
Hector: A Framework to Design and Evaluate Scheduling
Strategies in Persistent Key-Value Stores

Louis-Claude Canon
FEMTO-ST, Univ. Franche-Comté

Besançon, France
louis-claude.canon@femto-st.fr

Anthony Dugois
LIP, ENS Lyon, Inria

Lyon, France
anthony.dugois@ens-lyon.fr

Loris Marchal
LIP, ENS Lyon, CNRS, Inria

Lyon, France
loris.marchal@ens-lyon.fr

Etienne Rivière
ICTEAM, UCLouvain

Louvain-la-Neuve, Belgium
etienne.riviere@uclouvain.be

ABSTRACT
Key-value stores distribute data across several storage nodes to han-
dle large amounts of parallel requests. Proper scheduling of these
requests impacts the quality of service, as measured by achievable
throughput and (tail) latencies. In addition to scheduling, perfor-
mance heavily depends on the nature of the workload and the
deployment environment. It is, unfortunately, difficult to evaluate
different scheduling strategies consistently under the same opera-
tional conditions. Moreover, such strategies are often hard-coded
in the system, limiting flexibility. We present Hector, a modular
framework for implementing and evaluating scheduling policies in
Apache Cassandra. Hector enables users to select among several
options for key components of the scheduling workflow, from the
request propagation via replica selection to the local ordering of
incoming requests at a storage node. We demonstrate the capa-
bilities of Hector by comparing strategies in various settings. For
example, we find that leveraging cache locality effects may be of
particular interest: we propose a new replica selection strategy,
called Popularity-Aware, that can support 6 times the maximum
throughput of the default algorithm under specific key access pat-
terns. We also show that local scheduling policies have a significant
effect when parallelism at each storage node is limited.

KEYWORDS
Scheduling, Key-Value Stores, Replica, Modularity, Performance

ACM Reference Format:
Louis-Claude Canon, Anthony Dugois, Loris Marchal, and Etienne Rivière.
2023. Hector: A Framework to Design and Evaluate Scheduling Strategies
in Persistent Key-Value Stores. In Proceedings of ACM Conference (Con-
ference’17). ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Storage systems are particularly important in modern cloud appli-
cations. Among these systems, key-value stores found their way as
central components in many cloud backends, as they offer a simple
API, excellent horizontal scalability, and data availability through
replication. The performance of key-value stores is of paramount
importance for cloud-based applications. Achievable throughput
and service latencies play a significant role in their scalability and
response times. It is often observed, for instance, that even if most
requests are successfully handled with low latency, some of them
suffer from high delays globally impacting responsiveness: this is
the famous tail latency problem [10]. The optimization of these
metrics in persistent key-value stores has been the subject of exten-
sive research, from the maximization of throughput through care-
ful optimization of internal data structures [25] or CPU overhead
minimization [21], to tail latency mitigation through redundant
requests [26], popularity-aware data replication [8], or internal I/O
scheduling [6]. Among these optimization techniques, the proper
scheduling of client requests has received significant attention. Dis-
tributed key-value stores replicate data over multiple storage nodes
in the cluster to ensure fault tolerance. This unlocks the possibility
to select which replica should process a given request. In this di-
rection, prior work proposed monitoring servers and redirecting
each request to the replica that is supposed to perform the best at a
given time [1, 13, 23].

We observe that the variety of scheduling algorithms previously
proposed in the literature all bring some form of improvement, but
often for a specific situation. However, the authors of these differ-
ent proposals make nonidentical assumptions about the workload
and the testing environment, which prevent any fair comparison
between different solutions. For instance, on the one hand, C3 is a
replica selection strategy that outperforms the default algorithm
of Apache Cassandra [23]. On the other hand, the authors of the
Héron strategy demonstrate that C3 may remain inefficient when
the stored data items are heterogeneous in size [13]. Another exam-
ple is when we consider different key access patterns. Some data
items may be more requested than others [4] and we show that it
has direct implications on performance. Furthermore, environment
settings such as hardware and software configurations also have a
significant impact.

Another difficulty comes from the complexity of key-value store
implementations. This is especially true in widely-used systems

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


Conference’17, July 2017, Washington, DC, USA Louis-Claude Canon, Anthony Dugois, Loris Marchal, and Etienne Rivière

that have matured over the years and that became particularly
sophisticated, as is the case of Apache Cassandra. This open-source
project has a large codebase (about 500 000 lines of Java code) that
is now hard to understand and extend. In particular, scheduling-
related components are dispatched across the system and were
not designed and implemented for easy extensibility. Testing new
scheduling policies is thus challenging for newcomers.

Contributions.We introduce Hector, a framework extending Apa-
che Cassandra that enables experimenters to implement and evalu-
ate a large variety of scheduling algorithms. Hector provides highly
modular components that interact seamlessly with each other. They
are based on high-level principles, extracted fromwhat we observed
in existing proposals on scheduling in key-value stores: replica se-
lection, local scheduling, state propagation, and workload oracles.
The goal of Hector is to remove the friction experienced when im-
plementing new strategies, i.e., to allow the user to focus on their
implementation and delegate integration details to the framework.
It also facilitates evaluation, in order to let the user compare exper-
imentally and fairly different policies, under the same assumptions
on the environment and on the workload. Hector should, ultimately,
enable key-value store users to make better decisions on which
scheduling strategy to adopt for a specific use case.

We begin by showing how the scheduling of requests works in
a persistent key-value store such as Apache Cassandra (Section 2)
and we also present the challenges one may encounter when intro-
ducing new strategies. Then, we present the components that we
implemented in Hector and we provide implementation examples
of scheduling policies (Section 3). We demonstrate in our evaluation
that Hector does not exhibit any additional performance overhead
compared to unmodified Apache Cassandra, and we show how Hec-
tor enables easy comparisons of different policies by illustrating
some use-cases through two experiments (Section 4). In particular,
we introduce a new replica selection strategy, called Popularity-
Aware, that leverages cache locality and can achieve a throughput
that is more than 6 times higher than the one of the default strategy
in Apache Cassandra, under moderately biased key popularities.
We also show that local scheduling may improve throughput and
latency when parallelism is limited and when the dataset is hetero-
geneous. Finally, we review related work (Section 5) and conclude
the paper (Section 6).

2 SCHEDULING IN PERSISTENT AND
DISTRIBUTED KEY-VALUE STORES

A key-value store is a simple NoSQL database where each data item
is bound to a unique key. The simple API (i.e., without secondary
indexes) and lack of integrated support for complex queries (e.g.,
no joins) allow implementations of key-value stores that scale re-
markably well horizontally, i.e., they are easily able to include more
nodes if the workload requires it. In distributed key-value stores,
keys are dispatched on servers using a partitioning scheme based
on consistent hashing. As the same hash function is used across the
cluster, each server can know where a data item associated with
a given key is stored by simply hashing its key. In addition, data
items are replicated according to a replication factor to preserve
availability in the presence of faults. The typical replication factor

in large-scale key-value stores is 3, which means that each data
item is stored on 3 different servers.

In persistent key-value stores, in contrast with in-memory key-
value stores, data is eventually saved on disk. This adds a level of
complexity: as random I/O operations are slow, key-value stores typ-
ically employ special data structures, called Log-Structured Merge
(LSM) trees, that temporarily perform write operations in mem-
ory and periodically flush data to disk [19]. This allows bulk write
operations that reduce wear on disks, in particular SSDs, and signif-
icantly improves write throughput. Read operations, on the other
hand, may either result in a cache hit (when the key is still repre-
sented in memory) or a cache miss, in which case costly disk reads
are necessary. In this paper, we focus on one such persistent and
distributed key-value store, namely Apache Cassandra, where each
server plays two roles:

A. It receives client requests. For a given client request that is
received by a server, we say that this server is the coordinator
for this request.

B. It executes requests. When a coordinator receives a client re-
quest, it computes the set of servers able to execute the request.
These servers are called replicas. The coordinator (i) decides
which subset of these replicas will execute the request, (ii) for-
wards the request, (iii) awaits the response, and (iv) replies to
the client.

The number of chosen replicas may vary according to the nature
of the request and its consistency level, which corresponds to the
number of replicas that must acknowledge this request before it
is considered successful. A write operation is always processed
on all replicas even if its corresponding consistency level is lower
than the replication factor (however, we do not necessarily wait
for the response of all replicas). This makes scheduling in general
less imperative for write requests, as they must be executed by all
replicas anyway, and each write operation is very fast thanks to
the LSM tree structure that absorbs most I/O bottlenecks. A read
operation, on the other hand, is executed on the exact number of
replicas that corresponds to its consistency level and is considered
unsuccessful if the responses are inconsistent. In this work, we set
the consistency level to 1, which is arguably the most common
setting for read-dominated workloads. Moreover, we focus on a
single-datacenter cluster of static size: all servers are geographically
located in the same place, they are linked by a high-performance
local network (in the same rack), and there is no dynamic reconfig-
uration of scale-out/scale-in operations.

Within each server in Apache Cassandra, the parallel execution
of request coordination and execution using multiple cores relies
on a Staged Event-Driven Architecture (SEDA) [24]. Each type of
operation is processed by a different pool of worker threads (also
called a stage). For instance, the reception and handling of client
requests (as part of the coordinator role) are processed by theNative-
Transport-Requests thread pool, whereas read request reception
and execution (replica role) are processed by the ReadStage thread
pool. Additional stages are dedicated to the execution of write
requests, internode messaging protocol, data migration, tracing, etc.
Scheduling requests in Apache Cassandra is a two-step operation.
First, the coordinator must choose which replica the request should
be sent to (then, the request is sent to this replica that inserts it into



Hector: A Framework to Design Scheduling Strategies in Key-Value Stores Conference’17, July 2017, Washington, DC, USA

Coordinator

Native-Transport-Requests

Thread n

Partitioner

Replica Selection

Response Handler

ReadStage MutationStage

GossipStage . . .

Replica

ReadStage

Local Queue

Thread m

Read Data

Native-TR MutationStage

GossipStage . . .

Request

Response

Pull task

Wait response

1
2

3

4

5

6

7
89

Figure 1: Scheduling of a read request in Apache Cassandra.

its local operation queue). This step is called replica selection. Second,
the chosen replica must decide in which order its pending read
operations should be processed. This step is called local scheduling.
Note that, for a given request, the coordinator and the replica may
sometimes be the same server. Figure 1 presents a more thorough
breakdown of the steps involved in the scheduling of a read request:
(1) A client request reaches a server, which becomes the coordina-

tor for this request.
(2) A worker thread from the Native-Transport-Requests thread

pool picks the request and infers the set of replicas that are able
to execute it.

(3) The coordinator chooses a replica according to a replica
selection strategy.

(4) The coordinator forwards the request to the replica.
(5) The request reaches the replica, which pushes it into its local

queue dedicated to read operations.
(6) Worker threads from the ReadStage thread pool process

the local queue in a specific order according to a local
scheduling strategy.

(7) The request is executed by a worker thread, which reads data
(in memory, if present in the cache, or on disk).

(8) The replica sends data to the coordinator.
(9) The coordinator responds to the client.
Steps 1-4 and 9 happen on the coordinator, whereas steps 5-8 happen
on the replica itself. We highlight in boldface the key scheduling
operations: replica selection at step 3 and local scheduling at step 6.
Challenges. Various scheduling strategies have been proposed in
the literature to improve the overall performance of Apache Cas-
sandra [12–14, 22, 23]. By studying and comparing these papers,
we observe that designing and implementing new solutions poses
several challenges.

First, scheduling strategies often need information (e.g., the cur-
rent sizes of the request queues or the current service rates at all
replicas) on the cluster state in order to compute a score for each
replica. The more accurate this information is, the more representa-
tive the score will be of the server health, and therefore the better

the scheduling decisions will be. Unfortunately, key-value stores
are subject to the usual constraints of distributed systems, namely
that each server cannot know the exact state of other machines,
as measurements must take place at a bounded pace and informa-
tion takes time to propagate over the network. This means that
algorithmic decisions (such as scheduling of read requests) can
only be made with partial and out-of-date knowledge of the cluster
condition. Efficiently leveraging such stale data is challenging. For
example, the default replica selection algorithm of Apache Cas-
sandra frequently causes herd behaviors, i.e., situations where all
coordinators periodically select the same, supposedly most-suited
server, leading to load oscillations [23].

Another difficulty is that the workload, i.e., the flow of requests
reaching the key-value store system at runtime, is generally un-
known beforehand. This is a problem, as various workload charac-
teristics have direct implications on the behavior of a scheduling
strategy. For example, one such characteristic is the distribution of
data item sizes. Existing workloads may be homogeneous, where
data items are all of a similar size, or heterogeneous, e.g., with
sizes exhibiting a power law or a bimodal distribution. Another
example is the distribution of key popularities: this is the statistical
distribution of key access frequencies in client requests. Many more
characteristics could be extracted from real traces, such as temporal
patterns, the correlation between size and popularity, and reuse
periods between keys, among others [4].

We also identify a reproducibility concern, coming from the lack
of a common baseline on which strategies may be properly com-
pared [5]. Existing proposals typically implement new algorithms
in different versions of Apache Cassandra. When code artifacts
are publicly available (which is not systematic), this requires trans-
ferring the implementation of a prior solution in the more recent
codebase, which is a cumbersome task and implies potential incom-
patibilities with newer components. When code artifacts are not
publicly available, this requires building state-of-the-art strategies
from their general description, which is far from being ideal and
prone to errors, as implementation details are often overlooked in



Conference’17, July 2017, Washington, DC, USA Louis-Claude Canon, Anthony Dugois, Loris Marchal, and Etienne Rivière

scientific papers. Moreover, the software configuration is usually
not indicated, and the hardware configuration is rarely similar. This
makes directly comparing published performance figures particu-
larly unreliable.

Finally, diving into the Apache Cassandra codebase may be
intimidating (it contains almost 500 000 lines of Java code), and
scheduling-related code is dispatched across many different pack-
ages. Testing new solutions is, as a result, a time-consuming task for
newcomers, especially when they want to determine if a particular
idea is efficient and worth paying the associated communication,
storage, or complexity cost.

3 DESIGN OF HECTOR
We unify the scheduling-related components of Apache Cassandra
(version 4.2) into a coherent framework called Hector1. The API of
this framework is simple enough to let any user implement new
scheduling strategies without knowing the details of the entire
codebase. Moreover, we introduce features that are not present by
default in Apache Cassandra and that help designing more powerful
and sophisticated policies. Our approach enhances the workflow
of comparing strategies under specific assumptions by providing a
common baseline. As each component is configurable from a single
control point, this also enables users to more quickly identify the
best setting for their use-case. We present in this section the general
components of Hector and we give some examples of implemented
scheduling strategies.

3.1 Modular Components
The API of Hector is a set of general interfaces. The user implements
these interfaces and specifies with which parameters they must be
loaded using a configuration file. Hector takes the responsibility of
instantiating the components in the correct order and connecting
them together when starting the system. We describe the different
components in what follows.
Replica selection.This is the step inwhich the coordinator chooses
the set of replicas that are considered to be most suited for the cur-
rent request. In Apache Cassandra, this module has access to the
full list of replicas and the mapping between keys and replicas.
When presented with a target key, the module must return a list of
servers in decreasing order of priority. The n first servers from this
list are contacted, where n is the consistency level. When reading
from a single replica (i.e., the consistency level is 1), the module
typically returns a list of replicas and only the first one is contacted.
In a nutshell, the ordering step constitutes the essence of replica
selection.

We find that the programming interfaces of Apache Cassandra
lack two essential features to make better scheduling choices, as
illustrated by Figure 2. First, sorting is made without knowing any
characteristics of the current request. This makes fine-granularity
decisions, e.g., workload-aware choices, nearly impossible. Second,
it is not possible to include additional data in the routed request to
guide subsequent steps such as local scheduling, for example by
specifying a priority score calculated by the coordinator node. In
Hector, defining a new replica selection strategy simply consists in
extending an abstract class and implementing a sorting function.
1https://anonymous.4open.science/r/hector

Replica
selection

Filtering

Partitioner

Sorting
function

Request

Redirected
request

Cassandra

key

Replica
selection

Data
injection

Filtering

Partitioner

Sorting
function

Hector
modules

Request

Redirected
request

Hector

key

key + replicas

Figure 2: Replica selection on coordinators in Apache Cas-
sandra (left) and Hector (right). Additional features of Hec-
tor are highlighted in red.

This function takes the unordered list of replicas and the current
request as parameters and must return an ordered list of replicas.
Of course, it may also leverage external information (being built
by other modules of Hector), as well as internal information (being
built in the replica selector instance itself). In addition to request
identification, Hector provides interfaces to include custom data in
the request to be transferred over the network and retrieved later
on replicas.
Local scheduling. As explained in Section 2, the system is highly
concurrent and divides its execution model into various stages.
Stages are a general abstraction in the execution model, meaning
that each stage simply handles a linked queue of self-contained
runnable objects and thus does not know about the nature of the
operations it is responsible for. Moreover, the queue instantiation is
hard-coded, which makes it impossible to associate different local
scheduling policies to different stages.

In Hector, we generalize the stage concept by setting the queue
as a parameter in the class definition. We also augment the runnable
operation objects to include various information about the current
request, making any queue implementation aware of the current
request characteristics. Moreover, any data added by the replica
selection component (on the coordinator) may be retrieved to help
taking local scheduling decisions. The local scheduler instance can
also rely on external (e.g., data that it gets from replica selection)
and internal information to make better ordering decisions.
State propagation. Getting the instantaneous state of remote
servers is unfortunately not possible in distributed systems. How-
ever, even an out-of-date view can be of interest when talking
scheduling decisions. This is why some existing proposals monitor
server state characteristics (e.g., queue sizes, average service time,
or number of I/Os). This data often forms the basis of replica scoring
decisions [23]. The challenge comes from the channels by which
we retrieve information: one must periodically transmit values of
interest at a sufficiently high rate to take advantage of fairly recent
information.

In Hector, each server holds its own copy of a cluster state data
structure. This cluster state consists of a list of endpoint state entries.
Each endpoint state corresponds to a specific server in the cluster
(including the current host) and maps a value to a property of

https://anonymous.4open.science/r/hector


Hector: A Framework to Design Scheduling Strategies in Key-Value Stores Conference’17, July 2017, Washington, DC, USA

interest, which we call a fact. Let us describe the building process
for the cluster state, which is summarized in Figure 3. The definition
of a fact i consists of 4 functions:

• The measurementMi defines how to retrieve the value to send
over the network.

• The serializer Si (resp. deserializer Di ) encodes (resp. decodes) a
value to a byte buffer.

• The aggregator Ai combines received values into a unique value
to save in the endpoint state. This component is useful to define
custom aggregation operators, e.g., (weighted) moving averages.

The state propagation module extends the internode messaging
service of Apache Cassandra. This means that the user may include
state values in any message, being a message purposely built for
state propagation, or an already-existing message (piggybacking).
Hector examines the previously-defined facts and executes the
corresponding measurement functions to get raw state values on
the host, which are then gathered as state feedback. When the state
feedback is ready, a timestamp is added and data is transformed
into a byte buffer through the fact serializer. Moreover, the byte
buffer is prefixed by the fact identifier to know how to deserialize
it in the future. Then, the state feedback bytes are added to the
message before being sent over the network. When the packet is
received, the message handler proceeds to decode the byte buffer
and retrieves the state feedback. Each included value is added to
the local endpoint state that corresponds to the message sender by
applying the aggregation operation of the fact. Note that we must
be careful when dealing with ordered values: the high concurrency
of Apache Cassandra implies that some feedback fa from a given
endpoint may arrive before feedback fb from the same endpoint,
whereas fa contains values measured after values of fb . This is
why we associate a timestamp with each feedback. As we only
compare feedback coming from the same peer, timestamp values
stay comparable, and we may choose to discard values that are
older than the most recent processed feedback.

Workload oracle.Although they are generally unknown (or known
with little precision), workload characteristics such as the distri-
bution of data item sizes or key access frequencies have a direct
influence on the efficiency of scheduling strategies. Being able to
predict these characteristics is a clear advantage when designing
policies.

In Hector, oracles are the components that give information
about these characteristics to other modules. According to the use-
cases, there are variousways an oracle can build this information. Of
course, the simplest situation is when the characteristics are known
beforehand: the oracle may for example load data in memory from
static files describing the workload. However, in more common
situations, the oracle will have to learn the workload at runtime.
This can be done through machine learning techniques, statistical
inference, probabilistic data structures such as Bloom filters [13],
etc. In order to ease the evaluation process, each oracle instance is
assigned a unique identifier. In this way, other components such
as replica selection or local scheduling are not tied to a specific
oracle definition, and the user may switch between different oracle
implementations without modifying the calling component.

3.2 Implemented Schedulers
We demonstrate in this section the flexibility of Hector components
by implementing state-of-the-art policies such as Dynamic Snitch-
ing [1] and C3 [23], and we show that it is also easy to test new
ideas by introducing two novel replica selection/local scheduling
strategies that we named Popularity-Aware and Random Multi-Level.
Dynamic Snitching. This is the default replica selection strategy
in Apache Cassandra [1]. Dynamic Snitching is based on replica
scoring. Each coordinator measures service time for each sent re-
quest andmaintains a history of thesemeasurements for each server
in the cluster. The coordinator assigns a score to each replica by
computing an ExponentiallyWeighted Moving Average (EWMA) of
recorded latencies. When processing a request, it selects the replica
with the current lowest score. A parallel process updates scores
every 100 milliseconds to avoid being in the critical path of query
service, and another process resets scores every 10 minutes to allow
slow servers to recover. We reimplement Dynamic Snitching as a
replica selection module in Hector.
C3 (scoring-only). The C3 replica selection algorithm was pro-
posed to overcome some weaknesses of Dynamic Snitching [23].
This strategy aggregates information on the cluster state by in-
cluding values of interest in the responses of each replica, such
as the read operation queue size q and the average service rate µ.
We easily reimplement this process using the state propagation
module of Hector: we measure the queue size q and the number
of completed operations w in the ReadStage thread pool and we
transmit this information. In the aggregation step, we compute the
average service rate as µ = w−w ′

t , wherew ′ and t are respectively
the previously-received value ofw and the time elapsed since the
last update, and we add q and µ in corresponding moving averages.

Endpoint State

Cluster State

Message Handler

Message

State Feedback

+ + +

A1 A2 A4

Message Emitter

Message

State Feedback

Timestamp

M1 M2 M3 M4

Network

Serialize (Si )Deserialize (Di )

Figure 3: State propagation module of Hector.Mi ,Ai , Si , and
Di are respectively the measurement component, the aggre-
gation component, the serializer, and the deserializer of fact
i. The message emitter and message handler represent any
internode communication, e.g., a periodic broadcast or a re-
quest response. The user may filter the transmitted values.
In this example, the fact 3 is not included in the packet.



Conference’17, July 2017, Washington, DC, USA Louis-Claude Canon, Anthony Dugois, Loris Marchal, and Etienne Rivière

C3 also maintains the current count c of remote pending requests
for each replica, and an history of observed latencies R, which are
finally used to compute a score according to the cubic function
R̄ − µ̄−1 + µ̄−1(1 + cm + q̄)3, where R̄, µ̄−1 and q̄ are respectively
the EWMAs of observed latencies, service times, and queue sizes,
whilem is the number of servers. Here, using a cubic term aims
to penalize servers with longer queues, which is expected to lead
to better balancing. In the original proposal, the replica scoring is
coupled to a rate limiting process, which monitors the health of
each replica and limits the sending rate towards a replica when it
is suspected to be overloaded. For the sake of simplicity, we do not
implement this part in this example, although it would be easy to
integrate in Hector without any conflict with existing components.

Popularity-Aware.Workloads often exhibit biased popularity dis-
tribution on partition keys. We design a new replica selection strat-
egy that is able to learn and leverage this distribution. The popu-
larity of a key (at a given time) is defined as the ratio between the
number of accesses for this key and the total number of requests.
We implement a workload oracle that maintains a histogram of key
accesses. When a request is received by the coordinator, it asks the
oracle to record a new access, which is done by first hashing the
key to a positive long integer and incrementing the corresponding
access count in a map. By hashing the key, we limit the memory
footprint of the data structure (at a small cost on the precision of
the distribution). For example, recording accesses to a dataset that
comprises 1 billion keys requires at most 16 GB of memory. We also
ensure that the map implementation guarantees atomic, lock-free
increments to enable efficient concurrent mutations.

We schedule requests according to the popularity value. The idea
is to maximize the benefit we obtain from caching at the different
servers, while balancing the load of serving popular content over
multiple servers. When a key is considered popular, the probability
to find the corresponding data item in the cache of any of the
replicas holding it is high. Therefore, all replicas are expected to
be able to respond without performing costly disk-read operations,
and the best choice is to spread the load over these replicas. On the
other hand, requests for unpopular keys will take advantage of the
cache memory more if they are always executed on the same server,
in order to avoid the eviction of the corresponding data items.
In summary, if the popularity of a key is above a user-defined
threshold, we schedule the request according to a round-robin
strategy; otherwise, we always schedule the request on the same
(first) replica. For example, with 1 million keys and a popularity
distribution following a Zipf law with parameter 1.5, setting a
threshold of 10−5 leads to 0.1% of keys marked as popular when
the learning process has converged.

First-ComeFirst-Served.This is the default local scheduling strat-
egy in Apache Cassandra. Read operations are simply stored in a
wait-free concurrent linked queue, and there is no priority mecha-
nism. This is strictly equivalent to the standard First-Come First-
Served algorithm.

Random Multi-Level. Priority queues are a common solution to
execute operations in a statically-defined order. However, existing
standard implementations need thread synchronization when used
in a highly concurrent environment, which may degrade overall

throughput. Inspired by the work on Rein [22], we emulate a prior-
ity queue, while avoiding any related thread contention, with the
following randomized process. We define a Random Multi-Level
(RML) queue as an ordered list of n wait-free concurrent linked
queues. Each sub-queue q is associated a weight wq = αn−q+1,
i.e., the first queue has weight αn , the second queue has weight
αn−1, and so on, where α is a user-defined positive coefficient. A
given operation entering a sub-queue q has a priority value equal
to n −q + 1. In other words, operations entering the first sub-queue
will have the highest priority, whereas operations entering the n-th
sub-queue will have the lowest priority. The RML queue is pro-
cessed by generating a random integer x between 0 and the sum of
weights

∑n
q=1wq , and dequeuing the first sub-queue q′ such that

x ≤
∑q′
q=1wq (if q′ is empty, we generate another random number

and repeat the process). For example, with n = 2 and α = 2, the
first sub-queue would have priority 4 and the second sub-queue
would have priority 2. In other words, the first sub-queue would be
treated first with probability 2/3. For reasonable values of n and α ,
the probability to treat each sub-queue is high enough to ensure
that no starvation occurs.

We implement a priority-based local scheduling policy by retriev-
ing a priority value from each request and pushing read operations
in an RML queue. This priority value is defined during the replica
selection step on the coordinator server by leveraging the data
injection and transmission mechanism of Hector. In this manner,
we improve the flexibility of the scheduling process, as requests
are locally executed according to a custom order that is directly
decided by the coordinator. For example, we may consider that each
priority value depends on the size of the requested data item, i.e.,
requests for data items whose size is below a given threshold must
be processed with higher priority. However, this implies that we
must be able to estimate the size of requested data items. In this
paper, for illustration purposes, we use a simple workload oracle
that is able to extract the size of a data item from the corresponding
partition key, but a real use-case would require a more sophisticated
approach (e.g., Bloom filters [13]).

4 EXPERIMENTAL EVALUATION
We evaluate Hector through several experiments on a real cluster.
We compare the cost incurred by the generalization of scheduling
components and newly-introduced features in the framework to the
unmodified system, in particular in terms of overhead on through-
put and latencies. We also illustrate the possibilities of Hector by
showing how it enables easy comparisons of different approaches
in scheduling requests with various assumptions on the workload
and the environment.

4.1 Platform and Workload Setup
We run all experiments on the large-scale experiment platform
Grid’5000 [7]. We use 15 identical servers located in the same geo-
graphic cluster, each equipped with a 18-core Intel Xeon Gold 5220
(2.20 GHz) CPU and 96 GiB of RAM. Data is stored on each machine
on a 480 GiB SATA SSD device. Servers are interconnected by 25
Gbps Ethernet, and they all run Debian 11 GNU/Linux. The system
runs on Java 11 with the CMS garbage collector. The replication



Hector: A Framework to Design Scheduling Strategies in Key-Value Stores Conference’17, July 2017, Washington, DC, USA

0

200

400

600

Cassandra Hector

Th
ro
ug

hp
ut

(k
op

s/
s)

Figure 4: Maximum attainable throughput (×103 operations
per second) for Apache Cassandra and Hector. Keys are ac-
cessed according to a Zipf law with parameter 0.9 and data
item sizes range from 1 to 100 kB. The replica selection strat-
egy is Dynamic Snitching and the local scheduling policy is
First-Come First-Served.

Table 1: Absolute and relative (average) differences on the
observed maximum attainable throughput of vanilla Apa-
che Cassandra and Hector.

Cassandra Hector Abs. diff. Rel. diff.

Throughput 632 911 ops/s 640 205 ops/s 7294 ops/s 1.15%

factor is set to 3: each data item is written on 3 replicas, but each
read request is processed by only one of these 3 replicas.

As we do not have access to real datasets and traces, we evalu-
ate the system with synthetic workloads. Yahoo’s Cloud Serving
Benchmark (YCSB) is a commonly used tool to generate such work-
loads [9]. However, we find that YCSB lacks several features for
evaluating modern database systems (e.g., advanced workload cus-
tomization, modular architecture, and reproducibility), and falls
behind more recently developed tools. NoSQLBench is one such
tool, which permits to tune advanced characteristics of the work-
load and which takes care of many pitfalls related to benchmarking
practice [2]. We run NoSQLBench on additional nodes, located in
the same rack as the Hector cluster. We make sure that we bring
enough concurrency, and we systematically check that we do not
overload the CPU on client nodes to ensure that they are not the
bottlenecks in the experiments. In each run, we select a number of
keys to store at least 150 GiB of data at each server, a dataset that
does not fully fit in memory.

4.2 Results
The first set of results is dedicated to the evaluation of Hector itself,
as we want to make sure that it behaves identically to Apache Cas-
sandra in the nominal use-case. Then, we illustrate how Hector
enables comparing replica selection and local scheduling strategies
under various assumptions.
No overhead.We check that the additional features of Hector do
not introduce performance overhead compared to the unmodified
Apache Cassandra (noted as “vanilla” in what follows). We make
sure that both systems are identically configured, and we run them
in the same conditions. The replica selection strategy is Dynamic
Snitching, and the local scheduling strategy is First-Come First-
Served. Key access distribution follow a Zipf lawwith parameter 0.9,

Mean Median P90 P99

200
kops/s

500
kops/s

Cassa
ndraHect

or
Cassa

ndraHect
or

Cassa
ndraHect

or
Cassa

ndraHect
or

0.0
0.3
0.6
0.9

0

2

4

La
te
nc
y
(m

s)

Figure 5: Latency (milliseconds) for Apache Cassandra and
Hector, with two different arrival rates (200 000 and 500 000
operations per second).

corresponding to a biased popularity. For instance, with 100 keys,
the first key is requested with probability 15.5%, the second key
with probability 8.3%, and so on, until the 100th key with probability
0.2%. We also bring some heterogeneity: 1/2 of the values in the
dataset have a size of 1 kB, 1/3 have a size of 10 kB, and the last
1/6 have a size of 100 kB. This setting simulates a common type of
read-only workload to benchmark Apache Cassandra. Moreover,
no additional data is transmitted through the state propagation
module in Hector, and there is no workload oracle.

Figure 4 shows the maximum attainable throughput in each
system while Figure 5 presents the mean, the median, 90th and 99th
percentiles of the latency when read requests arrive according to
a given rate (200 000 and 500 000 operations per second, which in
this case correspond respectively to 30% and 80% of the maximum
capacity). Each experiment runs for 10 minutes and is repeated
10 times (each value represents the mean among the runs, and
error bars indicate the standard error on the mean). Tables 1 and 2
summarize the absolute and relative (average) differences between
vanilla Apache Cassandra and Hector.

We see that both systems seem to behave identically. Hector
attains a slightly better throughput (in average 1.15% higher) than
Apache Cassandra; the errors indicate that this difference is clearly
not significant. Moreover, even if Hector shows higher latencies
for the considered statistics, the absolute differences stay in the
microsecond scale, with a maximum relative difference of 1.38%.
Again, according to the standard error, this difference is not sig-
nificant. In other words, no performance overhead is observed in
Hector for the standard use-case, and we consider the framework
to be a stable baseline that we can trust to evaluate and compare
various scheduling strategies.
Cache-locality effects.We illustrate how different key access pat-
terns may influence scheduling behavior. In particular, we show
that a strategy that correctly leverages the Linux page cache clearly
outperforms other algorithms under some assumptions on the dis-
tribution of key popularities. We compare 3 replica selection strate-
gies: Dynamic Snitching (DS), which is the default algorithm im-
plemented in Apache Cassandra; C3, which is a proposal coming
from the literature [23]; and Popularity-Aware (PA), which is a new
algorithm that we propose in this paper (see Section 3.2. We run
two experiments for 100 minutes, with different assumptions on



Conference’17, July 2017, Washington, DC, USA Louis-Claude Canon, Anthony Dugois, Loris Marchal, and Etienne Rivière

Table 2: Absolute and relative (average) differences on the
observed latency of vanilla Apache Cassandra and Hector,
with two different arrival rates.

Stat. Arrival rate Cassandra Hector Abs. diff. Rel. diff.

Mean 200 kops/s 0.429 ms 0.435 ms 0.006 ms 1.38%
500 kops/s 0.670 ms 0.675 ms 0.005 ms 0.72%

Median 200 kops/s 0.352 ms 0.355 ms 0.003 ms 1.02%
500 kops/s 0.515 ms 0.518 ms 0.003 ms 0.56%

P90 200 kops/s 0.698 ms 0.703 ms 0.005 ms 0.67%
500 kops/s 0.946 ms 0.953 ms 0.007 ms 0.72%

P99 200 kops/s 1.007 ms 1.011 ms 0.004 ms 0.43%
500 kops/s 5.214 ms 5.227 ms 0.013 ms 0.25%

N
/A

N
/A

Zipf(0.1) Zipf(1.5)

0 25 50 75 100 0 25 50 75 100

0

250

500

750

1000

1250

Runtime (min)

Th
ro
ug

hp
ut

(k
op

s/
s)

Strategy

DS
C3
PA

Figure 6: Maximum attainable throughput (×103 opera-
tions per second) over time for each replica selection strat-
egy under two key popularity distributions. Higher is bet-
ter. Zipf(0.1) corresponds to a quasi-uniform distribution,
whereas Zipf(1.5) corresponds to a heavily-skewed, right-tail
distribution. Each data item has a fixed size of 1 kB.

Table 3: Throughput (operations per second) of DS, C3 and
PA under two key popularity distributions.

Stat. Key popularity DS C3 PA

Mean Zipf(0.1) 157 282 358 680 984 252
Zipf(1.5) 1 193 317 1 212 121 1 194 743

Median Zipf(0.1) 157 356 1 025 641 1 000 000
Zipf(1.5) 1 204 819 1 219 512 1 190 476

Min Zipf(0.1) 156 494 156 985 862 069
Zipf(1.5) 1 123 595 1 162 790 1 162 790

Max Zipf(0.1) 158 227 1 086 956 1 041 666
Zipf(1.5) 1 265 822 1 250 000 1 250 000

the key popularity distribution: first, a Zipf law with parameter
0.1, which is a quasi-uniform distribution, and second, a Zipf law
with parameter 1.5, which is heavily-skewed and right-tailed. All
data items are 1 kB in size, and FCFS is used as the local scheduling
policy.

Figure 6 measures the attainable throughput over time for each
case, and Table 3 summarizes the values. This results in a significant

N
/A

N
/A

Zipf(0.1) Zipf(1.5)

0 25 50 75 100 0 25 50 75 100

0

100

200

300

400

Runtime (min)

D
is
k-
re
ad

(M
B/
s)

Strategy

DS
C3
PA

Figure 7: Amount of data read on-disk (megabytes per sec-
ond) over time for each replica selection strategy under two
key popularity distributions. Lower is better.

difference between strategies when the popularity skew is small
(i.e., Zipf(0.1)): for instance, PA shows a maximum throughput that
is 6.58 times higher than the maximum throughput that is obtained
with DS. Interestingly, we see that C3 seems to learn how to handle
the workload over time, and is able to attain the same performance
as PA after 50 minutes. When the skew is heavier (i.e., Zipf(1.5)),
all strategies perform the same.

A possible explanation of these results is the cache management
of the operating system that occurs on replicas. When a key is
accessed, the key-value store starts by looking in the memtable,
i.e., the internal data structure of the LSM tree that stores data
temporarily in memory. If the key is not found, it must look for
the data in the SSTable2 files that are stored on-disk. The cache
management of these files is entirely delegated to the operating
system. Thus, if a key is frequently accessed, the Linux page cache
keeps the corresponding SSTable file in memory, and the read oper-
ation is fast; otherwise, the file must be loaded before reading data,
which is a slow operation. As Popularity-Aware tries to maximize
the cache hit ratio, it rarely loads data directly from the disk, and
thus performs better than other strategies. When the popularity
skew is heavy, the cache hit ratio becomes naturally higher, and all
strategies are able to achieve similar throughput.

To confirm this explanation, we plot the volume of data that is
read on-disk over time on each replica in Figure 7. Light areas show
the range between the minimum and maximum volume of data
that are read on each replica, and the points represent the averages.
First, we observe a clear visual correlation between both figures:
the higher the throughput, the lower the volume of data that is read.
Moreover, we see that for a quasi-uniform popularity distribution,
PA rarely reads data directly on-disk (less than 1 MB/s), which
indicates that it makes a very efficient use of the Linux page cache
indeed. On the contrary, DS reads more than 300 MB of data per
second in average, with a peak at more than 400 MB per second for
one replica in the cluster.
Heterogeneous scheduling. Finally, we show how local sched-
uling may help improving performance in case of limited paral-
lelism.We emulate a scenario where a slow storage device limits the
number of concurrent read operations to avoid putting too much

2Sorted Strings Table (SSTable) is a format that maps data to keys, and these keys are
kept sorted. This is the standard solution to store data in persistent key-value stores.



Hector: A Framework to Design Scheduling Strategies in Key-Value Stores Conference’17, July 2017, Washington, DC, USA

pressure on the disk. For illustration purposes, we set the maximum
number of concurrent read operations to 4, and we compare two
local scheduling policies from Section 3.2, First-Come First-Served
(FCFS) and Random Multi-Level (RML), under the hypothesis that
the dataset is heterogeneous, that is to say, it is composed of small
data items (1 kB) and large data items (1 MB). We assume that 3/4
of the dataset is small, as it is often observed that heterogeneous
datasets are mostly composed of small items in realistic workloads.
For the RML strategy, we set the number of sub-queues to 2, and
the priority coefficient α to 10. The first sub-queue is dedicated to
read operations for small items (with priority 102) and the second
sub-queue for large items (with priority 10). In this way, we ex-
pect that requests for large items will not block requests for small
items, resulting in better overall performance. The key popularity
distribution is uniform, and DS is the replica selection strategy.
For each experiment, we gradually increase the arrival rate of read
operations from 10 kops/s to 60 kops/s (10-minute increments), and
we observe how the system handles the pressure.

Figure 8 shows the attainable throughput as a function of the ar-
rival rate for each strategy. Horizontal lines represent the saturation
throughput for each strategy. Light bars indicate that the system
is saturating, and the request generator cannot reach the wanted
arrival rate without causing request timeouts. Figure 9 presents the
mean, the median, 90th and 99th percentiles of the latency distri-
bution, also according to the arrival rates. The lines stop when the
system reaches the saturation point.

We see from these results that RML outperforms FCFS in the
considered scenario, as it is able to support a higher arrival rate
(more than 50 kops/s, compared to 40 kops/s for FCFS). Moreover,
we see that RML is able to achieve excellent median latencies, even
when the arrival rate saturates the system (less than 5 ms with an
arrival rate of 50 kops/s). However, the last percentiles are higher
(almost 60 ms for the 90th percentile and 500 ms for the 99th per-
centile), which is due to the lower priority of requests for large
items. Figure 10 compares the average latency of requests for small
and large items. When saturating, the latency of requests for small
items increases to about 65% of the latency of requests for large
items when FCFS is the local scheduling policy. This is not the
case for RML, which, when reaching saturation, is able to keep
the latency of requests for small items to about 30% of the latency
of requests for large items. As small items are in majority in the
dataset, and RML treats them in priority, they are not awaiting in
the queue and the overall performance is thus better, at the expense
of slower requests for large items.

5 RELATEDWORK
The problem of optimizing performance in key-value stores through
appropriate scheduling has received significant attention. Dynamic
Snitching [1], C3 [23], and Héron [13] are examples of scheduling
strategiesmixing global and local decisions to improve performance,
particularly load balancing and tail latency [10]. Other systems
leverage scheduling strategies to improve other metrics such as
power consumption. Peafowl [3] unbalances the load of processing
local requests on a storage node in a key-value store, to allow some
of the cores to enter a low-power state, thereby reducing the energy
footprint of the node in periods of lower activity.

FCFS

RML

0

10

20

30

40

50

10 20 30 40 50 60

Arrival rate (kops/s)

Th
ro
ug

hp
ut

(k
op

s/
s)

Strategy

FCFS
RML

Figure 8: Attainable throughput (×103 operations per sec-
ond) as a function of the arrival rate for each local schedul-
ing strategy. Higher is better. Keys are accessed according to
a uniform distribution. Data item sizes are small (1 kB, 75%
of data items) or large (1MB, 25% of data items). Servers have
limited parallelism for read operations (up to 4 threads).
Light bars indicate that the system saturates.

P90 P99

Mean Median

10 20 30 40 50 60 10 20 30 40 50 60

10 20 30 40 50 60 10 20 30 40 50 60
0

10

20

30

0
100
200
300
400
500

0
10
20
30
40

0

30

60

90

Arrival rate (kops/s)

La
te
nc
y
(m

s)

Strategy

FCFS
RML

Figure 9: Latency (milliseconds) as a function of arrival rate
for each local scheduling strategy. Lower is better.

40 kops/s 45 kops/s 50 kops/s 55 kops/s

FCFS RML FCFS RML FCFS RML FCFS RML
0
20
40
60

0

20

40

60

0

20

40

60

0
1
2
3
4

La
te
nc
y
(m

s)

Type Large Small

Figure 10: Average latency of requests for large (left bars)
and small (right bars) items, for both strategies.

Multiget APIs allow clients to request multiple values in a single
query. REIN [22], TailX [12], and AMS [14] combine local sched-
uling decisions at the level of the coordinator, to split the query
into sub-queries for different storage nodes, and local scheduling to



Conference’17, July 2017, Washington, DC, USA Louis-Claude Canon, Anthony Dugois, Loris Marchal, and Etienne Rivière

prioritize sub-queries that may be on the critical path for the overall
query completion. For instance, the coordinator in REIN or TailX
tags each sub-query by the amount of slack the local scheduler can
use for its execution, allowing to prioritize sub-queries that strongly
impact tail latency. Adaptive Freshness/Tardiness (AFIT) [27] is a
query scheduler for fully-replicated key-value stores executing
multiget queries over consistent snapshots, and that implements
a configurable tradeoff between query evaluation latency and the
freshness of these snapshots. Finally, Mega-KV proposes to lever-
age GPUs for serving local reads at the storage nodes [28]; this
approach is, however, limited to situations where the entire set of
values fits in memory.

OptimusCloud [17] considers the orthogonal but complementary
problem of selecting appropriate resources for the deployment of a
Cassandra cluster, based on a machine-learning-based characteriza-
tion of the performance profile of different hardware configurations
in the cloud.

Modular and compositional schedulers have been proposed in
other contexts than key-value stores, such as in traditional oper-
ating systems. An example is the Completely Fair Scheduler [20]
of the Linux kernel. According to use-cases and workloads, one
may switch the scheduling policy of the kernel, or even extend the
scheduler with new algorithms. This has been taken one step fur-
ther by Bossa, an expressive domain-specific language simplifying
the development of new schedulers in the Linux kernel [18], or
iPanema [16] following a similar approach for formally-verified,
modular schedulers.

Golatowski et al. [11] proposed a modular scheduling framework
for RTOS, a real-time operating system. Although in a different
context, their objectives bear similarities with ours, i.e., allowing
to select an appropriate combination of scheduling components
for a given workload and compare such combinations. Similarly,
Click [15] is a modular router allowing to implement and test vari-
ous packet scheduling policies in networks.

6 CONCLUSION
In this paper, we propose Hector, a framework built on top of
Apache Cassandra to ease the implementation and evaluation of
scheduling policies. Hector also constitutes a stable baseline to
properly compare the performance of different strategies with iden-
tical assumptions. For instance, we were able to rebuild previously-
proposed algorithms in Hector, and compare their performance to
two novel algorithms, called Popularity-Aware and Random Multi-
Level, under specific hypotheses on the workload and the environ-
ment. When key popularity is moderately biased, we found that PA
is able to achieve a throughput that is more than 6 times higher than
the maximum throughput of Dynamic Snitching, and converges
faster than C3. In the case of limited parallelism and heterogeneous
dataset, RML handles the load better than FCFS and keeps a low
median latency (under 5 ms), even when the system starts to satu-
rate. Moreover, we show that the various components introduced
in Hector do not bring additional overhead on the overall perfor-
mance of the system. Future work include devising a large-scale
and exhaustive comparison of existing scheduling strategies under
different workloads and platform configurations. We also plan to

improve Hector to support customization of request partitioning in
multi-get operations.

ACKNOWLEDGMENT
Experiments presented in this paper were carried out using the
Grid’5000 testbed, supported by a scientific interest group hosted
by Inria and including CNRS, RENATER and several Universities
as well as other organizations (see https://www.grid5000.fr).

REFERENCES
[1] 2012. Dynamic snitching in Cassandra: past, present, and future. https://www.

datastax.com/blog/dynamic-snitching-cassandra-past-present-and-future. Ac-
cessed on 2022-11-10.

[2] Accessed on 2022-12-11. NoSQLBench Docs. https://docs.nosqlbench.io.
[3] Esmail Asyabi, Azer Bestavros, Erfan Sharafzadeh, and Timothy Zhu. 2020.

Peafowl: In-application cpu scheduling to reduce power consumption of in-
memory key-value stores. In Proceedings of the 11th ACM Symposium on Cloud
Computing. 150–164.

[4] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny.
2012. Workload analysis of a large-scale key-value store. In Proceedings of the 12th
ACM SIGMETRICS/PERFORMANCE joint international conference on Measurement
and Modeling of Computer Systems. 53–64.

[5] Vaibhav Bajpai, Mirja Kühlewind, Jörg Ott, Jürgen Schönwälder, Anna Sperotto,
and Brian Trammell. 2017. Challenges with reproducibility. In Proceedings of the
Reproducibility Workshop. 1–4.

[6] Oana Balmau, Florin Dinu, Willy Zwaenepoel, Karan Gupta, Ravishankar Chand-
hiramoorthi, and Diego Didona. 2019. SILK: Preventing Latency Spikes in Log-
Structured Merge Key-Value Stores. In 2019 USENIX Annual Technical Conference
(USENIX ATC 19). 753–766.

[7] Daniel Balouek, Alexandra Carpen Amarie, Ghislain Charrier, Frédéric Desprez,
Emmanuel Jeannot, Emmanuel Jeanvoine, Adrien Lèbre, David Margery, Nicolas
Niclausse, Lucas Nussbaum, et al. 2012. Adding virtualization capabilities to the
Grid’5000 testbed. In International Conference on Cloud Computing and Services
Science. Springer, 3–20.

[8] Denis M Cavalcante, Victor AE de Farias, Flávio RC Sousa, Manoel Rui P Paula,
Javam C Machado, and José Neuman de Souza. 2018. PopRing: A Popularity-
aware Replica Placement for Distributed Key-Value Store. CLOSER 2018 (2018),
440–447.

[9] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking cloud serving systems with YCSB. In Proceedings of
the 1st ACM symposium on Cloud computing. 143–154.

[10] Jeffrey Dean and Luiz André Barroso. 2013. The tail at scale. Commun. ACM 56,
2 (2013), 74–80.

[11] Frank Golatowski, Jens Hildebrandt, Jan Blumenthal, and Dirk Timmermann.
2002. Framework for validation, test and analysis of real-time scheduling algo-
rithms and scheduler implementations. In 13th IEEE International Workshop on
Rapid System Prototyping. IEEE, 146–152.

[12] Vikas Jaiman, Sonia Ben Mokhtar, and Etienne Rivière. 2020. TailX: Scheduling
heterogeneous multiget queries to improve tail latencies in key-value stores. In
IFIP International Conference on Distributed Applications and Interoperable Systems
(DAIS). Springer, 73–92.

[13] Vikas Jaiman, Sonia Ben Mokhtar, Vivien Quéma, Lydia Y Chen, and Etienne
Rivìere. 2018. Héron: taming tail latencies in key-value stores under heteroge-
neous workloads. In 2018 IEEE 37th Symposium on Reliable Distributed Systems
(SRDS). IEEE, 191–200.

[14] Wanchun Jiang, Yujia Qiu, Fa Ji, Yongjia Zhang, Xiangqian Zhou, and Jianxin
Wang. 2022. AMS: Adaptive Multiget Scheduling Algorithm for Distributed
Key-Value Stores. IEEE Transactions on Cloud Computing (2022).

[15] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M Frans Kaashoek.
2000. The Click modular router. ACM Transactions on Computer Systems (TOCS)
18, 3 (2000), 263–297.

[16] Baptiste Lepers, Redha Gouicem, Damien Carver, Jean-Pierre Lozi, Nicolas Palix,
Maria-Virginia Aponte, Willy Zwaenepoel, Julien Sopena, Julia Lawall, and Gilles
Muller. 2020. Provable multicore schedulers with Ipanema: application to work
conservation. In Proceedings of the Fifteenth European Conference on Computer
Systems. 1–16.

[17] Ashraf Mahgoub, Alexander Michaelson Medoff, Rakesh Kumar, Subrata Mitra,
Ana Klimovic, Somali Chaterji, and Saurabh Bagchi. 2020. OPTIMUSCLOUD:
Heterogeneous configuration optimization for distributed databases in the cloud.
In 2020 USENIX Annual Technical Conference (USENIX ATC 20). 189–203.

[18] Gilles Muller, Julia L Lawall, and Hervé Duchesne. 2005. A framework for
simplifying the development of kernel schedulers: Design and performance
evaluation. In Ninth IEEE International Symposium on High-Assurance Systems
Engineering (HASE’05). IEEE, 56–65.

https://www.grid5000.fr
https://www.datastax.com/blog/dynamic-snitching-cassandra-past-present-and-future
https://www.datastax.com/blog/dynamic-snitching-cassandra-past-present-and-future
https://docs.nosqlbench.io


Hector: A Framework to Design Scheduling Strategies in Key-Value Stores Conference’17, July 2017, Washington, DC, USA

[19] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. 1996. The
log-structured merge-tree (LSM-tree). Acta Informatica 33 (1996), 351–385.

[20] Chandandeep Singh Pabla. 2009. Completely fair scheduler. Linux Journal 2009,
184 (2009), 4.

[21] Anastasios Papagiannis, Giorgos Saloustros, Pilar González-Férez, and Angelos
Bilas. 2016. Tucana: Design and implementation of a fast and efficient scale-up
key-value store. In 2016 USENIX Annual Technical Conference (USENIX ATC 16).
537–550.

[22] Waleed Reda, Marco Canini, Lalith Suresh, Dejan Kostić, and Sean Braithwaite.
2017. Rein: Taming tail latency in key-value stores via multiget scheduling. In
Proceedings of the Twelfth European Conference on Computer Systems. 95–110.

[23] Lalith Suresh, Marco Canini, Stefan Schmid, and Anja Feldmann. 2015. C3:
Cutting tail latency in cloud data stores via adaptive replica selection. In 12th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 15).
513–527.

[24] Matt Welsh, David E. Culler, and Eric A. Brewer. 2001. SEDA: An Architecture
for Well-Conditioned, Scalable Internet Services. In Proceedings of the 18th ACM
Symposium on Operating System Principles, SOSP. 230–243.

[25] Xingbo Wu, Yuehai Xu, Zili Shao, and Song Jiang. 2015. LSM-trie: An LSM-tree-
based Ultra-Large Key-Value Store for Small Data Items. In 2015 USENIX Annual
Technical Conference (USENIX ATC 15). 71–82.

[26] Zhe Wu, Curtis Yu, and Harsha V Madhyastha. 2015. CosTLO: Cost-Effective
Redundancy for Lower Latency Variance on Cloud Storage Services. In 12th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 15).
543–557.

[27] Chen Xu, Mohamed A Sharaf, Minqi Zhou, Aoying Zhou, and Xiaofang Zhou.
2013. Adaptive query scheduling in key-value data stores. In International Con-
ference on Database Systems for Advanced Applications. Springer, 86–100.

[28] Kai Zhang, Kaibo Wang, Yuan Yuan, Lei Guo, Rubao Lee, and Xiaodong Zhang.
2015. Mega-KV: A case for GPUs to maximize the throughput of in-memory
key-value stores. Proceedings of the VLDB Endowment 8, 11 (2015), 1226–1237.


	Abstract
	1 Introduction
	2 Scheduling in Persistent and Distributed Key-Value Stores
	3 Design of Hector
	3.1 Modular Components
	3.2 Implemented Schedulers

	4 Experimental Evaluation
	4.1 Platform and Workload Setup
	4.2 Results

	5 Related Work
	6 Conclusion
	References

