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Abstract. This paper derives singularity conditions for concentric tube
robots (CTRs). To the scope, we build the CTR geometrico-static model
using discretization techniques, which are suitable for several currently-
used CTRs models. Then, we obtain singularity conditions by perform-
ing a linearization of the geometrico-static model. We define Type-1 and
Type-2 singularities, which are related to the unsolvability of the inverse
and forward kinematostatic problems, respectively. Moreover, we also
show the link between Type-2 singularities and CTR equilibrium sta-
bility. A case study with a two-tube CTR is proposed to illustrate our
results.
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1 Introduction

Continuum robots (CRs) are manipulators usually made by flexible components
and designed to achieve safe human-robot interactions [5]. CRs promise signif-
icant advantages in robotized surgery because of their inherent flexibility and
the ability to move and traverse unstructured confined spaces. In this direction,
concentric tube robots (CTRs) are a class of continuum robots typically made of
superelastic pre-curved tubes assembled in a concentric arrangement [7], which
have been adopted for different surgical applications (e.g. [19]).

Because of their promising features, CTRs received great attention from the
scientific community [11]. Modelling [15], design [18], and control [20] are among
the most investigated aspects, and we address the interested reader to specialized
review papers [1]. Equilibrium stability assessment is a crucial aspect of CTRs,
since it impacts both usability and controllability: as the tubes rotate and trans-
late with respect to each other, elastic potential energy accumulates until an
unstable configuration is met, and the energy is released with a dangerous snap-
ping [9]. To address the problem of elastic instabilities, a first approach is based
on stable-path motion planning [3]. Alternatively, design considerations such as
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the use of transverse anisotropy [16], or design rules [10] help to avoid elastic
instabilities. Singularities of CTR were rarely investigated, and are preliminary
identified by singular value decomposition of the models Jacobian matrix [6].
However, this procedure does not allow singularities classification, which is in-
timately linked to what cause them, and neglects the potential links between
them and equilibrium stability [22],[4].

The novel contribution of this paper is the definition and classification of
singularity conditions for CTRs. While rigid-links-robot singularities are inves-
tigated by using of geometric approaches, the elastic nature of CTRs requires
more complex tools, and our analysis is based on energetic considerations. We
first obtain the CTR geometrico-static model by using discretization strategies,
as it is compatible with several currently employed CTR models. Then, we derive
singularity conditions by studying the kinematostatic model of CTRs, obtained
as a linearization of the geometrico-static model. In analogy to [4], we will show
that the forward kinemato-static problem singularities define stable-to-unstable
CTR transitions.

The paper is structured as follows. Section 2 describes the CTR modelling
framework based on discretization approaches, and Section 3 derives singular-
ity conditions and discusses equilibrium stability assessment. Then, Section 4
proposes a case study to illustrate singularities, and compares the results with
state-of-the-art results. Finally, conclusions and drawn in Section 5.

2 Modelling

In this Section, we derive the geometrico-static model of a CTR based on ener-
getic considerations. We first obtain the tubes energy, and then we consider the
full CTR energy to derive the CTR geometrico-static model.

2.1 Tubes energy

Let us consider a CTR made by n concentric tubes (Fig. 1(a)). A fixed frame F0

is attached to the robot base, and the coordinate s is used to parametrize the
robot centerline. We use i as the index representing the i -th tube, numbered
from the innermost to the outermost. The length of the i -th tube, measured
from the arc length s “ 0, is Li. The tubes are actuated at the coordinate
s “ ´βi in translation and rotation: we name θ0i the rotation of the tube’s base,
and βi is called transmission length.

As done in [13], a frame Fb is attached to the robot centerline at each s, and
ppsq defines the position of Fb with respect to (w.r.t.) F0. Then, the orientation
of Fb is described by Rb, that is a rotation matrix obtained by sliding the
base frame orientation matrix along the robot centerline without any rotation
about the local z axis, assuming the z axis to be aligned with the centerline
tangent vector. Since the tubes are concentric, the position of the i -th tube is
pipsq “ ppsq. However, the concentric tube arrangement let each tube to be free
to twist around the local z axis of an angle θipsq (see Fig. 1(b)). Thus, we can
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(a) CTR representation (b) Tubes twist angles

Fig. 1: Representation of a CTR: relevant configuration variables are displayed
in (a), and the tubes twist angles are illustrated in (b).

recover the i -th tube orientation w.r.t. F0 as Ripsq “ RzpθipsqqRbpsq, where Rz

is an elementar rotation around z. Then, we consider ubpsq, which represents the
angular rate of change of Rbpsq w.r.t. s. We can recover the i -th tube curvature
uipsq as [13]:

uipsq “ RT
z pθipsqqubpsq ` θ1

ipsqez (1)

where p.q1 “ d{ds, and ez “ r0; 0; 1s. In the following, the variables explicit
dependence from s is dropped for brevity sake.

In order to derive the CTR geometrico-static model, let us consider the defor-
mation energy of the tubes Vt. By assuming linear elasticity, and by neglecting
shear and extensibility on the tubes, we can compute Vt as [17]:

Vt “

n
ÿ

i“1

Vi; Vi “
1

2

ż Li

Li´1

˜

m
ÿ

j“1

`

uj ´ u˚
j

˘T
Kt

`

uj ´ u˚
j

˘T

¸

ds (2)

where L0 “ 0, m “ n ` 1 ´ i, u˚
i is the initial tube precurvature, Ki “

diagpkbi, kbi, ktiq, is the local stiffness matrix, kbi the flexural stiffness, and kti
the torsional stiffness of the i -th tube. By introducing Eq. (1), into Eq. (2) we
have:

Vi “
1

2

ż Li

Li´1

m
ÿ

j“1

`

RT
z pθjqub ` θ1

jez ´ u˚
j

˘T
Kj

`

RT
z pθjqub ` θ1

jez ´ u˚
j

˘T
ds

(3)
Thus, the tubes energy depends on ub, all the θi of the tubes and the actuated
lengths Li.

2.2 CTR energy

In order to deduce CTR energy, some configuration variables classification is
necessary. First, we introduce the vector qa P R2n to collect the actuated vari-
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ables (base rotation θi0 and length Li of each tube, two motors for each tube).
Then, we introduce qp “ rpp,αps P R6 to represent the CTR tip pose: pp P R3

is the tip position, and αp P R3 are three orientation angles of the tip that de-
fine Rp “ Rppαpq. For later convenience, we introduce qc the set of controlled
variables: we assume to have the same number of controlled and actuated vari-
ables, and thus qc P R2n. In general, qc is a subset of qp, and the remaining tip
variables are stacked into qd P R6´2n. To evaluate the CTR energy, we consider
the energy associated with a tip force fp, constant w.r.t. F0, that is

4.

Vtip “ ´fTp pp (4)

and the total CTR potential energy is obtained as:

Vtot “ Vtip ` Vt (5)

Although we introduced qp to represent the CTR tip pose, we can also recover
the CTR tip pose as inner tube distal section pose:

gtip “ g0 `

ż L1

0

gξ̃ds; ξ̃ “

„

pu1 ez
0 0

ȷ

(6)

with pu1 P sop3q is the skew-symmetric matrix obtained from u1, and g,g0,gtip P

SEp3q are the matrices expressing the pose the first tube at s, the pose of the
base frame, and the tip pose, respectively. Thus, since qp must represent the same
pose as the one obtained in Eq. (6), the following constraint is introduced:5

Φ “

#

pp ´ ptip “ 0

pRT
p Rtip ´ RT

tipRp
qq “ 0

, Φ P R6 (7)

where ptip,Rtip are the tip position and orientation obtained from Eq.(6), and

the operator p.qq extracts the three independent components from its argument.

2.3 Geometrico-static model

CTRs equilibrium configurations are associated with critical points of the robot
energy Vtot [17]. The function Vtot depends on qa,qp, and the continuous func-
tions ub and θi. Moreover, constraints Φ must be enforced. Discretization tech-
niques offers a straightforward way to numerically identify critical points of
Vtot [2], and a finite set of discretization coordinates qe P Rm is introduced
to parametrize the tubes elastic deformations [2]. For convenience, we define
qu “ rqe,qds P Rm`6´2n to collect the uncontrolled variables after the dis-
cretization of the tubes, and x “ rqu,qcs P Rm`6 the non actuated variables.

4Generic concentrated loads or distributed load are neglected for simplicity, but
their inclusion is possible. Moments which are not conservative are not considered.

5Instead of considering qp as independent variables, the tip pose could be obtained
directly by integration of Eq. (6). However, the introduction of qp simplifies the fol-
lowing singularity derivation.



Singularity Conditions of Concentric Tube Robots 5

Please note that this way of parametrizing the CTR is true regardeless of the
discretization technique employed.

After the discretization process, Vtot “ Vtotpqa,xq and Φ “ Φpqa,xq. Due to
the presence of constraints, critical points of Vtot are characterized by Lagrange
conditions [12]: assuming ∇xΦ is full row rank, x is a critical point of Vtot if
there exists a vector of Lagrange multipliers λ P R6 such as:

Gpqa,x,λq “

#

∇xVtot ` ∇xΦ
Tλ “ 0

Φ “ 0
(8)

Equation (8) represents the geometrico-static model of a CTR, which is an un-
determined system of m`6`6 system of equations in 2n`m`6`6 unknowns.
As in [4], forward and inverse problems are stated in a unified formulation:

Fpqa,x,λq “

$

’

&

’

%

∇xVtot ` ∇xΦ
T
p λ “ 0

Φ “ 0

e “ 0

(9)

where e “ qa ´qd
a for the forward problem, e “ qc ´qd

c for the inverse problem,
and the superscript p.qd indicates a desired value. Eqs. (9) is a system of 2n `

m` 6` 6 non-linear equations that can be solved with appropriate root-finding
techniques [12] (e.g the Newton-Raphson method).

3 Singularity Conditions and Equilibrium Stability

To obtain singularity conditions and to assess equilibrium stability of CTRs, we
linearize the CTR geometric static model (8) w.r.t. to the robot configuration
variables to obtain the CTR kinematostatic model:

„

A1

A2

ȷ

∆qa `

„

U1

U2

ȷ

∆qu `

„

P1

P2

ȷ

∆qc `

„

G
0

ȷ

∆λ “ 0 (10)

where:

– A1 “ ∇qa
p∇xLq , U1 “ ∇qu

p∇xLq , P1 “ ∇qc
p∇xLq

– A2 “ ∇qa
Φ , U2 “ ∇qu

Φ , P2 “ ∇qc
Φ , G “ ∇λ p∇xLq

To verify if a configuration is stable, we compute the reduced Hessian matrix of
the total potential energy as [21]:

Hr “ ZT
“

P1 U1

‰

Z (11)

where Z is the left nullspace of G P Rpm`6qˆ6, that is ZTG “ 0. As long as ∇xG
is full rank, Z P Rpm`6qˆm. A configuration is stable if Hr is positive definite
[12].
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Then, to obtain singularity conditions, we multiply the first set of rows in
Eq.(10) by ZT [4]:

„

ZTA1

A2

ȷ

∆qa `

„

ZTU1

U2

ȷ

∆qu `

„

ZTP1

P2

ȷ

∆qc “ 0 (12)

which can be rewritten in a more compact form:

A∆qa ` U∆qu ` P∆qc “ 0 (13)

with A “ rZTA1,A2sT P Rpm`6qˆ2n, U “ rZTU1,U2sT P Rpm`6qˆpm`6´2nq,
and P “ rZTP1,P2sT P Rpm`6qˆ2n. Similarly to [4], we can formulate the
inverse kinemato-static problem as:

“

A U
‰

„

∆qa

∆qu

ȷ

“ T1

„

∆qa

∆qu

ȷ

“ P∆qc (14)

Matrix T1 is square of dimension pm ` 6q ˆ pm ` 6q and, for given ∆qc, we
can invert T1 to evaluate ∆qa, ∆qu as long as T1 is full rank. Rank deficiencies
of T1, with A,U full rank, are named Type-1 singularities (according to the
terminology of [8]). At the singular configuration, there exist non-null ∆qa, ∆qu

that leads to nulll ∆qc. This physically means the exisistence of some direction
for which the end-effector cannot move, even if non-null motor and tubes dis-
placements occur. Then, we can formulate the forward kinemato-static problem
as:

“

P U
‰

„

∆qc

∆qu

ȷ

“ T2

„

∆qc

∆qu

ȷ

“ A∆qa (15)

Matrix T2 is square of dimension pm ` 6q ˆ pm ` 6q and, for given ∆qa, we
can invert T2 to evaluate ∆qc, ∆qu as long as T2 is full rank. Rank deficiencies
of T2, with P,U full rank, are named Type-2 singularities (as done in [8]). At
the singular configuration, there exist non-null ∆qc, ∆qu that leads to null ∆qa.
Practically, this means that in such configuration for certain motion of the legs
and tubes displacement, there is no motors motion.

Moreover, Type 2 singularities are associated with changes in the stability
pattern. Following the proof of [4], matrix T2 is singular if there exist a vector
u ‰ 0 such as ZT

“

P1 U1

‰

u “ 0 and
“

P2 U2

‰

u “ 0. Since
“

P2 U2

‰

“ GT by
definition, and the matrix Z spans the nullspace of G, we have u “ Zv for v ‰ 0.
Thus, T2 is singular if there exist a vector v ‰ 0 such as ZT

“

P U
‰

Zv “ Hrv “

0, which proves that T2 is singular if Hr is singular. Additional details on the
proof can be found in [4]. Other singularities may be investigated, such as rank
deficiencies of A,U,P separately, but these considerations are not considered in
this paper.

4 Case Study: two tubes CTR

In this section, we propose a case study with a two-tubes CTR to illustrate
Type-1 and Type-2 singularities identification. We assume each tube to have
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(a) (b) (c)

Fig. 2: S-curves obtained with L “ 0.4m. Figures (a),(b) highlight the inverse
conditioning of T1,T2, respectively, while figure (c) displays the minimum eigen-
value of Hr

planar precurvature only, that is u˚
i “ ru˚

ix, 0, 0s, and both tubes perfectly over-
lapping with the same length L “ L1 “ L2. Moreover, we assume β1 “ β2 “ 0
for simplicity. We used NiTinol material parameters (E “ 80 GPa), and we
set u˚

1x “ 1{0.50 m´1, u˚
2x “ 1{0.70 m´1. The first tube has inner diameter

d1inn “1.0 mm, and outer diameter d1out “1.5 mm, while the second tube has
d2inn “1.5 mm, and d2out “ 2.0 mm. Concerning the discretization strategy,
we selected the piecewise constant strain approach of [14] for its simplicity, but
the generality of the results holds with any discretization approach. We used 20
constant strain elements for each tube to achieve sufficient accuracy. We decide
to parametrize Rp as Rp “ Rxpα1qRypα2qRzpα3q with α “ rα1, α2, α3sT . Since
we have two tubes, qc P R4: we selected as controlled variables the tip position
pp and α3, while qd “ rα1, α2s P R2.

The two-tube CTR case is a well-known situation where stability issues may
occur. In this case, a global stability criterion was proposed in [10], which is
based on the following inequality:

ζγ “
cotpγq

?
γ

ă ζlim (16)

where

γ “ L2u˚
1xu

˚
2x

k1bk2bpk1t ` k2tq

k1tk2tpk1b ` k2bq
, ζlim “

β1k2t ` β2k1t
Lpk1t ` k2tq

(17)

with kib, kit the tubes stiffnesses as defined in Section 2. If the inequality of
Eq. (16) is verified, than the CTR equilibrium is globally stable. A standard
benchmark for CTRs equilibrium stability is based on the investigation of the
S-curves: these curves describe the relation between the base orientations and
the resulting CTR tip orientation, providing an intuitive representation of the
robot motion abilities [10]. To build the S-curve, we fixed θ20 “ 0, and we
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(a) (b) (c)

Fig. 3: S-curves obtained with L “ 0.6m. Figures (a),(b) highlight the inverse
conditioning of T1,T2, respectively, while figure (c) displays the minimum eigen-
value of Hr

attempted to solve the forward problem with ϕ0 “ pθ10 ´ θ20q P r0, 2πs. For each
ϕ0, we measured ϕL “ pθ1pLq ´ θ2pLqq, and the inverse conditioning number
kinv of T1,T2 to detect Type-1 and Type-2 singularities, with the configuration
considered singular if kinv ă 10´6.

First, let us consider the case where L “ 0.4 m, which results in a globally
stable equilibrium since ζγ “ ´0.164 ă 0. The resulting S-curve is reported in
Fig. 2, and we highlighted Type-1 and Type-2 conditioning in Fig. 2(a), 2(b),
respectively. By looking at Fig. 2(a), we can observe rank deficiencies of T1

at ϕ0 “ 54˝ and 306˝. At these configurations, there exist non-null ∆qa, ∆qu

that leads to null ∆qc, meaning that the CTR tip cannot move along some de-
sired controlled direction. On the contrary, no rank deficiency of T2 is found
in Fig. 2(b), Type-2 singularities are not present, and the equilibrium is always
stable all along the path since the minimum eigenvalue of Hr is always positive
(Fig.2(c)). This is in accordance with the global stability criterion of Eq. (16):
since Type-2 singularities delimits stable-to-unstable transitions and the equi-
librium is globally stable, no Type-2 singularities should be present.

Different results are obtained when where L “ 0.6 m. In the case, ζγ “

0.242 ę 0 and possible unstable transitions may occur. As before, we computed
the S-curve (Fig. 3), and we highlighted Type-1 and Type-2 conditioning in
Fig. 3(a), 3(b), respectively. Since ζγ ą 0, the S-curve is non monotonic, and
the values of ϕL P r128; 232s˝ are associated with unstable equilibriums6. By
varying L from 0.4 m to 0.6 m, degeneracies of T1 moved to ϕ0 “ 112˝ and 248˝

(Fig. 3(a)), but the physical phenomena remains unchanged. Instead, Type-
2 singularities are identified in Fig. 3(b), at ϕ0 “ 162˝ and 198˝. This is in

6Unstable configurations of the S-curve are not reachable with the solution of the
forward problem. Other approaches, such as continuation techniques [13] offers an
alternative tool for the scope.
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accordance with state-of-the-art results [13], since Type-2 singularities appear
where the slope of the S-curve is almost vertical, and a bifurcation point should
be present [13]. At these configurations, there exist some non-null CTR motion
even if the motors are braked, and the CTR equilibrium becomes unstable. We
also verify that Type-2 singularities correspond to equilibrium stability limits
(Fig. 3(c)), since the inverse conditioning number of T2 tends toward zero when
the minimum eigenvalue of Hr goes to zero as well.

5 Conclusions

In this paper, we introduced singularity conditions for CTRs. Based on the
computation of the total CTR energy, we derived the CTR geometrico-static
model by the use of discretization techniques, covering a wide range of currently
used CTRs models. Then, we derived singularity conditions for the forward
and inverse geometrico-static problems by linearization. Similarly to [4], we also
shown the link between Type-2 singularities and CTR equilibrium stability. A
case study with a two-tubes CTR was proposed to illustrate our results. By
the study of the S-curves, we identified Type-1 singularities that correspond to
the impossibility of the CTR to be moved in some controlled direction. We also
identified Type-2 singularities that delimits stable-to-unstable regions. Future
work will be directed toward the performance assessment and to the stability
measurement of CTRs.
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