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This paper derives singularity conditions for concentric tube robots (CTRs). To the scope, we build the CTR geometrico-static model using discretization techniques, which are suitable for several currentlyused CTRs models. Then, we obtain singularity conditions by performing a linearization of the geometrico-static model. We define Type-1 and Type-2 singularities, which are related to the unsolvability of the inverse and forward kinematostatic problems, respectively. Moreover, we also show the link between Type-2 singularities and CTR equilibrium stability. A case study with a two-tube CTR is proposed to illustrate our results.

Introduction

Continuum robots (CRs) are manipulators usually made by flexible components and designed to achieve safe human-robot interactions [START_REF] Burgner-Kahrs | Continuum robots for medical applications: A survey[END_REF]. CRs promise significant advantages in robotized surgery because of their inherent flexibility and the ability to move and traverse unstructured confined spaces. In this direction, concentric tube robots (CTRs) are a class of continuum robots typically made of superelastic pre-curved tubes assembled in a concentric arrangement [START_REF] Gilbert | Concentric tube robots: The state of the art and future directions[END_REF], which have been adopted for different surgical applications (e.g. [START_REF] Xu | Design of an endoscopic stitching device for surgical obesity treatment using a notes approach[END_REF]).

Because of their promising features, CTRs received great attention from the scientific community [START_REF] Mahoney | A review of concentric tube robots: modeling, control, design, planning, and sensing[END_REF]. Modelling [START_REF] Renda | A sliding-rod variable-strain model for concentric tube robots[END_REF], design [START_REF] Webster | Mechanics of precurved-tube continuum robots[END_REF], and control [START_REF] Xu | Position control of concentric-tube continuum robots using a modified jacobian-based approach[END_REF] are among the most investigated aspects, and we address the interested reader to specialized review papers [START_REF] Alfalahi | Concentric tube robots for minimally invasive surgery: Current applications and future opportunities[END_REF]. Equilibrium stability assessment is a crucial aspect of CTRs, since it impacts both usability and controllability: as the tubes rotate and translate with respect to each other, elastic potential energy accumulates until an unstable configuration is met, and the energy is released with a dangerous snapping [START_REF] Ha | Elastic stability of concentric tube robots subject to external loads[END_REF]. To address the problem of elastic instabilities, a first approach is based on stable-path motion planning [START_REF] Bergeles | Planning stable paths for concentric tube robots[END_REF]. Alternatively, design considerations such as the use of transverse anisotropy [START_REF] Rucker | Transverse anisotropy stabilizes concentric tube robots[END_REF], or design rules [START_REF] Hendrick | Designing snap-free concentric tube robots: A local bifurcation approach[END_REF] help to avoid elastic instabilities. Singularities of CTR were rarely investigated, and are preliminary identified by singular value decomposition of the models Jacobian matrix [START_REF] Chikhaoui | Kinematics and performance analysis of a novel concentric tube robotic structure with embedded soft microactuation[END_REF]. However, this procedure does not allow singularities classification, which is intimately linked to what cause them, and neglects the potential links between them and equilibrium stability [START_REF] Zaccaria | Workspace computation of planar continuum parallel robots[END_REF], [START_REF] Briot | Singularity conditions for continuum parallel robots[END_REF].

The novel contribution of this paper is the definition and classification of singularity conditions for CTRs. While rigid-links-robot singularities are investigated by using of geometric approaches, the elastic nature of CTRs requires more complex tools, and our analysis is based on energetic considerations. We first obtain the CTR geometrico-static model by using discretization strategies, as it is compatible with several currently employed CTR models. Then, we derive singularity conditions by studying the kinematostatic model of CTRs, obtained as a linearization of the geometrico-static model. In analogy to [START_REF] Briot | Singularity conditions for continuum parallel robots[END_REF], we will show that the forward kinemato-static problem singularities define stable-to-unstable CTR transitions.

The paper is structured as follows. Section 2 describes the CTR modelling framework based on discretization approaches, and Section 3 derives singularity conditions and discusses equilibrium stability assessment. Then, Section 4 proposes a case study to illustrate singularities, and compares the results with state-of-the-art results. Finally, conclusions and drawn in Section 5.

Modelling

In this Section, we derive the geometrico-static model of a CTR based on energetic considerations. We first obtain the tubes energy, and then we consider the full CTR energy to derive the CTR geometrico-static model.

Tubes energy

Let us consider a CTR made by n concentric tubes (Fig. 1(a)). A fixed frame F 0 is attached to the robot base, and the coordinate s is used to parametrize the robot centerline. We use i as the index representing the i -th tube, numbered from the innermost to the outermost. The length of the i -th tube, measured from the arc length s " 0, is L i . The tubes are actuated at the coordinate s " ´βi in translation and rotation: we name θ 0i the rotation of the tube's base, and β i is called transmission length.

As done in [START_REF] Peyron | A numerical framework for the stability and cardinality analysis of concentric tube robots: Introduction and application to the follow-the-leader deployment[END_REF], a frame F b is attached to the robot centerline at each s, and ppsq defines the position of F b with respect to (w.r.t.) F 0 . Then, the orientation of F b is described by R b , that is a rotation matrix obtained by sliding the base frame orientation matrix along the robot centerline without any rotation about the local z axis, assuming the z axis to be aligned with the centerline tangent vector. Since the tubes are concentric, the position of the i -th tube is p i psq " ppsq. However, the concentric tube arrangement let each tube to be free to twist around the local z axis of an angle θ i psq (see Fig. 1(b)). Thus, we can recover the i -th tube orientation w.r.t. F 0 as R i psq " R z pθ i psqqR b psq, where R z is an elementar rotation around z. Then, we consider u b psq, which represents the angular rate of change of R b psq w.r.t. s. We can recover the i -th tube curvature u i psq as [START_REF] Peyron | A numerical framework for the stability and cardinality analysis of concentric tube robots: Introduction and application to the follow-the-leader deployment[END_REF]:

u i psq " R T z pθ i psqqu b psq `θ1 i psqe z (1) 
where p.q 1 " d{ds, and e z " r0; 0; 1s. In the following, the variables explicit dependence from s is dropped for brevity sake.

In order to derive the CTR geometrico-static model, let us consider the deformation energy of the tubes V t . By assuming linear elasticity, and by neglecting shear and extensibility on the tubes, we can compute V t as [START_REF] Rucker | Equilibrium conformations of concentric-tube continuum robots[END_REF]:

V t " n ÿ i"1 V i ; V i " 1 2 ż Li Li´1 ˜m ÿ j"1 `uj ´uj ˘T K t `uj ´uj ˘T ¸ds (2) 
where L 0 " 0, m " n `1 ´i, u i is the initial tube precurvature, K i " diagpk bi , k bi , k ti q, is the local stiffness matrix, k bi the flexural stiffness, and k ti the torsional stiffness of the i -th tube. By introducing Eq. ( 1), into Eq. (2) we have:

V i " 1 2 ż Li Li´1 m ÿ j"1 `RT z pθ j qu b `θ1 j e z ´uj ˘T K j `RT z pθ j qu b `θ1 j e z ´uj ˘T ds
(3) Thus, the tubes energy depends on u b , all the θ i of the tubes and the actuated lengths L i .

CTR energy

In order to deduce CTR energy, some configuration variables classification is necessary. First, we introduce the vector q a P R 2n to collect the actuated vari-ables (base rotation θ i0 and length L i of each tube, two motors for each tube). Then, we introduce q p " rp p , α p s P R 6 to represent the CTR tip pose: p p P R 3 is the tip position, and α p P R 3 are three orientation angles of the tip that define R p " R p pα p q. For later convenience, we introduce q c the set of controlled variables: we assume to have the same number of controlled and actuated variables, and thus q c P R 2n . In general, q c is a subset of q p , and the remaining tip variables are stacked into q d P R 6´2n . To evaluate the CTR energy, we consider the energy associated with a tip force f p , constant w.r.t. F 0 , that is 4 .

V tip " ´f T p p p (4) 
and the total CTR potential energy is obtained as:

V tot " V tip `Vt (5) 
Although we introduced q p to represent the CTR tip pose, we can also recover the CTR tip pose as inner tube distal section pose:

g tip " g 0 `ż L1 0 g ξds; ξ " " p u 1 e z 0 0 ȷ (6) 
with p u 1 P sop3q is the skew-symmetric matrix obtained from u 1 , and g, g 0 , g tip P SEp3q are the matrices expressing the pose the first tube at s, the pose of the base frame, and the tip pose, respectively. Thus, since q p must represent the same pose as the one obtained in Eq. ( 6), the following constraint is introduced:

5 Φ " # p p ´ptip " 0 pR T p R tip ´RT tip R p q q " 0 , Φ P R 6 (7) 
where p tip , R tip are the tip position and orientation obtained from Eq.( 6), and the operator p. q q extracts the three independent components from its argument.

Geometrico-static model

CTRs equilibrium configurations are associated with critical points of the robot energy V tot [START_REF] Rucker | Equilibrium conformations of concentric-tube continuum robots[END_REF]. The function V tot depends on q a , q p , and the continuous functions u b and θ i . Moreover, constraints Φ must be enforced. Discretization techniques offers a straightforward way to numerically identify critical points of V tot [START_REF] Armanini | Soft robots modeling: A structured overview[END_REF], and a finite set of discretization coordinates q e P R m is introduced to parametrize the tubes elastic deformations [START_REF] Armanini | Soft robots modeling: A structured overview[END_REF]. For convenience, we define q u " rq e , q d s P R m`6´2n to collect the uncontrolled variables after the discretization of the tubes, and x " rq u , q c s P R m`6 the non actuated variables.

Please note that this way of parametrizing the CTR is true regardeless of the discretization technique employed.

After the discretization process, V tot " V tot pq a , xq and Φ " Φpq a , xq. Due to the presence of constraints, critical points of V tot are characterized by Lagrange conditions [START_REF] Nocedal | Theory of constrained optimization[END_REF]: assuming ∇ x Φ is full row rank, x is a critical point of V tot if there exists a vector of Lagrange multipliers λ P R 6 such as:

Gpq a , x, λq " # ∇ x V tot `∇x Φ T λ " 0 Φ " 0 (8) 
Equation ( 8) represents the geometrico-static model of a CTR, which is an undetermined system of m `6 `6 system of equations in 2n `m `6 `6 unknowns.

As in [START_REF] Briot | Singularity conditions for continuum parallel robots[END_REF], forward and inverse problems are stated in a unified formulation:

Fpq a , x, λq " $ ' & ' % ∇ x V tot `∇x Φ T p λ " 0 Φ " 0 e " 0 (9) 
where e " q a ´qd a for the forward problem, e " q c ´qd c for the inverse problem, and the superscript p.q d indicates a desired value. Eqs. ( 9) is a system of 2n m `6 `6 non-linear equations that can be solved with appropriate root-finding techniques [START_REF] Nocedal | Theory of constrained optimization[END_REF] (e.g the Newton-Raphson method).

Singularity Conditions and Equilibrium Stability

To obtain singularity conditions and to assess equilibrium stability of CTRs, we linearize the CTR geometric static model (8) w.r.t. to the robot configuration variables to obtain the CTR kinematostatic model:

" A 1 A 2 ȷ ∆q a `"U 1 U 2 ȷ ∆q u `"P 1 P 2 ȷ ∆q c `"G 0 ȷ ∆λ " 0 (10) 
where:

-A 1 " ∇ qa p∇ x Lq , U 1 " ∇ qu p∇ x Lq , P 1 " ∇ qc p∇ x Lq -A 2 " ∇ qa Φ , U 2 " ∇ qu Φ , P 2 " ∇ qc Φ , G " ∇ λ p∇ x Lq
To verify if a configuration is stable, we compute the reduced Hessian matrix of the total potential energy as [START_REF] Zaccaria | An analytical formulation for the geometrico-static problem of continuum planar parallel robots[END_REF]:

H r " Z T " P 1 U 1 ‰ Z ( 11 
)
where Z is the left nullspace of G P R pm`6qˆ6 , that is Z T G " 0. As long as ∇ x G is full rank, Z P R pm`6qˆm . A configuration is stable if H r is positive definite [START_REF] Nocedal | Theory of constrained optimization[END_REF].

Then, to obtain singularity conditions, we multiply the first set of rows in Eq.( 10) by Z T [START_REF] Briot | Singularity conditions for continuum parallel robots[END_REF]:

" Z T A 1 A 2 ȷ ∆q a `"Z T U 1 U 2 ȷ ∆q u `"Z T P 1 P 2 ȷ ∆q c " 0 (12) 
which can be rewritten in a more compact form:

A∆q a `U∆q u `P∆q c " 0 (13) 
with A " rZ T A 1 , A 2 s T P R pm`6qˆ2n , U " rZ T U 1 , U 2 s T P R pm`6qˆpm`6´2nq , and P " rZ T P 1 , P 2 s T P R pm`6qˆ2n . Similarly to [START_REF] Briot | Singularity conditions for continuum parallel robots[END_REF], we can formulate the inverse kinemato-static problem as:

" A U ‰ " ∆q a ∆q u ȷ " T 1 " ∆q a ∆q u ȷ " P∆q c ( 14 
)
Matrix T 1 is square of dimension pm `6q ˆpm `6q and, for given ∆q c , we can invert T to evaluate ∆q a , ∆q u as long as T 1 is full rank. Rank deficiencies of T 1 , with A, U full rank, are named Type-1 singularities (according to the terminology of [START_REF] Gosselin | Singularity analysis of closed-loop kinematic chains[END_REF]). At the singular configuration, there exist non-null ∆q a , ∆q u that leads to nulll ∆q c . This physically means the exisistence of some direction for which the end-effector cannot move, even if non-null motor and tubes displacements occur. Then, we can formulate the forward kinemato-static problem as:

" P U ‰ " ∆q c ∆q u ȷ " T 2 " ∆q c ∆q u ȷ " A∆q a ( 15 
)
Matrix T 2 is square of dimension pm `6q ˆpm `6q and, for given ∆q a , we can invert T 2 to evaluate ∆q c , ∆q u as long as T 2 is full rank. Rank deficiencies of T 2 , with P, U full rank, are named Type-2 singularities (as done in [START_REF] Gosselin | Singularity analysis of closed-loop kinematic chains[END_REF]). At the singular configuration, there exist non-null ∆q c , ∆q u that leads to null ∆q a .

Practically, this means that in such configuration for certain motion of the legs and tubes displacement, there is no motors motion. Moreover, Type 2 singularities are associated with changes in the stability pattern. Following the proof of [START_REF] Briot | Singularity conditions for continuum parallel robots[END_REF], matrix T 2 is singular if there exist a vector u ‰ 0 such as Z T "

P 1 U 1 ‰ u " 0 and " P 2 U 2 ‰ u " 0. Since " P 2 U 2 ‰
" G T by definition, and the matrix Z spans the nullspace of G, we have u " Zv for v ‰ 0. Thus, T 2 is singular if there exist a vector v ‰ 0 such as Z T " P U ‰ Zv " H r v " 0, which proves that T 2 is singular if H r is singular. Additional details on the proof can be found in [START_REF] Briot | Singularity conditions for continuum parallel robots[END_REF]. Other singularities may be investigated, such as rank deficiencies of A, U, P separately, but these considerations are not considered in this paper.

Case Study: two tubes CTR

In this section, we propose a case study with a two-tubes CTR to illustrate Type-1 and Type-2 singularities identification. We assume each tube to have planar precurvature only, that is u i " ru ix , 0, 0s, and both tubes perfectly overlapping with the same length L " L 1 " L 2 . Moreover, we assume β 1 " β 2 " 0 for simplicity. We used NiTinol material parameters (E " 80 GPa), and we set u 1x " 1{0.50 m ´1, u 2x " 1{0.70 m ´1. The first tube has inner diameter d 1inn "1.0 mm, and outer diameter d 1out "1.5 mm, while the second tube has d 2inn "1.5 mm, and d 2out " 2.0 mm. Concerning the discretization strategy, we selected the piecewise constant strain approach of [START_REF] Renda | Discrete cosserat approach for soft robot dynamics: A new piece-wise constant strain model with torsion and shears[END_REF] for its simplicity, but the generality of the results holds with any discretization approach. We used 20 constant strain elements for each tube to achieve sufficient accuracy. We decide to parametrize R p as R p " R x pα 1 qR y pα 2 qR z pα 3 q with α " rα 1 , α 2 , α 3 s T . Since we have two tubes, q c P R 4 : we selected as controlled variables the tip position p p and α 3 , while q d " rα 1 , α 2 s P R 2 .

The two-tube CTR case is a well-known situation where stability issues may occur. In this case, a global stability criterion was proposed in [START_REF] Hendrick | Designing snap-free concentric tube robots: A local bifurcation approach[END_REF], which is based on the following inequality:

ζ γ " cotpγq ? γ ă ζ lim (16) 
where

γ " L 2 u 1x u 2x k 1b k 2b pk 1t `k2t q k 1t k 2t pk 1b `k2b q , ζ lim " β 1 k 2t `β2 k 1t Lpk 1t `k2t q (17) 
with k ib , k it the tubes stiffnesses as defined in Section 2. If the inequality of Eq. ( 16) is verified, than the CTR equilibrium is globally stable. A standard benchmark for CTRs equilibrium stability is based on the investigation of the S-curves: these curves describe the relation between the base orientations and the resulting CTR tip orientation, providing an intuitive representation of the robot motion abilities [START_REF] Hendrick | Designing snap-free concentric tube robots: A local bifurcation approach[END_REF]. To build the S-curve, we fixed θ 20 " 0, and we attempted to solve the forward problem with ϕ 0 " pθ 10 ´θ20 q P r0, 2πs. For each ϕ 0 , we measured ϕ L " pθ 1 pLq ´θ2 pLqq, and the inverse conditioning number k inv of T 1 , T 2 to detect Type-1 and Type-2 singularities, with the configuration considered singular if k inv ă 10 ´6.

First, let us consider the case where L " 0.4 m, which results in a globally stable equilibrium since ζ γ " ´0.164 ă 0. The resulting S-curve is reported in Fig. 2, and we highlighted Type-1 and Type-2 conditioning in Fig. 2(a), 2(b), respectively. By looking at Fig. 2(a), we can observe rank deficiencies of T 1 at ϕ 0 " 54 ˝and 306 ˝. At these configurations, there exist non-null ∆q a , ∆q u that leads to null ∆q c , meaning that the CTR tip cannot move along some desired controlled direction. On the contrary, no rank deficiency of T 2 is found in Fig. 2(b), Type-2 singularities are not present, and the equilibrium is always stable all along the path since the minimum eigenvalue of H r is always positive (Fig. 2(c)). This is in accordance with the global stability criterion of Eq. ( 16): since Type-2 singularities delimits stable-to-unstable transitions and the equilibrium is globally stable, no Type-2 singularities should be present.

Different results are obtained when where L " 0.6 m. In the case, ζ γ " 0.242 ę 0 and possible unstable transitions may occur. As before, we computed the S-curve (Fig. 3), and we highlighted Type-1 and Type-2 conditioning in Fig. 3(a), 3(b), respectively. Since ζ γ ą 0, the S-curve is non monotonic, and the values of ϕ L P r128; 232s ˝are associated with unstable equilibriums 6 . By varying L from 0.4 m to 0.6 m, degeneracies of T 1 moved to ϕ 0 " 112 ˝and 248 (Fig.

3(a)

), but the physical phenomena remains unchanged. Instead, Type-2 singularities are identified in Fig. 3(b), at ϕ 0 " 162 ˝and 198 ˝. This is in accordance with state-of-the-art results [START_REF] Peyron | A numerical framework for the stability and cardinality analysis of concentric tube robots: Introduction and application to the follow-the-leader deployment[END_REF], since Type-2 singularities appear where the slope of the S-curve is almost vertical, and a bifurcation point should be present [START_REF] Peyron | A numerical framework for the stability and cardinality analysis of concentric tube robots: Introduction and application to the follow-the-leader deployment[END_REF]. At these configurations, there exist some non-null CTR motion even if the motors are braked, and the CTR equilibrium becomes unstable. We also verify that Type-2 singularities correspond to equilibrium stability limits (Fig. 3(c)), since the inverse conditioning number of T 2 tends toward zero when the minimum eigenvalue of H r goes to zero as well.

Conclusions

In this paper, we introduced singularity conditions for CTRs. Based on the computation of the total CTR energy, we derived the CTR geometrico-static model by the use of discretization techniques, covering a wide range of currently used CTRs models. Then, we derived singularity conditions for the forward and inverse geometrico-static problems by linearization. Similarly to [START_REF] Briot | Singularity conditions for continuum parallel robots[END_REF], we also shown the link between Type-2 singularities and CTR equilibrium stability. A case study with a two-tubes CTR was proposed to illustrate our results. By the study of the S-curves, we identified Type-1 singularities that correspond to the impossibility of the CTR to be moved in some controlled direction. We also identified Type-2 singularities that delimits stable-to-unstable regions. Future work will be directed toward the performance assessment and to the stability measurement of CTRs.
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 1 Fig. 1: Representation of a CTR: relevant configuration variables are displayed in (a), and the tubes twist angles are illustrated in (b).

  -curves obtained with " 0.4m. Figures (a),(b) highlight the inverse conditioning of T 1 , T 2 , respectively, while figure (c) displays the minimum eigenvalue of H r
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 3 Fig. 3: S-curves obtained with L " 0.6m. Figures (a),(b) highlight the inverse conditioning of T 1 , T 2 , respectively, while figure (c) displays the minimum eigenvalue of H r

Generic concentrated loads or distributed load are neglected for simplicity, but their inclusion is possible. Moments which are not conservative are not considered.

Instead of considering qp as independent variables, the tip pose could be obtained directly by integration of Eq. (6). However, the introduction of qp simplifies the following singularity derivation.

Unstable configurations of the S-curve are not reachable with the solution of the forward problem. Other approaches, such as continuation techniques[START_REF] Peyron | A numerical framework for the stability and cardinality analysis of concentric tube robots: Introduction and application to the follow-the-leader deployment[END_REF] offers an alternative tool for the scope.