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Abstract
Purpose of Review

The increasing impact of droughts, wildfires and windstorms in temperate areas poses a signific-
ant challenge to the adaptation capacity of forests and their associated arthropod communities.
Organisms, organic material, and environmental conditions occurring after disturbances, i.e. the
disturbance legacies, shape arthropod communities during their transition from pre- to post-
disturbance conditions. We describe the contribution of disturbance legacies to the organization
of forest arthropod communities following droughts, wildfires, or windstorms. We also highlight
how forest conditions, arthropod traits and post-disturbance management influence disturbance

legacies and their impact on arthropod communities.

Recent Findings
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Key disturbance legacies include surviving arthropods, micro-environmental legacies, and tree-
and ground-related resources. Most of these are driven by canopy openness and tree condition.
For arthropods, dispersal ability and other biological and demographic traits determine their
vulnerability to disturbances, but also their capacity to colonize post-disturbance microhabitats,
and withstand micro-environmental legacies. Dominant tree species and management strategies
influence disturbance regimes and mediate the pattern of their legacies. Droughts, wildfires and
windstorms have idiosyncratic effects on disturbance legacies, and arthropod taxa can have specific
responses to legacies, making it difficult to predict the likely composition of post-disturbance
arthropod communities.

Summary

This review highlights a particular gap in our understanding of the effects of drought on forest
arthropod communities and the need for more research in this area. In addition, a better un-
derstanding of how forest arthropod communities are altered by changes in disturbance regimes
is urgently needed. Our goal is to foster an improved understanding of the role of disturbance
legacies for forest arthropod communities in order to improve management decisions and promote

the conservation of forest arthropod species.

Keywords: Drought; Wildfre; Windstorm; Forest management; Microclimate; Trophic resources

1 Introduction

Major abiotic disturbances in temperate forests worldwide include droughts [127, 332, 330], windstorms
[131, 114, 331], and wildfires [114, 331, 97]. Climate and land-use changes have increased the incidence
and the ecological consequences of these three disturbances across large areas over the last three decades
[329, 236, 333, 75]. The frequency, magnitude and intensity (which define the disturbance regime) of
droughts, windstorms and wildfires are predicted to increase further in temperate regions with global warming
[327, 315, 342], thereby challenging the acclimation and adaptation capacities of temperate forests and their
associated communities [236, 3, 368].

Droughts, windstorms and wildfires alter the physical characteristics of forest ecosystems in several ways,
including the availability of water and nutrients [116, 328, 341], and the forest microclimate [87, 183].
Likewise, they affect key biotic elements such as the distribution and structural architecture of surviving trees
and shrubs, the quantity and viability of their propagules, and decomposer and tree symbiont communities
[116, 353, 226]. This in turn affects a whole host of forest features such as soil and litter conditions,
canopy and understory cover and the availability and distribution of microhabitats [116, 183, 165,314¢]. As
a consequence, forest biodiversity also undergoes significant changes [359, 388ee].

Arthropods make up the majority of biodiversity on Earth [298]. This makes them a particularly relevant
taxonomic group to consider when seeking to better understand and predict the consequences of droughts,

windstorms and wildfires on forest biodiversity and ecosystem functioning. Arthropods are: (i) major



components of forest biodiversity across multiple strata (i.e. canopy, sub-canopy, forest floor and soil;
298, 396), (ii) important food sources for forest-associated species and vital components of complex trophic
webs, (iii) key contributors to vital forest ecosystem functions (i.e. pollination, decomposition, biological
control of pests and diseases), and (iv) hyper-diverse, displaying significant variation in traits that are reflected
in wide-ranging levels of susceptibility to the direct and indirect effects of disturbances (e.g., 103, 89). In
addition, they can (v) cause disturbance feedback effects (e.g., outbreaks of opportunistic pests; 329) and (vi)
show rapid responses to disturbance-mediated changes.

Understanding the responses of forest arthropod communities to droughts, windstorms and wildfires is
necessary in order to anticipate likely arthropod-induced feedback effects on forest ecosystem structures and
processes. This knowledge is crucial to identify management options that may curb any negative feedback
effects, especially in a context of changing disturbance regime. An improved understanding is also needed to
deliver effective arthropod conservation actions and strategies, considering that arthropods are currently in
global decline [141]. We lack a comprehensive overview of the responses of arthropod communities to key
abiotic disturbances in temperate forests [359, 388e¢]. We strive, in this review, to fill this gap and seeking to
gain improved insights by considering responses of arthropod communities through the lens of disturbance
legacies.

Disturbance legacies can be defined as the post-disturbance physical and biological state of an ecosystem
[116, 167]. An example of a disturbance legacy is a physical shelter created during a windstorm or a fire
which serves to protect organisms and their propagules from the harmful effects of subsequent disturbances
[353, 233, 235]. Disturbance legacies are defined by the amount, availability and diversity of resources
and microhabitats left behind following a disturbance [314e, 364, 79]. They are key filters that define how
arthropod communities are shaped as they transition from pre-disturbance to post-disturbance communities
[116,353,293e].

Several factors can modulate the nature, amount and spatio-temporal distribution of disturbance legacies, and
ultimately the effects they have on the composition and structure of post-disturbance arthropod communities.
A prominent factor is the disturbance regime, as it dramatically affects the amount, distribution and diversity
of disturbance legacies [293e, 66, 192]. Other factors include pre-disturbance forest characteristics such
as forest stage of development and the taxonomic, functional and phylogenetic diversity of resident tree
species. These are themselves influenced by forest management strategies and past disturbances (Fig. 1;
167, 192, 374, 212, 218). Intrinsic traits of forest arthropod communities can also modulate their ability
to tolerate disturbances and to exploit the resulting legacies (Fig. 1; 377, 25). Finally, post-disturbance
management can markedly modify disturbance legacies (Fig. 1; e.g., dead wood clearance), and consequently,
post-disturbance arthropod communities [215, 259, 369].

Our primary aim is to highlight the key roles of disturbance legacies originating from droughts, windstorms
and wildfires in shaping arthropod communities in temperate forests. We also consider the contribution
of various intensities and methods of both pre- and post-disturbance forest management as an additional
filter shaping post-disturbance arthropod communities. Our review is organized into four sections. We first
introduce key disturbance legacies associated with droughts, windstorms and wildfires that have a role in

shaping forest arthropod communities and explore how each of these disturbance regimes might affect these
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Figure 1: General structure of this review, with factors affecting disturbance legacies and their exploitation
by forest arthropod communities

legacies. Secondly, we describe how pre-disturbance conditions at tree, stand and landscape scales can affect
the nature, distribution and diversity of disturbance legacies. In a third section, we seek to identify the key
arthropod traits that influence how arthropods interact with and respond to disturbance legacies. In a final
section, we evaluate how post-disturbance management strategies can exacerbate or alleviate disturbance
impacts on arthropod communities. We conclude by identifying key knowledge gaps and propose a number

of future research directions.

2 Key Drought, Wildfire and Windstorm Disturbance Legacies Influencing

Arthropod Communities

Disturbance legacies are a combination of material and information legacies [167]. Material legacies are the
biologically-derived materials left in the wake of disturbances, which include surviving individuals, but also
the resources and microhabitats available for arthropods (sensu 167). Information legacies are ecological
traits filtered by the selective pressures exerted by previous disturbances (sensu 167).

Droughts, windstorms and wildfires have many similar but also idiosyncratic effects on forest ecosystems, and
each type of disturbance can generate a specific set of both material and information legacies for arthropods.
Here we describe key disturbance legacies for arthropods and how they specifically influence arthropod
communities. These legacies include surviving organisms (including arthropods), micro-environmental
conditions, and spatiotemporal dynamics of key resources at local and landscape scales (Fig. 2). How

arthropod communities respond to legacies, and how arthropod traits modulate their responses, is detailed in



2.1 Surviving Arthropods

"Key Drought, Wildfire and Windstorm Disturbance Legacies Influencing Arthropod Communities” section.
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Figure 2: Effects of droughts, wildfires and windstorms on key disturbance legacies for forest arthropods.
Effects can be both direct and indirect through disturbance impacts on tree condition and canopy closure.
Some disturbance legacies can also have delayed effects on ground resources. For instance, changes in
microclimatic conditions (brighter and warmer conditions) can subsequently enhance the herbaceous layer
and floral resources. In general, effects can be positive, negative or both, depending on the context

2.1 Surviving Arthropods

Large forest disturbances negatively affect populations of many organisms (Fig. 2). Wildfires can cause
massive arthropod mortality, and even lead to local extinctions [399, 254]. Windstorms and droughts are
less lethal but can severely disrupt the structure of above- and belowground arthropod communities and
the structure of forest food webs [213, 124, 275, 395, 171]. Eggs, larvae, pupae, and the adults that
survive constitute a major disturbance legacy, and their capacity to survive and subsequently reproduce in
the disturbed landscape determines the composition of the post-disturbance community, until immigration

takes effect (e.g., 40, 291, 129). Some taxa of surviving arthropods may serve as prey for non-arthropod



2.2 Micro-Environmental Legacies

species, but are also a key resource across various arthropod trophic guilds (i.e. among predatory, parasite
and parasitoid species). Disturbances exert strong selective pressures, promoting information legacies in

arthropod communities related to survival and colonization processes (see section 2; Fig. 2).

2.2 Micro-Environmental Legacies

Due to their small body size, fine microscales are more relevant to most arthropods than meso- or macroscales
[283]. Within forest ecosystems, the canopy, ground vegetation and surface soil layers are key compartments
that provide a wide array of resources and microhabitats for a significant proportion of forest arthropods [349].
These compartments can be significantly altered by direct impacts of droughts, wildfires and windstorms
(Fig. 2; 243, 38, 250). Canopy structure can be further altered by subsequent tree dieback or decline (Fig. 2;
314,310, 13, 20). This increases canopy openness, which is a major determinant of disturbance-mediated
effects on arthropod communities. A reduction in canopy cover has a considerable effect on microclimates
from the ground level to the upper canopy layer. The higher insolation produces warmer microclimates (e.g.,
warmer soil surfaces, warmer understory), and a reduced environmental buffer thereby exposing the forest
understory to temperature extremes (Fig. 2; 183, 1, 401). Among and within deadwood logs and stumps,
sun-exposure increases microclimatic heterogeneity (temperature and moisture), promoting saproxylic beetle
species richness at the stand scale [323, 205¢]. At the same time, higher insolation can also negatively affect
leaf litter arthropods that are sensitive to temperature extremes [139].

Droughts, wildfires and windstorms can have contrasting effects on soil conditions (Fig. 2; 81). For instance,
wildfires can entirely remove the litter layer and some portions of the upper organic horizon [65]. This
can affect soil biochemical properties, alter soil texture and reduce soil permeability [65, 64, 262, 35].
Windstorms, on the other hand, generally increase the litter cover and add woody debris [104, 392]. The
pit-and-mound topography and root plates of uprooted trees in windthrown stands can cause small-scale
gradients in soil moisture, temperature and litter accumulation [31]. This provides refuge areas where many
arthropod species are comparatively safe from desiccation compared with areas of the forest floor under
canopy gaps [388ee, 365]. Droughts reduce soil water films and increase soil hardness, which could impede
the movement of soil fauna [81]. Disturbance-driven changes in micro-environmental conditions can in turn
impact the development, survival and behaviour of ground- and canopy-dwelling arthropods, and ultimately

the composition and structure of their community [314e, 388ee, 385, 278], but see below (section 2).

2.3 Resource Pulses and Collapses

Disturbances affect the diversity and the amount of resources available to arthropods. In this regard, the
timeframe of disturbance effects is important to consider as both the amplitude and direction of resource
fluctuations can vary over time (Fig. 2, Table 1; e.g., 288, 15). Some resources may suddenly collapse or
increase at the onset of a disturbance (e.g., deadwood after a windstorm), while the temporal dynamics of

other habitats and resources may be subject to a timelag and can vary considerably.



Table 1: Effects of drought on trophic resource and microhabitat availability considering immediate, short-
term (weeks/months) and delayed (years/decades) effects. TreMs: tree-related microhabitats

Habitat /
resource

Drought effects

Immediate

Short-term (< 1 year)

Delayed (1 year +)*

TreMs

(0/+): cavitation can gen-
erate dry branches

(+): Partial branch mortality triggers an accumu-
lation of dead wood in the canopy. Tree mortality
can occur under severe water constraint and the
resulting snags can accumulate diverse TreMs.
TreMs associated with living trees may decrease

(+): There can be a lag in drought legacy effects
over several years causing progressive tree de-
cline and mortality resulting in an accumulation
of TreMs in the canopy and on the trunk (dead
branches, loose bark and bark cracks, cavities,
etc.). TreMs associated with living trees may
decrease

Foliage

(-): premature leaf
shedding occurs
during severe droughts

Canopy layer (-): (i) partial branch death reduces
foliage abundance; (ii) decreased C allocation to
non-perennial organs reduces the amounts of buds
and foliage

Herbaceous / shrub layer (+): increased canopy
openness can favor ground vegetation regenera-
tion and growth but this can also lead to more
exposed conditions (e.g., higher temperatures,
lower soil moisture)

Canopy layer (0/-): (i) gradual increase in dead
branches progressively reduces foliage abund-
ance and leads to increased canopy openness; (ii)
decreased C allocation to non-perennial organs
reduces the amounts of buds and foliage. Resili-
ent trees may compensate crown degradation by
forming epicormic shoots

Herbaceous / shrub layer (+): increased canopy
openness can favor ground vegetation regenera-
tion and growth, but this can also lead to more
exposed conditions (e.g., higher temperatures,
lower soil moisture)

Fruit and
seeds

(0/+): premature
abscission or fruit
abortion can occur
during severe summer
droughts

Canopy layer (0/+): large mast events can occur
following droughts

Herbaceous / shrub layer (+): Increased canopy
openness can promote floral resources

Canopy layer (-): (i) fewer branches reduces the
number of reproductive structures; (ii) C alloc-
ation to perennial organs reduces the size and
abundance of reproductive organs

Herbaceous / shrub layer (+): Increased canopy
openness can promote floral resources in ground
vegetation

* variable according to stand resilience. Here it is considered that the expected repeated droughts will compromise tree recovery
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2.3 Resource Pulses and Collapses

Some resources can be markedly reduced or locally depleted as a direct consequence of a disturbance. For
example, degraded canopies provide less foliage for herbivorous species [314¢]. Similarly, flowers and fruits
may abort during a drought [108, 263] and, over longer time scales, weakened trees produce less reproductive
organs (Fig. 2, Table 1; 123). Nonetheless, large mast events occasionally occur following disturbances
[9, 381,382, 223], and may provide a pulse of flowers, fruits and seeds that remain hardly predictable. Abiotic
disturbances may also alter host plant tissue nutritional content and/or levels of defensive compounds, which
in turn can alter host plant resistance to phytophagous insects [124, 300, 152, 158, 69]. In this regard, the
immediate and short-term effects of drought have been investigated in several tree species, and the outcomes
largely depend on drought severity and duration [124, 152, 158]. Similar modifications probably occur over
long-time scales in declining trees, although evidence is lacking [314¢]. The pulse in soil nutrient availability
following fire may also affect several leaf traits of surviving trees, including leaf mass per area and levels of
nitrogen or non-structural carbohydrates [300, 69]. However, Rieske et al. [300] did not observe cascading
effects of fire-induced changes in foliage quality on the performance of defoliators. Overall, the quantitative
and qualitative fluctuations of these canopy-related resources during decline and dieback processes have been
poorly documented [314e, 157].

The reduction of canopy cover stimulates successional dynamics and provides colonization opportunities for
early successional and thermophilous plant species [72, 280, 93]. Depending on disturbance type, spatial
extent and severity, the change in canopy cover could be important also for late-successional and shade-
tolerant species [66, 373, 224]. As a result, windstorms and wildfires may promote plant species richness in
the herbaceous layer, but have contrasting effects on plant functional diversity and traits [373, 224, 48, 86, 52],
with cascading effects on arthropod communities. For instance, canopy opening can increase ground-related
floral resources available for pollinators [48, 305]. This is however a rather short-lived resource pulse, as a
few years after disturbance, floral resources tend to decline [288]. In addition, increased canopy openness
accelerates decomposition and could provide a pulse of microbial resources and nutrients for soil arthropods
[309, 277].

On the ground, wildfires can consume large patches of the litter and superficial organic horizon [64, 88],
leaving a charred biomass with altered biochemical properties for long periods [35, 91]. This can profoundly
alter the microhabitats and trophic resources for soil-dwelling arthropods, but also for other forest arthropods
occupying the forest floor [387]. Wildfires can, however, improve the amount and diversity of ground-nesting
sites for some arthropods [48]. The immediate consequences of wildfires on soil microorganisms are a
decrease in abundance, biomass and richness, and an alteration of their community structure [15, 290].
Likewise, drought adversely affects microbial communities in forest soils, at least over short time scales
[213, 275, 18, 317]. This can be expected to have negative consequences for soil-dwelling arthropods since
they rely on soil microorganisms as key food source [275, 285]. However, responses of the soil microbial
community can also be complex. Responses may be positive, negative and of varying amplitude, when
considering longer time periods following a disturbance [15, 220].

Disturbances may lead to transient increases of resources which are traditionally scarce in managed forest
ecosystems, and thus, enhance the structural heterogeneity of the ecosystem [314e, 334, 195, 241]. One of

the best examples is the accumulation and diversification of deadwood resources (Fig. 2). Droughts and



2.4 Composition, Organization and Spatial Patterns of Disturbance Refugia

windstorms promote the accumulation of fallen twigs, branches, stems, uprooted trees and logs on the ground,
perched dead branches in the canopy and snags [353, 79, 366]. Another important factor driving arthropod
communities is tree-related microhabitats (TreMs; Fig. 2). Canopy openness and compromised tree health can
promote the formation of TreMs such as bark scratches, bark cracks, loose bark, mistletoe, and dead branches
[264, 190e, 201¢]. Snags also offer more TreMs than living trees [267, 8]. As a result, disturbances can
significantly affect the abundance and types of available TreMs, thereby generating legacies that could have
positive consequences for arthropod species associated with these microhabitats (see below). Disturbances
may also occasionally generate very particular substrates and environmental conditions, promoting atypical
arthropod communities. For instance, wildfires can produce large amounts of sun-exposed charred deadwood,
yielding to specific communities of "burn-associated" saproxylic beetles (e.g., in boreal forests 28). Following
disturbances, fallen and weakened trees also constitute a major pulse of suitable breeding substrates for
opportunistic pest species [314e, 268, 184, 176]. Similarly, disturbances may favor particular arthropod
communities through the process of landscape complementation by spatially combining several habitats
occupied by different life stages, e.g. wood-eating larvae with flower-visiting adults [31].

Together with contrasting survival among species, and micro-environmental legacies, resource pulses and
collapses contribute to the structural complexity of forest ecosystems over several spatial and temporal scales
[192, 157, 241, 321]. This increases the variability of available niches at different ecological scales, changes
inter-specific interactions, creates colonization opportunities for novel species and can be major drivers of

post-disturbance community structure for arthropods [293e, 157, 149, 378e].

2.4 Composition, Organization and Spatial Patterns of Disturbance Refugia

Disturbances generally do not affect forests uniformly at the landscape scale. They create a mosaic of affected
and unaffected habitats of varying ratio depending on the disturbance regime [321]. Forest patches that
are not or only minimally affected by disturbances are called disturbance refugia [192, 53]. Depending on
the disturbance regime, disturbance refugia can ressemble unaffected islands within a disturbed landscape
matrix, but they can also be more diffuse and less clearly delineated [192, 375, 238]. These refugia constitute
reservoirs of genetic diversity and propagules from pre-disturbance communities, from which recolonization
of disturbed areas can take place [192, 238, 326, 301]. They can also provide resources, suitable microhabitats
and micro-environments in an otherwise hostile environment for survivors of the disturbance [192, 238, 301].
In this regard, the spatial pattern of disturbance refugia can be a key driver of forest ecosystem resilience.
The spatial distribution of disturbance legacies affects whether post-disturbance arthropod communities stem
primarily from recolonization processes, or from survivors. Disturbance refugia also contribute to the spatial
heterogeneity at the landscape scale, especially if refugia and the disturbed landscape matrix follow different

recovery pathways [238].

2.5 Disturbance Regimes and Disturbance Legacies

Disturbance regimes partly define the type, amount and diversity of legacies that commonly occur in an

ecosystem. For instance, the intensity and duration of a disturbance drive its impacts on the number of



surviving arthropods, the amplitude of deadwood resource pulses, the impact on soil conditions, and the size of
canopy gaps (e.g., 387, 340, 21). Likewise, the spatial extent of disturbances influences (micro-)environmental
conditions, and the spatial distribution of refugia in the landscape [372]. Equally, disturbance frequency will
affect information legacies. Recurrent disturbances leave evolutionary imprints on communities. Pyrophilous
plants and arthropods in fire-prone ecosystems are examples of disturbance-adapted species that improve the
ecosystem resilience and resistance capacity of forest communities [178, 273]. Therefore, disturbances can
be the catalysts that stimulate adaptation of forest organisms to environmental changes [93, 361].

Through disturbance legacies, successive disturbances can interact and have antagonistic, synergistic or
additive effects (e.g., see section 2.2; 329, 193, 219). In this context, legacies from one disturbance can
modify ecosystem resistance and resilience to a second disturbance [268, 336, 45, 56]. For example, the
pulse of deadwood and litter resources on the ground following a windstorm can promote the spread of
subsequent wildfires [261, 94]. Likewise, windstorms may reduce mature tree density and seed production,
and consequently delay the recovery following a subsequent wildfire [46]. Severe wildfires can hinder tree
regeneration by reducing seed availability thereby altering microclimate and increasing the risk of drought
impacts on seed establishment [84]. Successive disturbance events can also generate unusual legacies. For
example, disturbance legacies of forests subjects to repeat burns are composed of lower volumes of deadwood,
with altered physical and biochemical characteristics, compared with forests burned only once [95].
Changes in climate and silvicultural practices are currently affecting natural disturbance regimes, which
are diverging from historical disturbance regimes [131, 315, 83], sometimes leading to so-called "mega-
disturbances" [345]. These more frequent, severe and spatially extended droughts, wildfires and storms
produce novel types and amounts of disturbance legacies [114, 167]. For instance, increases in the frequency
and severity of wildfires can reduce the amount of dead wood and the density of resprouting plants. These
changes in available resource can alter the composition of saproxylic beetle communities, potentially lowering
diversity and evenness [95, 102, 357].

Changing drought or wildfire regimes can also lead to major ecosystem reorganization through plant com-
munity replacement [19, 166, 168, 133]. An example of this is when there is an increase in fire frequency in
fire prone ecosystems. This can reduce resilience since serotinous trees can be burnt before reaching sexual
maturity and therefore, regeneration is impeded [177, 47, 138]. Ultimately, these regime shifts can disrupt
ecological trajectories [84]. In some cases, this may lead to a shift from forests to grassland [345, 19]. These

profound ecological changes can occur from the microscale [87] to the landscape scale [50, 376].

3 Forest Arthropod Responses to Disturbance Legacies

3.1 Key Traits of Arthropod Communities Driving Their Responses to Disturbances

Responses to disturbance can be grouped into general strategies according to life-history traits that facilitate
population recovery and persistence despite (or because of) disturbance [307]. These strategies include: (i)
invaders as opportunistic species, taking advantage of disturbance legacies and colonizing recently disturbed
areas; (ii) evaders that rely on specialized strategies to "get around" the disturbance, being able to immediately

re-establish post-disturbance populations; (iii) resisters that survive the disturbance itself, using specialized
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3.1 Key Traits of Arthropod Communities Driving Their Responses to
Disturbances

mechanisms to withstand direct, disturbance-induced mortality, or to recover after the disturbance event (e.g.,
survivors, see section 1) and (iv) avoiders which include species that are not considered to be disturbance-
adapted and are only found in late successional stages. In this section we review the traits and strategies by
which theses four categories of organisms (i) increase their survival to disturbance, (ii) re-colonize and/or
exploit spatial refugia, (iii) exploit novel micro-environmental legacies associated with disturbances, and (iv)

make use of the pulse and collapse of resources.

3.1.1 Traits Aiding Survival to the Direct Effects of Abiotic Disturbances

Many "resisters" occupy micro-environments that can act as refugia for at least part of their life cycle; e.g.
within plant tissues or plant shelters [377,40, 351, 304], or in patches that remain unaffected by the disturbance
(i.e. disturbance refugia; 192). For instance, arthropods that have the capacity to use deeper portions of the
soil profile have better chances of surviving a fire or avoiding the impacts of desiccation [291, 81, 234, 173].
Likewise, burrowing spiders, ground- and deadwood-nesting bees and ants, and larvae of saproxylic beetles
can survive heat and direct flames within large-diameter logs [377, 234, 386]. Synchronization between
disturbance seasonality and arthropod phenology can also influence the chances of surviving negative effects.
For instance, in Mediterranean ecosystems, summer wildfires have less impact on soil arthropods as most of
them have migrated into deeper soil layers or entered a cryptozoic stage at this time of the year [143].

Some morphological traits also contribute to resistance to disturbance among the "resisters". Drought-
resistant species are equipped with specific protective body traits like hairs and thick cuticles [81, 199, 232].
Thick cuticles can additionally enhance resistance to wildfires [399]. Small arthropods such as mites (Acari)
tend to be more sensitive to changes in soil temperature and dryness than larger arthropods (e.g., Collembola)
[254, 27, 44].

Several "evaders" are able to detect wildfires well in advance, using olfactory or auditory cues, and may
rapidly engage in escape behaviors, actively fleeing to disturbance refugia [89, 254]. In this regard, high
mobility is a key asset to avoid deleterious disturbance effects. Winged insect orders consequently have
higher survivorship to wildfires than less-mobile taxa [89], and smaller-bodied soil-dwelling arthropods are
better able to take shelter from wildfires and move to refugia such as underground burrows, beneath rocks,
or within tree trunks or roots [81]. Above-ground arthropods may also escape from wildfires by actively
burrowing into the soil, or by moving upwards into the cooler canopy during low-intensity surface wildfires
[89, 273].

The vulnerability of arthropods to abiotic disturbances depends on their preferred microhabitat [40], especially
across the vertical gradient of forests. For instance, arthropods that live in the upper soil layers are likely to
experience stronger disturbance-induced fluctuations in temperature and moisture compared to their deeper
soil-dwelling counterparts [81], or compared to canopy-dwelling arthropods that may have better chances
of surviving ground-level fires [89]. Ferrenberg et al. [109] suggest that aboveground communities are
influenced to a greater extent by deterministic processes, while the relative influence of stochastic processes

are greater for belowground communities.
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3.1 Key Traits of Arthropod Communities Driving Their Responses to
Disturbances

3.1.2 Traits Related to Post-Disturbance Colonization Processes and the Spatial Distribution of Dis-

turbance Refugia

Colonization and re-colonization processes depend on the proportion of arthropods that survive in situ or in
distant refugia. Post-disturbance arthropod communities can be dominated at first by disturbance-adapted
taxa [291]. "Invaders" can also rapidly colonize disturbed areas. This colonization of new habitat patches or
newly-created substrates relies on the ability of these arthropods to detect material legacies. Phytophagous
arthropods can detect weakened or recently perished trees through the emission of kairomones such as
ethanol [248]. Similarly, saproxylic beetles can locate particular types of dead wood at some distance prior
to colonization [130]. Pyrophilous insects, seeking burnt substrates, possess specialized chemoreceptors that
sense smoke volatiles, and/or sensilla that respond to radiant heat and infrared [103, 273].

Disturbances also lead to the selection of traits related to mobility [253]. "Invaders" are by definition highly
mobile, as they exploit ephemeral resources in post-disturbance environments [311]. Similar traits are also
selected for in "evaders" and "avoiders", especially when disturbance refugia are highly scattered throughout
the landscape. The composition of post-disturbance communities highlights the importance of dispersal in
disturbed areas. For example, windthrown and burnt areas generally host lower numbers of brachypterous
(small-winged) and higher numbers of macropterous (large-winged) ground beetle species compared with
undisturbed forests [29, 316, 339]. Similarly, in recently burnt sites, there can be an increase in the abundance
of spiders with greater ballooning dispersal abilities [ 199] and of wild bees with higher capacities for dispersal
[234]. As aresult, the spatial scale describing the effect of storms on arthropod communities increases with
their dispersal ability [147]. Body size is another trait that is related to dispersal ability; i.e. post-disturbance
soil communities often shift from small-bodied to relatively large-bodied, more effectively dispersing species
[27, 44].

The colonization of material legacies also involves demographic parameters. The most successful "invaders"
tend to have short generation times, high fecundity and long life spans. For instance, eusocial bees can quickly
rebound following a fire during the early growing season since they are active across seasons and have several
generations per year [337]. Similarly, ants recover rapidly after wildfires and maintain near-stable population
sizes due to their large broods, small body size, diverse foraging niches and relatively broad diets [23]. These
autecological and demographic parameters might be particularly relevant for recolonization processes when
disturbance refugia are small compared to the surrounding disturbed matrix and consequently shelter a small
reservoir of "avoiders” and "evaders".

In addition to the availability of space and new trophic resources, the local extinction of certain taxa may
constitute an opportunity for the immigration of exotic invasive species into disturbed patches. Examples
in support of this hypothesis include Cacyreus marshalli, an invasive butterfly, which tends to appear in
Mediterranean shrublands after wildfires [319], and also exotic ant species found to have a high probability
of establishing colonies in pine forests where there are frequent wildfires [10]. Likewise, arthropods can take
advantage of post-disturbance conditions because of likely reductions in predation [ 147, 274] or competition
pressures [297]. Tentyria grossa, a rare soil-dwelling beetle species, became dominant after wildfires in Italy
partly because of the decreased abundance of almost all other related species [106]. Conversely, for some

taxa critical population sizes must be reached before recolonization processes can take place. Resources
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3.1 Key Traits of Arthropod Communities Driving Their Responses to
Disturbances

created by large disturbances in Central Europe led to the return of Peltis grossa, a primeval forest specialist

beetle, but at a slower rate than two more common, related species [51].

3.1.3 Traits Related to Micro-Environmental Legacies

In general, stand-removing forest disturbances benefit taxa that are adapted to more open, micro-environmental
conditions (e.g., open-land ground-dwelling carabids, ground-hunting spiders or some saproxylic beetles),
while groups typically associated with shady conditions are negatively impacted (e.g., forest-preferring
sheet-web weaver spiders and shade-preferring carabid and saproxylophagous species) [323, 302, 63, 30].
Disturbances also disrupt patterns of humidity. Post-fire environments tend to have drier atmospheric and
soil conditions, leading to a predominance of drought-resistant arthropod species [81, 199] and a decline in
hygrophilous taxa [365, 316, 339, 380]. In this regard, the phenotypic plasticity of some soil arthropods, and
more specifically their capacity to adapt some of their physiological, behavioral, and morphological traits
to drier conditions (e.g., urine concentration, thermoregulation strategies, cuticular permeability, etc.) is a
major advantage to improve tolerance to these shifting environmental conditions [232].

Open conditions also expose arthropods to higher potential levels of predation [63, 188]. Consequently, for
some arthropod taxa the frequency of dark cryptic individuals increases in burned areas [273]. The ability

for camouflage may be favored in disturbed forests but there is still limited supporting evidence for this.

3.1.4 Traits Related to Resource Pulses and Collapses

Disturbance legacies generate pulses or collapses in critical resources for arthropods. The largest impacts
on arthropod communities are expected in the initial stages of the disturbance, but changes in community
structure can unfold over more than a decade [126¢]. The responses of arthropod communities to changes
in resource diversity, amount and accessibility can be largely mediated by their composition, although
idiosyncratic responses at the family or species levels also frequently occur [81, 134, 5, 54, 80e].

A higher diversity and abundance of deadwood-associated arthropods are generally observed in disturbed
stands. In response to pulses in the abundance and diversity of deadwood substrates and associated TreMs
(Table S1, Fig. 3; 388ee). This also affects the taxonomic, functional, and phylogenetic composition of
species in disturbed forests [190e, 80e, 338]. In general, saproxylic insects, benefit from these pulses
[314e,359, 365, 366] and this includes saproxylophagous arthropods [80e, 111], cavity-nesting species [80e,
335], and xylomycetophagous and mycophagous insects [29, 80, 398], unless wildfire has altered wood
biochemical properties [356]. The pulse of weakened host trees following severe forest disturbances also
promotes xylophagous species (Fig. 3) and may trigger outbreaks of opportunistic pests (cf. III.2.). Impacts
of tree dieback or decline on crown-related resources have more contrasting effects on leaf-dwelling guilds.
Overall, tree decline has a negative impact on specialized leaf-feeders (Table S1), but has no effect on seed-
and fruit-consuming species, although responses to variations in food are generally poorly understood among
these guilds (Fig. 3; 314e, 313).
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3.1 Key Traits of Arthropod Communities Driving Their Responses to
Disturbances

Increased canopy openness and the resulting pulse in herb layer and floral resources, consistently increase
understory-associated herbivores and pollinators (Fig. 3; 388ee, 112), and potentially also root-feeding insect
larvae (Fig. 3). This pulse may also promote generalist leaf-feeders that seek alternative food sources to
compensate for thinning tree crowns [313]. However, while cascading effects of wildfires on the herbaceous
layer benefit pollinators in general, they also can have negative effects on this guild, or for some vulnerable
taxa, when fire frequency is high (e.g., 112, 57). Post-disturbance regrowth of aboveground vegetation
additionally increases habitat heterogeneity and can lead to a greater abundance of herbivores in the mid-term
[362].

Belowground, soil arthropods exhibit an overall negative short-term response to wildfires (Table S1). This
is a consequence of collapses in microbial food resources [197], and detrimental soil conditions (Fig. 3;
139, 297, 197). Their response to wildfire and similar disturbances is often strongly determined by the depth
of remaining litter [387, 155, 110]. The response may be different following windstorms as they may benefit
both from the pulse in ground-lying resources (e.g., dead wood, litter, etc.) and from the mosaic of soil
microhabitats related to windfalls and windbreaks (Fig. 3; 388, 31). Some guilds of soil arthropods may
also benefit from post-disturbance conditions at later stages of the ecosystem recovery process [139, 380, 82].
They may take advantage of the pulse of easily-decomposable organic matter and from the related pulse in
microbial activity, but also from changes in micro-environmental conditions related to canopy opening [277].
This latter point is, however, debated and can depend on the taxonomic groups or functional guilds considered
[82, 347].

Populations of predatory arthropods may be driven by disturbance-induced variations in prey availability, i.e.
prey density and prey detectability. Surviving predators may benefit from surviving prey and an increase
in deadwood- and litter-dwelling prey [379]. Conversely, the general decrease in detritivores (Fig. 3) may
have cascading effects on higher trophic levels as suggested by reductions in surface predators, such as
spiders, centipedes, and predatory ground beetles (e.g., 81, 31; but see 63, 188). Nonetheless, we compiled
inconsistent bottom-up effects on higher trophic levels in saproxylic [79, 389] and soil food webs [90]. In
addition, predatory arthropods may themselves be affected by higher predatory pressures from higher trophic
levels (e.g., insectivorous birds: 217; or bats: 186, 296).This means that predaceous groups can both increase
or decrease in disturbed forest stands compared with undisturbed forests (Table S1, Fig. 3), and the drivers

of the direction of effects still requires further research.

3.1.5 Spatiotemporal Changes in Community Structure

Post-disturbance community patterns hinge on spatio-temporal dynamics of microhabitats and resources.
The increase in within-patch heterogeneity in disturbed areas may play an important role in community
organization by niche partitioning among species [31]. Post-disturbance conditions may result in an increased
range of food sources and breeding substrates for some arthropod guilds, expanding their trophic and
reproductive niche space and resulting in a potential functional divergence in the disturbed area [80e, 255]. At
the same time, micro-environmental legacies could lead to niche filtering and a decrease in trait variations, by
reducing abiotic niche space and selecting species with narrow microclimatic requirements, i.e., xerothermic,

heliophilous, and diurnal species [255]. The spatial extent of disturbed areas can also affect the response
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3.2 Disturbance Legacy, Insect Outbreak and Arthropod Community
Interactions

of arthropod communities to a disturbance. As an example, flower-visiting saproxylic beetles were more
abundant in mid-size and large windthrow gaps than in small ones [29].

At the landscape scale, local variations in disturbance regimes increase habitat heterogeneity [238] and should
consequently promote local and regional biodiversity, according to the habitat heterogeneity hypothesis [358].
In this regard, landscapes with a high diversity of fire histories (i.e., a high pyrodiversity sensu 230) support a
greater abundance and diversity of pollinators [378e, 286]. The total amount of habitat over a landscape can
also modulate communities at a local scale, according to the habitat amount hypothesis [105]. For instance,
in declining silver fir forests, the local abundance and richness of saproxylic beetles responded positively to
local forest dieback only if the landscape level of forest dieback was high [80e].

Environmental effects of disturbance on forest arthropod communities can be ephemeral or long-lasting,
immediate or delayed, or even cumulative over time. Saproxylic insect assemblages associated with older
burned forests were found to consist of a mix of pyrophilous specialists and non-pyrophilous secondary
users, i.e. opportunistic generalist saproxylic species which are not restricted to freshly burnt wood but
which benefit from fire-induced pulses of deadwood after a delay [311]. In windthrown areas, reinvigorated
community dynamics of ground-dwelling arthropods are also a matter of time since wind disturbances: i.e.
positive effects are observed in response to short-term pulses of litter after windstorms, and then mid-term

with a reduction in the quantities of litter generated from weakened trees [81].

3.2 Disturbance Legacy, Insect Outbreak and Arthropod Community Interactions

The pulse of weakened host trees following severe abiotic disturbances may promote outbreaks of oppor-
tunistic bark and wood-boring insects, bark beetles being a prime example. These outbreaks are major
biotic disturbances causing forest diebacks sometimes over large spatial scale [26, 22, 306, 258, 312]. These
opportunistic insects can also act as aggravating elements in complex multifactorial forest declines, further
deteriorating stand conditions in previously disturbed forest areas [312]. Severe droughts and windstorms
are major initial drivers of such outbreaks [329, 26, 22, 312, 284]. Wildfires, however, only occasionally
contribute to large-scale pest outbreaks as a function of their severity. This is because high-intensity crown
fires generally destroy the breeding substrate which hinders any pest outbreaks [112, 194, 289, 164, 61].
Nevertheless, low intensity ground fires are less destructive, and weakened trees can provide ample substrates
for breeding outbreaks of opportunistic pests [39, 222, 354].

Compound disturbances can lead to a situation when a disturbance alters ecosystem response to a subsequent
disturbance (see 3.1; 268). Large-scale outbreaks of opportunistic pests trigger or contribute to extended forest
diebacks and declines [26, 22, 312, 284]. They consequently compound the effects of wildfires, windstorms
and drought since pest outbreaks increase the severity and spatial extent of abiotic disturbances [221, 282].
Therefore, pest outbreaks can amplify some of the disturbance legacies left by previous disturbances such
as the volume of deadwood, abundance of TreMs, and canopy openness [79, 366]. Cascading effects on
arthropod communities are consequently similar to those of abiotic disturbances: flower-visiting insects
[79, 203, 24, 360, 187] are stimulated in canopy gaps as a result of micro-environmental legacies and related
pulses of plant resources [85]. Conversely, taxonomic groups linked to closed-canopy forests, such as

Mycetophilidae, might suffer from canopy opening and the desiccation of decaying litter [203]. Increases in
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deadwood volume, in sunnier environments, fosters the diversity of saproxylic beetles [323, 205¢, 130, 24],
although the trend varies with the dynamics of dieback [79]. Several soil-dwelling groups (i.e., ground
beetles, harvestmen, springtails) seem, however, to be unaffected in bark beetle infestation areas [24, 400]
compared with undisturbed forests. The response of fungus-dwelling arthropods to bark beetle-induced
diebacks depends on inconsistent variations in wood-dwelling fungi [79, 80, 24] and in a very significant
decline in the biomass of the forest soil fungi community, reflecting both the disappearance of fungi that form
symbiosis with tree roots and the changing availability of needle litter [235, 350]. Overall, eruptive pests,
like the spruce bark beetle in Europe, may be considered as keystone ecosystem engineers, providing habitat
structures that promote the occurrence of other species, including endangered species [51, 258, 17, 146, 245].
Outbreaks of opportunistic pests are triggered by abiotic disturbances, but through their disturbance legacies,
they can also, in turn, have additive or synergistic effects on these abiotic disturbances [329]. For instance,
fuel accumulation and changes in microclimatic conditions (e.g., temperature, moisture, etc.) following
outbreaks may promote subsequent wildfires, but depends on the time that has passed since a pest outbreak,
and also the characteristics of available fuels and of the fire (e.g., 61, 145, 140; but see 240). Likewise,
increased canopy openness may amplify the impact of subsequent droughts on forest stands [219, 182], and
similar effects could be expected following large-scale outbreaks. Pest outbreaks may also compound the
effects of wildfires since depending on disturbance severity and forest type, they may alter recovery processes

following a subsequent wildfire [58, 181, 320].

4 Pre-Disturbance Forest Conditions: from Forest Characteristics to Long-

Term Legacies

4.1 Pre-Disturbance Forest Type
4.1.1 Pre-Disturbance Vegetation

Initial stand characteristics modulate the composition of post-disturbance vegetation [374, 166]. For instance,
the maintenance of trees and understory seedlings and saplings after a disturbance significantly contribute to
the vegetation composition (Fig. 4; 92, 119, 394, 299). Depending on the degree of reorganization undergone
by pre-disturbance vegetation and disturbance type, forest ecosystems could follow different pathways leading
to resilience (no change in structure and composition), restructuring (structure changes but not composition),
reassembly (composition changes but not structure), or replacement (both structure and composition change;
325). While forest resilience may also promote the resilience of forest arthropod communities, the three
other pathways should reshape arthropod communities to varying extents. In this regard, lida et al. [155]
found that, following a volcanic eruption, pre-eruptive vegetation influenced post-disturbance communities
of ground-dwelling arthropods. Nonetheless, this effect was strongly mediated by disturbance severity and/or
type, and by the depth of remaining litter.

At the tree species and individual tree levels, several characteristics can affect tree resistance to droughts,
windstorms or wildfires, and there is significant intra- and interspecific variation among trees in their

susceptibility to these disturbances (e.g., 55 for windstorms; 70 for drought; 14 for wildfire). For instance,
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Legend Abiotic natural
> Positive effect disturbances
——3 Negative effect
=3 Positive or negative effect Disturbance legacies
cf. Fig. 2
. Disturbance Canopy resources
: regime g H. :
Bonmnron0oca0000d 2 . Foliage : @
. Fruits / seeds :
Pre-disturbance forest 7~ 1 T 7 e
R TP
. Woody resources
Vegetation Weakened trees
Tree species Dead wood o

Information legacies, wood
and leaves physical &

. £y - Tree-related microhabitats
chemical characteristics, etc.

Tree size . .
Micro-environmental

legacies
Forest management Light

Tree species mixing Thermal buffer

Harvest intensity Humidity
Prescribed fires

Ground resources
Landscape matrix

: Herbaceous layer / _ P
Past mid- & long-term : floral resources :
disturbances i Litter :
Ratucal Soil microorganisms
Lan d use ®ecescssesssssssssssssssssna®
Surviving arthropods
[ J Biomass
Information legacies
: Disturbance refugia

: Understory
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environmental conditions, and by imprinting information legacies on forest organisms

large and more mature trees are generally more resistant to fire damage [374, 67], while they are frequently
more susceptible to wind damage [161] (Fig. 4). Trees may also have traits that confer resilience to specific
disturbances, especially if these disturbances are reoccurring [16]. For example, resistance and resilience
to wildfires typically occurs via the emergence and relative success of trees with fire-resilient traits such
as serotiny, thick bark, high resprouting capacities, and lignotubers, providing resistance and resilience to
wildfires [178, 122, 74]. These information legacies (Fig. 4) can be paramount drivers of ecosystem resilience
[36] as they modulate the nature and spatial pattern of disturbance refugia on scales ranging from the tree to
the landscape [192, 326]. Resistant trees can serve as disturbance refugia for arthropod communities since
they ensure the persistence of suitable micro-environmental conditions and trophic resources for arthropod
communities during the disturbance, and in the post-disturbance environment. For instance, fire-resistant
grass trees in Australia (Xanthorrhoea sp.) have tightly packed leaves around their apical stem, which provide
micro-climatic refugia for several arthropod taxa [40].

Conversely, some characteristics of disturbance-adapted tree species may also increase the intensity, severity
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4.1 Pre-Disturbance Forest Type

or spatial extent of disturbances. For instance, leaf moisture content, leaf area and leaf chemistry affect
the flammability of trees and influence the spread of wildfires within stands [287] and at landscape scales
(59; Fig. 4). Highly flammable tree species may also provide disturbance refugia for arthropods (e.g., 40),
but forests dominated by such tree species should promote disturbance-prone arthropod communities, and
communities associated with open habitats.

Tree characteristics also influence key resource pulses (Table 2). For instance, there is a significant inter-
specific variability in decomposition rates of deadwood [174, 137]. This affects the amount, diversity and
persistence of deadwood resources, and modulates post-disturbance communities of saproxylic arthropods
[324]. Tree species, and some morphological features like trunk diameter, also significantly influence the
ontogenesis, and ultimately the assemblages of TreMs [201e, 267, 78]. Interestingly, early-successional tree
species promoted by stand-replacing disturbances, develop different TreMs than mid- and late-successional
tree species promoted by low- and mid-severity disturbances [78, 196]. Therefore, the complex interplay
between tree characteristics and disturbance regime may lead to peculiar assemblages of TreMs [229], and
significantly contribute to the organization of post-disturbance arthropod communities [190e, 189]. Like-
wise, species-specific physical and chemical characteristics of leaves differentially affect their flammability,
e.g., long curly leaves containing high amounts of terpenes are highly flammable [266, 383]. Consequently,
depending on dominant plant species, litter can be more or less severely affected by wildfires, which implies

more or less extended impacts on soil arthropod communities [387].

Table 2: Examples of interactive effects of tree species and drought on two key resources for arthropods,
tree-related microhabitats (TreMs) and foliage. * TreMs profiles vary among species, and depending on tree
status (e.g., 201e); ° Depending on drought regime

TreMs abund. Susceptibility to drought " Post-disturbance Post-
Tree . . Decomposition . .
species & diversity [101] rate [174] accumulation pattern of disturbance
[390, 6, 71* Acute stress  Repeated stress TreMs foliage loss
Beech Medium High High High Rapid & ephemeral Rapid
Oak High Low Low Low Slow & persistent Slow
Pine Low Low High Low Slow / rapid® & persistent Slow
Spruce Low High High Medium Rapid & moderately persistent ~ Rapid

4.1.2 Pre-Disturbance Forest Management

Pre-disturbance forest management can modulate both disturbance regimes and stand susceptibility to dis-
turbances (e.g., for windstorm: [161]; for wildfire: [346, 363, 211]; for drought: [128, 99, 62, 227]; Fig. 4).
For example, dense plantations of easily flammable species promote severe wildfires [212, 346, 363, 211].
Conversely, landscape fuel reduction treatments can decrease wildfire severity and promote post-fire seed-
ling regeneration [84, 371]. Following a high intensity fire in south-eastern Australia, Bowd et al. [36]
showed that old-growth forests recovered better than younger ones, because old-growth forests displayed a
higher abundance of seed-tree species. Likewise, mixing tree species can affect stand susceptibility to wind-
storms [370], and, depending on tree mixing characteristics, increase stand resistance to drought and wildfire
[159, 271]. Mixing tree species also provides associational resistance to herbivores, by increasing predation

/ parasitism pressures, and may prevent outbreaks of opportunistic pests in response to pulses of weakened
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4.2  Material and Information Legacies from Past Disturbances

host trees (159, 160; Fig. 4). The inflection of disturbance regimes by forest management could modulate
the amount and diversity of disturbance legacies such as stand structure (e.g., complexity of vertical stratum),
micro-environments and resources (e.g., soil, burned pieces of deadwood, etc.), with cascading effects on
post-disturbance arthropod communities. Pre-disturbance management can also interact with disturbance
regime and influence the amount of disturbance legacies. For instance, green tree retention during harvest
increased the amount of deadwood following prescribed fires, and promoted red-listed saproxylic insects
(e.g., in boreal forests [154]).

Forest management modulates the initial amount of microhabitats and trophic resources and consequently
filters ecological traits in pre-disturbance arthropod communities, which may promote or hamper their
resilience to disturbances (Fig. 4). At the tree level, pruning and pollarding promote the formation of tree
cavities [322]. At the stand level, thinning can reduce the amount of dead and living trees carrying large
arrays of TreMs [390, 78, 200, 77]. Thinning may also promote particular TreMs, such as bark injuries
occurring during harvesting operations, or dendrotelms [390, 78]. As a result, thinning and logging may
alter the initial supply of critical resources like deadwood and TreMs, and initial environmental conditions
in the canopy and ground layers through increased canopy openness [68]. More generally, intensive forest
management negatively affects the community of saproxylic arthropods [334, 132, 348], and could therefore
limit their response to deadwood pulses following a disturbance. On the contrary, by regularly creating
canopy gaps, forest management maintains populations of forest pollinators [135], allowing them to rapidly

exploit the post-disturbance pulses in floral resources [142] (Fig. 4).

4.1.3 Pre-Disturbance Landscape Matrix

Landscape matrix influences disturbance regimes. For instance, patterns of wildfire spread and severity are
an interactive function of topography, vegetation, management and land use [374, 212, 60, 303]. Likewise,
large forest gaps increase the likelihood of windstorm damage at the landscape level [370, 136, 270]. Forest
edge exposure also results in a disruption of the microclimatic buffer and therefore exacerbates the effects of
drought on vegetation and arthropod communities [87, 275, 182, 352]. Consequently, the landscape matrix
can be seen as a mosaic of habitats more or less prone to disturbances. This will markedly influence the
spatial distribution of disturbance refugia, and the recolonization processes by arthropod communities (Fig.
4).

4.2 Material and Information Legacies from Past Disturbances

Past disturbances can directly influence current arthropod communities in forests through changes in forest
structure. Kozdk et al. [190] showed that current saproxylic beetle assemblages are influenced by the
historical disturbances that occurred over the last 250 years. Overall, the recency and the severity of the
last disturbance increased the current species richness, although maximum disturbance severity had negative
effects [190¢]. The changes in current insect assemblage were mainly mediated through past changes in
deadwood resources and canopy openness [12].

Pre-disturbance conditions are also influenced by changes in land-use that occurred a long time ago (Fig. 4).
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For example, Mollier et al. [252] showed that the forest area of 150 years ago is a better predictor of current
beetle communities than the current forest area. This is probably mediated by ancient forest legacies related
to forest maturity and continuity [162]. Past land-use also significantly determined current forest vegetation,
due to the trees historically favored by man [76], colonization credit [252, 144], and nutrient availability (e.g.,
generally higher in former agricultural lands; 117), which largely affect the dynamics of the post-disturbance

vegetation [292].

S Post-Disturbance Forest Management Influences on Disturbance Legacies

and Arthropod Communities

Post-disturbance forest management encompasses an array of strategies, ranging from intensive to passive
approaches [96]. Following drought, wildfire, or windstorm disturbances, salvage or sanitation logging are
typical management strategies in production forests [216] and can also be implemented in forests with high
conservation value [71, 247, 265]. Salvage logging is the practice of extracting trees in disturbed forests and
it is frequently conducted to minimize the economic loss of timber [215]. Sanitation logging aims to harvest
dead and weakened trees to prevent the build-up of opportunistic pest populations and subsequent outbreaks,
but also to reduce the risks of further wildfires [344, 118]. The effectiveness of salvage and sanitation logging
in mitigating subsequent disturbances remains unclear [209]. These management strategies can be considered
to compound disturbances, as forests are more likely to be harvested after a natural disturbance than if there
was no disturbance [207].

Most disturbance legacies are affected by logging (215; Fig. 5). The extent of any negative consequences for
forest arthropod communities depends on disturbance severity, as well as on the intensity and extent of logging
and the time lag following a disturbance [79, 208, 242]. Logging removes dead and weakened trees, and woody
debris. This affects the amount and diversity of material legacies that are essential for saproxylic arthropods.
While the amount of deadwood in a stand logged after a disturbance may remain high [79, 126e, 242, 125], the
diversity of deadwood resources is generally reduced compared to unlogged stands (392; Fig. 5). For instance,
rare types of disturbance-induced deadwood resources, like charred snags and large logs are a key target for
salvage logging [28, 153]. Post-disturbance logging also affects the diversity of TreMs as microhabitat-
bearing weakened trees and snags are targeted for salvage harvesting despite the many microhabitats they
likely provide (79, 392; Fig. 5). Logging can affect species succession by disrupting colonization and
recolonization patterns, and by affecting the community of surviving arthropods. For instance, the removal
of deadwood disturbance legacies can effectively be ecological traps [32], negatively affecting saproxylic
arthropods that have taken shelter from a disturbance within deadwood, but also those arthropods that
subsequently colonize the deadwood [126e, 146, 367, 73]. Conversely, increased canopy openness promotes
the colonization of logged areas by arthropod species that are associated with open habitats, preferring
warmer and sunnier environments, and by species associated with floral resources [338, 142, 125, 33].
Post-disturbance logging also affects micro-environmental legacies. Removal of dead and weakened trees
further increases canopy openness (115,279, 179; Fig. 5). The impact of logging on soil conditions is highly

context-dependent, and it is influenced by logging intensity and the construction and distribution of roads
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Figure 5: Effects of post-disturbance forest management on key disturbance legacies for forest arthropods.
Increasing harvest intensity from benign neglect strategy to intensive logging largely affects a wide array of
disturbance legacies

(279,225,231; Fig. 5). Increased canopy openness and the removal of downed deadwood generally results in
increased soil temperature, and decreased soil moisture [237], thereby affecting soil microbial communities
(235; Fig. 5). Removal of downed deadwood also reduces the amount of available nutrients compared to
stands that retain their legacies [228, 121, 276, 172]. In addition, the use of forestry machinery generally
increases soil compaction [225, 121, 295, 391]. Together with the removal of woody debris, it modulates the
pattern of soil microsites and microtopography, with a decrease in pits and mounds but an overall increase
in microsite richness (392, 279, 393, 355; Fig. 5). These effects on soil properties can persist for a long time
(e.g., 10 years in boreal forests; 180). These changes in micro-environmental conditions can negatively affect
soil arthropods [251].

At the landscape scale, logging increases habitat diversity if it creates a mosaic of undisturbed, disturbed and
logging-disturbed patches [397, 281]. The alteration of local deadwood composition can increase 3-diversity
of saproxylic organisms across salvaged areas, compared to unsalvaged and undisturbed forests (e.g., 126e,

397). This may in turn promote the y-diversity of arthropod communities [397, 281]. The configuration
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and size of such mosaics certainly are important to define the extent to which these mosaics can help certain
insect communities maintain their populations, but we lack knowledge about this issue. Nonetheless, logging
may also increase habitat fragmentation, putting disturbance refugia further away from each other [247, 246],
which may also affect the dispersal and colonization processes of disturbed areas by arthropod species [311].
It is often conducted extensively, in a way that the landscape ends up dominated by a burnt and clearcut
matrix with some patches of deadwood only in inaccessible areas [207].

Following post-disturbance harvest, different reforestation strategies can be implemented, from natural regen-
eration to full planting of new tree species. While post-disturbance logging does not produce a generalized
effect on the density or height of subsequent tree regeneration, there can be a variety of local responses [210]
and effects on composition are generalized [355]. Logging often promotes early-successional resprouting
species, but disfavors late-successional seeder species [355, 169, 269, 206, 113, 244]. However, these im-
mediate effects generally fade in the longer term (e.g., [210, 308, 318]; but see 256). Reforestation leading
to the plantation of novel, and potentially exotic, tree species may increase habitat diversity at the landscape
scale, but result in a dramatic shift of tree-related resources and habitats for arthropods at a local scale [294].
Shifting tree species during post-disturbance reforestation may result in a major resource collapse for the
community of plant-feeding arthropods [37, 384, 204], but also for saproxylophagous species [324, 260, 175],
at least at initial stages of the saproxylation process [324, 170]. This would be particularly true if native tree
species are replaced by exotic and phylogenetically- and functionally-distant tree species [175, 34, 249]. At
the landscape scale, this may however increase 3- and y-diversity of arthropod communities [42, 4, 148].
Nonetheless, natural regeneration following disturbance is heterogenous and naturally produce landscape
diversity [373, 321].

In contrast, the absence of active management, within the frame of a "benign neglect" or passive strategy,
allows the retention of disturbance legacies [259]. The latter strategy is mainly implemented in conservation
forests [259, 96, 150, 151]. Forest managers can retain some disturbance legacy features that may be of interest
[146, 96, 163] to achieve a compromise between fully preserving disturbance legacies and virtually eliminating
them through clearfell. They also may implement variable management strategies in different part of the
landscape to prioritize different functions ans services. Compared to logged stands, saproxylic arthropods
greatly benefit from the retention of deadwood following disturbances [79, 24, 125]. Even though logged
areas are generally favorable to open-habitat arthropod species, Galbraith et al. [120] observed greater a- and
B-diversity of wild bees in unlogged than in logged areas. Furthermore, passive post-disturbance strategy
also maintains greater network connections between pollinators and plant species than salvage logging [49].
Only a few studies considered the effects of intermediate forest management strategies after a natural dis-
turbance, such as retention harvesting or close-to-nature forestry [96, 207]. Scattered trees or groves retained
during clear-cuts generally support intermediate communities composed of both species from intact forest
and clear-cut areas but do not support specialists (e.g., interior forest species; 107, 214). Even when retention
levels are high, the community of saproxylic arthropods exhibits substantial changes compared to those of in-
tact forests [ 187, 202]. According to Miiller and Biitler [257], minimum threshold values of 30 to 50m3.ha—1
are needed to ensure a relatively high richness of saproxylic organisms. In addition, Thorn et al. [369] found

that 75% of disturbed forest areas must be retained to maintain 90% of the species richness present in those
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disturbed areas.

6 Conclusion

One of the main similarities between droughts, windstorms, and wildfires is their direct and indirect impacts
on canopy openness. Increased canopy openness, and its cascading effects on forest microclimates at different
strata, and on understory and herbaceous layers, sets in motion the transition of forest arthropod communities
towards communities adapted to sunnier/warmer and drier conditions, with a reduced thermal buffer, and to the
exploitation of resources related to the herbaceous layer, like floral resources. The impacts of disturbances on
canopy resources and microhabitats has received little attention to date [3 14¢], but seems to generally have null
to negative effects on canopy-dwelling arthropods depending on their ecological guild. The three disturbances
considered in our review increase the amount and diversity of weakened trees and deadwood resources, and
consequently have positive cascading effects on saproxylic species, including opportunistic pests. However,
compared to drought and windstorms, wildfires tend to alter the quality of deadwood resources, which are
consequently preferentially exploited by a specialized pyrophilous fauna. Likewise, the impacts of these
disturbances on soil conditions are quite variable. While droughts and wildfires have an overall negative
impact on soil organisms and their micro-environmental conditions, disturbance legacies of windstorms are
generally beneficial for soil arthropods. Through their material legacies, abiotic disturbances may have
positive outcomes on forest arthropod communities, at least for certain guilds like saproxylic and flower-
visiting arthropods, although responses of arthropod taxa may be frequently idiosyncratic. Considering that
with our current knowledge it is still difficult to predict the likely composition of post-disturbance arthropod
communities, we call for more comprehensive investigations on disturbance impacts on arthropod diversity.
These investigations should include several taxa and guilds and consider the taxonomical, functional and
phylogenetic responses to changes in microhabitat amount and diversity, at various spatial scales.

Pre-disturbance forest conditions influence the amount and diversity of several disturbance legacies such as
the amount of surviving arthropods and the amount, diversity and temporal dynamics of several of their key
resources, like deadwood and TreMs. Fostering silvicultural practices which promote TreMs in stands at risk
might prove useful to promote the resilience of forest arthropod communities. Since they can modulate local
disturbance regimes and consequently the post-disturbance habitat heterogeneity at landscape scales, they are
also of paramount importance for recolonization processes of disturbed areas. They either allow the resilience
of pre-disturbance arthropod communities, or lead to a recolonization by communities dominated by large,
highly mobile, fecund and long-lived arthropod species. Post-disturbance management, especially logging,
considerably alters the amount and diversity of both deadwood resources and TreMs, and soil conditions.
Consequently it restricts beneficial disturbance effects on saproxylic taxa and further affects soil arthropods.
Conversely, it also exacerbates some disturbance impacts like canopy opening and habitat heterogeneity at
the landscape scale and may therefore have beneficial impacts on certain arthropod guilds such as pollinators.
For biological conservation purposes, an optimal management of disturbed forest areas should therefore aim
at conserving benefits provided by (i) the accumulation and diversification of deadwood resources and TreMs

for saproxylic taxa, (ii) by canopy opening for pollinators and some saproxylic and soil-dwelling taxa, and
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(iii) habitat diversification at the landscape scale. To achieve this, sanitation logging could be limited to a
restricted proportion of disturbed forest areas at the landscape-scale, to prevent bark beetle outbreaks [11],
especially when harvesting costs are lower than the selling price [98, 185]. Conversely, since maximizing
the retention of disturbance legacies limits the detrimental effects of logging on biodiversity and subsequent
successional process, it should become an increasingly common response to disturbances, especially when
timber prices are low [148].

A majority of the studies investigating the impact of forest disturbances on material and information legacies,
and/or more specifically on arthropod communities, have focused on wildfires, and on windstorms, to a much
lower extent (e.g., Fig. 3; Table S1). Comparatively, fewer studies have evaluated the impacts of drought
on legacies and on forest arthropod communities, although there is a growing body of literature highlighting
the increasing involvement of this disturbance in forest diebacks and declines worldwide [330, 236, 2, 41].
Heatwaves also frequently co-occur with droughts, and are also expected to become more frequent, intense
and longer lasting in the second half of the twenty-first century [236, 239]. However, both disturbances
can have idiosyncratic impacts on forest ecosystems and their associated communities [150], which may be
difficult to disentangle under field conditions. We therefore call for more studies on the impacts of drought
and heat waves on forest resources and microhabitats, and their cascading effects on arthropod communities.
In our review, we focused on the three main disturbances for temperate forest ecosystems. Nonetheless,
additional disturbances with more localized impacts could also be considered, like flooding events which are
expected to increase and affect floodplain forests and their arthropod communities in Central and Northern
Europe in the future [156, 191, 198].

Several shifts in disturbance regimes occurred in forest ecosystems during the last centuries with sometimes
major ecological impacts [372, 357, 343, 100, 43]. For instance, a recent shift in the disturbance regime
in Alaska towards more severe wildfires led to a modification of the plant community from coniferous
to deciduous species [166, 168]. However, the speed of current changes in disturbance regimes appears
to be unprecedented and largely questions the future of world’s forests and their associated communities
[167,372,376,272]. We therefore need a better mechanistic understanding of disturbances and compounded
disturbances impacts on arthropod communities to better forecast how changes in disturbance regimes will

affect disturbance legacies and the arthropod communities their shelter.
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