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Context: global optimization

min f(x)

x€eS

S: search space, continuous, discrete, mixed, others (graphs?).
Default S € R? (hyper-rectangle). d is the dimension.

Both evolutionary and Bayesian optimization algorithms (EO & BO)

apply.
EO & BO have different scientific communities (computer science vs.

applied math, but it is changing).

Goal of the talk : introduce BO through a comparison with EO and
draw common perspectives.
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Context: BO for costly optimization

min f(x

xXES ( )

Costly: one call to f takes more CPU than the rest of the
optimization algorithm. Examples: nonlinear partial differential
equations (finite elements), training of a neural network, real
experiment ...

To save calls to f, build a model of it based on previous evaluations
and rely on it whenever possible — metamodel / surrogate based

optimization. Gaussian process as metamodel : Bayesian
Optimization (BO).
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Beginnings and references

EO & BO both date from the 60s or 70s with the work of

o [Fogel et al., 1965], [Holland, 1973], [Rechenberg, 1973] and
[Schwefel, 1977] for EO,

e and [Kushner, 1962], [Mockus, 1972] and [Saltenis, 1971] for
BO.

Reference texts for BO : [Frazier, 2018],[Garnett, 2023].
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Algorithms skeletons |
BO

@ make an initial design of
experiments (DoE) X* and
calculate F* = £(X1),

t = length([F)

@ build a Gaussian Proc. from
(X¢,F) — GPt

e Xt+1 —
arg maxes AcquisCrit(x; GP?)

Q (XL FH) =
(Xt+1’ ]Ft+1) U (Xt+1’ f(XtJrl))’
increment t

© stop (t > t™, ...) or go to 2.

R. Le Riche (CNRS LIMOS)
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EO

@ make an initial DoE X and
calculate F = f(X), t = length(F)

© Apply variation operators
(selection, mutation, crossover) to
get a new DoE:
X’ = Variation(X, F)

@ calculate F' = f(X'),
t =t + length(F’)

@ Create a new (X, ) from old
(X,F) and (X', F)
© stop (t > t™, ...) or go to 2.
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Algorithms skeletons Il

BO EO
o make an initial design of experiments (DoE) X! and o make an initial DoE X and calculate F = f(X),
calculate Ft = £(X1), t = length(F) t = length(F)
e build a Gaussian Proc. from (X!, Ft) — GP*! e Apply variation operators (selection, mutation,

crossover) to get a new DoE: X/ = Variation(X, F
e xtt = arg maxy e s AcquisCrit(x; GP') ver) to g " fation( )

/ ! _ 7
Q@ (xITLFHY) = (xHLFHL) U (L £(H) Q calclae F' = F() £ = ¢+ ength(E)
: ’ ’ ’ ' Create a new (X, F) from old (X, F) and (X', F’)
increment t

max
estop(t>tmax,...)orgot02. estop(t>t ,...) orgoto 2.

Differences:

@ Maximization of an acquisition criterion that depends on a
Gaussian Process instead of the variation operators;

@ EO is population oriented while all points are kept in BO. BO
would be memory consumming for large t but not its typical
range of use. The state of EO is implicitely stored in its
population, efficient but loss prone.
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A SHORT INTRODUCTION TO BAYESIAN
OPTIMIZATION
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Gaussian Process Regression (kriging) — |

Y (x) is A (u(x), K(x, X))
Y(x)|Y(X)=F ~ N (m(x), c(x, x")) is also Gaussian, interpolating
and depends on the kernel k(.. .) and p(.) through parameters 6.

Example:  k(x,x') = o2 exp(— 27:1 (Xi;9§{)2) :
Note: kernels are defined over all kinds of spaces. Example of mixed
continuous-discrete BO in [Cuesta-Ramirez et al., 2022].

R. Le Riche (CNRS LIMOS) BO vs. EO searches 8/37 July 2023 8/37



Gaussian Process Regression (kriging) — Il

Y (x)|Y(X)=F ~ N(m(x) c(x, x’)), interpolating and depends on
the kernel k(.,.) and pu(.) through parameters 6.

m(x) = E[Y (x)| Y (X)=F] = pu(x) + k(x, X)k(X, X)7}(F — p(x)1)
c(x,x") = Cov[Y(x), Y(X)|Y(X)=F] = k(x,x")—
k(x, X)k(X, X) k(X x')
Learn the GP typically by max. (log) likelihood or leave-one-out
crossvalidation, 8* = argmaxy LL(6;TF) .
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Gaussian Process Regression (kriging)

, d . —x!
f's as length scales,  k(x,x’) = o2 []7_, correlation; ('X' .X’|)

0;
: =01
: 0 =05

(Matérn kernel, o = 1)
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An example of acquisition criterion: the [E/

Measure of progress: the improvement,

I(x) = max (0, (min(F) — Y (x) | Y(X)=F)).

Acquisition criterion: [/ [Saltenis, 1971, Schonlau, 1997], to
maximize at each iteration.

The E/ is analytically known and does not involve calls to f,
+0o0
El(x) = [701(x) dy(x) =--- =
Ve(x, x) [w(x)edfa(w(x)) + pdfy(w(x))]

with w(x) = —mi“((FC)(;’:)()X)_

A parameter-less intensification (1st term) — exploration (2nd term)
compromise.
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Expected Improvement

Let's see how it works... iteration 4
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Expected Improvement

xt = arg max,cs E/(x)

Let's see how it works... iteration 4-+1
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Expected Improvement

xt1 = arg max,cs El(x)... iteration 4+2
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Expected Improvement

xt1 = arg max,cs El(x)... iteration 4+5

6

0.0 0.2 0.4 0.6 0.8 1.0
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Expected Improvement: comments

There are other acquisition criteria:

@ Upper Confidence Bound [Kushner, 1962, Srinivas et al., 2010],
= m(x) — ac(x, x). Need to choose «.

e Knowledge gradient [Motkus, 1972, Frazier and Powell, 2007],
min,es mi(x) — E[min,cs m™1(x)]. No analytical expression.

@ Criteria based on the reduction in entropy of the optimum
[Villemonteix et al., 2009, Herndndez-Lobato et al., 2014]. No
analytical expression, complex.

e [E/ is a myopic criterion compared to the above criteria. It is still
a good entry criterion thanks to its simplicity and ease of
interpretation.
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Bayesian optimization and dimension

Bayesian optimizers are competitive at low number of function
evaluations but they loose this advantage with dimension.

< Loss of GP accuracy?
< El sample too often at boundary?

Next slide: COCO tests [Hansen et al., 2016] from
[Le Riche and Picheny, 2021]
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Effect of dimension on Bayesian Optimization
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BO and trust regions

Principle: counteract the effect of
increasing dimension (volume) by
restricting the search to a smaller
(controlled) trust region.

o TRIKE, Trust-Region Implementation in Kriging-based
optimization with Expected Improvement, [Regis, 2016].

e TURBO, a TrUst-Region BO solver, [Eriksson et al., 2019].

e TREGO, a Trust-Region framework for EGO,
[Diouane et al., 2023] : mix searches inside (local) and outside
(global) the trust region.

R. Le Riche (CNRS LIMOS) BO vs. EO searches 17/37 July 2023 17 /37



TREGO algorithm

start from x;

k=0 global phase over S ‘ No
maxyes El(x)
global (update DoE) ‘
ki1 -
lfanlure
local phase
maxyes El(x)
dmingk S HX - X;:H g dmaxUk j
(update the DoE) 5
success ¢! “failure S Yes
Q
c
Ok = 0w/ Tk1 = 0 | return current
update x; Xpi1 = X; iterate

Parameters : 09, 5 < 1
Sufficient decrease condition for success of the local phase,

FxeED) < F0) — 107
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TREGO properties

From [Diouane et al., 2023],

@ TREGO iterates converge to a local minimum : by assuming f is
bounded below, Lipschitz continuous near the point of
convergence, and by considering a subsequence of the local
iterates. No assumption on GP or xj.

@ Empirical COCO tests:
o more local than global steps (4 to 1) is beneficial
e TREGO is robust to the values of g and 3
o A local GP was thought an asset for non stationary functions.
But it is a drawback on badly conditioned functions. Not kept.
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TREGO performance
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Trust regions solve BO's oversampling of the boundaries in high-dim.
while helping on unimodal functions (not the natural target for BO).
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RELATIONS BETWEEN BAYESIAN AND
EVOLUTIONARY OPTIMIZATION
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The probabilistic representations of f

BO and EO represent f differently

BO

Global model of the function
(in R)

p(f | x) = N (m(x), ¢(x, x))

EO

Model the distribution of good
points (in S)

p(x | f(x) < threshold)
1
~ card(X) Z % (%)

x;€X

Both views are tied by Bayes rule (see later).
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Fundamental degrees of freedom

BO

Choosing and learning the kernel =
choosing the feature space of the
#(x)'s: by Mercer's theorem, k(x,x’) =
SR Nigi(x)bi(x') (N possibly infinite).
Quality metrics: regression metrics (Q2,
LOO normality test).

Acquisition  criterion: controls  the
exploration-intensification tradeoff.

Quality metrics:  optimization metrics
(convergence, performance profiles,. . .).

EO

Choosing and learning the repre-
sentation and variation operators.
Quality metrics: ergodicity (com-
pletness), unbiasedness, locality
(genotype-phenotype local corre-
lation).

Both views will be linked later (perspectives).
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EO for BO

BO has 2 internal optimizations that are not costly and multimodal:
they benefit from EO (CMA-ES is a typical choice for maximizing the
EJ).

maxg likelihood(¢; X, IF) max, E/(x; GP)

g-marginal-likelihood

1

(from scikit-learn.org)
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BO for EO: adding a GP - |

Principle : EO algorithms need to order new x's for selection.
Replace calls to f by calls to GPs.

Like surrogate-based EO, but with prediction uncertainties. Ranking
from

e UCB [Biiche et al., 2005], m(x) — ac(x, x) ,
@ prob. of improvement [Ulmer et al., 2003],
cdfy <(minIF - m(x))/\/m) ,
@ partial (Pareto) ranks of (function prediction,- function
uncertainty) [Volz et al., 2017], (m(x), —/c(x,x)) ,
o ...cf. [Bajer et al., 2019] for other criteria.
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BO for EO: adding a GP - |l

Algorithms are variants around the following sequence:

o X' = Variation(X)

@ Rank points in X’ using the GP and one of the
ranking criteria (UCB, PI, El, m, ...)

@ Check the quality of the GP:

e number of generations without GP update
e OR compare ranking from true f and from GP
on a small portion of X’

@ GP update from a reduced number of points
chosen in X’ U X where true f is calculated

a sequence which is decomposed, repeated, varied .. .inside EO
implementations.
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The aforementionned interfaces between BO and EQO are external.

PERSPECTIVES:
A DEEPER LINK BETWEEN EO AND BO

through 2 examples.
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Crossover as a barycenter in feature space |

o Feature learning (from data, through the kernels) can be seen as
a search for an appropriate representation where linear reasoning
works.

@ Interprete crossover as a barycenter in feature space.

A kernel can always be seen as an inner product in feature spacef,
k(x,x") = (p(x), p(x")), where the feature is a map ¢ : S — RP and
D can be infinite.

TFor example it can be the eigendecomposition of Mercer’s theorem seen earlier,

k(x,x") = 32721 VAigi(x)v/Aigi(x") with the usual L2 scalar product, or the canonical
decomposition in the RKHS, k(x,x") = (k(x,.), k(x", )2 -
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Crossover as a barycenter in feature space Il

Definition (Crossover as barycenter of features)

Let xc € S be the result of the crossover of x4 € S with xg € S.
The features of x¢ are the a-barycenter of the features of x4 and xg,
0<a<l:

xc = argmin a[¢(x) — d(xa)[* + (1 — @) [é(x) — é(xg)[|"
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Crossover as a barycenter in feature space Il|

Calculation:

l6(x) — @(xa)[I> = (b(x) — d(xa), B(x) — d(xa))

= (0(x), 9(x)) + (B(xa), #(xa)) — 2(b(x), P(xa))

= k(X¢X) + k(XA7XA) - 2k(X7XA)

and idem with ||¢(x) — ¢(xg)||%.

Assume stationarity, k(x,x) = k(xa, xa) = k(xg,xg) = 02, then

Xc = arg )r(nelg 202 — 20k(x, xa) — 2(1 — a)k(x, x)

or equivalently

Xc = arg max ak(x,xa) + (1 — a)k(x, xB)
X€

i.e., maximize weighted similarities with x4 and xg as seen by the
(learned) kernels.
For a crossover, choose av ~ U[0, 1].
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A Bayesian variation operator |

Link the probabilistic representations of BO and EO (cf. earlier slide)
to define a variation (crossover and mutation) operator.

e T, a threshold (e.g., T = minF)

o F(x)=YX) | f(X)=F ~ N (m(x),c(x,x)) , the GP

e F(x) < T, a logical random variable. It can be written
F(X) < T | X = x, X random variable in S

o Bayes:
p(F(X) < T|X=x).p(X=x)=
p(X =x|F(X)<T).p(F(X)<T)

o GP: p(F(X) < T | X = x) = cdfy ((T - m(x))/«/c(x7x)>
@ p(X = x) =UIS]. Other more intensifying choices possible, at
the risk of premature convergence.
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A Bayesian variation operator ||

p(X = x|F(X) < T) is the model for the variation operator of EO. It
is sampled through

p(X = x|F(X) < T) cdi( /m)

by a Metropolis-Hastings (or any appropriate MCMC) scheme.
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