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In photosynthetic organisms the energy of the illuminating light is absorbed by the antenna complexes and
transmitted by the excitons to the reaction centers (RCs). The energy of light is either absorbed by the RCs,
leading to their “closing” or is emitted through fluorescence. The dynamics of the light absorption is described
by a simple model developed for exciton migration that involves the exciton hopping probability and the exciton
lifetime. During continuous illumination the fraction of closed RCs x continuously increases, and at a critical
threshold xc, a percolation transition takes place. Performing extensive Monte Carlo simulations, we study the
properties of the transition in this correlated percolation model. We measure the spanning probability in the
vicinity of xc, as well as the fractal properties of the critical percolating cluster, both in the bulk and at
the surface.

DOI: 10.1103/PhysRevE.103.052103

I. INTRODUCTION

In living organisms the conversion of (sun)light to chemi-
cal energy is performed during photosynthesis. In this process
the absorption of photons takes place at the antenna com-
plexes, followed by funneling the excitation energy (exciton)
to a specially organized dimer P in the reaction centers (RCs)
[1]. During the chemical reaction P → P+, when the RC
becomes “closed,” the energy of the exciton is transferred to
chemical energy [2–4]. Another exciton visiting the closed RC
can be redirected to an open RC, and the exciton is able to
visit several RCs during its lifetime. The search for utilization
of excitons by photochemistry (charge separation) competes
with loss by fluorescence emission. To describe theoretically
this complicated cooperative process several simplified mod-
els have been introduced and studied [5–12].

In the first class of models homogeneous distribution of the
closed (and open) RCs is assumed together with a small set
of reaction rates [12,13]. Within this Joliot-Lavergne-Trissl
model, the time dependence of the concentrations of P+ is
obtained by solving a set of ordinary differential equations.
However, recent experiments [14] on the time dependence
of the fluorescence yield show important deviations from the
predictions of this standard theory. In a second class of mod-
els the exciton migration is treated in a more accurate way
[9,15–19]. The disadvantage of these models is that numerical
methods are needed to solve the equations, and the final results
are often not directly related to measurable observables.

Recently, one of us proposed a simple model to describe
the migration of the excitons and the closure of the RCs [14].
(Hereafter we refer to it as the exciton migration (EM) model.)
This model goes beyond the homogeneous kinetic model and
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accounts for the local topology of the RC lattice as well as
the bunching effect of the closed RCs during light excitation
(induction). The EM model was solved analytically using
various reasonable approximations (standard mean-field, lat-
tice mean-field, and cluster mean-field methods) and made
comparing the theoretical predictions with the experiments
possible.

Despite its possible experimental relevance, the EM model
also has several theoretical challenges. One of those is the
question of the structure of the closed RCs. During induction
the fraction of closed RCs, denoted by x, is continuously
increasing with time t . The bunching of closed RCs is man-
ifested in the nonvanishing form of the near-site connected
correlations, which was studied in Ref. [14]. With increasing
time, i.e., with increasing value of x, the typical size of clus-
ters of closed RCs increases, and at a critical concentration
xc, a percolation transition takes place. In this paper we ask
how the parameters of the model (the hopping probability
p and the lifetime of the exciton n) affect the properties of
the percolation transition. We perform extensive Monte Carlo
(MC) simulations and calculate the spanning probability for
different boundary conditions and spanning rules, and in this
way we determine the value of the percolation threshold xc

and the correlation length critical exponent ν. At the critical
point the fractal properties of the giant cluster are studied, both
in the bulk and at the surface.

The rest of the paper is organized in the following way.
The model and its known properties are introduced in Sec. II.
Results of MC simulations are presented in Sec. III and dis-
cussed in Sec. IV.

II. EXCITON MIGRATION MODEL

To define the EM model for photosynthetic bacteria we use
the concept of photosynthetic units (PSUs) [5]. In a simplified
picture each PSU has a reaction center and a light-harvesting
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FIG. 1. Illustration of the processes between an exciton (repre-
sented by a wavy line) and an RC. (a) If the RC is open (represented
by an open circle), it will become closed (represented by a solid
circle). (b) If the RC is closed, the exciton is redirected with prob-
ability p, or its energy is dissipated by emission of a fluorescence
quantum (represented by pF) with probability (1 − p).

antenna. In the EM model the PSUs are assumed to occupy the
sites of a lattice: i = 1, 2, . . . , N . For simplicity, the lattice is
expected to be regular, with a coordination number z, and in
the present case we consider the square lattice. To each RC
a two-state variable σi = {0, 1} is assigned, with σi = 0 for
the open RC and σi = 1 for the closed RC. The control pa-
rameter of the process is the fraction of closed RCs, which is
defined as x = 〈σ 〉 = limN→∞ 1/N

∑N
i=1 σi and will be called

occupancy in the following. The control parameter is time
dependent, x = x(t ), and monotonously increases with t . At
the starting point all RCs are open, and thus, x(0) = 0; after
sufficiently long time all RCs became closed, x(t ) = 1 for
t > t∗.

A. Relaxation process

In the relaxation process we start from a fully closed state,
and after a sufficient period of time, a fraction of the RCs
(1 − x) will spontaneously reopen. Using an appropriate weak
probing light beam, the dynamics of the system can be studied
in this case, too. The structure of the closed RCs is different
in induction and in relaxation. In the latter process the closed
sites are uncorrelated [like in ordinary (inverse) percolation],
but in induction there is bunching of near-staying closed sites.
This difference in the structure of the closed RC clusters leads
to a hysteresis in the fluorescence spectrum, as demonstrated
recently in Ref. [14]. In this paper in the following we restrict
ourselves to the induction process.

B. Induction process

In induction, if an incoming exciton hits an open RC it will
become closed [see Fig. 1(a)]. If, however, the exciton hits
a closed RC, two processes can take place. With probability
p, the exciton is redirected to a neighboring RC, or with
probability (1 − p) the energy of the exciton is dissipated
by emission of a fluorescence quantum [see Fig. 1(b)]. If
the exciton is redirected from a closed RC, the processes in
Fig. 1 are repeated until the lifetime of the exciton. This means
that it can visit at most n closed RCs during this wandering.
Regarding the exciton wandering, we assume that the exciton
can jump to only the nearest neighbors, and it can also visit
the same closed RC several times.

FIG. 2. Illustration of the processes yielding fluorescence. First
line: one-step process with the contribution (1 − p)G1. Second line:
two-step process with the contribution (1 − p)pG2. Third line: n-step
process with the contribution pn−1Gn since the energy of the exciton
is radiated with probability 1. Gk are multisite correlation functions
of closed RCs, which are defined in the text. Note that for k � 3 step
walks the same closed RC can be visited several times.

C. Fluorescence yield

The fluorescence yield ϕ is the sum of the contributions
of k = 1, 2, . . . , n step exciton walks, as illustrated in Fig. 2.
This is given by

ϕ =
n−1∑

k=1

(1 − p)pk−1Gk + pn−1Gn (1)

in terms of the multisite correlation functions Gk . They
are the fraction of such k-step random walks which visit
(nearest-neighbor) closed RCs and will be approximated in
the following paragraphs [see Eqs. (3), (4), and (5)].

Evidently, the case n = 1 or p = 0 is special, in which
the exciton is not redirected from a closed RC and the fluo-
rescence yield is given simply as ϕ = G1 = 〈σ 〉 = x. In this
case the structure of clusters follows uncorrelated percolation.
However, for n > 1 (and p > 0) the multisite correlations are
nonzero, Gk �= 0, k > 1, and there are correlations between
the sites of the clusters.

The dynamics of closing the open RCs follows from the
fact that all incoming photons that are not emitted through
fluorescence will reduce the number of open RCs. Thus, the
time dependence of x follows the rule

dx

dt
= 1 − ϕ, (2)

where the photochemical rate constant (time-scaling factor) is
set kI = 1.

D. Analytical methods

In an analytical treatment to integrate the equation in
Eq. (2) one needs to use some approximation for the multisite
correlation functions. In Joliot theory standard mean-field
approximation is used:

Gk ≈ xk, n → ∞, (3)

so that the exciton can hop to any site and its lifetime is
unlimited.

The local topology of the lattice, as well as the finite
lifetime of the exciton, is taken into account in the lat-
tice mean-field approximation, in which case the multisite
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correlation functions are written in the form

Gk ≈
k∑

j=2

c(k)
j x j . (4)

Here c(k)
j zk−3 is the number of (k � 2)-step random walks

which have visited 2 � j � k different sites, where the walker
arrives at the lattice in the first step. For a square lattice with
z = 4 the first few terms of c(k)

j zk−3 are given in Ref. [14].
This approximation is expected to be correct in the relaxation
process.

In induction the bunching of closed RCs is important,
which is taken into account in the cluster mean-field ap-
proximation. In this case the multisite correlation functions
are approximated in terms of two-site functions, x2, and the
density, x, as

Gk ≈
k∑

j=2

c(k)
j

x j−1
2

x j−2
, (5)

and x2 was calculated analytically in Ref. [14].

E. Monte Carlo simulations

In this paper the time evolution of x and the structure of
the closed RC clusters are studied through MC simulations.
The RCs are considered to sit on sites of square lattices of
size L × L with L = 2l , l = 7, 8, . . . , 14, and both free and
periodic boundary conditions are used. The external light
source is expected to emit one photon per time step at discrete
times: t = τ, 2τ, . . . , mτ, . . . , and immediately, one exciton
starts to move from a randomly selected position of the lattice.
Following the rules in Fig. 1, the exciton takes at most n
steps, during which at most one open RC will be closed. We
record the order parameter x(t ) and the structure of the closed
RC clusters, for which the Hoshen-Kopelman algorithm [20]
is used. Particular attention is paid to the properties of the
largest cluster. For each size the results are averaged over
104 independent realizations. Since the algorithm involves
the neighbors of a site, the boundary condition has to be
chosen before starting the construction of the sample. This
is in contrast to the traditional percolation process (which is
the case for n = 1 or p = 0), where the boundary condition is
necessary only to analyze the samples.

III. RESULTS OF THE PERCOLATION TRANSITION IN
THE EM MODEL MODEL

As the fraction of closed RCs x increases, connected clus-
ters are formed. These clusters are characterized by a typical
mass (number of closed RCs) m(x) and a typical linear size
ξ (x); both monotonously increase with x. At a critical value,
x = xc, a giant cluster is formed, and its size becomes diver-
gent as ξ (x) ∼ (xc − x)−ν , with ν being the correlation length
critical exponent [21]. At the critical point the giant cluster is
a fractal, its mass is related to its linear size as m(xc) ∼ ξ d f ,
and d f is the fractal dimension. The fractal structure of the
giant cluster is illustrated in Fig. 3.

Above the percolation threshold, x > xc, the giant cluster
contains a finite fraction of sites, P(x) > 0, which behaves in

FIG. 3. Illustration of the fractal structure of the giant cluster for
n = 3 and p = 0.5 at an occupancy x = 0.589, slightly above the
percolation threshold (see Table I) for L = 256. Sites in the bulk are
shown in red (dark gray), sites at the perimeter are indicated in green
(light gray), and the hull is composed of the black and green (light
gray) sites.

the vicinity of the transition point as P(x) ∼ (x − xc)β , with a
critical exponent β, the value of which follows from scaling
theory [21] as β = (d − d f )ν. In 2d traditional percolation
the critical exponents are [21]

ν = 4/3, d f = 91/48, β = 5/36. (6)

We note that several other processes belong to this universality
class, such as invasion percolation [22]. Here we aim to study
the percolation transition of the EM model and to compare its
properties with those of traditional percolation.

A. Spanning probability and critical threshold

We start to estimate the value of the percolation threshold
through the calculation of the spanning probability [23–31]
R(x, L), which is the probability that in a given realization
with an occupancy x there is a connected cluster, which
spans (or percolates) a finite system of linear size L. In

TABLE I. Critical threshold values for different parameters. For
traditional site percolation (p = 0 or n = 1) we have xc = 0.5927460
[32,33]. In parentheses the proportion of closed sites which have
been closed directly is indicated.

n = 2 n = 3 n = 10

p = 0.1 0.5908 (0.972) 0.5908 (0.971) 0.5908 (0.971)
p = 0.5 0.5843 (0.881) 0.5845 (0.867) 0.5845 (0.861)
p = 0.9 0.5794 (0.813) 0.5796 (0.779) 0.5817 (0.746)
p = 1 0.5785 (0.798) 0.5800 (0.759) 0.5836 (0.712)
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FIG. 4. Spanning probability of the EM model with p = 0.5 and
n = 2 on the square lattice with open boundary conditions having
the rule R1 for different linear sizes L = 64, 128, . . . , 16 384, top to
bottom. The crossing point of the curves defines the critical point,
xc = 0.5843, where R1(xc, ∞) ≈ 0.5. In the inset the scaling col-
lapse of the points averaged through duality (see text) is plotted in
terms of the variable in Eq. (7).

the thermodynamic limit the spanning probability behaves
as limL→∞ R(x < xc, L) = 0 and limL→∞ R(x > xc, L) = 1,
while at the transition point it has a universal value. For finite
systems in the vicinity of the transition point the appropriate
scaling combination is [21]

x̃ ∼ (x − xc)L1/ν, (7)

and the scaling functions depend on the shape of the system,
boundary conditions, and spanning rules but not on the micro-
scopic details of the lattice.

Here we use open boundary conditions, in which case three
spanning rules have been defined [24,25], which are denoted
by R0, R1, and R2. For R0 the cluster spans the box either
horizontally or vertically; for R1 it spans the lattice in one
given direction (say, horizontally), and for R2 it spans the box
in both directions. For traditional percolation on the square
lattice in addition there are duality relations [24,25,31]:

R1(x̃) + R′
1(x̃′) = 1,

R0(x̃) + R′
2(x̃′) = 1, (8)

where the primed quantities are for the dual lattice, for which
x̃′ = −x̃.

In our numerical work we have calculated the spanning
probability of the EM model for different parameters p > 0
and n > 1 having rules R1 and R2. As an illustration we
show in Fig. 4 R1(x, L) for p = 0.5 and n = 2. The curves for
different sizes cross each other at about the same point, which
defines an estimate for the critical threshold, xc = 0.5843, and
a value for the critical spanning probability, R1(xc,∞) ≈ 0.5.
The measured critical threshold is somewhat lower than for
traditional site percolation, having xc = 0.5927460 [32,33],
but R1(xc,∞) agrees with the universal value of traditional
percolation: R1(xc,∞) = 1/2, which follows from duality
and has been calculated through conformal invariance [27].
Using the estimate for xc, the points calculated at different
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FIG. 5. Spanning probability of the EM model with p = 0.9 and
n = 10 on the square lattice with open boundary conditions having
the rule R2 for different linear sizes L = 64, 128, . . . , 16 384, top to
bottom. The crossing point of the curves defines the critical point,
xc = .5817, where R2(xc, ∞) ≈ 0.32. In the inset the scaling col-
lapse of the points is shown in terms of the variable in Eq. (7).

sizes can be put to a scaling curve in terms of the variable
in Eq. (7), in which the correlation-length critical exponent
for traditional percolation in Eq. (6) is used (not shown). We
have also checked the possible validity of the duality relation
in the first equation of Eq. (8), and in the inset of Fig. 4 we
plot the quantity {R1(x − xc, L) + [1 − R1(xc − x, L)]}/2 as a
function of the scaling variable x̃ in Eq. (7). As seen in this
inset, the duality relation is seemingly valid for the EM model,
and assuming its validity, the estimate for the critical threshold
could be made more accurate: xc = 0.58432.

To illustrate the use of the spanning rule R2 we show in
Fig. 5 the spanning probabilities for p = 0.9 and n = 10 and
for different finite sizes. In this case the crossing point of the
curves leads to the estimate xc = 0.5817, and the measured
value of the critical spanning probability, R2(xc,∞) ≈ 0.32,
agrees well with the conformal result: 0.3223 [29]. Using the
estimate for xc, the points calculated at different sizes can be
put to a scaling curve in terms of the variable in Eq. (7), in
which the correlation-length critical exponent for traditional
percolation in Eq. (6) is used (see the inset in Fig. 5).

Repeating the calculation for another set of parameters of
the EM model, similar results are obtained. The critical thresh-
old values are found to depend (weakly) on the parameters, but
the critical values of the spanning probability are found to be
universal for a given class of the spanning rule. The xc values
are collected in Table I, together with the fraction of points in
the critical cluster which have been closed directly. At a fixed
value of n > 1 the critical threshold monotonously decreases
with increasing p, and the same is true for the fraction of
directly closed points. On the other hand, at a fixed value of
0 < p � 1 the n dependence of xc is nonmonotonous; it has
the minimum at n = 2.

B. Fractal dimensions of the critical cluster

The scaling properties of the spanning probability in the
previous section indicate that the EM model probably belongs
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log scale. The slope of the straight lines through the points have the
fractal dimensions of traditional percolation in Eqs. (6) and (10).

to the universality class of traditional percolation. Both the
values of the critical spanning probability and the correlation
length critical exponent support this assumption. Here we
check this point further and calculate the fractal dimension
of the critical cluster, both in the bulk and at the surface.

In order to determine the bulk fractal dimension d f , we
have calculated the average mass of the critical cluster m(L)
for finite systems of linear size L, which is expected to scale
asymptotically as m(L) ∼ Ld f . In Fig. 6 we plot m(L) as a
function of L in log-log scale for the EM model with p = 0.5
and n = 2. As seen in Fig. 6, the points are almost perfectly
on a straight line, the slope of which is compatible with the
fractal dimension of traditional percolation in Eq. (6).

Regarding the surface properties of the critical cluster, two
quantities are usually studied, the hull and the perimeter [21]
(see Fig. 3 for an illustration). The hull contains sites on the
cluster that neighbor open sites, which are connected to the
outside. On the contrary, accessible external perimeter sites of
the cluster are those points which can be hit by an extended
diffusing particle from outside with nonzero probability. The
average number of sites on the hull and at the perimeter are
denoted by h(L) and s(L), respectively. We have calculated
both quantities for the EM model with p = 0.5 and n = 2,
and they are plotted vs L in log-log scale in Fig. 6. As seen in
Fig. 6 the points of both quantities are on straight lines, so we
have asymptotic power-law relations:

h(L) ∼ Ldh , s(L) ∼ Lds . (9)

In addition the measured slopes of the straight lines are in
agreement with the known values of the fractal dimensions

for traditional percolation [34]:

dh = 7/4, ds = 4/3. (10)

IV. DISCUSSION

In this paper we examined the properties of percolation
clusters formed by closed photosynthetic units of photo-
synthetic bacteria during light emission. The process was
described in the context of an exciton migration model in
which nearby sites of the clusters are closed in a correlated
manner. This model contains two parameters, the exciton
hopping probability p and the exciton lifetime n. After the
sample has been illuminated, the fraction of closed sites x(t )
increases in time, and the typical (linear) size and mass of
the clusters increase, too. At a critical occupancy xc, a giant
cluster is formed, and a percolation transition takes place.

In this paper the EM model was considered on the square
lattice, and the properties of the percolation transition were
studied through MC simulations for different values of the
parameters. The critical percolation threshold was calculated
by studying the spanning probability for open (and periodic)
boundary conditions and for different spanning rules, R1 and
R2. The xc values were found to vary weakly on the parame-
ters, and the same is true for the proportion of directly closed
sites (see Table I). On the other hand, the critical spanning
probability was found to be universal: for a given boundary
condition and a spanning rule its value is independent of the
parameters of the model and corresponds to the exactly known
values for (uncorrelated) traditional percolation.

From the finite-size scaling behavior of the spanning prob-
ability in the vicinity of the critical point the correlation length
critical exponent ν was extracted, and its value was also found
to be compatible with that of traditional percolation. We also
studied the fractal properties of the critical cluster, in the bulk
at the perimeter and in the hull. In each case the corresponding
fractal dimensions were found to be universal; their values are
compatible with the known respective values for traditional
percolation.

To summarize the effect of correlations caused by the
exciton migration was found to be irrelevant in the critical
properties of the percolation transition of the EM model. Con-
sequently, these correlations are sufficiently short ranged, and
they do not influence the asymptotic large scale correlations
in the system. This result is found to be true for both bulk and
surface correlations. Similar conclusions are expected to hold
for other types of lattices as well as at higher dimensions.
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