
HAL Id: hal-04158465
https://hal.science/hal-04158465

Submitted on 11 Jul 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Image-to-Lidar Self-Supervised Distillation for
Autonomous Driving Data

Corentin Sautier, Gilles Puy, Spyros Gidaris, Alexandre Boulch, Andrei
Bursuc, Renaud Marlet

To cite this version:
Corentin Sautier, Gilles Puy, Spyros Gidaris, Alexandre Boulch, Andrei Bursuc, et al.. Image-
to-Lidar Self-Supervised Distillation for Autonomous Driving Data. Conference on Computer Vi-
sion and Pattern Recognition, IEEE/CVF, Jun 2022, New Orleans, United States. pp.9881-9891,
�10.1109/CVPR52688.2022.00966�. �hal-04158465�

https://hal.science/hal-04158465
https://hal.archives-ouvertes.fr

Image-to-Lidar Self-Supervised Distillation for Autonomous Driving Data

Corentin Sautier 1, Gilles Puy1, Spyros Gidaris1, Alexandre Boulch1, Andrei Bursuc1, Renaud Marlet1,2

1valeo.ai, Paris, France
2LIGM, Ecole des Ponts, Univ. Gustave Eiffel, CNRS, Marne-la-Vallée, France

Abstract

Segmenting or detecting objects in sparse Lidar point
clouds are two important tasks in autonomous driving to
allow a vehicle to act safely in its 3D environment. The
best performing methods in 3D semantic segmentation or
object detection rely on a large amount of annotated data.
Yet annotating 3D Lidar data for these tasks is tedious and
costly. In this context, we propose a self-supervised pre-
training method for 3D perception models that is tailored
to autonomous driving data. Specifically, we leverage the
availability of synchronized and calibrated image and Li-
dar sensors in autonomous driving setups for distilling self-
supervised pre-trained image representations into 3D mod-
els. Hence, our method does not require any point cloud
nor image annotations. The key ingredient of our method
is the use of superpixels which are used to pool 3D point
features and 2D pixel features in visually similar regions.
We then train a 3D network on the self-supervised task of
matching these pooled point features with the correspond-
ing pooled image pixel features. The advantages of con-
trasting regions obtained by superpixels are that: (1) group-
ing together pixels and points of visually coherent regions
leads to a more meaningful contrastive task that produces
features well adapted to 3D semantic segmentation and 3D
object detection; (2) all the different regions have the same
weight in the contrastive loss regardless of the number of
3D points sampled in these regions; (3) it mitigates the
noise produced by incorrect matching of points and pixels
due to occlusions between the different sensors. Extensive
experiments on autonomous driving datasets demonstrate
the ability of our image-to-Lidar distillation strategy to pro-
duce 3D representations that transfer well on semantic seg-
mentation and object detection tasks.

1. Introduction

Lidar sensors deliver rich information about the 3D
world, and making sense of this kind of information is cru-

Code available at https://github.com/valeoai/SLidR

cial for an autonomous driving vehicle to properly act in
its environment, across different external conditions. State-
of-the-art methods for semantic segmentation or object de-
tection in Lidar point clouds rely on deep neural networks
trained on large collections of annotated point clouds. Yet,
annotating 3D Lidar point clouds is a long and costly
task [3, 20]. Self-supervision reduces the burden of anno-
tating large datasets by exploiting a large amount of non-
annotated data to pre-train neural networks, which are sub-
sequently fine-tuned on a smaller set of annotated data.

The current best performing self-supervised techniques
for 3D neural networks working on real point clouds are
mostly adapted to indoor scenes with dense point clouds.
These methods suffer from several shortcomings when deal-
ing with sparse point clouds, such as those acquired outdoor
by a moving vehicle. For example, PointContrast [67] re-
quires pairs of registered point clouds and a list of match-
ing points between them. While multiple reliable match-
ing points can be found in a densely sampled static scene,
the number of such pairs of points is much lower in au-
tonomous driving datasets, in particular on objects of inter-
est (cars, trucks, pedestrians, etc.) as they are sparsely sam-
pled and likely to move between two acquisitions. Depth-
Contrast [72] avoids the need of finding pairs of correspond-
ing points as it only requires a single representation for each
scene. This representation is computed by global pooling
and therefore loses information on small objects. These
design choices limit significantly the performance of these
methods in our experiments on autonomous driving scenes.

Our goal is to design a self-supervised method for tasks
such as semantic segmentation or object detection in Lidar
point clouds, and tailored to autonomous driving data. Most
autonomous driving vehicles are equipped with an array of
cameras and Lidar sensors that are synchronized and cali-
brated, offering rich surround-view information. These data
are a lot easier to acquire than to annotate, and we propose
to leverage them to distill self-supervised pre-trained image
representations into a 3D network. This whole pre-training
process does not require any annotation of the images nor of
the point clouds. Self-supervised pre-training on images has
proven very successful for learning generic representations

https://github.com/valeoai/SLidR

Superpixel-driven
contrastive
distillation

Lidar scans with
back-projected superpixels

3D network 3D feature map Pooled
features

Images with superpixels 2D network 2D feature map Frozen weights

Figure 1. SLidR distillates the knowledge of a pre-trained and fixed 2D network into a 3D network. It uses superpixels to pool features of
visually similar regions together, both on the images, and on the point clouds through superpixels back-projection. The superpixel-driven
contrastive loss aligns the pooled point and image features. The visualized segments proposed in this figure have been manually generated
and are intentionally over-sized for illustrative purposes. Superpixels actually used can be observed on Fig. 2.

that transfer well to various complex downstream tasks in
2D, often surpassing supervised pre-training [8, 22, 24, 28].
In this work, we show that these powerful representations
can also be used to pre-train 3D networks for autonomous
driving. We call this setting self-supervised 2D-to-3D rep-
resentation distillation.

We propose a distillation loss suited to tasks such as se-
mantic segmentation and object detection by forcing the
networks to produce object-aware representations. Inspired
by [31], we use superpixels [1, 18] which group visually
similar regions that are likely to belong to the same ob-
ject. We then use these superpixels as pooling masks for
3D point features and 2D pixel features, and enforce pairs
of corresponding pooled features to match each other us-
ing a contrastive loss, as illustrated in Fig. 1. This pool-
ing strategy naturally mitigates two drawbacks encountered
in autonomous driving data: (1) It reduces the noise in-
duced by incorrect matching of points and pixels (which
is performed automatically), e.g., caused by occlusions for
one of the sensors; (2) It balances asymmetries between ar-
eas with denser coverage of points and sparser areas, that
would otherwise have different weights in the contrastive
loss. The latter is particularly important for objects such
as cars, pedestrians and cyclists, that are sampled more
sparsely than the road near the ego-vehicle.

Finally, we examine key elements of our image-to-Lidar
distillation method. This includes a careful design of the

image feature projection head to avoid degenerate cases
where no useful information is transferred to the 3D net-
work.
In summary, our contributions are the following.

• We propose a novel self-supervised 2D-to-3D repre-
sentation distillation approach based on a superpixel-
to-superpoint contrastive loss and a carefully designed
image feature upsampling architecture that allows high
resolution image features to be distilled without suf-
fering from degenerate solutions. We call this method
SLidR, for Superpixel-driven Lidar Representations.

• To the best of our knowledge, this work provides the
first study on the self-supervised image-to-Lidar rep-
resentation distillation problem for autonomous driv-
ing data. This includes extensively evaluating our
method for the downstream tasks of semantic segmen-
tation on nuScenes [6] and SemanticKITTI [3] and ob-
ject detection on KITTI [19], and comparing it against
strong baselines. The latter were produced by adapting
and optimizing several existing self-supervised pre-
training methods for the autonomous driving setting.

• We demonstrate that our image-to-Lidar pre-training
strategy surpasses, in all evaluation settings, state-of-
the-art 3D self-supervised pre-training methods and
prior 2D-to-3D distillation methods, devised for dense
point clouds captured in indoor scenes.

2. Related Works
2.1. Self-Supervised Representation Learning

Self-supervised methods aim to learn good representa-
tions by pre-training a neural network with an annotation-
free pretext task using many unlabeled data. The goal is
for these self-supervised representations to transfer well to
downstream tasks of interest for which there are limited an-
notated data available. In the following we review recent
self-supervised methods in the image and 3D domain.

2D Self-Supervision. Several approaches have been pro-
posed for representation learning on the image domain [11,
16,23,46,47,49,71]. One of the most prominent category of
methods are those based on contrastive-based instance dis-
crimination objectives [11, 26, 28, 30, 45, 48, 59, 65], which
learn to match different views of the same image data
(e.g., generated with random image augmentation) in the
presence of distracting, negative examples. Other promi-
nent categories are the feature reconstruction learning meth-
ods [9,13,21,22,24] and clustering-style methods [2,7,8,35,
66, 75]. In this work, we exploit powerful self-supervised
image representations, specifically MoCo [12, 28], to pre-
train 3D Lidar networks. Apart from image-wise self-
supervised objectives, as those already mentioned, there
have also been proposed pixel-wise [61,64,68,69] or region-
wise self-supervised objectives [31]. Our superpixel-driven
image-to-lidar contrastive distillation loss relates to [31,61]
that exploit unsupervised segmentation masks for defining
their proposed contrastive objectives.

3D Self-Supervision. Most of the 3D self-supervised
methods focus on single objects for tasks such as object
recognition or part segmentation. We find techniques based
on pretext tasks defined at the object level, based on point
cloud reconstruction or prediction of a global transforma-
tion [14, 50, 55, 62]. As in 2D self-supervision, some tech-
niques define their pretext task at the feature level using
cluster prediction [27], contrastive-based instance discrim-
ination methods [10, 17, 54, 63], a combination of the last
two [70], or multimodal object representations [38]. Among
methods working on entire scenes rather than on single ob-
jects, [33, 41, 67] pre-train a 3D network by learning to
match points in two registered point clouds. DepthContrast
[72] uses a scene-level instance discrimination pretext task
both in indoor and outdoor scenes. Finally, [36,42] both ap-
peared publicly recently. The first presents a method exten-
sively tested on autonomous driving scenes while the sec-
ond applies on sequences of point clouds captured indoor
or outdoor. Unlike us, none leverages the image modality.

Discussion. For pre-training, self-supervised methods
have relied so far on curated and balanced datasets, e.g.,
ImageNet [53]. Self-supervised methods are highly depen-
dent on the quality of the training data, so the dataset con-

stitutes essentially a form of supervision in itself. In con-
trast, autonomous driving data, acquired from city streets,
is raw and uncurated, displaying strong redundancy and im-
balance. Here, self-supervised learning is both challenging
and highly necessary to reduce the burden of continuous an-
notation of data, yet it hasn’t been addressed much [60,72].
We tackle this problem and show that we can overcome
some of these challenges by leveraging multi-modality.

2.2. Knowledge Distillation

The purpose of knowledge distillation (KD) is to trans-
fer useful information from a trained teacher network into a
student network. To this end, the student is trained to mimic
some characteristic of the teacher, e.g., output [32] or inter-
mediate features [52,59]. Initially used for distilling a large
network or ensemble into a smaller network [5, 32, 39], KD
has been recently revisited as teacher-student architectures
for semi-supervised [40, 57] and unsupervised representa-
tion learning [9, 21, 22, 24]. Here, after training the student
typically outperforms the teacher.

2D-to-3D knowledge distillation. Our work relates to
the setting of KD from a 2D teacher pre-trained on images
into a 3D student network [25, 37, 43]. For instance, in [25]
indoor RGB-D data is used for distilling an RGB teacher
into a 2D student network for depth-maps. The most related
to ours is the unpublished concurrent work [43] where 2D
representations are distilled in a 3D network. Besides be-
ing designed for dense indoor RGB-D data, a major differ-
ence between the two methods is that [43] contrasts pixels
with points while our method contrasts 2D image regions
with 3D point cloud regions, defined using superpixels. We
explain the advantages of this superpixel-based distillation
formulation in Sec. 3.2. Moreover, in absence of public
code, we developed and optimized our best adaptation of
this method for autonomous driving data and our empirical
comparison with it in Sec. 4 demonstrates the superiority
of our method. Finally, the idea of contrasting point-pixel
pairs is also exploited in [44] and [34] for 2D-3D modality
fusion and building geometry-aware 2D networks, respec-
tively, rather than for KD from a 2D network to a 3D net-
work as done in our method.

3. Our approach
3.1. Image-to-Lidar Self-supervised Distillation

Our goal is to learn, by self-supervised distillation,
3D Lidar representations by leveraging the availability of
aligned Lidar and image data in autonomous driving setups.

Synchronized Lidar and image data. Let P =
(pi)i=1,...,n ∈ RN×3 denote a point cloud captured in a
scene by a Lidar at time t0. We assume that C color images
I1, . . . , IC ∈ RM×3, where M denotes the number of pixels,

Figure 2. SLIC superpixels computed on an image from nuScenes

are captured by C cameras in the same scene at t0 and that
the relative poses between the Lidar and cameras sensors
are known. The pose information permits us to project each
point pi in the C camera frames. Specifically, we can build
a mapping ρc : R3 → {1, . . . ,M} ∪ {0}, for each camera
c, that takes as input a 3D point pi and outputs the index of
the corresponding 2D pixel in the frame Ic, or 0 if the input
point is not viewed in camera c.

Distilling network representations. Let fθbck : RN×3 →
RN×D be a 3D deep neural network, with trainable param-
eters θbck, that takes as input a point cloud and outputs one
D-dimensional feature per point. Our goal is to pre-train
this 3D network without using any human annotations. To
this end, we exploit the aligned and synchronized Lidar and
image data, described in the previous paragraph. We also
leverage the availability of a self-supervised pre-trained im-
age network gω̄bck : RM×3 → RM ′×E with trained and fixed
parameters ω̄bck, that takes as input an image and outputs an
E-dimensional feature map at a possibly lower resolution
M ′ ⩽ M . In this context, we propose to train fθbck(·) by
aligning the point features fθbck(P) with the pre-trained im-
age representations gω̄bck(I1), . . . , gω̄bck(IC). We achieve this
goal with a superpixel-driven contrastive loss, which we de-
scribe in the following section.

3.2. Superpixel-driven Contrastive Distillation Loss

To distill the knowledge of the pre-trained image net-
work gω̄bck(·) into the 3D Lidar network fθbck(·) by self-
supervision, we use a contrastive loss [48] between the im-
age features obtained from gω̄bck(·) and the 3D point features
extracted from fθbck(·). As we are interested in downstream
tasks such as semantic segmentation and object detection,
the learned 3D representations should “reason” in terms of
objects or object parts. We want to contrast features at the
object level rather than at the over-detailed pixel level or the
overly-coarse scene level.

To that end, we use superpixels for grouping pixels
which are locally visually similar, hence likely to belong
to one object, and we define our contrastive loss with them.

We segment the image Ic into, at most, Q superpixels with
SLIC [1], as illustrated in Fig. 2. We denote the superpix-
els by Sc

1 , . . . ,Sc
Q, where Sc

s is the set of pixel indices be-
longing to the sth superpixel. We have Sc

1 ∪ . . . ∪ Sc
Q =

{1, . . . ,M} and ∀s ̸= s′, Sc
s ∩ Sc

s′ = ∅. We also use
the mapping function ρc to group the points viewed in the
cth camera into Q distinct superpoints: Gc

1, . . . ,Gc
Q, where

Gc
s = {i : ρc(pi) ∈ Sc

s}. In the ideal case of one ob-
ject per superpixel, we want the point feature describing
Gc
s to be similar to the image feature describing the cor-

responding superpixel Sc
s , but unlike the image feature de-

scribing a different superpixel Sc′

s′ from the same scene, for
(s, c) ̸= (s′, c′), or the image feature describing a super-
pixel from a different scene. This distillation principle is
formalized as follows.

Contrastive loss. For each camera c, we compute super-
point and superpixel features by average pooling:

f c
s =

1

|Gc
s |

∑
i∈Gc

s

(hθhead ◦ fθbck)(P)i (1)

gc
s =

1

|Sc
s |

∑
j∈Sc

s

(hωhead ◦ gω̄bck)(Ic)j , (2)

for all s such that |Gc
s | > 0 (a superpixel feature is com-

puted only if the corresponding superpoint is non-empty).
The heads hθhead , hωhead , with trainable parameters θhead and
ωhead, project respectively the 3D-based and 2D-based fea-
tures into the same F -dimensional space. The point pro-
jection head hθhead : RN×D → RN×F is a simple pointwise
linear layer followed by ℓ2-normalization. The pixel projec-
tion head hωhead : RM ′×E → RM×F is described in Sec. 3.3.

We transfer the knowledge from the 2D network to the
3D network by using a contrastive loss which favors a solu-
tion where a superpoint feature f c

s is more correlated to its
corresponding superpixel features gc

s than any other feature
gc′

s′ , with (s, c) ̸= (s′, c′). Concretely, the network fθbck and
the projection heads hθhead , hωhead are jointly trained using the
following superpixel-driven contrastive loss:

L(θbck, θhead, ωhead) = −
∑
c,s

log

 exp(⟨f c
s , g

c
s⟩/τ)∑

c′,s′
exp(⟨f c

s , g
c′
s′ ⟩/τ)

 ,

(3)

where ⟨·, ·⟩ denotes the scalar product in RF , and τ > 0
a temperature. For simplicity, we have only defined here
the contrastive loss for a single scene. In practice, multi-
ple scenes are available in a batch at training time and the
denominator in Eq. (3) actually contains the superpixel fea-
tures of all scenes in the batch.

Discussion. We argue that using a contrastive loss at the
superpoint-superpixel level is better adapted for pre-training

fθbck for semantic segmentation and object detection than
staying at the point-pixel level.

First, as already mentioned, superpixels permit us to
group points and pixels in visually similar regions, thus
likely to belong to one object. Hence, the loss (3) will favor
point features with the desirable property of being locally
coherent when they belong to the same object (assuming
the superpixel does not cover several objects). Furthermore,
compared to contrasting pixels to points, we lower the pro-
portion of “false negatives” in the contrastive loss as we do
not contrast between almost identical points inside a super-
pixel. Yet, a small number of those false negatives can re-
main as the superpixels tend to oversegment the objects, but
this is common in unsupervised contrastive learning where
similar or same class images can be contrasted due to the
instance discrimination setting. In addition, our strategy
of averaging features within superpixels limits the impact
of pixels belonging to different semantic regions. On the
other end of the spectrum, scene-level contrastive learning,
i.e., contrasting the global representation of an entire point
cloud to the global representation(s) of the corresponding
camera frames, is not meaningful for autonomous driving
data: (a) autonomous driving scenes consist of multiple dif-
ferent objects; (b) there is relatively limited diversity at the
scene-level since all scenes consist of almost the same type
of objects, e.g., roads, cars, and pedestrians.

Second, superpixels permit us to naturally give the same
weights to all regions in the contrastive loss irrespective
of the point sampling density in those regions. In typical
Lidar scans from AD scenes, the density of points varies
greatly with a majority of points sampled on the road and
near the ego-vehicle. In the distillation loss of Eq. (3) if
we consider points and pixels instead of superpoints and
superpixels, we cannot in practice exhaustively consider
all possible pairs of matching point and pixel because of
computational tractability, and we must subsample them,
as done in [43, 67]. However, if this subsampling is per-
formed randomly, without any proper selection, the loss in
Eq. (3) is dominated by points in high density regions. With
superpixel-based pooling of point features, we reduce the
number of pairs, thus removing the need for subsampling,
and the loss now treats different objects equally, whether
they are seen in a region sampled with high or low density.

Third, the Lidar and image sensors have different view-
points and the respective acquisitions are never perfectly
synchronized. Hence, the point-pixel matching is only ap-
proximate, with incorrect matches due to sensor occlusions
and motion. Averaging the features as in Eq. (1) and Eq. (2)
allows us to reduce the impact of spurious matches.

3.3. The Devil is in the Image Projection Head

In our method, the image network gω̄bck(·) is a ResNet-
50 pre-trained under self-supervision on ImageNet [53] us-

ing MoCov2 [12, 28]. This network outputs features at a
much lower resolution than the resolution of input images:
M ′ = M/322. To recover features at the pixel level and
be able to compute Eq. (2), we tested several architectures
for the pixel projection head hωhead and were able to reach
good performance only when using a 1 × 1 convolution
layer followed by a fixed upsampling method, such as bilin-
ear or nearest neighbor upsampling. Indeed, we noticed that
having a hωhead architecture that captures wide spatial con-
text for an output pixel feature (e.g., using several convo-
lutional layers with kernel size greater than 1) allows hωhead

to “cheat” on the contrastive task with the “leaked” con-
text information, by matching a 2D image feature with its
paired 3D point(s) only based on the 2D spatial position of
the 2D feature inside the image. This would allow the net-
work to solve the contrastive task, however it is of no use
for learning high-level semantic features. We expect simi-
lar degenerate solutions if gω̄bck(·) is not kept frozen.

Empirically, we noticed that performance improves as
we preserve the input resolution in the ResNet-50 encoder.
We propose a few simple adjustments to the ResNet-50
encoder to limit downsampling without increasing signifi-
cantly the computational complexity or adding new param-
eters. We keep the first strided convolution and max pooling
layer, but then maintain a fixed resolution across all residual
blocks by replacing strided convolutions with dilated con-
volutions. This leads to the lesser discrepancy M ′ = M/42.

To conclude, to bridge the gap between the two resolu-
tions, the pixel projection head hωhead consists of a pixel-
wise convolution, followed by a bilinear upsampling layer
by 4 in each spatial direction, and an ℓ2-normalization layer.

4. Experiments
4.1. 3D Network Pre-training

Network backbones. The 3D backbone fθbck is the sparse
residual U-Net architecture used in [67], which was orig-
inally designed in [15], where we use 3 × 3 × 3 kernels
for all sparse convolutions. As input representation it takes
a sparse occupancy grid of the 3D data obtained by quan-
tizing the 3D points, i.e., voxels. Instead of using voxel
in Cartesian coordinates as in [43, 67, 72], we use voxels
in cylindrical coordinates which are better suited for Lidar
point clouds [74]. The voxel size that we use is 10 cm on
the z-axis and radius (distance to the origin in the xy-plane)
component, and 1◦ on the azimuth angle. The 2D backbone
is a ResNet-50 [29] pre-trained with MoCov2 [12, 28].

Pre-training dataset. We pre-train all models on
nuScenes [6]. This dataset contains 700 training scenes
from which we keep aside 100 scenes that constitute our
mini-val split, used to choose our training hyperparameters
and do our ablation study. The models are pre-trained using
all the keyframes from the 600 remaining training scenes.

Method Dil. Conv. Superpix. mIoU

PPKT† [43] ✗ ✗ 34.7
SLidR w/o superpix. ✓ ✗ 36.6 (+1.9)
SLidR ✓ ✓ 39.2 (+4.5)

Table 1. Ablation study on nuScenes semantic segmentation by
replacing (3) with a pixel-level contrastive loss (SLidR w/o super-
pix.) and then using strided convolution instead of dilated convo-
lution in ResNet-50 (PPKT†). The scores are obtained by linear
probing of the pre-trained backbone. We report the mIoU on our
mini-val split.

Training parameters. Unless mentioned otherwise, fθbck ,
hθhead and hωhead are trained on 1 GPU with SLidR for 50
epochs using SGD with a initial learning rate of 0.5, a mo-
mentum of 0.9, weight decay of 0.0001, dampening of 0.1,
and a cosine annealing scheduler that decreases the learning
rate from its initial value to 0 at the end of the 50th epoch.

Data augmentation. A key factor in the success of self-
supervision is the use of strong data augmentations [12, 22,
72]. We apply several augmentations detailed in the supple-
mentary material. In summary, on the point cloud side, we
apply a random rotation around the z-axis, flip randomly
the direction of the x and y-axis, and drop points that lie in
a random cuboid as in [72]. On the image side, we use a
random horizontal flip and a random crop-resize.

4.2. Baselines

To the best of our knowledge, this is the first work to
study image-to-Lidar self-supervised representation distil-
lation on autonomous driving data. Hence, we cannot rely
on existing baselines trained in this setup. In order to fairly
compare against strong baselines, a significant amount of
work was done to adapt and optimize existing pre-training
methods to our setup. In particular, we use 3 represen-
tative methods for 3D network pre-training as baselines:
PPKT [43], PointContrast [67], and DepthContrast [72].

PPKT for autonomous driving. The first baseline is
PPKT, which is also a 2D-to-3D representation distilla-
tion method, but based on a pixel-to-point contrastive loss.
Since PPKT was originally proposed for RGB-D data cap-
tured indoor and, up to now, there is no publicly released
code, we propose our best adaption of this method in an
autonomous driving setup, referred as PPKT†.

PointContrast. The second baseline is PointContrast [67],
which, rather than image-to-lidar distillation, learns 3D rep-
resentations with a contrastive task defined only at the level
of 3D points. We retrained PointContrast on nuScenes after
studying several setups to optimize its performance. This
method requires pairs of point clouds acquired from dif-
ferent viewpoints in the same scene with a list of match-

Initialization of fθbck

nuScenes [6] KITTI [3]

Lin. prob. Finetuning Finetuning
100% 1% 1%

Random 08.1 30.3 39.5
PointContrast† [67] 21.9 32.5 (+2.2) 41.1 (+1.6)
DepthContrast† [72] 22.1 31.7 (+1.9) 41.5 (+1.2)
PPKT† [43] 36.4 37.8 (+7.5) 43.9 (+4.4)
SLidR 38.8 38.3 (+8.0) 44.6 (+5.1)

Table 2. Comparison of different pre-training methods for seman-
tic segmentation by linear probing or finetuning. On nuScenes [6],
we use either 1% or 100% of the annotated training scans. On
SemanticKITTI [3], we use 1% of the annotated training scans.
We report the mIoU on the validation set of nuScenes and on the
sequence 8 of SemanticKITTI.

ing points in these two views. We use pairs of nuScenes’
keyframes in each scene and provide the details of the con-
struction of this dataset in the supplementary material. We
denote this adapted version PointContrast†.

DepthContrast. The last baseline is DepthContrast [72]
which pre-trains simultaneously two 3D network back-
bones, a point-based network, e.g., [51] and a voxel-based
network, e.g., [73], using a contrastive task between the
global point-cloud representations of the two networks. To
make it comparable with the rest of the methods, we used
the point-based network of [72] and used our sparse resid-
ual U-Net that processes occupancy map in cylindrical co-
ordinate as the voxel-based network. We only evaluate the
performance of this voxel-based network after pre-training.

Training setup. All the baselines are pre-trained on the
same nuScenes split as for SLidR, using 1 GPU, and after
tuning the hyperparameters for our min-val split, except for
DepthContrast for which the performance are significantly
improved when using 4 GPUs. We use the same data aug-
mentations, voxel-based 3D network backbone, and cylin-
drical coordinate voxels as in our method. More implemen-
tation details are provided in the supplementary material.

4.3. Transfer on Semantic Segmentation

We study the quality of the learned representations ob-
tained with SLidR and the baselines for semantic segmenta-
tion. We test the performance of these methods on nuScenes
[6], the dataset viewed during pre-training, but also test the
robustness to a domain change by using SemanticKITTI [3].
There are 16 semantic classes in nuScenes and 19 in Se-
manticKITTI. Except otherwise mentioned, the quality of
the models is evaluated on the original validation split of
nuScenes and on the sequence 8 of SemanticKITTI.

Evaluation settings. We use two evaluation protocols. In

Init. of fθbck 1% 5% 10% 25% 100%

Random 30.3 47.7 56.6 64.8 74.2

SLidR 39.0
(+8.7)

52.2
(+4.5)

58.8
(+2.2)

66.2
(+1.4)

74.6
(+0.4)

Table 3. Improvement of the performance thanks to SLidR for
semantic segmentation over a randomly initialized network as a
function of the percentage of available annotations on nuScenes.
We report the mIoU on the validation set of nuScenes.

both, we adapt the pre-trained 3D backbones fθbck for the
semantic segmentation task by adding a point-wise linear
classification head on their output. The first protocol eval-
uates the quality of the pre-trained features as they are, by
linear probing them. To that end, we only train the added
classification head on the nuScenes [6] dataset, while keep-
ing the pre-trained parameters of fθbck fixed. The second
protocol evaluates the ability of the pre-trained 3D repre-
sentations to learn to perform semantic segmentation in a
regime where only a small number of annotations is avail-
able. Therefore, in this protocol, we fine-tune the entire
network on the semantic segmentation task on nuScenes or
semanticKITTI [3] using only a portion of the available an-
notations. In both protocols, we use a linear combination of
the cross-entropy and the Lovász loss [4] as training objec-
tive. For few-shot semantic segmentation, we optimized the
fine-tuning learning rate for each method using our mini-val
split for nuScenes and 10 percent of the training set of se-
manticKITTI, which remained unused during few-shot fine-
tuning. Training details are provided in the supplementary
material.

4.3.1 Ablation Study

We first justify the use of dilated convolutions in the
ResNet-50 and of our superpixel-driven contrastive loss (3).
To that end, we train 3 networks with: (a) SLidR, (b) SLidR
without superpixels (i.e., using a point-to-pixel version of
(3)), and finally (c) SLidR without superpixels and with-
out the dilated convolution, which is our implementation of
PPKT†. We then test the quality of the trained backbone by
linear probing for semantic segmentation on nuScenes.

The results computed on our mini-val split are reported
in Tab. 1 and show that each of our technical contributions
improve the performance. We notice a gain of 1.9 point
thanks to the dilated convolutions and, most importantly, a
huge improvement of 4.5 point when combined with our
key ingredient: the superpixel-driven contrastive loss (3).

A complementary analysis of the sensitivity of SLidR to
the choice of the underlying superpixel algorithm is avail-
able in the supplementary material.

Init. of fθbck 5% 10% 20%

Random 56.1 59.1 61.6
PPKT† 57.8 (+1.7) 60.1 (+1.0) 61.2 (-0.4)
SLidR 57.8 (+1.7) 61.4 (+2.3) 62.4 (+0.8)

Table 4. Performance of pre-training methods for object detection
by fine tuning pre-trained networks using different percentages of
the annotated scans in the KITTI 3D object detection dataset [19].
Scores are average mAP across cars, pedestrians and cyclists.

4.3.2 Comparisons with Baselines

We compare SLidR with the baselines on the linear probing
setup on nuScenes and the few-shot end-to-end fine-tuning
setup using 1% of the available annotations on nuScenes
and SemanticKITTI. The results are reported in Tab. 2.

We observe that: (1) All pre-training methods are
better than random initialization. (2) PPKT† and our
SLidR, the methods based on image-to-Lidar distilla-
tion for pre-training, perform significantly better than the
DepthContrast† and PointContrast† approaches. This high-
lights the advantage of exploiting self-supervised image
pre-trained networks for learning 3D Lidar representations,
as we advocate in our work. (3) SLidR achieves better se-
mantic segmentation performance, especially on the linear
probing setup, which demonstrates the superiority of our
superpixel-driven method.

4.3.3 Annotation Efficiency on nuScenes

We continue by studying the performance of SLidR com-
pared to a training from a random initialization as function
of the percentage of annotated data for semantic segmenta-
tion on nuScenes. We fine-tune end-to-end the two exam-
ined networks using 1%, 5%, 10%, 25% or 100% of the
annotations on nuScenes, with learning rates optimized on
our mini-val split for each method and subset size.

The results are presented in Tab. 3 and show a constant
improvement over a training from a randomly initialized
backbone. The improvement is 0.4 point on the mIoU for
100% annotations and increases to up to 8.7 point as the
percentage of available annotations decreases.

4.4. Transfer for Few-Shot Object Detection

Here we evaluate the quality of our pre-trained Lidar rep-
resentations on the challenging downstream tasks of 3D ob-
ject detection on the KITTI dataset [19].

Experimental setup. We use OpenPCDet [58] in which
we modify the PointRCNN model by replacing the Point-
Net++ [51] backbone with our pre-trained backbone. This
model is fine-tuned on subsets of different sizes of the stan-
dard KITTI object detection dataset [19], which contains

Im
.f

ea
t.

si
m

.m
ap

Po
in

tf
ea

t.
si

m
.m

ap

Figure 3. We present the cosine similarity between the SLidR’s feature of a query point (displayed as a red dot) and: (a) the pixel features
of an image in the same scene (top row - Image feature similarity map); (b) the features of the other points projected in the same image
(bottom row - Point feature similarity map). The colormap goes from violet to yellow for respectively low and high similarity scores. We
show these maps for two scenes in the validation set of [6].

bounding boxes for cars, cyclists and pedestrians. The per-
formance are compared by computing the average mAP
over these three classes in the moderately difficult cases,
which are used to rank all methods on this dataset [19].

Fine-tuning protocol. We initialize the pre-trained back-
bone fθbck with SLidR, PPKT†, or using random weights.
For this experiments, fθbck have been pre-trained using 4
GPUs, a batch size of 16, a initial learning rate of 2, and
synchronized batch-norm layers for PPKT† and SLidR. The
networks are then fine-tuned on 4 GPUs with a batch size of
12 and the default settings of OpenPCDet. The learning rate
for fine-tuning is optimized for each subset of the KITTI ob-
ject detection dataset so as to maximize the performance of
the backbone initialized with random weights. We then use
the same learning rate for the other methods.

Results. The results are reported in Tab. 4. We remark that
SLidR gives a significant improvement of up to 2.3 points in
mAP over a situation where no pre-training is done. SLidR
also outperforms PPKT† with a gain of at least 1.2 point in
mAP at 10% and 20% of annotated data.

4.5. Visual Inspection

The feature similarity maps presented in Fig. 3 highlights
our pre-trained model’s object recognition and segmenta-
tion abilities, by showing how features are locally coherent
when they belong to the same object. In the leftmost scene,
the query point on the truck on the right side is highly cor-
related with points on the same truck as well as with points
on the truck on the left side. This indicates that our self-
supervised 3D features already allows distinction of objects
without fine-tuning. The same phenomenon is observed
with points on the traffic lights in the rightmost scene. Fur-
thermore, the nearly identical image and point feature sim-
ilarity maps illustrate the quality of the knowledge transfer.
Finally, we remark some spurious correlations on the road,

which indicate that SLidR might still be improved.

4.6. Technical Limitations

A first limitation might occur in low-light conditions as
the computed superpixels might provide irrelevant object
segments, impairing the performance of our method.

Another limitation occurs when the output image fea-
tures are similar between two superpixels, e.g, gc

1 ≈ gc
2,

as then, the contrastive loss will try to enforce a solution
where the superpoint feature f c

1 is correlated to gc
1 but un-

correlated to gc
2, which is impossible. While this issue is

common in contrastive self-supervised methods, the impact
is possibly a bit stronger here as the whole image backbone
g(·) is frozen, leaving less room for adjustments in these
situations. Addressing this limitation is left for future work.

5. Conclusion
We proposed SLidR, a self-supervised image-to-Lidar

distillation method working on synchronized Lidar and
camera data, as typically found in autonomous driving se-
tups. The key ingredient of our method is the use of super-
pixels to produce object-aware point representation suited
for, e.g., semantic segmentation and object detection. We
showed that SLidR yields powerful point cloud representa-
tions which transfer and generalize well to multiple tasks
and datasets, surpassing related state-of-the-art methods.

Acknowledgments. We thank Antonin Vobecky, David
Hurych, Josef Sivic and Patrick Pérez for their feedbacks
and the fruitful discussions around this project.

References
[1] R. Achanta, A. Shaji, Kevin Smith, Aurélien Lucchi, P. Fua,

and S. Süsstrunk. SLIC superpixels compared to state-of-
the-art superpixel methods. IEEE TPAMI, 34:2274–2282,
2012. 2, 4, 15

[2] Yuki M Asano, Christian Rupprecht, and Andrea Vedaldi.
Self-labelling via simultaneous clustering and representation
learning. In ICLR, 2020. 3

[3] Jens Behley, Martin Garbade, Andres Milioto, Jan Quen-
zel, Sven Behnke, Cyrill Stachniss, and Jurgen Gall. Se-
manticKITTI: A dataset for semantic scene understanding of
lidar sequences. In ICCV, pages 9297–9307, 2019. 1, 2, 6, 7

[4] Maxim Berman, Amal Rannen Triki, and Matthew B
Blaschko. The lovász-softmax loss: A tractable surrogate
for the optimization of the intersection-over-union measure
in neural networks. In CVPR, pages 4413–4421, 2018. 7

[5] Cristian Buciluǎ, Rich Caruana, and Alexandru Niculescu-
Mizil. Model compression. In SIGKDD, pages 535–541,
2006. 3

[6] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora,
Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan,
Giancarlo Baldan, and Oscar Beijbom. nuScenes: A mul-
timodal dataset for autonomous driving. In CVPR, pages
11618–11628, 2020. 2, 5, 6, 7, 8, 12, 13, 14

[7] Mathilde Caron, Piotr Bojanowski, Armand Joulin, and M.
Douze. Deep clustering for unsupervised learning of visual
features. In ECCV, pages 132–149, 2018. 3

[8] Mathilde Caron, Ishan Misra, J. Mairal, Priya Goyal, Pi-
otr Bojanowski, and Armand Joulin. Unsupervised learn-
ing of visual features by contrasting cluster assignments. In
NeurIPS, pages 9912–9924, 2020. 2, 3

[9] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,
Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerg-
ing properties in self-supervised vision transformers. In
ICCV, pages 9650–9660, 2021. 3, 12

[10] Haolan Chen, Shitong Luo, Xiang Gao, and Wei Hu. Unsu-
pervised learning of geometric sampling invariant represen-
tations for 3D point clouds. In ICCV, pages 893–903, 2021.
3

[11] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learning
of visual representations. In ICML, pages 1597–1607, 2020.
3

[12] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He.
Improved baselines with momentum contrastive learning.
arXiv:2003.04297, 2020. 3, 5, 6, 12

[13] Xinlei Chen and Kaiming He. Exploring simple siamese rep-
resentation learning. In CVPR, pages 15750–15758, 2021. 3

[14] Ye Chen, Jinxian Liu, Bingbing Ni, Hang Wang, Jiancheng
Yang, Ning Liu, Teng Li, and Qi Tian. Shape self-correction
for unsupervised point cloud understanding. In ICCV, pages
8382–8391, 2021. 3

[15] Christopher B. Choy, JunYoung Gwak, and Silvio Savarese.
4d spatio-temporal convnets: Minkowski convolutional neu-
ral networks. In CVPR, pages 3075–3084, 2019. 5

[16] Carl Doersch, Abhinav Gupta, and Alexei Efros. Unsuper-
vised visual representation learning by context prediction. In
ICCV, pages 1422–1430, 2015. 3

[17] Bi’an Du, Xiang Gao, Wei Hu, and Xin Li. Self-contrastive
learning with hard negative sampling for self-supervised
point cloud learning. In ACM MM, pages 3133–3142, 2021.
3

[18] Pedro F. Felzenszwalb and D. Huttenlocher. Efficient graph-
based image segmentation. IJCV, 59:167–181, 2004. 2, 12,
15

[19] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we
ready for autonomous driving? The KITTI vision benchmark
suite. In CVPR, pages 3354–3361, 2012. 2, 7, 8

[20] Kyle Genova, Xiaoqi Yin, Abhijit Kundu, Caroline Panto-
faru, Forrester Cole, Avneesh Sud, Brian Brewington, Brian
Shucker, and Thomas Funkhouser. Learning 3D semantic
segmentation with only 2D image supervision. In 3DV, pages
361–372, 2021. 1

[21] Spyros Gidaris, Andrei Bursuc, Nikos Komodakis, Patrick
Pérez, and Matthieu Cord. Learning representations by pre-
dicting bags of visual words. In CVPR, pages 6926–6936,
2020. 3

[22] Spyros Gidaris, Andrei Bursuc, Gilles Puy, Nikos Ko-
modakis, Matthieu Cord, and Patrick Pérez. OBoW: Online
bag-of-visual-words generation for self-supervised learning.
In CVPR, pages 6826–6836, 2021. 2, 3, 6

[23] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Un-
supervised representation learning by predicting image rota-
tions. In ICLR, 2018. 3

[24] Jean-Bastien Grill, Florian Strub, Florent Altch’e, C. Tal-
lec, Pierre H. Richemond, Elena Buchatskaya, Carl Doersch,
B. A. Pires, Z. Guo, M. G. Azar, Bilal Piot, K. Kavukcuoglu,
R. Munos, and Michal Valko. Bootstrap your own latent: A
new approach to self-supervised learning. In NeurIPS, pages
21271–21284, 2020. 2, 3

[25] Saurabh Gupta, Judy Hoffman, and Jitendra Malik. Cross
modal distillation for supervision transfer. In CVPR, pages
2827–2836, 2016. 3

[26] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimension-
ality reduction by learning an invariant mapping. In CVPR,
page 1735–1742, 2006. 3

[27] Kaveh Hassani and Mike Haley. Unsupervised multi-task
feature learning on point clouds. In ICCV, pages 8159–8170,
2019. 3

[28] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross
Girshick. Momentum contrast for unsupervised visual rep-
resentation learning. In CVPR, pages 9726–9735, 2020. 2,
3, 5

[29] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
pages 770–778, 2016. 5

[30] Olivier Henaff. Data-efficient image recognition with con-
trastive predictive coding. In ICML, pages 4182–4192, 2020.
3

[31] Olivier J. Hénaff, Skanda Koppula, Jean-Baptiste Alayrac,
Aaron van den Oord, Oriol Vinyals, and João Carreira. Effi-
cient visual pretraining with contrastive detection. In ICCV,
pages 10086–10096, 2021. 2, 3

[32] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the
knowledge in a neural network. In NeurIPSW, 2014. 3

[33] Ji Hou, Benjamin Graham, Matthias Niessner, and Saining
Xie. Exploring data-efficient 3d scene understanding with
contrastive scene contexts. In CVPR, pages 15587–15597,
2021. 3

[34] Ji Hou, Saining Xie, Benjamin Graham, Angela Dai, and
Matthias Nießner. Pri3D: Can 3D priors help 2D representa-
tion learning? In ICCV, pages 5693–5702, 2021. 3

[35] Jiabo Huang, Qi Dong, and Shaogang Gong. Unsupervised
deep learning by neighbourhood discovery. In ICML, pages
2849–2858, 2019. 3

[36] Siyuan Huang, Yichen Xie, Song-Chun Zhu, and Yixin Zhu.
Spatio-temporal self-supervised representation learning for
3D point clouds. In ICCV, pages 6535–6545, 2021. 3

[37] Maximilian Jaritz, Tuan-Hung Vu, Raoul de Charette, Emilie
Wirbel, and Patrick Pérez. xMUDA: Cross-modal unsuper-
vised domain adaptation for 3D semantic segmentation. In
CVPR, pages 12605–12614, 2020. 3

[38] Longlong Jing, Ling Zhang, and Yingli Tian. Self-supervised
feature learning by cross-modality and cross-view corre-
spondences. In CVPR, pages 1581–1591, 2021. 3

[39] Anoop Korattikara Balan, Vivek Rathod, Kevin P Murphy,
and Max Welling. Bayesian dark knowledge. In NeurIPS,
pages 3438–3446, 2015. 3

[40] Samuli Laine and Timo Aila. Temporal ensembling for semi-
supervised learning. In ICLR, 2017. 3

[41] Shamit Lal, Mihir Prabhudesai, Ishita Mediratta, Adam W.
Harley, and Katerina Fragkiadaki. CoCoNets: Continu-
ous contrastive 3D scene representations. In CVPR, pages
12487–12496, 2021. 3

[42] Hanxue Liang, Chenhan Jiang, Dapeng Feng, Xin Chen,
Hang Xu, Xiaodan Liang, Wei Zhang, Zhenguo Li, and Luc
Van Gool. Exploring geometry-aware contrast and cluster-
ing harmonization for self-supervised 3D object detection.
In ICCV, pages 3293–3302, 2021. 3

[43] Yueh-Cheng Liu, Yu-Kai Huang, HungYueh Chiang, Hung-
Ting Su, Zhe Yu Liu, Chin-Tang Chen, Ching-Yu Tseng, and
Winston H. Hsu. Learning from 2D: Pixel-to-point knowl-
edge transfer for 3D pretraining. arxiv:2104.04687, 2021. 3,
5, 6, 14

[44] Yunze Liu, Li Yi, Shanghang Zhang, Qingnan Fan,
Thomas A. Funkhouser, and Hao Dong. P4Contrast: Con-
trastive learning with pairs of point-pixel pairs for RGB-D
scene understanding. arxiv:2012.13089, 2020. 3

[45] Ishan Misra and Laurens van der Maaten. Self-supervised
learning of pretext-invariant representations. In CVPR, pages
6707–6717, 2020. 3

[46] Ishan Misra, Lawrence Zitnick, and Martial Hebert. Shuffle
and learn: unsupervised learning using temporal order veri-
fication. In ECCV, pages 527–544, 2016. 3

[47] Mehdi Noroozi and Paolo Favaro. Unsupervised learning of
visual representations by solving jigsaw puzzles. In ECCV,
pages 69–84, 2016. 3

[48] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Rep-
resentation learning with contrastive predictive coding.
arxiv:1807.03748, 2018. 3, 4

[49] Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor
Darrell, and Alexei Efros. Context encoders: Feature learn-
ing by inpainting. In CVPR, pages 2536–2544, 2016. 3

[50] Omid Poursaeed, Tianxing Jiang, Quintessa Qiao, Nayun
Xu, and Vladimir G. Kim. Self-supervised learning of point
clouds via orientation estimation. In 3DV, pages 1018–1028,
2020. 3

[51] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. PointNet++: Deep hierarchical feature learning on
point sets in a metric space. In NeurIPS, pages 5099–5108,
2017. 6, 7, 15

[52] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou,
Antoine Chassang, Carlo Gatta, and Yoshua Bengio. FitNets:
Hints for thin deep nets. In ICLR, 2015. 3

[53] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, Alexander C. Berg, and
Li Fei-Fei. ImageNet large scale visual recognition chal-
lenge. IJCV, 115(3):211–252, 2015. 3, 5

[54] Aditya Sanghi. Info3d: Representation learning on 3D ob-
jects using mutual information maximization and contrastive
learning. In ECCV, pages 626–642, 2020. 3

[55] Jonathan Sauder and Bjarne Sievers. Self-supervised deep
learning on point clouds by reconstructing space. In
NeurIPS, pages 12962–12972, 2019. 3

[56] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien
Chouard, Vijaysai Patnaik, Paul Tsui, James Guo, Yin Zhou,
Yuning Chai, Benjamin Caine, Vijay Vasudevan, Wei Han,
Jiquan Ngiam, Hang Zhao, Aleksei Timofeev, Scott Et-
tinger, Maxim Krivokon, Amy Gao, Aditya Joshi, Yu Zhang,
Jonathon Shlens, Zhifeng Chen, and Dragomir Anguelov.
Scalability in perception for autonomous driving: Waymo
open dataset. In CVPR, pages 2443–2451, 2020. 15

[57] Antti Tarvainen and Harri Valpola. Mean teachers are better
role models: Weight-averaged consistency targets improve
semi-supervised deep learning results. In NeurIPS, pages
1195–1204, 2017. 3

[58] OpenPCDet Development Team. OpenPCDet: An open-
source toolbox for 3D object detection from point clouds.
https://github.com/open-mmlab/OpenPCDet,
2020. 7

[59] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Con-
trastive representation distillation. In ICLR, 2020. 3

[60] Wouter Van Gansbeke, Simon Vandenhende, Stamatios
Georgoulis, and Luc Van Gool. Revisiting contrastive meth-
ods for unsupervised learning of visual representations. In
NeurIPS, 2021. 3

[61] Wouter Van Gansbeke, Simon Vandenhende, Stamatios
Georgoulis, and Luc Van Gool. Unsupervised semantic seg-
mentation by contrasting object mask proposals. In ICCV,
pages 10052–10062, 2021. 3

[62] Hanchen Wang, Qi Liu, Xiangyu Yue, Joan Lasenby, and
Matt J Kusner. Unsupervised point cloud pre-training via
occlusion completion. In ICCV, pages 9782–9792, 2021. 3

[63] Peng-Shuai Wang, Yu-Qi Yang, Qian-Fang Zou, Zhirong
Wu, Yang Liu, and Xin Tong. Unsupervised 3D learning
for shape analysis via multiresolution instance discrimina-
tion. In AAAI, pages 2773–2781, 2021. 3

https://github.com/open-mmlab/OpenPCDet

[64] Xinlong Wang, Rufeng Zhang, Chunhua Shen, Tao Kong,
and Lei Li. Dense contrastive learning for self-supervised
visual pre-training. In CVPR, pages 3024–3033, 2021. 3

[65] Zhirong Wu, Yuanjun Xiong, Stella Yu, and Dahua Lin. Un-
supervised feature learning via non-parametric instance-level
discrimination. In CVPR, pages 3733–3742, 2018. 3

[66] Junyuan Xie, Ross Girshick, and Ali Farhadi. Unsupervised
deep embedding for clustering analysis. In ICML, pages
478–487, 2016. 3

[67] Saining Xie, Jiatao Gu, Demi Guo, Charles R. Qi,
Leonidas J. Guibas, and Or Litany. PointContrast: Unsu-
pervised pre-training for 3D point cloud understanding. In
ECCV, pages 574–591, 2020. 1, 3, 5, 6, 15

[68] Zhenda Xie, Yutong Lin, Zheng Zhang, Yue Cao, Stephen
Lin, and Han Hu. Propagate yourself: Exploring pixel-level
consistency for unsupervised visual representation learning.
In CVPR, pages 16684–16693, 2021. 3

[69] Yuwen Xiong, Mengye Ren, Wenyuan Zeng, and Raquel
Urtasun. Self-supervised representation learning from flow
equivariance. In ICCV, pages 10191–10200, 2021. 3

[70] Ling Zhang and Zhigang Zhu. Unsupervised feature learning
for point cloud understanding by contrasting and clustering
using graph convolutional neural networks. In 3DV, pages
395–404, 2019. 3

[71] Richard Zhang, Phillip Isola, and Alexei Efros. Colorful im-
age colorization. In ECCV, pages 649–666, 2016. 3

[72] Zaiwei Zhang, Rohit Girdhar, Armand Joulin, and Ishan
Misra. Self-supervised pretraining of 3D features on any
point-cloud. In ICCV, pages 10252–10263, 2021. 1, 3, 5,
6, 13, 15

[73] Yin Zhou and Oncel Tuzel. VoxelNet: End-to-end learning
for point cloud based 3D object detection. In CVPR, pages
4490–4499, 2018. 6, 15

[74] Xinge Zhu, Hui Zhou, Tai Wang, Fangzhou Hong, Yuexin
Ma, Wei Li, Hongsheng Li, and Dahua Lin. Cylindrical and
asymmetrical 3D convolution networks for lidar segmenta-
tion. In CVPR, pages 9934–9943, 2021. 5

[75] Chengxu Zhuang, Alex Lin Zhai, and Daniel Yamins. Local
aggregation for unsupervised learning of visual embeddings.
In CVPR, pages 6001–6011, 2019. 3

Supplementary Material

A. Complementary Results 12
A.1. Visual Inspection 12
A.2. Choice of the Image Backbone 12
A.3. Choice of the Superpixels Method 12
A.4. Few-Shot Semantic Segmentation 13

B. Data Augmentations 13
C. Baselines’ Implementations Details 14

C.1. PPKT for Autonomous Driving. 14
C.2. PointContrast 15
C.3. DepthContrast 15

D. Additional Training Details 15
D.1. Linear Probing 15
D.2. Few-Shot Semantic Segmentation 15
D.3. Annotation Efficiency on nuScenes 16

E. nuScenes mini-val Split 16
F. Societal and Environmental Impact 16
G. Public Resources Used 16

A. Complementary Results

A.1. Visual Inspection

We present in Fig. 4 and Fig. 5 additional feature sim-
ilarity maps such as those presented in Fig. 3 in the main
paper. We continue to observe the segmentation ability of
our pre-trained model: a query point on a tree, road, vehi-
cle, bike is mostly correlated with other points or pixels on
trees, road, vehicles, bikes, respectively.

We also notice some spurious correlations with points
or pixels around the objects. These spurious correlations
seem more apparent in the image feature similarity maps.
This can be due to the reduced resolution of the image fea-
ture maps (1/4 in each spatial direction) or that the ResNet-
50 features are intrinsically imprecise near object bound-
aries, which prevent the network to learn accurate near ob-
ject edges in the 3D point cloud. Increasing the image res-
olution as well as adding additional constraints leveraging
the 3D structures observed in the point cloud can help us to
prevent such leakage in future works.

We also provide in the supplementary material a video il-
lustrating the capacity of our pre-trained model in doing se-
mantic segmentation on a sequence of point clouds, without
fine-tuning. The video is generated as follows. We choose
a scene from the validation set of nuScenes [6]. We collect
all the point features along with the class labels in the first
frame of the sequence. This set constitutes our annotated
database. We consider three classes: ‘vegetation’, ‘car’ and
‘pedestrian’. The points in the following frames are clas-
sified by using a binary k-NN classifier (k=20) for each of
these class. We display the predicted probability for each

Backbone gω̄bck Pretrain mIoU

ResNet-50 Full sup. 39.2
ResNet-50 MoCov2 [12] 39.2
ViT-S/16 DINO [9] 39.5

Table 5. Performance of SLidR on nuScenes semantic segmen-
tation with using different image backbone architectures or pre-
training methods. We consider two architectures, ResNet-50 or
ViT-S/16, and pretraining under full supervision on ImageNet or
by self-supervision (MoCov2, DINO). The scores are obtained by
linear probing of the pre-trained backbone. We report the mIoU
on our mini-val split.

class in all subsequent frames: red for ‘car’, blue for ‘pedes-
trian’, green for ‘vegetation’.1 We notice that we are able
to classify correctly several points in of each of the consid-
ered classes throughout the whole sequence. In particular,
we detect correctly pedestrians at the beginning of sequence
and cars at the end of the sequence. Some points are mis-
classified but we recall these results are obtained without
any fine-tuning of the backbone.

A.2. Choice of the Image Backbone

We present in Tab. 5 the performance reached with
SLidR on nuScenes semantic segmentation when using a
ResNet-50 pre-trained under full supervision on ImageNet
or under self-supervision using MoCov2. We notice that
there is no loss of performance because of the use of self-
supervision to pretrain gω̄bck .

We also report in the same table the performance ob-
tained when using a self-supervised transformer [9] as im-
age backbone. The performance is slightly higher than
when using a ResNet-50, showing that our method is
compatible with this type of image network architectures.
SLidR can exploit the higher capacity of transformers in
learning image representations, which can in turn yields
better 3D networks.

A.3. Choice of the Superpixels Method

We present in Tab. 6 the impact of the choice of the
number of superpixels or of the superpixels algorithm on
the performance of SLidR. For Felzenszwalb’s [18] method
(called FH), we used a scale parameter of 300, a gaussian
pre-processing of standard deviation 0.35 and a superpixels
minimal size of 4000 pixels, which yield at most 143 super-
pixels per image on nuScenes’ training set. For SLIC, we
tested 100, 150 or 200 superpixels per image. We see that it
is important to adjust the number of superpixels correctly to
avoid too much over-segmentation and under-segmentation
which both impact negatively the performance. The results

1A mix of these colors corresponds to predictions with non-zero prob-
ability in two or more of these classes.

Image feature similarity map Point feature similarity map

Figure 4. Cosine similarity between the SLidR’s feature of a query point (displayed as a red dot) and: (a) the pixel features of an image in
the same scene (left column - image feature similarity map); (b) the features of the other points projected in the same image (right column
- point feature similarity map). The colormap goes from violet to yellow for respectively low and high similarity scores. We show these
maps for two scenes in the validation set of [6].

in the main paper are obtained with SLIC and 150 superpix-
els per image. Finally, we notice that SLidR is less sensitive
to the choice of superpixel algorithm (e.g., using FH instead
of SLIC) once its parameters are set correctly.

A.4. Few-Shot Semantic Segmentation

We report in Tab. 7 and Tab. 8 the per-class perfor-
mance of SLidR and the different baselines when pretrain-
ing on 1% of the available annotations. We notice that
PPKT† and SLidR are the two best methods on the major-
ity of the classes with SLidR achieving the highest mIoU.
On nuScenes, SLidR is ranked first on 9 classes vs 6 for
PPKT†. On SemanticKITTI, SLidR is ranked first on 11 of

the classes vs 5 for PPKT†.

B. Data Augmentations

As mentioned in Sec. 4, we apply two sets of strong data
augmentations: the first on point clouds, the second on im-
ages. We highlight that implementing these augmentations
is not trivial as they impact the list of point-pixel correspon-
dences, which needs to be updated appropriately.

Regarding point clouds, we apply a random rotation
around the z-axis and flip the direction of the x and y-axis
with 50% probability for each axis. As in [72], we also
drop points that lie in an axis-aligned random cuboid. Con-
cretely, the cuboid center is placed on a randomly-selected

Image feature similarity map Point feature similarity map

Figure 5. Cosine similarity between the SLidR’s feature of a query point (displayed as a red dot) and: (a) the pixel features of an image in
the same scene (left column - image feature similarity map); (b) the features of the other points projected in the same image (right column
- point feature similarity map). The colormap goes from violet to yellow for respectively low and high similarity scores. We show these
maps for two scenes in the validation set of [6].

point in the point cloud P and the length of each side cov-
ers at most 10% of the range of point coordinates on the
corresponding axis. We make sure that this dropped cuboid
preserves at least 1024 pairs of points and pixels, otherwise
another new cuboid is selected.

The images are flipped horizontally 50% of the time, and
cropped-resized to 416 × 224. The random crop covers at
least 30% of the image area with a random aspect ratio be-
tween 14/9 and 17/9 before resizing. We make sure that
this random cropping preserves at least 1024 or 75% of the
pixel-point pairs, otherwise another crop is selected.

C. Baselines’ Implementations Details

C.1. PPKT for Autonomous Driving.

PPKT [43] was originally proposed for RGB-D data
captured indoor. As, up to now, there is no publicly re-
leased code, we propose our best adaption of this method
in an autonomous driving setup, referred as PPKT†. PPKT†

uses the same data augmentations, voxel-based 3D network
backbone, and cylindrical coordinate voxels as our method.

PPKT† is obtained by: using Q = M in Sec. 3, i.e.,
each superpixel contains one pixel; using strided convolu-
tions in the image backbone gω̄bck(·); the same image head
hωhead as ours but with a bilinear upsamling layer from a res-

Algorithm
None

SLIC [1] FH [18]

#Superpixels 100 150 200 ⩽143

mIoU 36.6 37.7 39.2 36.3 39.2

Table 6. Sensitivity of SLidR to the superpixel algorithms and su-
perpixel parameters. The semantic segmentation scores (mIoU)
are obtained by linear probing and computed on our nuScenes
mini-val split. We compare the performance of SLidR when using
(a) no superpixels; (b) SLIC [1] with different number of super-
pixels per image; and (c) the Felzenszwalb’s [18] algorithm (FH)
with parameters that produce at most 143 superpixels per image.

olution 1/32 in each spatial direction to the original size of
the input image. Furthermore, as computing the loss (3) is
intractable when considering all possible point-pixel pairs
P ∈ {(f c

m, gc
m) : c = 1, . . . , C, m = 1, . . . ,M}, a ran-

dom subset of P is selected to compute it. In practice, as
multiple scenes are available in a batch at train time, the set
P also contains the point-pixel pairs of all scenes in our im-
plementation. This sampling is not required in our method
thanks to the use of superpixels which reduces the number
of matching pairs. We use exactly the same parameters for
pre-training a network with PPKT† or SLidR.

The noticeable differences between PPKT and PPKT†

are the following:

1. the use of cartesian coordinates vs. cylindrical coordi-
nates for fθ;

2. direct pixel-point correspondences in RGB-D data vs
indirect correspondences computed via a projection
matrix in autonomous driving;

3. the absence of randomly drop cuboids in PPKT and
the absence of random rescaling and elastic distorsion
in PPKT†.

C.2. PointContrast

We retrained PointContrast [67] on nuScenes after study-
ing several setups to optimize its performance. PointCon-
trast requires pairs of point clouds acquired from different
viewpoints in the same scene with a list of matching points
in these two views. To provide a fair baseline, we tested
different strategies to create this training dataset. Among
the tested strategies, the best one consists in creating all
possible pairs of keyframes within a scene, then removing
pairs of point clouds which are less than 10 m apart, and re-
moving those which have less than 1024 pairs of matching
points.

The list of matching points in a pair of point clouds is
computed as follows. We first register both point clouds
using the ground truth pose of the Lidar. Then, for each

point in one point cloud, we search for the nearest point
in the second point cloud and consider that it is a pair of
matching points if the points are less than 10 cm apart.

PointContrast† is trained on 1 GPU, with a batch size of
8, using SGD with the same parameters as for SLidR, ex-
cept for a initial rate set at 1, and cosine annealing scheduler.
We selected the learning rate using our mini-val split in or-
der to optimize the performance of PointContrast†. As point
cloud augmentations, we used a random rotation around the
z-axis, random flip of the x or y-axis and dropped points in
cuboids whose sides cover at most 20% of the range of point
coordinates in each axis. Finally, one can note that the size
of the pre-training dataset is different for PointContrast† and
SLidR. For fairness, we set the number of iterations for pre-
training with PointContrast† as follows: we compute the to-
tal number of point clouds used in SLidR over the 50 train-
ing epochs and use the same number of pairs of point clouds
in PointContrast†.

C.3. DepthContrast

The last baseline is DepthContrast [72] which pre-trains
simultaneously two 3D network backbones, a point-based
network, e.g., [51] and a voxel-based network, e.g., [73],
using a contrastive task between the global point-cloud rep-
resentations of the two networks. Among the three base-
lines, it is the only one which has already been used on
a autonomous driving dataset: the Waymo Open Dataset
[56]. To make it comparable with the rest of the methods in
our study, we re-used the point-based network used in [72]
while changing the voxel-based network to the same sparse
residual U-Net that processes cylindrical coordinate vox-
els as in SLidR. After DepthContrast pre-training, we only
evaluate on the downstream tasks the voxel-based network.

We trained DepthContrast† on 1 GPU, with a batch size
of 8, using SGD with a momentum of 0.9, weight decay of
0.0001, and an initial learning rate of 0.001 (tuned on our
mini-val split) that drops to 10−6 with a cosine annealing
scheduler. We used queues of 60K negatives for the con-
trastive loss.

D. Additional Training Details
D.1. Linear Probing

In this experiment, the pretrained network fθ is com-
bined with a pointwise linear classification head which is
trained for 50 epochs with a learning rate of 0.05 for all
methods.

D.2. Few-Shot Semantic Segmentation

On SemanticKITTI, the networks are fine-tuned for 100
epochs and a batch size of 10. On nuScenes, we use a
batch size of 16 and for 100 epochs. We use different
learning rates on the classification head and the backbone

Method ba
rri

er
bi

cy
cl

e
bu

s

ca
r

co
ns

t.
ve

h.
m

ot
or

cy
cl

e
pe

de
str

ia
n

tra
ffi

c c
on

e
tra

ile
r

tru
ck

dr
iv.

su
rf.

ot
he

r fl
at

sid
ew

al
k

te
rra

in
m

an
m

ad
e

ve
ge

ta
tio

n
m

Io
U

Random 0.0 0.0 08.1 65.0 0.1 06.6 21.0 09.0 09.3 25.8 89.5 14.8 41.7 48.7 72.4 73.3 30.3
PointContrast† 0.0 1.0 05.6 67.4 0.0 03.3 31.6 05.6 12.1 30.8 91.7 21.9 48.4 50.8 75.0 74.6 32.5
DepthContrast† 0.0 0.6 06.5 64.7 0.2 05.1 29.0 09.5 12.1 29.9 90.3 17.8 44.4 49.5 73.5 74.0 31.7
PPKT† 0.0 2.2 20.7 75.4 1.2 13.2 45.6 08.5 17.5 38.4 92.5 19.2 52.3 56.8 80.1 80.9 37.8
SLidR 0.0 3.1 15.2 72.0 0.9 18.8 43.2 12.5 14.7 33.3 92.8 29.4 54.0 61.0 80.2 81.9 38.3

Table 7. Per-class performance on nuScenes using 1% of the annotated scans for fine-tuning. We report the IoU for each class and highlight
the best and second best scores with dark blue and light blue backgrounds, respectively.

Method ca
r

bi
cy

cl
e

m
ot

or
cy

cl
e

tru
ck

ot
he

r-v
eh

ic
le

pe
rs

on
bi

cy
cl

ist
m

ot
or

cy
cl

ist
ro

ad

pa
rk

in
g

sid
ew

al
k

ot
he

r-g
ro

un
d

bu
ild

in
g

fe
nc

e
ve

ge
ta

tio
n

tru
nk

te
rra

in
po

le

tra
ffi

c-
sig

n
m

Io
U

Random 91.2 00.0 09.4 08.0 10.7 21.2 00.0 00.0 89.4 21.4 73.0 01.1 85.3 41.1 84.9 50.1 71.4 55.4 37.6 39.5
PointContrast† 90.1 04.6 05.4 08.1 09.5 21.9 30.8 00.0 90.7 25.6 73.3 00.3 86.4 39.3 83.7 51.2 70.6 53.6 34.9 41.1
DepthContrast† 91.7 08.8 11.5 19.9 15.4 24.7 00.0 00.0 89.5 21.0 72.9 00.7 85.4 40.6 85.1 51.7 71.3 57.9 39.3 41.5
PPKT† 91.3 01.9 11.2 23.1 12.1 27.4 37.3 00.0 91.3 27.0 74.6 00.3 86.5 38.2 85.3 58.2 71.6 57.7 40.1 43.9
SLidR 92.2 03.0 17.0 22.4 14.3 36.0 22.1 00.0 91.3 30.0 74.7 00.2 87.7 41.2 85.0 58.5 70.4 58.3 42.4 44.6

Table 8. Per-class performance on SemanticKITTI using 1% of the annotated scans for fine-tuning. We report the IoU for each class and
highlight the best and second best scores with dark blue and light blue backgrounds, respectively.

fθ, except when the backbone is initialized with random
weights. We recall that these learning rates are optimized
for each method and each dataset, using our mini-val split
for nuScenes and the validation set for semanticKITTI.

D.3. Annotation Efficiency on nuScenes

As in the previous section, we use different learning rates
on the classification head and the backbone fθ and optimize
these learning rates for each method and each subset size,
using our mini-val split. The network is fine-tuned for 100
epochs when using 1% of annotated data and 50 epochs for
the other percentages.

E. nuScenes mini-val Split
The training set of nuScenes contains 700 scenes in total,

including:

• 137 raining scenes,

• 84 night-time scenes,

• 310 scenes in Singapore,

• 390 scenes in Boston.
We construct our mini-val split by selecting 100 scenes

from this training set so that it contains each type of scenes
in the same proportion. Our mini-val split contains:

• 20 raining scenes,

• 12 night-time scenes,

• 44 scenes in Singapore,

• 56 scenes in Boston.
We will provide the list of selected scenes along with the
implementation of SLidR.

F. Societal and Environmental Impact
Self-supervision enables the use of large and uncurated

datasets with performance often increasing with the dura-
tion of the training schedule and the size of the model, at
the cost of using much more computational resources with
possibly negative environmental impacts. Yet, pre-trained
models also reduce the training time needed on multiple
downstream tasks, hence reducing the environmental cost
of training downstream models. In fact, we distribute our
pre-trained models.

G. Public Resources Used
We acknowledge the use of the following public re-

sources, during the course of this work:
• KITTI object detection CC BY-NC-SA 3.0

• MinkowskiEngine . MIT License

• nuScenes . CC BY-NC-SA 4.0
• nuScenes-devkit Apache License 2.0
• OpenPCDet Apache License 2.0
• Pytorch Lightning Apache License 2.0
• Semantic KITTI CC BY-NC-SA 4.0

	1 . Introduction
	2 . Related Works
	2.1 . Self-Supervised Representation Learning
	2.2 . Knowledge Distillation

	3 . Our approach
	3.1 . Image-to-Lidar Self-supervised Distillation
	3.2 . Superpixel-driven Contrastive Distillation Loss
	3.3 . The Devil is in the Image Projection Head

	4 . Experiments
	4.1 . 3D Network Pre-training
	4.2 . Baselines
	4.3 . Transfer on Semantic Segmentation
	4.3.1 Ablation Study
	4.3.2 Comparisons with Baselines
	4.3.3 Annotation Efficiency on nuScenes

	4.4 . Transfer for Few-Shot Object Detection
	4.5 . Visual Inspection
	4.6 . Technical Limitations

	5 . Conclusion
	A . Complementary Results
	A.1 . Visual Inspection
	A.2 . Choice of the Image Backbone
	A.3 . Choice of the Superpixels Method
	A.4 . Few-Shot Semantic Segmentation

	B . Data Augmentations
	C . Baselines' Implementations Details
	C.1 . PPKT for Autonomous Driving.
	C.2 . PointContrast
	C.3 . DepthContrast

	D . Additional Training Details
	D.1 . Linear Probing
	D.2 . Few-Shot Semantic Segmentation
	D.3 . Annotation Efficiency on nuScenes

	E . nuScenes mini-val Split
	F . Societal and Environmental Impact
	G . Public Resources Used

