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The unsteady hydrodynamic drag exerted on an oscillating sphere near a planar wall is addressed
experimentally, theoretically, and numerically. The experiments are performed by using colloidal-
probe Atomic Force Microscopy (AFM) in thermal noise mode. The natural resonance frequencies
and quality factors are extracted from the measurement of the power spectrum density of the probe
oscillation for a broad range of gap distances and Womersley numbers. The shift in the natural
resonance frequency of the colloidal probe as the probe goes close to a solid wall infers the wall-
induced variations of the effective mass of the probe. Interestingly, a crossover from a positive to
a negative shift is observed as the Womersley number increases. In order to rationalize the results,
the confined unsteady Stokes equation is solved numerically using a finite-element method, as
well as asymptotic calculations. The in-phase and out-of-phase terms of the hydrodynamic drag
acting on the sphere are obtained and agree well to the experimental results. All together, the
experimental, theoretical, and numerical results show that the hydrodynamic force felt by an
immersed sphere oscillating near a wall is highly dependent on the Womersley number.

Key words: Fluid mechanics, nanofluidics, colloidal-probe Atomic Force Microscopy (AFM).

1. Introduction
The motion of particles in a fluid is one of the central problems in fluid mechanics, across

many scales. The hydrodynamic drag force exerted by the fluid on the particles is the fundamental
quantity that dictates the motion. Applications include the sedimentation of synthetic entities, the
swimming of biological microorganisms (see Wang & Ardekani 2012; Wei et al. 2019, 2021;
Redaelli et al. 2022), blood flows (see Ku 1997), peristaltic pumping (see Shapiro et al. 1969),
microfluidic flows (see Dincau et al. 2020), Brownian motion at short times (see Felderhof 2005;
Mo & Raizen 2019), etc... At small Reynolds number, while the steady, bulk, Stokes’ drag force
exerted on a translating sphere is well known, addressing further the transient contributions is
more intricate – even though the implications of such effects are potentially numerous.

For an isolated spherical particle with radius 𝑅 translating in a viscous liquid at velocity 𝑽,
the bulk drag force 𝑭 at small Reynolds number is given by the Basset-Boussinesq-Oseen (BBO)
expression (see Basset 1888; Maxey & Riley 1983; Lovalenti & Brady 1993; Landau & Lifshitz

† Email address for correspondence: thomas.salez@cnrs.fr
‡ Email address for correspondence: abdelhamid.maali@u-bordeaux.fr



2

1987):

𝑭 = −6𝜋𝜂𝑅𝑽 − 6𝑅2√𝜋𝜌𝜂
∫ 𝑡

−∞

1
√
𝑡 − 𝜏

d𝑽
d𝜏

d𝜏 − 2𝜋𝜌𝑅3

3
d𝑽
d𝑡

, (1.1)

where 𝜌 and 𝜂 are the density and dynamic viscosity of the viscous liquid, respectively. The right-
hand side of the latter equation includes three terms successively: a Stokes viscous force, a Basset
memory term, and an added-mass term. The Basset force originates from the diffusive nature of
vorticity within the unsteady Stokes equation, and the added-mass force can be interpreted as
an inertial effect due to the displaced fluid mass. Equation (1.1) provides a good description of
particle dynamics in a large variety of particle-laden and multi-phase flows, as long as the particle
Reynolds number is small (see Balachandar & Eaton 2010).

Nevertheless, the effect of nearby solid boundaries on the unsteady drag is still an open
question. The canonical situation is that of an immersed sphere oscillating near a planar rigid
surface. Some asymptotic expressions of the drag in the large-distance limit have been derived
recently, by using a point-particle approximation together with the method of images (Felderhof
2005, 2012; Simha et al. 2018), or by using low or high frequency expansions of the unsteady
Stokes equations (Fouxon & Leshansky 2018). However, theoretical descriptions of the confined
limit, i.e. where the sphere is in close proximity to the surface, are scarce. We thus aim here at
investigating the unsteady drag, in the full spatial range from bulk to confinement, by combining
numerical simulations, asymptotic calculations and colloidal-probe Atomic Force Microscopy
(AFM) experiments.

AFM colloidal-probe methods and their Surface Force Apparatus (SFA) analogues, have been
first introduced in the 1990’s in order to measure molecular interactions (e.g. electrostatic, van der
Waals, ...) between surfaces (see Butt 1991; Ducker et al. 1991; Butt et al. 2005). Recently, these
methods have been extended and used to study flow under micro-to-nanometric confinement, e.g.
near soft (see Leroy & Charlaix 2011; Leroy et al. 2012; Villey et al. 2013; Guan et al. 2017;
Zhang et al. 2022) or capillary interfaces (see Manor et al. 2008; Vakarelski et al. 2010; Manica
et al. 2016; Maali et al. 2017; Wang et al. 2018; Bertin et al. 2021), using complex fluids (see
Comtet et al. 2017a,b, 2019), or to measure the friction at solid-liquid interfaces (see Cottin-
Bizonne et al. 2003; Maali et al. 2008; Cross et al. 2018), and electrohydrodynamic effects (see
Liu et al. 2018, 2015; Zhao et al. 2020; Rodrı́guez Matus et al. 2022), etc... More specifically,
for dynamic colloidal AFM measurements, a micron-size spherical colloidal probe is placed in
a viscous fluid, in the vicinity of a surface, with a probe-surface distance 𝐷. Then, the probe is
driven to oscillate without direct contact, via either acoustic excitation or thermal noise. The force
exerted on the sphere is inferred from the colloidal motion, trough the cantilever’s deflection,
which allows to extract specific information on the confined surfaces or fluid properties. We point
out that other experimental techniques were used to probe the bulk streaming flow around an
oscillating sphere at finite Reynolds numbers, like particle visualization techniques (Kotas et al.
2007; Otto et al. 2008), and optical tweezers (Bruot et al. 2021).

If the typical angular frequency of the flow is 𝜔, then the vorticity diffuses on a typical distance
𝛿 ∼

√︁
𝜂/(𝜌𝜔) called the viscous penetration length. The dynamic force measurements are usually

restricted to low Reynolds numbers, low probing frequencies, and to the confined regime where
𝐷 ≪ 𝑅. In such a case, the penetration length is large, the flow is mainly located in the confined
fluid layer, it is purely viscous and quasi-steady, and the lubrication theory holds (see Reynolds
1886; Leroy & Charlaix 2011). Consequently, in all the above examples, the fluid inertial effects
are disregarded in the analysis of the measured hydrodynamic force. However, when the colloidal
probe oscillates at high frequencies, the penetration depth 𝛿 becomes smaller and comparable to
the characteristic length scale of the flow. Thus, unsteady effects become important (see Clarke
et al. 2005). The relevant dimensionless number to characterize the crossover to such a regime
is the Womersley number Wo = 𝑅

√︁
𝜔/𝜈, the square of which corresponds to the ratio between
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Figure 1. Schematics of the system. A borosilicate sphere with radius 𝑅 is glued at the end of an AFM
cantilever, and thermally fluctuates within a viscous liquid and near a mica substrate, with a distance
𝐷 between the sphere and the substrate. The sphere and the mica surfaces are denoted as S0 and Sw,
respectively.

the typical diffusion time scale 𝑅2/𝜈, and the period of the oscillation. Inertial effects should
be predominant when it takes more time for the velocity field to diffuse than for the sphere to
oscillate, i.e. Wo > 1. In such a situation, the hydrodynamic force exerted on the sphere is not
only a viscous lubrication drag, but it also contains contributions due to the fluid inertia, which
were partly studied in previous works (see Sader 1998; Benmouna & Johannsmann 2002; Clarke
et al. 2005; Devailly et al. 2020).

The article is organized as follows. In Sec. 2, we introduce the experimental method of thermal
noise AFM and present the typical experimental results. We show that, as the distance to the
wall is reduced, the natural frequency increases for low Womersley numbers but decreases for
high Womersley numbers. In contrast, the dissipation monotonically increases with decreasing
distance for all Womersley numbers. In order to rationalize the results, in Sec. 3, we compute
the hydrodynamic drag force in terms of added mass and dissipation, in the asymptotic limit
of large distance, and we perform a detailed calculation in the Low-Womersley limit using the
Lorentz reciprocal theorem. Furthermore, a finite-element method is employed to obtain the full
numerical solution in all regimes. Finally, the experimental, theoretical and numerical results
are summarized and compared in Sec. 4. Mainly, the variation of the resonance frequency is
rationalized by the change of the effective mass with distance and Womersley number.

2. Experiments
2.1. Colloidal-probe AFM setup

A schematic of the experimental system is shown in Fig. 1(a). A borosilicate sphere (MOSci
Corporation, radius 𝑅 = 27 ± 0.5 𝜇m) is glued (Epoxy glue, Araldite) to the end of an AFM
cantilever (SNL-10, Brukerprobes), and located near a planar mica surface. The cantilever stiffness
𝑘c = 0.68± 0.05 N/m is calibrated using the drainage method proposed by Craig & Neto (2001).
The experiments were performed using an AFM (Bruker, Dimension3100) in three different
liquids, i.e water, dodecane and silicone oil, whose densities and dynamic viscosities are 1000
kg/m3, 1 mPa · s, 750 kg/m3, 1.34 mPa · s and 930 kg/m3, 9.3 mPa · s, respectively, at room
temperature. The probe-surface distance 𝐷 was controlled by an integrated stage step motor.
Each separation distance was adjusted by displacing the cantilever vertically using the step motor
with precision in position < 0.1 𝜇m. The probe’s deflection was directly acquired using an analog
to digital (A/D) acquisition card (PCI-4462, NI, USA) with a sample frequency of 200 kHz. The
vertical position of the probe was observed to fluctuate due to thermal noise, as discussed in the
following section. The amplitude of the sphere’s fluctuation remains smaller than ∼ 1 nm in all
the experiments.
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2.2. Confined thermal dynamics
The time-dependent position of the probe is denoted 𝑍 (𝑡). We suppose that the probe dynamics

can be modelled by a forced harmonic oscillator, as:

𝑚∞ ¥𝑍 + 𝛾∞ ¤𝑍 + 𝑘c𝑍 = 𝐹th + 𝐹int, (2.1)

where 𝑚∞ is the effective mass of the probe in the bulk, and where 𝛾∞ is the bulk damping
coefficient. These two coefficients correspond to the free dynamics of the probe far from the
surface, and can thus be obtained by measuring the resonance properties of the AFM probe in
the far field, as shown below. Besides the elastic restoring force by the cantilever of stiffness 𝑘c,
and in the absence of conservative forces (e.g. van der Waals or electrostatic forces), the two
main forces acting on the sphere along the 𝑧 direction are the random thermal force 𝐹th and the
hydrodynamic interaction force with the wall 𝐹int. The latter corresponds to the deviation of the
hydrodynamic drag with respect to the bulk drag force.

Taking the Fourier transform of Eq. (2.1), we find:

−𝑚∞𝜔
2 𝑍̃ + 𝑖𝜔𝛾∞ 𝑍̃ + 𝑘c 𝑍̃ = 𝐹̃th + 𝐹̃int, (2.2)

where 𝑓 (𝜔) = 1
2𝜋

∫ ∞
−∞ d𝑡 𝑓 (𝑡)𝑒−𝑖𝜔𝑡 is the Fourier transform of the function 𝑓 (𝑡). The real and

imaginary parts of 𝐹̃int correspond to an inertial force and a dissipative force, respectively, that
can be recast into:

𝐹̃int = 𝑚int𝜔
2 𝑍̃ − 𝑖𝜔𝛾int 𝑍̃ , (2.3)

where𝑚int and 𝛾int are the wall-induced variations of the effective mass and dissipation coefficient.
For the sake of simplicity, we neglect in the following the possible frequency dependencies of
𝑚int and 𝛾int. With this assumption, and injecting Eq. (2.3) into Eq. (2.2), the probe’s motion
follows a thermally-forced harmonic oscillator dynamics with a spring constant 𝑘c, an effective
damping coefficient 𝛾 ≡ 𝛾∞ + 𝛾int and an effective mass 𝑚 ≡ 𝑚∞ + 𝑚int. For the latter problem,
one can then derive the one-sided power spectral density 𝑆(𝜔) ≡ 2⟨|𝑍̃ (𝜔) |2⟩, as:

𝑆(𝜔) =
2⟨|𝐹th |2⟩/(𝑚2𝜔4

0)[
1 −

(
𝜔

𝜔0

)2
]2

+
(

𝜔

𝜔0𝑄

)2
=

2𝑘B𝑇/(𝜋𝑄𝑚𝜔3
0)[

1 −
(
𝜔

𝜔0

)2
]2

+
(

𝜔

𝜔0𝑄

)2
, (2.4)

where ⟨·⟩ denotes the ensemble average, 𝑘B𝑇 is the thermal energy, 𝜔0 =
√︁
𝑘c/(𝑚∞ + 𝑚int) is the

natural angular frequency, and 𝑄 = (𝑚∞ + 𝑚int)𝜔0/𝛾 is the quality factor. The second equality
in Eq. (2.4) is obtained by using the correlator of the noise ⟨𝐹th (𝑡)𝐹th (𝑡′)⟩ = 2𝛾𝑘B𝑇𝛿D (𝑡 − 𝑡′),
where we assumed a white noise through the Dirac distribution 𝛿D , and where we invoked the
fluctuation-dissipation theorem to set the amplitude of the noise. The experimental power spectral
densities are fitted by the function (Honig et al. 2010; Bowles et al. 2011):

𝑆(𝜔) = 𝑐1[
1 −

(
𝜔

𝜔0

)2
]2

+
(

𝜔

𝜔0𝑄

)2
+ 𝑐2, (2.5)

where 𝜔0 and 𝑄 are the key adjustable parameters indicating the position and the width of the
resonance, and where 𝑐1 and 𝑐2 are unimportant extra parameters allowing to accommodate for
potential spurious experimental offset and/or prefactor.

2.3. Power spectral density
Fig. 2 displays the power spectral densities for probes immersed in dodecane or silicone oil

(water was employed as well, but the similar results are not shown here), and for a variety of
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Figure 2. Experimental power spectral densities in arbitrary unit [a.u.], for the colloidal probe’s vertical
position, in dodecane (left) and silicone oil (right), for various probe-wall distances as indicated. The curves
are shifted vertically for clarity. The solid lines show the best fits to the damped harmonic oscillator model,
using Eq. (2.5).

probe-wall distances. A well-defined peak can be observed for each spectrum, indicating the
fundamental resonance. The resonance properties are well described by the damped harmonic
oscillator model above. The largest probe-wall distance (𝐷 = 100 𝜇m) corresponds to nearly 4
times the sphere radius, so that the hydrodynamic interactions between the probe and the wall can
be neglected. At such distances, the bulk resonance frequency 𝜔∞

0 =
√︁
𝑘c/𝑚∞ and bulk quality

factor 𝑄∞ = 𝑚∞𝜔∞
0 /𝛾∞ are extracted from the fitting procedure, giving respective values of

7070± 5 Hz and 3.3± 0.1 in dodecane and 5320± 5 Hz and 1.3± 0.1 in silicone oil. In the more
viscous fluid (silicone oil), the resonance is broader since the dissipation is larger, as expected.
Also, in both liquids, we observe that the resonance is broader as the sphere gets closer to the hard
wall, which indicates that the near-wall dissipation is larger as compared to the bulk situation, as
expected too. Besides, and interestingly, the natural frequency appears to depend on the viscosity
of the ambient fluid, highlighting the fact that the effective mass is not trivial. Moreover, the
natural frequency depends on the probe-wall distance.

To be quantitative, the fitted values of the natural frequency 𝜔0 and the quality factor 𝑄 are
shown in Fig. 3 as functions of the normalized separation distance 𝐷/𝑅, for the three liquids
studied. Intriguingly, we observe an increase of the natural frequency in silicone oil near the
wall as compared to the bulk resonance frequency (Fig. 3(a)), and a corresponding decrease in
dodecane (Fig. 3(c)) and water (Fig. 3(e)). We point out that the probe-wall distances in the present
experiments are large enough (𝐷 > 0.5 𝜇m), so that molecular interactions (e.g. electrostatic
or van der Waals forces) can be safely neglected. Therefore, the changes in natural frequency
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Figure 3. Natural frequency 𝜔0/(2𝜋) (blue dots) and quality factor 𝑄 (orange dots) of the normal mode
of the colloidal AFM probe as a function of dimensionless probe-wall distance 𝐷/𝑅. The dashed lines
represent the natural frequencies and quality factors calculated by Eq. (4.3) and Eq. (4.4), respectively
without adjustable parameter. Panels (a,b) show the results for silicone oil (𝜂 = 9.3 mPa · s, 𝜌 = 930 kg/m3),
with a squared Womersley number of Wo2 = 2.4. Panels (c,d) show the results for dodecane (𝜂 = 1.34 mPa · s,
𝜌 = 750 kg/m3), with Wo2 = 18.1. Panels (e,f) show the results for water (𝜂 = 1 mPa · s, 𝜌 = 1000 kg/m3),
with Wo2 = 31.7.

observed here should only result from hydrodynamic contributions. The following section aims
at modeling this intricate behaviour.

3. Theory
3.1. Governing equations

We aim here at calculating the hydrodynamic force exerted on an immersed sphere moving
normally near a rigid, flat and immobile wall. The amplitude of thermal oscillations in the
experiments is nanometric, which implies a relatively small Reynolds number for all accessible
frequencies. Therefore, we can neglect the convective term of the incompressible Navier-Stokes
equations. Nonetheless, the typical resonance frequency is in the kHz range, such that the squared
Womersley number Wo2 = 𝑅2𝜔/𝜈 is in the 1-50 range. As a consequence, we expect inertial
effects to be important. The fluid velocity field 𝒗 thus satisfies the unsteady incompressible Stokes
equations:

𝜌𝜕𝑡𝒗 = −∇𝑝 + 𝜂∇2𝒗, ∇ · 𝒗 = 0 , (3.1)
where 𝑝 is the hydrodynamic pressure field. Without loss of generality, the sphere’s position
is supposed to oscillate normally to the substrate at a frequency 𝜔, and with an amplitude 𝐴,
which correspond to a given Fourier mode of the full fluctuation spectrum. Applying the Fourier
transform to the unsteady incompressible Stokes equations, we get:

𝑖𝜌𝜔𝒗̃ = −∇𝑝 + 𝜂∇2 𝒗̃, ∇ · 𝒗̃ = 0. (3.2)

A no-slip condition is assumed at both the wall and the sphere surfaces, denoted by Sw and S0
respectively (see Fig. 1 (b)), leading to the following boundary conditions for the fluid velocity
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field:
𝒗̃(𝒓 ∈ S0) = 𝑖𝜔𝐴𝒆𝑧 , 𝒗̃(𝒓 ∈ Sw) = 0 , (3.3)

with 𝒆𝑧 the unit vector in the 𝑧-direction. The hydrodynamic drag force applied on the sphere is
given by:

𝑭̃ =

∫
S0

𝒏 · 𝝈̃ dS0, (3.4)

where 𝝈̃ = −𝑝I + 𝜂
[
∇𝒗̃ + (∇𝒗̃)𝑇

]
is the fluid stress tensor, and 𝒏 denotes the unit vector normal

to S0 oriented towards the fluid. To the best of our knowledge, there is no closed-form solution
of the problem, in contrast with the steady case (see Brenner (1961)).

By symmetry, the drag force is directed along the 𝑧 direction, i.e. 𝑭̃ = 𝐹̃𝑧𝒆𝑧 . Using dimensional
analysis, and assuming that the oscillation amplitude 𝐴 is much smaller than 𝐷, one can
show that the drag force 𝐹̃𝑧 normalized by the bulk Stokes reference −6𝑖𝜋𝜂𝑅𝐴𝜔, to form the
dimensionless drag force 𝑓𝑧 = 𝐹̃𝑧/(−6𝑖𝜋𝜂𝑅𝐴𝜔), depends only on two dimensionless parameters:
i) the Womersley number Wo, and ii) the sphere-wall distance relative to the sphere radius
𝐷/𝑅. As a consequence, the dimensionless hydrodynamic interaction force (see Section 2.2 and
Eq. (2.3)) reads:

𝐹̃int
6𝑖𝜋𝜂𝑅𝐴𝜔

= 𝑓𝑧 (𝐷/𝑅 → ∞,Wo) − 𝑓𝑧 (𝐷/𝑅,Wo) = (𝑚int𝜔
2 − 𝑖𝜔𝛾int) 𝑍̃

6𝑖𝜋𝜂𝑅𝐴𝜔
. (3.5)

Although there is no general analytical solution of Eq. (3.2) with the boundary conditions of
Eq. (3.3), the hydrodynamic drag force has known asymptotic expressions in certain limits, some
of which are given in the next two subsections.

3.2. Large-distance regime
In the infinite-distance limit, the force expression reduces to the BBO equation (see Eq. (1.1))

for a sphere in an unbounded space, which gives in Fourier space:

𝐹̃𝑧 = −6𝑖𝜋𝜂𝑅𝐴𝜔
(
1 +

√
−𝑖Wo − 𝑖Wo2

9

)
, for 𝐷/𝑅 → ∞. (3.6)

The last term of Eq. (3.6) corresponds to an inertial force of added mass 2𝜋𝜌𝑅3/3 and the
√
−𝑖Wo

term corresponds to the Basset force. The large-distance asymptotic correction to the added-mass
contribution due to a rigid wall has been computed using the potential-flow theory, and gives
2𝜋𝜌𝑅3{1 + 3𝑅3/[8(𝑅 + 𝐷)3]}/3 (see Lamb (1932)). By using a boundary-integral formulation
of the unsteady incompressible Stokes equations, Fouxon & Leshansky (2018) have generalized
the latter result by including the Basset force, to obtain large-distance the asymptotic drag force,
that reads:

𝐹̃𝑧 = −6𝑖𝜋𝜂𝑅𝐴𝜔
(
1 +

√
−𝑖Wo − 𝑖Wo2

9
+ 𝐵

𝑅3

(𝐷 + 𝑅)3

)
, for 𝐷/𝑅 ≫ 1, (3.7)

where the numerical prefactor 𝐵 depends on Wo and reads:

𝐵 =
1
4

(
1 +

√
−𝑖Wo − 𝑖Wo2

3

) [
1
3
+ 3𝑖

2Wo2

(
1 +

√
−𝑖Wo − 𝑖Wo2

9

)]
. (3.8)

3.3. Small-distance regime
In the limit of small sphere-wall distance, which is of importance for colloidal-probe exper-

iments, the drag force is usually dominated by viscous effects. The out-of-phase component
of the force can be described by lubrication theory (see Batchelor (1967)), in which the main
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contribution to the drag comes from the confined region between the sphere and the wall, which
leads to the expression:

𝐹̃𝑧 = −6𝑖𝜋𝜂𝑅2𝐴𝜔

𝐷
. (3.9)

We stress that the in-phase correction to the latter is still unknown in the lubricated limit. It would
be interesting to perform asymptotic-matching calculations on the unsteady Stokes equations (see
Cox & Brenner (1967)) to obtain a self-consistent expression of the effective added-mass in this
limit.

3.4. Low-Womersley-number regime
As pointed out by Fouxon & Leshansky (2018), in the small-frequency limit, which corresponds

to a small Womersley number, the drag force can be expressed in terms of known integrals, by
using the Lorentz reciprocal theorem (see Masoud & Stone (2019); Fouxon et al. (2020)). We
provide here an alternative derivation of this result.

We introduce the model steady problem of a sphere moving normally to a surface in a viscous
fluid, which corresponds to the problem of Section 3.1, at zero frequency, i.e.:

∇ · 𝝈̂ = 0 , ∇ · 𝒗̂ = 0 , (3.10)

with the same boundary conditions:

𝒗̂(𝒓 ∈ S0) = 𝑖𝜔𝐴𝒆𝑧 , 𝒗̂(𝒓 ∈ S𝑤) = 0 , (3.11)

where 𝝈̂ and 𝒗̂ are the fluid stress and velocity fields of the model problem, respectively. Integrating
the Lorentz identity ∇ · (𝝈̃ · 𝒗̂ − 𝝈̂ · 𝒗̃) = 𝑖𝜔𝜌𝒗̃ · 𝒗̂ on the total fluid volume, we obtain:

(𝑖𝜔𝐴𝒆𝑧) ·
[∫

S0

𝝈̂ · 𝒏 dS0 −
∫
S0

𝝈̃ · 𝒏 dS0

]
= 𝑖𝜔𝜌

∫
V
𝒗̃ · 𝒗̂ dV, (3.12)

where the divergence theorem has been used. Recalling Eq. (3.4), we get:

𝐹̃𝑧 = 𝐹̂𝑧 −
𝜌

𝐴

∫
V
𝒗̃ · 𝒗̂ dV . (3.13)

The force 𝐹𝑧 and velocity field 𝒗̂ of the model problem correspond to the ones derived analytically
by Brenner (1961), using a modal decomposition. The force of the model problem thus reads:

𝐹̂𝑧

6𝑖𝜋𝜂𝑅𝜔𝐴
=

4
3

sinh(𝛼)
∞∑︁
𝑛=1

𝑛(𝑛 + 1)
(2𝑛 − 1) (2𝑛 + 3)

1 − 2 sinh[(2𝑛 + 1)𝛼] + (2𝑛 + 1) sinh(2𝛼)[
2 sinh

(
(𝑛 + 1

2 )𝛼
)]2

− [(2𝑛 + 1) sinh(𝛼)]2

 ,

(3.14)
with cosh(𝛼) = 1+𝐷/𝑅. Nevertheless, the unsteady velocity field 𝒗̃ in Eq. (3.13) is still unknown,
so that the drag force 𝐹̃𝑧 cannot be found exactly.

Analytical progress can be made in the low-Wo regime, where the unsteady velocity field can
be approximated by the steady solution with O(Wo2) corrections, as 𝒗̃ = 𝒗̂

[
1 + O(Wo2)

]
. In this

limit, at leading order in inertial contributions, the drag force reduces to:

𝐹̃𝑧 = 𝐹̂𝑧 −
𝜌

𝐴

∫
V
𝒗̂2 dV . (3.15)

The volume integral in Eq. (3.15) can then be evaluated numerically using the model velocity
field provided by Brenner (1961).
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Figure 4. (a) Typical mesh used in the finite-element method. (b) Streamlines of the in-phase flow field,
obtained numerically. (c) Streamlines of the out-of-phase flow field, obtained numerically. The squared
Womersley number is set to Wo2 = 10, such that 𝛿 ≈ 0.31𝑅. The red dashed lines indicate a sphere of radius
𝑅 + 𝛿.

3.5. Finite-element method
We complement the previous asymptotic expressions of the drag force with full numerical

solutions. Using the open-source finite-element library Nutils (see van Zwieten et al. (2022)), we
solve Eq. (3.2). The axisymmetric velocity and pressure fields are defined on a 320×320-element
mesh, uniformly spaced on a rectangular domain [0 ⩽ 𝜏 ⩽ 𝛼, 0 ⩽ 𝜎 ⩽ 𝜋]. We then use the
bipolar coordinate transform:

𝑟 = 𝑎
sin(𝜎)

cosh(𝜏) − cos(𝜎) , 𝑧 = 𝑎
sinh(𝜏)

cosh(𝜏) − cos(𝜎) , (3.16)

with 𝑎 = 𝑅 sinh𝛼. The resulting mesh, when axisymmetry is considered, spans the entire domain
where 𝑟 > 0 and 𝑧 > 0, with the exception of a circular region corresponding to the sphere, as
shown in Fig. 4. On the symmetry axis (𝑟 = 0), the flow in the radial direction is constrained and
the vertical flow is required to be shear-free. At the wall surface (𝑧 = 0), the velocity field is set
to zero. Finally, on the surface of the sphere, the radial and vertical velocity components are set
to zero and unity (imaginary part) respectively, following Eq. (3.3). From the calculated velocity
and pressure fields, the total force exerted on the particle can be directly computed using Eq. (3.4).
Typical flow fields are shown in Fig. 4(b) and (c).

4. Results
4.1. Drag force

The total hydrodynamic force is decomposed in its in-phase and out-of-phase parts, as 𝐹̃𝑧 =

𝑚𝐴𝜔2 − 𝑖𝛾𝐴𝜔, and shown in Fig. 5 and Fig. 6 versus the dimensionless sphere-wall distance.
First, the Basset-Boussinesq-Oseen force of Eq. (3.6) agrees well with the simulation results at
large distance, for all Wo. The infinite-distance rescaled effective mass is found to increase with
decreasing Womersley number as ∼ 1/Wo, for Wo2 ≪ 1. This effect arises from the Basset
term in Eq. (3.6). Indeed, invoking the velocity scale 𝐴𝜔, one finds a Basset force that scales
as 𝑅2√𝜌𝜂𝜔𝐴𝜔 ∼ 𝜌𝑅3𝐴𝜔2/Wo. This could rationalize the experimental observations made
in Fig. 2, where the large-distance natural frequency of the colloidal probe changes in liquids
of different viscosities. Conversely, the rescaled damping coefficient increases with increasing
Womersley number as Wo, for Wo2 ≫ 1 (see Fig. 6). Here again, this effect originates from the
Basset force that also scales as 𝜂𝑅𝐴𝜔Wo.

Interestingly, the behaviour of the rescaled effective mass with dimensionless distance is
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Figure 5. Real part of the total hydrodynamic force, normalized by the inertial force scale,
Re[𝐹̃𝑧]/(𝜌𝑅3𝐴𝜔2) = 𝑚/(𝜌𝑅3), as a function of the normalized sphere-wall distance 𝐷/𝑅. The four panels
(a-d) correspond to different Womersley numbers, as indicated. The numerical solutions of section 3.5 are
shown with solid lines. The bulk Basset–Boussinesq–Oseen force of Eq. (3.6) is displayed with light orange
dashed lines. The large-distance asymptotic expression of Eq. (3.7) is shown with dashed blue lines. The
low-Wo expansion of Eq. (3.15) is shown with a dark orange dashed line in panel (a). The insets in panels
(c) and (d) show zooms near the wall.

not universal. For large Wo, the rescaled effective mass decreases with increasing normalized
distance. Furthermore, the large-distance asymptotic expression of Eq. (3.7) accurately describes
the rescaled effective mass in the Wo2 ≫ 1 regime. Indeed, Eq. (3.7) is valid as long as the
sphere-wall distance exceeds the viscous penetration length, i.e. 𝐷 ≫ 𝛿 = 𝑅/Wo. Near the
wall, deviations of the rescaled effective mass from the large-distance asymptotic expression
are systematically observed (see insets in Fig. 5 (c) and (d)), and are comparable to ∼ 1 in
magnitude. In sharp contrast, for small Wo, the rescaled effective mass decreases with decreasing
dimensionless distance. The typical Wo value at which the effective-mass variation with distance
changes sign is Wo2 ≈ 5. In addition, in the small-Wo regime, the numerical solution agrees well
with the asymptotic expression of Eq. (3.15) (see Fig. 5(a)) at small dimensionless distances.
Eventually, at vanishing sphere-wall distances, the effective mass tends towards a constant value,
found numerically to be:

𝑚 ≈ 11.45𝜌𝑅3, for 𝐷 ≪ 𝑅 ≪ 𝛿. (4.1)

Furthermore, an intermediate regime where the rescaled effective mass increases in an affine
manner with the dimensionless distance is observed in Fig. 5(a), as predicted by Fouxon &
Leshansky (2018), as:

𝑚 =
9𝜋
4
𝜌𝑅2 (𝑅 + 𝐷), for 𝑅 ≪ 𝐷 ≪ 𝛿. (4.2)

The latter asymptotic expression has been obtained by considering the Lorentz correction to the
Stokes drag at large distance (see Lorentz (1907); Happel & Brenner (1983)).
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Figure 6. Opposite of the imaginary part of the total hydrodynamic force, normalized by the viscous force
scale, −Im[𝐹̃𝑧]/(𝜂𝑅𝐴𝜔) = 𝛾/(𝜂𝑅), as a function of the normalized sphere-wall distance 𝐷/𝑅. The four
panels (a-d) correspond to different Womersley numbers, as indicated. The numerical solutions of section 3.5
are shown with solid lines. The bulk Basset–Boussinesq–Oseen force of Eq. (3.6) is displayed with light
orange dashed lines. The large-distance asymptotic expression of Eq. (3.7) is shown with dashed blue lines.
The viscous solution of Eq. (3.14) is shown with red dashed lines.

The rescaled damping coefficient decreases with increasing dimensionless distance (see Fig. 6).
At low Wo, which corresponds to the low-frequency regime, the rescaled damping coefficient is
well described at all distances by the steady drag force of Eq. (3.14). However, at large Wo, we
observe a transition from the BBO expression at large distance to the steady drag force at small
distance. The typical distance at which the transition occurs is 𝐷 ≃ 𝛿, which is smaller than 𝑅.
In this regime, the rescaled damping coefficient diverges as ∼ 1/𝐷, as predicted by lubrication
theory (see Eq. (3.9)).

4.2. Comparison of the model with experiments
We now turn to a comparison of the model with experiments. The resonance properties of

the colloidal probe are quantified by the natural frequency 𝜔0/(2𝜋) and quality factor 𝑄, as
measured by fitting the power spectral density to the harmonic-oscillator model (see Section 2.3).
The resulting values of these two quantities were already shown in Fig. 3, as functions of the
probe-wall distance, for three different liquids of various kinematic viscosities.

Since the natural frequency variations are small, typically on the order of 5% or less of the
bulk natural frequency, we perform a Taylor expansion of the natural frequency at first order in
𝑚int/𝑚∞:

𝜔0 =

√︂
𝑘c

𝑚∞ + 𝑚int
≃ 𝜔∞

0

(
1 − 𝑚int

2𝑚∞

)
. (4.3)

We then compute the natural frequency at all distances from the numerical simulations, by
using Eq. (3.5). The Womersley number is set by using the bulk natural frequency, through
Wo2 = 𝑅2𝜔∞

0 /𝜈. The resulting Wo2 values are 2.4, 18.1 and 31.7 for silicone oil, dodecane
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and water, respectively. As shown in Fig. 3(a)-(c)-(e), the experimental results agree with the
numerical simulation, which confirms that the modification of the natural frequency of the
oscillator originates from the hydrodynamic interactions between the sphere and the wall.

Similarly, we invoke an approximate expression of the quality factor:

𝑄 =
𝑄∞

𝜔0
𝜔∞

(
1 + 𝛾int𝑄∞𝜔∞

0
𝑘c

) ≃ 𝑄∞(
1 + 𝛾int𝑄∞𝜔∞

0
𝑘c

) . (4.4)

We then compute the quality factor at all distances from the numerical simulations, by using
Eq. (3.5), and setting the same Wo values as given above. As shown in Fig. 3(b)-(d)-(f), the
experimental results agree with the numerical simulation, confirming that the decrease of the
quality factor is essentially due to the increase of the viscous Stokes drag as the sphere-wall
distance is reduced.

5. Conclusion
We investigated the hydrodynamic force exerted on an immersed sphere oscillating normally

to a rigid planar wall, by using a combination of colloidal-probe AFM experiments, finite-
element simulations and asymptotic calculations. The in-phase and out-of-phase components of
the hydrodynamic force are obtained from the measurements of the natural frequency and damping
of the thermal motion of the probe for various probe-wall distances. A shift in the natural frequency
of the probe was observed with decreasing probe-wall distance, revealing a striking wall-induced
unsteady effect: the natural frequency was found to increase with decreasing probe-wall distance
in viscous liquids, whereas the opposite trend was observed in low viscosity liquids such as water.
By solving the unsteady incompressible Stokes equations numerically, the hydrodynamic force
was computed at all distances. The added mass and dissipation increase due to the presence of
the wall were then extracted and compared to their experimental counterparts – with excellent
agreement. In addition, at large distance, we recovered the analytical expression derived by Fouxon
& Leshansky (2018). Besides, in the low-Womersley-number limit, the hydrodynamic force could
be expressed in a simple integral form using the Lorentz reciprocal theorem, which was validated
by the numerical simulations. Beneath the fundamental interest for confined or interfacial fluid
dynamics, the present results might be of practical importance for colloidal experiments, because
they clarify the hydrodynamic drag acting on a spherical particle near a wall. Essentially, our
findings highlight the crucial but overlooked role played by fluid inertia, despite the typically low
Reynolds numbers.
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