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Abstract  

 

This study aimed to estimate the plant density of early straw cereal crops with 

spectral reflectance for high-throughput phenotyping. Spectral reflectance were 

collected in microplot experiments from different sites, between 1-leaf to 3-leaf growth 

stages and with different density treatments. Plant density was estimated indirectly from 

spectral reflectance using green fraction (GF) as a proxy. The GF values were extracted 

from RGB images captured at the same time as the spectral measurements. The results 

show that the estimation with a 45° observation angle with local calibration on different 

sites and different growth stages had better accuracy (RMSE=82 plants/m
2
, 

rRMSE=0.33) than the others. The band-choosing process showed that using only 4 

bands as input resulted in a better balance between model accuracy and simplicity 

compared to using hundreds of bands. 

 

Keywords: plant density; spectral reflectance; spectral resolution; green fraction (GF). 

 

Introduction 

 

Plant density is a fundamental factor for crop management, and there are at least 

three reasons: plant density can affect the final yield (Valério et al., 2013); knowing 

plant density at early stages can help make decisions of field management; and the plant 

density is a base trait for crop phenotyping. 

Many methods have been developed to estimate the density of straw plants in the 

early stages, with either RGB images or spectral data. These methods can be divided 

into four categories: (a) segmentation of green pixels and further analysis; (b) deep 

learning methods used on images; (c) architectural analysis of plants; (d) spectral 

methods. Among all these four categories, the spectral methods had lower accuracy but 

could have higher throughput than the others on homogeneous crop fields, because the 

other methods usually used high-spatial-resolution images. The 45° observation angle 

was used in other studies because the projected area of plants could be larger, and the 

small plants were better recognized (Jin et al., 2017; Liu et al., 2017). The 0° and 45° 

view angles were thus compared in this study. 

In this work, spectral reflectance was used to estimate plant density, using GF as a 

proxy. GF was chosen as the proxy because the relationship between reflectance and GF 

has been well-studied (Baret et al., 2007; Gitelson et al., 2002), and the relationship 

between GF and plant density should be proportional when the plants are of similar 

sizes and have little overlap (Wilke et al., 2021). 



 

 

 

Materials and methods 

 

Field experiments and measurements 

Microplot experiments were conducted in 2021 and 2022 in five sites in France 

(Avignon, Salin-de-Giraud, Gardanne, Greoux-les-Bains, and Mauguio), and one site in 

China (Nanjing) ( 

Table 1). The size of each microplot was 1 m * 1.4 m in Avignon, Salin-de-Giraud, 

Gardanne, and Nanjing, while it was 2 m * 12 m in Greoux-les-Bains and 1.36 m * 8 m 

in Mauguio. These sites had different soil types with different colours. Both dry soil and 

wet soil were included in the experiments. Three density treatments were set in Avignon, 

Nanjing, Gardanne, and Salin-de-Giraud. This design resulted in different density 

values ranging from 37 to 535 plants/m
2
, and most density values were between 100 and 

450 plants/m
2
 ( 

Table 1). In Avignon, the plants were sown earlier (September) than in the other 

sites, where more classical sowing dates were used (from October to January). Various 

cereal crop species (soft wheat, durum wheat, barley, and rye) were considered, as 

extreme cases of different straw cereal crop cultivars, to explore the possible effects of 

plant structure on density estimation.  

For each location and sowing date, the actual plant density was measured manually 

at the first date of measurements, and several measurements of spectral and RGB data 

were made between the one-leaf stage and the three-leaf stage (Table 1). Spectral 

reflectance measurements were made with the SM-3500 spectrometer (Spectral 

Evolution, Inc. North Andover, MA 01845 USA), with 737 bands ranging from 343 to 

2517 nm. RGB images were collected with digital cameras. In France, a Sony Alpha 

5100 camera (Sony, Inc. Minato, Tokyo, Japan.) with 24M pixels, and a 45 mm focal 

length (in 35 mm equivalent focal length) was used to collect RGB images, and the 

spatial resolutions of images were between 0.19 and 0.3 mm at the ground level. In 

China, a Sony RX0 camera with 15M pixels, and a 24 mm focal length (in 35mm 

equivalent focal length) was used, and the spatial resolutions of images were between 

0.25 and 0.5 mm at the ground level. Both the 0° view angle and the 45° view angle 

were used in the measurements. 

 

Regression methods 

GF was used as a proxy in the two-step estimation. In the first step, a gaussian 

process regression (GPR) model was used to estimate GF from spectral reflectance. The 

GF values extracted from the deep-learning segmentation of RGB images (GF_rgb) 

were used as ground truth to calibrate this model (Madec, 2022; Serouart et al., 2022). 

In the second step, a linear regression model going through the origin was calibrated, 

taking the estimated GF values as input, and giving plant density values as output. 

In both estimation steps, five-fold cross-validation was used in most cases, and 

leave-one-out cross-validation was used when the dataset was too small. The cross-

validation was repeated ten times and the mean result was calculated, to reduce the 

uncertainty related to the random division of datasets. 

 

Choosing the influential factors and the bands 

An ablation study was performed to find out whether the factors of different 

species, different growth stages, and different sites affected the two relationships of 



 

 

spectra-GF and GF-density. Sub-models were calibrated with or without differentiating 

these factors, and overall accuracy values were compared. If the accuracy value 

significantly increases (or the error significantly decreases) after differentiating one 

factor, it means that the factor is influential. This ablation study was performed using 

NIR-RE-R-G-B bands’ values as input (842, 717, 668, 560, and 475 nm) for more 

clarity. 

After identifying the most influential factors and the optimal partitioning for model 

calibration, forward band selection was implemented, using AICc (Burnham and 

Anderson, 2004) as the criteria which considers both the accuracy and parsimony of the 

model. This process was only applied to spectra-GF estimation. 140 candidate bands 

were chosen from all 737 bands in 10 nm intervals to speed up the band selection. The 

band selection started with no band as input. In each loop, the model chose one best 

band as input from candidate bands, and the “best” band was determined by the lowest 

AICc value of the model. During this procedure, the AICc values of different models 

were recorded. These recorded AICc values were compared at last to find out the best 

number of bands as input. When a comparison between two sets of models was needed, 

the two sum-AICc values of the two sets were compared. 

 

Table 1 Location, date, and species of the experiment. “2.5 leaves” means that the third 

leaf is not fully expanded, and the third leaf length is about 50% of the second leaf 

length. 

location and sowing 

date 

species Values of densities 

(#plant/m2) 

number of leaves  

(date of 

measurements) 

Avignon, France. 

2021/9/23 

soft wheat, durum 

wheat, barley 

~170; ~340; ~500 1.0 (2021/10/2),  

2.0 (2021/10/8),  

3.0 (2021/10/15) 

Nanjing, China. 

2021/11/5 

soft wheat, rye, 

barley 

37~330 1.0 (2021/11/22),  

2.0 (2021/12/3),  

3.0 (2021/12/17) 

Greoux-les-Bains, 

France. 

2021/10/28 

soft wheat, durum 

wheat, barley 

~250 1.5 (2021/11/18),  

2.5 (2021/11/29) 

Gardanne, France. 

2021/11/19 

soft wheat, durum 

wheat, barley 

~150; ~300; ~450 1.5 (2021/1/3),  

1.8 (2021/1/11), 

3.0 (2021/2/9) 

Salin-de-Giraud, 

France. 

2021/11/22 

soft wheat, durum 

wheat, barley 

50~400 1.0 (2021/12/20) 

1.8 (2021/1/4) 

Mauguio, France. 

2021/11/19 

soft wheat ~300 3.0 (2022/1/7) 



 

 

Mauguio, France. 

2022/1/14 

soft wheat ~300 1.5 (2022/2/18) 

 

Results and discussion 

 

Ablation study on the effect of different factors 

For the spectra-GF estimation, the ablation study showed the importance of 

differentiating sites in modelling (Table 2). The strong influence of different sites on the 

spectra-GF relationship should be because of the difference in soil types and soil 

colours since the soil greatly impacted the canopy reflectance in the early stages of crop 

growth. 

For the GF_rgb-density estimation, the result is more subtle. Although it had the 

best accuracy to differentiate all three factors (species, stage, and site), it did not mean 

that all three factors were of the same importance. Differentiating the stage factor and 

the site factor already had relatively good accuracy, and these two factors showed a 

larger impact than the species factor. Further exploration of the images showed that the 

stage factor and the site factor both affected the architecture of the plant, thus the size of 

the projected area and finally the GF values. This could change the GF_rgb-density 

relationship. On the contrary, the species factor showed a limited impact.  

As a result, the following spectra-GF estimation models were site-specific, and the 

GF-density estimation models were site-specific and stage-specific. 

 

Table 2 Comparison of factor combinations for spectral estimation of GF 

(Spectra→GF) and density estimation based on GF_rgb (GF_rgb→Density). In the 

Factor-combinations, “Diff-Spc” means “differentiate species”, “Diff-Stg” means 

“differentiate growth stages”, and “Diff-Site” means “differentiate sites”. The rRMSE 

values were calculated on the total results of each sub-model. 

Factor Combinations Average rRMSE values in cross-validation 

(rRMSE_cv, mean±std) 

Diff-Spc Diff-Stg Diff-Site Spectra→GF GF_rgb→Density 

0° 45° 0° 45° 

√ √ √ 0.49 0.43 0.23 0.19 

√ √ × 0.53 0.53 0.44 0.42 

√ × √ 0.40 0.34 0.50 0.39 

√ × × 0.51 0.43 0.60 0.52 

× √ √ 0.34 0.33 0.28 0.22 

× √ × 0.38 0.38 0.49 0.49 

× × √ 0.29 0.26 0.52 0.40 

× × × 0.44 0.38 0.63 0.59 

 

Choosing the bands with AICc for spectra-GF estimation 

Figure 1 indicated that using 4 bands as input was the best for spectra-GF 

estimation, in both 0° and 45° view. This selection was determined by the AICc criteria. 

If fewer than four bands were used, the estimation could be less accurate. On the other 

hand, if more than four bands were used, any improvement in accuracy was not worth 

the loss of parsimony in the model.  

The chosen bands contained a band close to red (~690 nm) and a band close to red-



 

 

edge or near-infrared (~760 nm) for either 0° or 45° view angles (Table 3). These 

choices were similar to other studies on GF estimation (Baret et al., 1995; Gitelson et al., 

1996; Liu et al., 2008), showing the capability of this band selection procedure. 

However, some chosen bands were rarely used by other studies in GF estimation, such 

as 397, 1504, and 1791 nm. These bands should be treated with caution because they 

could come from some random error in the procedure, such as the random splitting of 

dataset in cross-validation. 

A comparison was made between the 0° and 45° observation angles, and 45° was 

chosen (Table 3). Although the 0° observation had lower RMSE values, that was 

because of the lower GF values in the nadir view, and the relative error (rRMSE) of the 

GF estimation was higher. Since the GF values were used as the input of GF-density 

estimation, the lower rRMSE values were more important and 45° was thus chosen.  

 

 
Figure 1 Forward band selection from 140 bands with AICc (without cross-

validation). The models were calibrated for each site. For 0°-view, chosen bands were 

684, 759, 832, and 1504 nm. For 45°-view, chosen bands were 398, 695, 759, and 1791 

nm. 

 

Table 3 GF estimation accuracy from models calibrated for each site, with different 

input bands. The cross-validation was replicated ten times. 

 

Observation 

angle 
wavelengths (nm) 

RMSE  

(mean ± std) 

rRMSE 

(mean ± std) 

0° 684, 759, 832, 1504 0.014 ± 0.001 0.29 ± 0.03 

45° 397, 695, 759, 1791 0.023 ± 0.003 0.25 ± 0.03 

 

Plant density estimation 

The result of the plant density estimation is shown in Figure 1, after the local 

calibration based on the ablation study (Table 2), and with the chosen bands from the 

band-selection procedure (Figure 1). The RMSE of the estimation was 82 plants/m
2
 and 

the relative error (rRMSE) was 32.6 %. This error was higher than those obtained in 

other studies based on high-spatial-resolution images, i.e., usually a relative error value 

of around 10 % (Gnädinger and Schmidhalter, 2017; Jin et al., 2017; Liu et al., 2017; 

Liu et al., 2020; Wu et al., 2019). 



 

 

Two reasons could explain the lower accuracy of this study. The first reason was 

the large variety in the dataset complicated the relationships, while the other studies 

usually had fewer sites or fewer growth stages. For example, some studies required the 

observation to be in a specific growth stage to have a better estimation(Jin et al., 2017; 

Liu et al., 2017), while in this study the large variety revealed the importance of local 

calibration. The local calibration was based on growth stage and site and shared the 

same idea with Liu et al. (2018) and Wilke et al. (2021). The second reason was the use 

of high-spatial-resolution images in other studies greatly improved their accuracy. 

Methods from thresholding to deep learning benefited from higher spatial resolution, 

fewer mixed pixels, and the removal of soil pixels. On the contrary, the mining of high-

spectral-resolution data remains to be studied. 

One important advantage of spectral estimation is the potential in throughput. The 

spectral estimation will not degrade too much on a homogeneous plot when the pixels 

become coarser, while the methods based on high-spatial-resolution images were 

sensitive to the size of pixels (Jin et al., 2017).  

  
Figure 1 Scatter plot for density estimation. The prediction models were site-

specific and stage-specific, and the prediction values for the whole dataset were put 

together in this plot. The scatter plots correspond to one of the ten replicated 

calibrations. 

 

Conclusion 

 

Local calibration and band selection enabled the estimation of straw plant density 

with spectral reflectance data in different sites and species, in early growth stages 

between the 1-leaf stage and the 3-leaf stage. The accuracy of the two-step estimation 

was moderate (RMSE=82 plants/m
2
, rRMSE=0.326). Differentiating sites improved the 

spectra-GF estimation while differentiating sites and growth stages were important in 

the GF-density estimation. Band selection using AICc criteria showed that using four 

bands as input was better than using hundreds of bands, because using more bands can 

cause the model to lose parsimony and increase the risk of overfitting. Although the 

accuracy of the spectral method is lower than methods based on high-spatial-resolution 

images, the potential of high throughput makes the spectral method promising in 



 

 

practical use. 
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