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Abstract 

 

Correct estimation of variogram parameters relies on having a sufficiently large dataset. 

However, operational agri-datasets are often not large enough for variogram fitting. This 

article presents a new approach to estimating semi-variogram parameters from a small 

dataset by using a Bayesian approach. The three variogram parameters of the Spherical-

Plus-Nugget model were fitted to the semi-variances of a vineyard water stress indicator. 

Two sources of prior information (i.e. using ancillary data, and using some simplistic 

assumptions), and six reduced datasets were tested. The results showed that using prior 

information introduced less variability in estimation results than with the classical 

approach. The priors extracted from the Sentinel-2 data significantly improved the 

estimation of the nugget effect, which allowed better preservation of the spatial pattern 

of kriging predictions.  
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Introduction 

 

Precision agriculture requires high spatial (and temporal) resolution datasets to make 

decisions at the within-field level. The kriging technique is frequently used to improve 

the spatial data coverage rate (Rajabi et al., 2018), but accurate kriging predictions require 

at least 100 data points for good semi-variogram computation (Oliver and Webster, 2014). 

However, many operational agri-datasets are smaller than this leading to unreliable 

variogram fitting. The role of ancillary data in reducing the impact of low data availability 

on variogram estimation is important, as the ancillary data may be spatially correlated 

with the targeted agronomic property and hence share similar spatial variability. Thus, 

the more abundant ancillary data can be used as a surrogate for geostatistical analysis. 

For example, it is possible to improve sampling schemes by considering ancillary data 

(Kerry and Oliver, 2004; 2008) directly used the nugget:sill ratio calculated from the 

ancillary data in variogram modeling of a variable of interest. However, in their approach, 

the relationship between the two types of data was uncertain and the information provided 

by the ancillary data was unable to be updated when actual observations were made. A 

possible solution to this limitation is the use of a Bayesian framework that provides an 

adequate way to combine prior information and observations, and to account for 

uncertainty (McElreath, 2016). Therefore, the objective of this study was to carry out 

semi-variogram modeling using few data points under a probabilistic framework, with 

prior information extracted from relevant ancillary data. The proposed approach 

considered variogram model parameters as random variables, which are characterized by 

certain probabilistic distributions and are updated by using the actual semi-variances 

derived from available data from small datasets.  



 

Materials and methods 

 

General approach 

This work proposed a novel method to estimate three variogram parameters, nugget (c0), 

partial sill (c1), and range (r), using fewer data points. It described how the semi-variances 

were standardized using the sill variance, and how the nugget:sill ratio and range were 

estimated using a Bayesian approach with the standardized semi-variances. The best 

estimate of the standardized nugget:sill ratio was then back-transformed to obtain the n 

c0, and c1. A case study was presented with specific prior information to estimate a 

viticulture variable with varying prior information sources and varying observational 

dataset sizes. Lastly, the resulting estimations were evaluated both quantitatively and 

qualitatively. 

 

Proposed methodology 

Estimation and standardization of the variogram model 

The spherical-plus-nugget (SPN) variogram model was used in this study. The model was 

fitted from a set of observed semi-variances, s, using the method presented by Oliver and 

Webster (2014). A function was developed to estimate the SPN parameters stored in 

vector v [c0, c1, r] while accounting for a given s. A black-box optimizer optim() was 

used to optimize v by minimizing the difference between predicted and observed semi-

variances. After obtaining v, all values in s were divided by the actual sill value (c0 + c1). 

The resulting set of semi-variances, s’, were used for parameter estimation. 

 

Bayesian update using grid approximation 

To estimate the nugget:sill ratio and range, the prior probability density functions (p.d.f.) 

of the two parameters were defined. These latter were probabilistic descriptions of 

possible parameter values before actual observations were obtained. Each prior p.d.f. was 

represented approximately by a step-by-step calculation of the density of possible 

parameter values between two numerical bounds. These values were separated by a 

constant distance, forming a regular discretization grid containing N nodes. N² 

combinations of possible values of nugget:sill ratio and range were generated and stored 

in vector u. The prior joint log-probability of observing each possible combination in u 

was computed using density functions provided by R (R Core Team, 2022) and denoted 

w*. The joint posterior p.d.f. of the two parameters, describing probabilities of possible 

values after considering actual observations, were obtained by the following steps. 

 

1) The log-likelihoods of observing a specific s’ given each combination in u was 

calculated and stored in vector I. 

2) According to the Bayes’ law, each prior joint log-probability in w* was summed 

by the corresponding log-likehood in I so that the former was reweighted by actual 

observations in s’, which generated an approximation of the joint posterior p.d.f., 

denoted w. 

The first 10 combinations in u with the largest values in w were selected. The mean 

nugget:sill ratio and range were computed using these 10 values. The v parameters were 

back-transformed using the estimated nugget:sill ratio, range values, and actual sill 

variance obtained previously.  



 

Case study 

The study field was a 1.3 ha non-irrigated vineyard (Vitis vinifera cv Grenache) located 

near Corbières in southern France (Fig. 1b) (WGS 84: 43.1692°N, 2.5629°E). It was 

planted in 1989 with a density of 4000 vines ha-1. Training and management practices 

were typical for this region. Observations of shoot growth characterization were collected 

at 97 within-field sites (Fig. 1a) using the iG-Apex index as proposed by Pichon et al. 

(2021). The iG-Apex index varies from 1 (full shoot growth) to 0 (total cessation of shoot 

growth), and is a surrogate for vine water restriction. Observations were collected weekly 

in 2020 from week 25 to week 34, generating 10 temporal points, that resulted in 97 time-

series. The date at which the iG-Apex reached the value 0.5, noted dG0.5, was chosen as 

the agronomic variable of interest in this paper. The dG0.5 was spatially structured at the 

within-field level (Fig. 1c).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. (a) Positions of the 97 data points coloured according to dG0.5, (b) the position 

of the vineyard in France and, (c) the SPN variogram fitted from the observed 

dG0.5 with nugget (c0) = 0.157, partial sill (c1) = 1.069, range (r)= 36 m. 

 

Prior p.d.f. for nugget:sill ratio and range 

Two sources of prior information were used and compared in this study. The first was 

based on simplistic assumptions of the vineyard. The variogram range was constrained to 

avoid too small (>5 m) or too large (<75 m) distances while it was also assumed that at 

least half of the observed variance was spatially correlated (nugget:sill < 0.5). Two 

uniform distributions (Unif) were used to describe these priors (Table 1). 

The second source of prior information came from ancillary data. Similar to the iG-Apex 

index, NDVI is an indicator of vine vigour, and was considered as a relevant ancillary 

data source. There were 16 variograms fitted using NDVI imaged by the Sentinel-2 

satellite at 16 dates during the growing season (the vineyard was covered by 81 pixels at 

each date). The gstat function fit.variogram() in R was used to estimate SPN variogram 

parameters of NDVI values at each date. A Triangular and a Normal distribution were 

used respectively to model the nugget:sill and the range (Table 1). 



 

Design of the numerical experiment 

Six data reduction schemes were tested that included different percentages of the original 

data: S1 (80%), S2 (70%), S3 (60%), S4 (50%), S5 (40%), and S6 (30%). In count 

number, S1 contained 79 data points, S2 - 68, S3 - 59, S4 - 48, S5 - 39, and S6 - 30 data 

points. Each reduction scheme was randomly generated 100 times from the full dataset, 

resulting in 600 reduced datasets. The SPN variogram parameters for each reduced dataset 

were estimated using no prior information, and the two sources of prior information 

outlined above.  

 

Table 1. Distribution laws of priors generated from simplistic assumptions and from 

ancillary data analysis, as well as their discretization schemes. Unif stands for 

uniform distribution and N for the number of regular discretized values 

considered between the bounds. 

 Source of prior information Discretization 

 Simplistic prior Ancillary prior Bounds N 

Nugget:sill ratio Unif(0, 0.5) Triangle(0, 0.01, 0.5) 0 – 0.5 100 

Range (m) Unif(5, 75) Normal(60, 15) 5 – 95 100 

 

Evaluation of estimation performance 

The Root Mean Squared Error (RMSE) criterion was used to assess the estimation of 

variogram parameters. For each data reduction scheme and each prior information source, 

a RMSE was calculated using the 100 estimations of each parameter and the reference 

that was obtained by fitting the variogram model using the full dataset. 

Using the estimated parameters, maps were generated for all combinations of data 

reduction and prior information sources using ordinary kriging (Cressie, 1990) supported 

by the R function gstat::krige(). A reference map was made from the full dataset. A single 

interpolation grid was prepared in advance using R and QGIS, and was used for all kriging 

computations. Visual evaluation was carried out by comparing the kriged maps obtained 

using different prior information with the reference map. Contour lines were added to 

facilitate visual evaluation using the function ggplot2::geom_contour() (function setting: 

a fixed binwidth of 0.5 day). The variance of all dG0.5 values predicted by kriging was 

computed for each kriged map.   

 

Results 

 

As the size of the datasets diminished, the three distributions of possible estimated values 

exhibited an increasing dispersive trend indicating an increasing uncertainty associated 

with estimations (Fig. 2). The dispersion level was lowest for the ancillary prior approach 

(Fig. 2g-i) and highest when using no priors (Fig. 2a-c). The distributions for the no prior 

and simplistic prior approaches were visually very similar, indicating little advantage to 

the simplistic prior approach. For both approaches, the distributions of possible estimated 

values seemed to be globally centered on the reference values. However, the estimations 

of range derived from the simplistic prior were less dispersed than the no prior approach. 

When using ancillary data to generate the priors, the estimations of nugget effect out-

performed those provided by the two other approaches across all data reduction schemes 

(Fig. 2g), although the nugget effect tended to be underestimated. For the estimations of 

range using ancillary priors, there was a clear bias of up to 15 m observed, and the 



majority of range estimations fell between 36 m (the reference value) and 60 m (the mode 

of the prior Normal distribution). Although, the range distributions derived from the 

ancillary priors were much less dispersed than the two other approaches (Fig. 2i).  

The above visual observations were confirmed by the RMSE (Table 2). As expected, 

errors showed an ascending trend as more data points were discarded, especially for the 

partial sill and range estimation. However, the RMSE for c0 and range estimated using 

the ancillary prior were less sensitive to different data reduction schemes. In general, the 

ancillary prior approach obtained the smallest RMSE, except for the range estimations 

that were affected by the bias identified in Figure 2i. For the estimations of partial sill 

with strong reduction schemes (S5, S6), the simplistic prior approach showed a marginal 

gain in RMSE (Table 2). 

Representative examples of kriged maps were selected to visualise the effect of variogram 

model parameter estimation, using 48 (Fig. 3b-d) and 30 (Fig. 3e-g) data points. In 

general, fewer contour lines were generated when interpolating with fewer data points. 

The use of prior information increased the global resemblance to the reference map. 

In the absence of prior information, the kriged outputs were very smooth for both cases, 

showing small variances of predicted values and few identified contour lines (Fig. 3b and 

3e). The use of a simplistic prior allowed a better preservation of the spatial variability 

with the variances in the map values increasing from 0.332 to 0.375, and from 0.059 to 

0.129 for the 48 and 30 observations respectively, and more contours of predicted values 

were present (Fig. 3c and 3f).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Distribution of estimated SPN variogram parameters using 1-no prior (a, b, c), 

2-simplistic prior (d, e, f), and 3-ancillary prior (g, h, i) at the 6 data reduction 

schemes (S1-6) compared to the reference value represented by the dotted line. 

 

Lastly, the ancillary prior had even larger variances of predicted values, and the resulting 

spatial structures were the most similar to the original reference map, especially when 

more data are used (Fig. 3d and 3g). 

 



Table 2. RMSE of estimated variogram parameters (nugget, partial sill, and range) 

obtained under six data reduction schemes and three prior information 

treatments, compared to the reference value derived from the full dataset.  

 

  Nugget Partial Sill Range 

 No Prior 

S1 

S2 

S3 

S4 

S5 

S6 

0.120 

0.180 

0.165 

0.219 

0.332 

0.307 

0.149 

0.224 

0.220 

0.270 

0.404 

0.477 

7.893 

13.745 

15.644* 

17.845 

24.695 

27.459 

Simplistic 

Prior 

S1 

S2 

S3 

S4 

S5 

S6 

0.119 

0.166 

0.157 

0.211 

0.235 

0.214 

0.148 

0.207 

0.213 

0.258 

0.298* 

0.379* 

7.891* 

14.005 

15.620* 

18.874 

23.035 

25.329 

Ancillary 

Prior 

S1 

S2 

S3 

S4 

S5 

S6 

0.094* 

0.094* 

0.107* 

0.113* 

0.122* 

0.120* 

0.137* 

0.178* 

0.203* 

0.246* 

0.305 

0.395 

16.518 

16.804 

17.056 

17.286* 

18.306* 

19.022* 

* represents the best value among the three prior information treatments. 

 

Discussion 

 

As expected, this study showed that stronger data reduction schemes introduced higher 

uncertainties in parameter estimation, as the certainty of estimation is linked to the 

availability of data (given a constancy in the data quality). However, it was possible to 

estimate semi-variogram parameters with fewer data points using prior information. The 

use of ancillary data can play an important role in accurately estimating the nugget:sill 

ratio, and to help to better preserve the spatial pattern of kriging predictions. 

The slight improvement of nugget effect estimation brought by the simplistic prior was 

due to the upper boundary of nugget:sill ratio distribution being set at 0.5. Likewise, 

setting the upper boundary of the range at 75 m improved the RMSE in S5 and S6, 

showing that the uniform distribution was useful to rule out estimations with extreme 

values. However, the uniform distribution was relatively weakly informative (Hansen et 

al., 2016), estimations derived from the simplistic prior approach were mainly influenced 

by observations instead of the prior information, which explained the similar estimation 

performance compared to no prior approach. Triangular and Normal prior distributions 

permitted a reduction in the estimation uncertainty of the nugget and range, because both 

p.d.f. privileged parameter values centered around the statistical mode of the distribution 

(McElreath, 2016). They were informative priors because a reasonable level of 

confidence was attributed to them. Consequently, the resulting estimations were 

compromises between observations and prior information. 

The bias in range estimation derived from the ancillary prior approach can be explained 

by two reasons. Firstly, the global spatial structure of the ancillary data was not (and is 



highly unlikely to ever be) identical to that of the variable of interest, especially for the 

range. Secondly, the reduced datasets were not capable of reproducing the reference 

variogram parameters, maybe due to the completely randomly generated datasets and 

noise (stochastic error) in the measurement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Kriged maps. With the full dataset (a). With a reduced dataset that contains 48 

observations, and parameters estimated from no prior (b), simplistic prior (c), 

and ancillary prior (d). With a reduced dataset that contains 30 observations 

and parameters estimated from no prior (e), simplistic prior (f), and ancillary 

prior (g). Variances of all predicted dG0.5 are showed below each map. 

 

The variability of kriging outputs was sensitive to the estimated nugget effect. However, 

a better preserved spatial pattern does not assure better predictions, as the estimated 

nugget and range values can both be biased.  

For future improvements, NDVI observations collected during a shorter period, when the 

two agronomic variables are more correlated with each other, may improve the 

performance of the prior p.d.f.. Other vegetation indices, which are more sensitive to vine 

water status, will also be tested instead of NDVI (e.g. the Leaf Water Content Index 

(Ahamed et al., 2011)). Additionally, it would be interesting to see how a different 

sampling approach, for example a stratified sampling pattern instead of a random pattern, 

may affect this method  (Kerry and Oliver, 2008). Lastly, the three variogram parameters 

were considered as independent of each other and analysed separately. It may be of 

interest to study the joint probability distribution in order to explore their interactions.  

  
Conclusion 

 

The Bayesian approach can combine prior information on semi-variogram model 

parameters and observed semi-variances. The performance of variogram modeling using 

fewer data points can be improved by introducing prior information extracted from 

appropriate ancillary data. Informative priors allow to reduce the uncertainty of variogram 



parameter estimation. It is essential to identify ancillary data with a similar nugget:sill 

ratio compared to the property of interest, because accurately estimating this ratio can 

preserve the spatial variability for the kriging analysis. 
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