2) Mask the angle-delay map, L i,j ( Y (I) r ), based on angle and range resolution: in order to consider elements of L i,j ( Y (I) r ) that solely correspond to a single target, we select the elements around the maximum of the angledelay map that are within the angle and range resolution. This operation also helps to obtain a differentiable angledelay estimation, similar to line 7 in Algorithm 1. We create the mask based on the angle and range resolution, since it determines the minimum angle or range for which two targets are indistinguishable. The angle and range resolutions in our case are

δ θ ≈ 2 K δ R ≈ c 2B = c 2S∆ f , (16) 
with B the bandwidth of the transmitted signal. The resolutions are considered in terms of the number of pixels of the angle-delay map, depending on N θ and N τ .

3) Softmax: We apply a softmax operation to the masked matrix from the previous operation, so that the sum of its elements is equal to 1. Unlike line 7 in Algorithm 1, the softmax function is differentiable, enabling end-to-end learning. 4) Weighted sum: A weighted sum of θ grid and τ grid is implemented, where each weight corresponds to the output of the previous softmax operation, and they represent an estimate of the probability that a certain angle-delay pair is the true value. From this interpolation operation, an angle-delay pair ( θI , τI ) is obtained, which may not be included in θ grid or τ grid . From this computation, the angle-delay pairs are updated, as in line 8 in Algorithm 1. Note that these four first steps (center column of Fig. 4), amount to looking in the dictionary for the most correlated atoms with the input, and then estimating the angle-delay pair as a convex combination of the corresponding angle-delays on the grid. This kind of similarity-based learning has been applied to other tasks within MIMO systems [START_REF] Magoarou | Similarity-based prediction for channel mapping and user positioning[END_REF], and is reminiscent of the attention mechanism [START_REF] Vaswani | Attention is all you need[END_REF]. 5) Compute estimated spatial-domain and frequencydomain vectors a( θI ), ρ(τ I ): unlike line 9 in Algorithm 1, we recompute the spatial-domain and frequency-domain vectors based on the estimated angledelay pair of the previous step, since the estimated angle-delay pair ( θ I , τ I ) might not be contained in (θ grid , τ grid ). The sets Ψ a and Ψ d are updated with the new vectors, as represented in Fig. 4.

After the previous steps, differentiable OMP continues as lines 10-12 in Algorithm 1 to obtain the new residual Y (I+1) r , as depicted in Fig. 4. This differentiable OMP algorithm still involves looking over a grid of possible angles. We utilize as the dictionary of angles Φ a the same matrices A and A pert (d) from the beamformer of Sec. IV-A to compute L i,j ( Y (I) r ), which allows parameter sharing between the co-located transmitter and receiver. The gradient of the loss function does not flow through the arg max operation, as illustrated in Fig. 4. To further improve memory efficiency, gradient flow is also discarded when computing the new residual Y (I+1) r from the estimates ( θ I , τ I ).

C. Loss Function

As loss function for MB-ML multi-target sensing, we select the generalized optimal sub-pattern assignment (GOSPA) loss from [START_REF] Rahmathullah | Generalized optimal sub-pattern assignment metric[END_REF]. In our case, the GOSPA loss is defined as follows. Let γ > 0, 0 < µ ≤ 2 and 1 ≤ p < ∞. Let P = {p 1 , ..., p |P| } and P = { p1 , ..., p| P| } be the finite subsets of R 2 corresponding to the true and estimated target positions, respectively, with 0 ≤ |P| ≤ T max , 0 ≤ | P| ≤ T max . Let d(p, p) = ∥p -p∥ 2 be the distance between true and estimated positions, and d (γ) (p, p) = min(d(p, p), γ) be the cut-off distance. Let Π n be the set of all permutations of {1, ..., n} for any n ∈ N and any element π ∈ Π n be a sequence (π(1), ..., π(n)). For |P| ≤ | P|, the GOSPA loss function is defined as ( P, P). The parameter p is proportional to the penalization of outliers, and the value of γ dictates the maximum allowable distance error. The role of µ, together with γ, is to control the detection penalization. This loss function becomes suitable for multiple targets, since it considers the association between estimated and true positions that gives the minimum loss, tackling the data association problem of multiple targets. In terms of target detection, we follow the same principle as the baseline, i.e., we stop the OMP algorithm when the maximum of the angle-delay map drops below a threshold. Sweeping this threshold over different values yields a trade-off in terms of detection and false alarm rates.

d (γ,µ) p (P, P) = min π∈Π | P| |P| i=1 d (γ) (p i , pπ(i) ) p + γ p µ (| P| -|P|) 1 p . ( 17 

V. RESULTS

This section details the simulation parameters and the results for single-and multi-target ISAC. 3 Four methods will be evaluated and compared:

• The model-based baseline from Sec. III, working under the mismatched assumption of no hardware impairments. • A NNBL method, extending [START_REF] Mateos-Ramos | End-to-end learning for integrated sensing and communication[END_REF], [START_REF] Muth | Autoencoder-based joint communication and sensing of multiple targets[END_REF], which replaces the precoding and sensing estimation mappings in Fig. 2 by NNs, and can operate in the absence of any knowledge of the ISAC system (including the hardware impairments). More details can be found in Appendix A. • Dictionary learning from Sec. IV, where the unstructured impaired steering vectors a pert (θ) are learned for both precoding and sensing. • Impairment learning from Sec. IV, where the structured impairment vector d is learned for precoding and sensing.

A. Simulation Parameters

We consider a ULA of K = 64 antennas, S = 256 subcarriers, and a subcarrier spacing of 120 kHz. We set the maximum number of targets in the scene as T max = 5. The transmitted power is P = 1 and the carrier frequency is f c = 60 GHz. The sensing SNR across antenna elements was set to SNR r = Kσ 2 r /N 0 = 15 dB, and the average communication SNR per subcarrier was fixed to SNR c = L l=1 σ 2 c,l /(SN 0 ) = 20 dB. The number of channel taps in the communication channel is L = 5, with an exponential power delay profile, i.e., σ 2 l = exp (-l), l = 0, ..., L -1. The power delay profile is later normalized to obtain the desired average SNR. The number of grid points for angle and range is set as N θ = 720 and N τ = 200.

To train the learning methods for a wide range of angles, we randomly draw {θ min , θ max } as in [START_REF] Rivetti | Spatial signal design for positioning via end-to-end learning[END_REF], i.e., we draw a

realization of θ mean ∼ U[-60 • , 60 • ] and ∆ ∼ U[10 • , 20 • ],
for each new transmission. The target angular sector is computed as θ min = θ mean -∆/2, θ max = θ mean + ∆/2. The communication angular sector and the range uncertainty region are set as {φ min , φ max } = {30 • , 50 • }, {R min , R max } = {10, 190} m, for all transmissions. For hardware impairments, we consider the model of [START_REF] Mateos-Ramos | End-to-end learning for integrated sensing and communication[END_REF], [START_REF] Rivetti | Spatial signal design for positioning via end-to-end learning[END_REF], i.e., we assume structured hardware impairments where the antenna elements in the ULA array are spaced as d ∼ CN ((λ/2)1, σ 2 λ I K ). We select a standard deviation of σ λ = λ/25 = 0.2 mm. MB-ML is initialized with the same knowledge as the baseline, i.e., the steering vector models firstly assume that d = (λ/2)1.

In the GOSPA loss, we set µ = 2, as recommended in [START_REF] Rahmathullah | Generalized optimal sub-pattern assignment metric[END_REF], p = 2, and γ = (R max -R min )/2 = 90 m. The cardinality mismatch term in [START_REF] Liu | Toward dual-functional radar-communication systems: Optimal waveform design[END_REF] implies the use of a threshold during training. However, our goal is to train the learning methods regardless of the threshold, and then explore sensing performance by changing the threshold. Hence, during training it is assumed to know the actual number of targets T , which means that |P| = | P| = T , and the GOSPA loss during training becomes

d (γ,µ) p (P, P) = min π∈Π | P| |P| i=1 d (γ) (p i , pπ(i) ) p 1 p . ( 18 
)
However, there is no detection penalization term in [START_REF] Keskin | Limited feedforward waveform design for OFDM dual-functional radar-communications[END_REF], which implies that the detection probability estimation NN of NNBL cannot be optimized. Hence, we adopt a two-step training approach for NNBL, as follows: 1) We first train f ε and f ξ based on the simplified GOSPA loss of (18). 2) While freezing the parameters ξ, we then train f ε and f ζ by minimizing

d (γu,µ) u (D, D) = min π∈Π | D| |D| i=1 d (γu) (u i , ûπ(i) ) p 1 p , (19) 
where D = {u 1 , ..., u |D| } and D = {û 1 , ..., û| D| } are the true and estimated sets of target probabilities,

d (γu) (u i , ûπ(i) ) = min(d(u i , ûπ(i) ), γ u ), and 
d(u i , ûπ(i) ) = -u i log(û π(i) ) -(1 -u i ) log(1 -ûπ(i) ).
That is, we replace the position distance error in [START_REF] Keskin | Limited feedforward waveform design for OFDM dual-functional radar-communications[END_REF] with the binary cross-entropy (BCE) loss. Note that in [START_REF] Chowdhury | 6G wireless communication systems: Applications, requirements, technologies, challenges, and research directions[END_REF] we also assume that |D| = | D| = T . The previous two-step training approach was observed to yield better performance, compared to joint training of all NN parameters ε, ξ, ζ based on the sum of the losses ( 18) and [START_REF] Chowdhury | 6G wireless communication systems: Applications, requirements, technologies, challenges, and research directions[END_REF].

Network optimization is performed using the Adam optimizer [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF], with a batch size of B = 3000 and 100,000 training iterations. The learning rate of dictionary and impairment learning was set to 5 • 10 -3 and 10 -7 , respectively. In the two-step training approach for NNBL, 100,000 training iterations are applied to each of the steps. Position estimation training used a learning rate of 10 -2 , while target detection utilized 10 -3 as learning rate. The architecture of NNBL is described in Appendix A-B. NNBL also benefited from using a scheduler, to reduce the learning rate when the loss function has reached a plateau. Details of the scheduler parameters can be found in Appendix A-B.

B. Performance Metrics

Concerning testing, we compute as detection performance metrics a measure of the probability of misdetection and the probability of false alarm, for multiple targets. We use the same definitions as in [START_REF] Muth | Autoencoder-based joint communication and sensing of multiple targets[END_REF], which correspond to

p md = 1 - B i=1 min{T i , T i } B i=1 T i , (20) 
p fa = B i=1 max{T i , T i } -T i B i=1 T max -T i , (21) 
where T i , T i are the true and estimated number of targets in each batch sample, respectively. The regression performance is measured via the GOSPA (for multiple targets sensing) and root mean squared error (RMSE) (for single target sensing).

As communication performance metric, we use the average symbol error rate (SER) across subcarriers, computed as

SER = 1 BS B i=1 S j=1 I{[m i ] j ̸ = [ mi ] j }, (22) 
with m i and mi the true and estimated message vectors at the i-th batch sample. All described methods in this paper (baseline of Sec. III, MB-ML of Sec. IV, and NNBL) use a quadrature phase shift keying (QPSK) encoder, and the message estimation rule in [START_REF] Dokhanchi | Adaptive waveform design for automotive joint radar-communication systems[END_REF].

C. Single-target ISAC

In single-target ISAC, the maximum number of targets is T max = 1, which implies that the GOSPA loss function in [START_REF] Keskin | Limited feedforward waveform design for OFDM dual-functional radar-communications[END_REF] becomes d (γ) (p, p). However, in order to compare with our previous work [START_REF] Mateos-Ramos | Model-driven end-to-end learning for integrated sensing and communication[END_REF], we train MB-ML and position estimation of NNBL using the mean squared error (MSE) loss d(p, p) p = ∥p-p∥ 2 2 , and detection estimation of NNBL using the BCE loss,

d(u, û) = -u log(û) -(1 -u) log(1 -û). Posi- tion estimation is assessed by the angle RMSE, E[(θ -θ) 2 ],
and the range RMSE,

E[(R -R) 2 ].
ISAC performance results are represented in Fig. 5, where we sweep over [0, 1] and [0, 7π/4], taking 8 uniformly spaced values, to set η and ϕ in (5), respectively. For testing, we fixed {θ min , θ max } = {-40 • , -20 • }4 . The probability of false alarm was set to p fa = 10 -2 . Result show that under no complexity limitations (solid lines) and hardware impairments, learning methods outperform the baseline in terms of misdetection probability, angle and range estimation, and SER, which implies that learning methods have adapted to hardware impairments. Communication performance, even in the case of optimal symbol estimation, is enhanced by learning approaches, which suggests that the impairments have a significant impact on the optimal communication precoder. In addition, dictionary learning outperforms NNBL for range estimation, although the converse happens for misdetection probability. Impairment learning yields the best performance among all learning methods, and with fewer parameters, which usually implies less training time. Indeed, NNBL is composed of a total of 7.78 million real learnable parameters, while dictionary learning uses KN θ = 40, 080 complex parameters, and impairment learning consists of K = 64 complex parameters. Under limited complexity, the number of parameters of dictionary learning and NNBL are restricted. We follow the approach of [START_REF] Mateos-Ramos | End-to-end learning for integrated sensing and communication[END_REF], and restrict the number of (complex) parameters of dictionary learning by setting N θ = 156, which reduces the number of parameters to 9,984 complex parameters. The complexity constraints applied to NNBLlearning are detailed in Appendix A-B, which decreases the number of real parameters to 10,555. From Fig. 5, it is observed that while NNBL drops in performance, especially for angle and range estimation, dictionary learning still yields better results than the baseline. However, dictionary learning also decreased in performance compared to the unconstrained approach, which means that dictionary learning cannot achieve the same performance as impairment learning for the same number of parameters. Lastly, we test all learning approaches for a scenario that was not encountered during training, to assess their generalization capabilities. Fig. 6 depicts the performance of the learning methods for {θ min , θ max } = {-20 • , 20 • }, which includes a span of the angular uncertainty region wider than expected. The complexity of the networks is not restricted. The performance of all learning approaches has dropped compared to Fig. 5. However, while NNBL performs worse than the baseline, and dictionary learning yields similar results to the baseline, impairment learning is the only approach that still outperforms the baseline. NNBL and dictionary learning appear to overfit to the training data and degrade for unexpected inputs. This means that for new testing scenarios, impairment learning is the learning approach that best generalizes in terms of performance. This is due to the fact that impairment learning is the only method for which parameters are shared between all directions (all columns of the dictionary are affected each time the parameters are updated). Dictionary learning does not exhibit this feature, since each column of the dictionary (corresponding to a direction) is considered an independent set of parameters.

D. Multi-target ISAC

Based on the results of Sec. V-C, impairment learning performs the best among all considered learning methods for the simpler case of single-target ISAC. Hence, we only consider impairment learning to compare against the baseline for multi-target sensing. The batch size for MB-ML is decreased to B = 1500 due to memory restrictions. The number of iterations was also reduced to 25,000, since finding the association between estimated and true data that minimizes the GOSPA loss of [START_REF] Keskin | Limited feedforward waveform design for OFDM dual-functional radar-communications[END_REF] increases training time. In addition, ISAC results perform very close to perfect knowledge of impairments, as observed in the following.

We first compare the performance of the differentiable OMP algorithm of Sec. IV-B with the baseline, when hardware impairments are perfectly known. In Fig. 7, the sensing performance of both approaches is depicted. Results show that differentiable OMP performs closely to the baseline. The difference in performance might be because the dictionary Φ a in the baseline only covers the angular range {θ min , θ max }, while differentiable OMP uses a fixed dictionary that covers [-π/2, π/2]. However, this allows for efficient parameter sharing in MB-ML. Differentiable OMP takes a weighted sum of angles and ranges, which permits to select an angle or range outside the predefined dictionaries, unlike the baseline. The GOSPA loss in Fig. 7 achieves a minimum for different false alarm probabilities, since it takes into account both position and detection errors. For high p fa , OMP estimates a higher number of targets than the true value, and conversely for low p fa .

Fig. 8 shows the results of the baseline without impairment knowledge, differentiable OMP with perfect impairment knowledge, and impairment learning. Impairment learning outperforms the baseline, which illustrates the adaptability of impairment learning to antenna imperfections in multi-target sensing. Moreover, the performance is very close to perfect knowledge of the impairments, which suggests that the learned spacing is quite similar to the underlying reality. In terms of ISAC trade-off, Fig. 9 presents the ISAC trade-offs in case of multiple targets when p fa = 10 -2 . In this case, we sweep in (5) over η and fixed ϕ = 0, since in Figs.5 and 6 we observed that the effect of ϕ is not very significant. Compared to Fig. 8, it is observed that impairment learning also outperforms the baseline when impairments are not known in terms of communication performance, due to the impact of hardware impairments in the communication precoder.

VI. CONCLUSIONS

In this work, we studied the effect of antenna spacing impairments in multi-target ISAC, and different learning approaches to compensate for such impairments. A new efficient MB-ML approach to perform end-to-end learning and impairment compensation was proposed, based on a differentiable OMP algorithm. Simulation results showed that learning approaches outperform the baseline and they can compensate for hardware impairments. Among learning methods, the new proposed impairment learning approach outperformed all other considered methods, also exhibiting better generalization capabilities to new testing data, with much fewer parameters to optimize. Simulations results verify that injection of the system and impairment knowledge in learning methods improves their performance and reduces their complexity.

APPENDIX A NEURAL-NETWORK-BASED LEARNING (NNBL)

Since the optimal detection and estimation rules might not be tractable, NNBL can be trained based on data to achieve optimality. Moreover, when no information about the impairments is available, NNBL can provide data-driven solutions to account for them. This appendix describes the principles and architecture of the considered NNBL approach.

A. Principles

NNBL replaces the precoding and sensing estimation mappings in Fig. 2 by NNs. The precoding network, f ε : R 2 → R 2K , takes θ interval as input and produces a precoder as output, where ε corresponds to the learnable parameters. NNs in this work are considered to work with real-valued numbers, hence, the output dimension is doubled. The same mapping f ε is applied to both sensing and communication precoders, to obtain f r and f c , which are later used to design the ISAC precoder according to [START_REF] Chiriyath | Radar-communications convergence: Coexistence, cooperation, and co-design[END_REF].

Sensing estimation is divided into two tasks, each corresponding to a different NN: (i) detection probability estimation, and (ii) position estimation. As input to both NNs, we use L i,j ( Y (I) r ) ∈ R N θ ×Nτ defined in Sec. III, instead of Y r , since we observed a better sensing performance. In addition to the angle-delay map, the input is also composed of the a priori information {θ min , θ max , R min , R max }, as shown in Fig 2, to improve network performance. The output of each NN is task-dependent. The detection probability network, f ζ : R N θ ×Nτ ×R 4 → [0, 1] Tmax , outputs a probability vector û whose elements correspond to the probability that each target is present in the scene, which is later thresholded to provide an estimate of the number of targets. The position estimation network, f ξ : R N θ ×Nτ × R 4 → R Tmax×2 , outputs a matrix P whose columns represent the position estimation of each potential target. The learnable parameters of each network are ζ and ξ, respectively. Both NNs are trained based on the GOSPA loss function of Sec. IV-C.

B. NN Architectures

The precoding operation of Fig. 2 was implemented as a multilayer perceptron (MLP), whose input is an angular sector ({θ min , θ max } or {φ min , φ max }), with 3 hidden layers of 8K neurons and an output layer of 2K neurons, where we recall that K = 64 is the number of antennas in the ULA transceiver. The activation function after each layer is the Rectified Linear Unit (ReLU) function, except for the final layer, which contains a normalization layer to ensure a unitnorm output, i.e., ∥f bs ∥ 2 = 1.

For the receiver side, we resort to convolutional neural networks (CNNs) given the 2-dimensional nature of the input L i,j ( Y (I) r ), as represented in Fig. 3. The receiver architecture repeats a set of layers, represented in Fig. 10, which we call residual bottleneck block. This block was inspired by the ResNet architecture [START_REF] He | Deep residual learning for image recognition[END_REF]. A convolutional layer is first introduced with some stride to decrease the number of pixels to process. Then, 2 bottleneck blocks with skipped connections similar to [START_REF] He | Deep residual learning for image recognition[END_REF] follow. However, we reduce the number of activation functions and normalization layers, as suggested in [START_REF] Liu | A convnet for the 2020s[END_REF]. Another residual connection is introduced from the beginning to the end of both bottleneck blocks to help with gradient computation.

We observed that splitting position estimation into angle and range estimation, each of them involving a CNN, yielded better results than using a single network. Angle and range estimates are later combined into a position vector following [START_REF] Tataria | 6G wireless systems: Vision, requirements, challenges, insights, and opportunities[END_REF]. The common architecture for all CNNs (detection, angle and range estimation) is shown in Table I. Convolutional layers introduce zero-padding so that the number of pixels is preserved. After the first and last convolutional layers, When training NNBL, a scheduler is used to reduce the learning rate if the loss function plateaus. The patience of the scheduler was set as 10 4 iterations. If the loss function was regarded to plateau, the learning rate was decreased by half, with a minimum attainable learning rate of 10 -6 .

When complexity limitations are considered, in the transmitter network the number of neurons in each hidden layer was reduced to 4. At the receiver side, the kernel size of the Maxpool layer is increased to 4x4, the number of residual bottleneck blocks is changed from 6 to 3, the number of channels in the network is reduced by a factor of 4, and the number of neurons in the hidden layer of the last MLP are constrained to 4.

Fig. 1 :

 1 Fig. 1: Considered scenario, where an impaired multi-antenna ISAC transmitter is optimized based on prior information of the location of the targets and the communication receiver. The co-located sensing receiver estimates the targets' states (target probability and position), while the single-antenna communication receiver retrieves the transmitted communication data.

Fig. 3 :

 3 Fig. 3: Example of the angle-delay map when T = 4 targets are present, under ideal conditions (top) and hardware impairments in the form of interantenna spacing mismatch (bottom), for an integrated sensing SNR of 20 dB.Both maps are normalized with respect to the maximum value of the angledelay map under ideal conditions. More details about the specific simulation parameters can be found in Sec. V-A.
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 16 Input: Observation Y r in (3), dictionaries Φ a and Φ d in (8), termination threshold δ. 2: Output: Set A, which contains the angle and delay estimates of multiple targets {( θ t , τ t )} I t=1 . 3: Initialization: Set I = 0, A = ∅, Ψ a = Ψ d = [ ]. 4: Set the residual to Y (0) r = Y r . 5: Compute angle-delay map L i,j ( Y while max i,j L i,j ( Y (I) r ) > δ 7:

( 2 FFig. 4 :

 24 Fig. 4: Block diagram of the I-th iteration of the differentiable OMP algorithm for model-based learning. Continuous lines indicate where the gradient of the loss function flows during backpropagation. Colored blocks highlight modified operations with respect to conventional OMP. The algorithm stops when max i,j L i,j ( Y (I) r ) drops below a threshold.

Fig. 5 :

 5 Fig. 5: Single-target ISAC trade-offs under hardware impairments.

Fig. 6 :

 6 Fig. 6: Single-target ISAC generalization trade-offs under hardware impairments and new (unseen) testing data. The target lies in the angular sector {θ min , θmax} = {-20 • , 20 • }. The complexity of the networks is not limited.
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 7 Fig.7: Sensing performance for standard and differentiable OMP algorithms, when perfect impairment knowledge is available. The transmitter in both cases is implemented as the baseline of Sec.III-A.
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 89 Fig. 8: Sensing performance of diffferentiable OMP and impairment learning. The transmitter of differentiable OMP is implemented as the baseline of Sec.III-A.
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 10 Fig. 10: Block diagram of the residual bottleneck block with C in input channels and Cout output channels.

TABLE I :

 I Common architecture of the convolutional neural networks.

	Layer type	Kernel Size	Stride	In. CHs	Out. CHs
	Convolutional	5x5	1	1	8
	Maxpool	2x2	-	8	8
	Residual Bottleneck	3x3	1	8	16
	Residual Bottleneck	3x3	2	16	32
	Residual Bottleneck	3x3	2	32	64
	Residual Bottleneck	3x3	2	64	128
	Residual Bottleneck	3x3	2	128	256
	Residual Bottleneck	3x3	2	256	512
	Convolutional	3x3	1	512	1

TABLE II :

 II Multi-layer perceptron architecture for each task. 2-dimensional batch normalization and a ReLU activation function are also applied. The resulting feature map of the CNN has N θ N τ /2 12 elements. For NNBL, N θ = 320 and N τ = 128 due to memory constraints. The resulting feature map from the convolutional layers, together with the a priori information {θ min , θ max , R min , R max } of the target locations, are processed by MLPs. The angle estimation network only uses {θ min , θ max }, the range estimation network {R min , R max }, and the detection network utilizes both of them. The architecture of each MLP is described in TableII. The activation function after each fully-connected layer is the ReLU function. Unless stated otherwise, all NN architectures were optimized to give the best ISAC performance, where we explored, for instance, kernel sizes up to 13x13, the number of residual bottleneck blocks from 3 to 7, or the number of layers of the MLP of TableII, from K to 64K, among others.

	Task	Input layer	Hidden layers	Output layer
	Angle estimation Range estimation Target detection	N θ Nτ 2 12	(4K, 4K)	1 (tanh•90) 1 (ReLU) 1 (sigmoid)

a

Note that the neural-network architectures in[START_REF] Mateos-Ramos | End-to-end learning for integrated sensing and communication[END_REF],[START_REF] Muth | Autoencoder-based joint communication and sensing of multiple targets[END_REF] do not directly apply to the scenario considered here due to the use of OFDM signals.

In case of different ULAs for transmitting and receiving, different steering vector models should be used in[START_REF] Wang | On the road to 6G: Visions, requirements, key technologies and testbeds[END_REF].

Source code to reproduce all numerical results in this paper will be made available at https://github.com/josemateosramos/MBE2EMTISAC after the peer-review process.

Unless otherwise stated, the authors also tested other values of {θ min , θmax}, and the results were qualitatively the same.
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