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Introduction

Although the self-amplified spontaneous emission -x-ray free electron lasers (SASE-XFEL) are very effective, the stochastic starting-up process from electron beam shot noise leads to some problems as poor longitudinal coherence and broad, noisy spectrum. In order to improve the performances of SASE-XFEL in terms of coherence and spectral purity, self-seeding has been proposed and successfully tested under various schemes [START_REF] Feldhaus | Possible Application of X-Ray Optical Elements for Reducing the Spectral Bandwidth of an X-Ray SASE FEL[END_REF][START_REF] Saldin | X-Ray FEL with a MeV Bandwidth[END_REF][START_REF] Geloni | A Novel Self-Seeding Scheme for Hard X-Ray FELs[END_REF][START_REF] Geloni | Self-Seeded Free-Electron Lasers[END_REF].

The self-seeding method uses an upstream XFEL coming from a first ondulator (modulator) working in the SASE linear regime. The pulse coming from the modulator is then put through an x-ray monochromator to generate a quasi-monochromatic radiation seeding for the downstream ondulator (radiator) which amplifies, in the non-linear regime, the seed to give coherent radiation with a narrow spectral bandwidth.

For hard x-rays, self-seeding is produced by filtering the SASE-XFEL radiation coming from the modulator by use of a thin crystal in transmission geometry ; this method has been successfully implemented for instance at LCSL [START_REF] Amann | Demonstration of Self-Seeding in a Hard-X-Ray Free-Electron Laser[END_REF]. In soft-x-ray and X-UV ranges, self-seeding is generally obtained by monochromatizing the SASE-XFEL radiation by means of a diffraction grating and a system of mirrors and slits [START_REF] Feldhaus | Possible Application of X-Ray Optical Elements for Reducing the Spectral Bandwidth of an X-Ray SASE FEL[END_REF] (see figure 1). The main drawbacks of this operation mode are high cost since expensive variable line spacing gratings are generally used and low efficiency resulting from the moderate diffractive efficiency of the diffraction gratings (less than 20 %) and mirrors in this spectral range.

Figure 1 : Standard scheme of self-seeding (SS) for a soft-x-ray FEL ; monochomatization is performed by means of diffraction grating (G) mirrors (M) and slits (S). The first ondulator (O) is the modulator and the second one the radiator (R). The regime of O is linear while R ensures the amplification until saturation in a non-linear regime. X denotes the path of the x-ray beam while E denotes the path of the electron beam through the chicanes C.

In this paper we consider the problem of self-seeding in the soft x-ray range. We suggest the use of artificial Bragg reflectors which offer large reflectivity with respect to diffraction gratings at a relatively low cost. In section 2, we propose a layout based on double-crystal configuration equipped with multilayer Bragg reflectors in the backscattering geometry and discuss in section 3 the possibility of our proposal with respect to the criteria proposed by Feldhaus et al. in [START_REF] Feldhaus | Possible Application of X-Ray Optical Elements for Reducing the Spectral Bandwidth of an X-Ray SASE FEL[END_REF], for achieving self-seeding. Indeed the authors of [START_REF] Feldhaus | Possible Application of X-Ray Optical Elements for Reducing the Spectral Bandwidth of an X-Ray SASE FEL[END_REF] proposed in this reference, a set of criteria summed up in their equation [START_REF] Kuznetsov | High-Reflectance La/B-Based Multilayer Mirror for 6.x Nm Wavelength[END_REF] which they consider necessary to satisfy in order to ensure lasing. For the sake of consistency, we give the formulation of the criteria relative to the self-seeding device SSD acting as a monochromator 𝑚:

-achieving a sufficient resolution ℛ 𝑚 of the SSD, that is :

𝐾 𝑠 ≡ ℛ 𝑚 ℛ 𝑆𝐴𝑆𝐸 ≪ 1 (1) 
where

ℛ 𝑆𝐴𝑆𝐸 ≡ Δλ 𝜆 ) 𝑆𝐴𝑆𝐸
is the relative radiation bandwidth in terms of wavelength of the SASE-XFEL radiation at the exit of the modulator and ℛ 𝑚 ≡ Δλ 𝜆 ) 𝑚 the resolution of the SSD. In addition, a lower limitation concerning ℛ 𝑚 is required, due to the fact that the length of the longitudinal coherence of the radiation cannot be larger that the length of the electron bunch 𝜎 𝑧 , that is :

𝜆 𝜋 𝜎 𝑧 ≤ ℛ 𝑚 (2) 
-achieving a sufficient transmission factor 𝑇 𝑚 of the SSD, defined as the product of the coefficient 𝐾 𝑠 with the integral global reflectivity 𝑅 𝑚 of the SSD, that is :

𝑃 𝑖𝑛 (2) 
𝑃 𝑠ℎ𝑜𝑡 = 𝐺 (1) 𝑇 𝑚 ≫ 1

where 𝐺 (1) the gain in the first ondulator (modulator), 𝑃 𝑖𝑛 (2) is the power at the entrance of the second ondulator (radiator), and 𝑃 𝑠ℎ𝑜𝑡 the effective power of shot noise in the electron beam.

Since the incoming SASE-FEL radiation is formed by short duration pulses (a set of spikes with a temporal envelop of a few femtoseconds, FWHM), the problem of dynamical reflection by unpatterned and patterned multilayers is considered in section 3.

X-FEL self-seeding with Bragg reflectors in double-crystal non-dispersive configuration and backscattering geometry

To argument our proposal of using Bragg multilayer mirrors for the monochromator, we must quantify the problem on the basis of actual performances of these optical devices.

To fix the problem, we will consider Bragg multilayer mirrors developed for extreme UV (EUV) lithography since owing to their interest, these optics have been considerably developed and are well documented. We consider the case of multilayer optics at 𝜆 ∼ 6.6/6.7 nm designed for the next generation of EUV lithography. At the wavelength of 6.65 nm, it is measured [START_REF] Kuznetsov | High-Reflectance La/B-Based Multilayer Mirror for 6.x Nm Wavelength[END_REF] for a La/B multilayer mirror, a relative wavelength width ) in a double-crystal nondispersive configuration (see figure 2). Under backscattering geometry, the diffraction spectral band becomes very narrow and this geometry offers the possibility of high resolution compared to grazing scheme which is necessary to satisfy criterion given by Eq. [START_REF] Feldhaus | Possible Application of X-Ray Optical Elements for Reducing the Spectral Bandwidth of an X-Ray SASE FEL[END_REF]. A first reason for this behavior can be easily found by differentiating the Bragg law :

2 𝑑 𝑝 𝑠𝑖𝑛𝜃 = 𝑝 𝜆 (4)
where 𝜆 is the radiation wavelength in vacuum, 𝑝 an integer called diffraction order, 𝑑 𝑝 the effective d-spacing1 depending on the order 𝑝 and on the average refractive index 𝑛 ̅ of the multilayer structure and 𝜃 the glancing angle. Differentiation gives :

Δ𝜆 𝜆 = Δ𝑑 𝑝 𝑑 𝑝 + 𝑐𝑜𝑡𝑎𝑛𝜃 Δ𝜃 (5) 
The quantity

Δ𝜆 𝜆
is the relative width of the wavelength band, Δ𝑑 𝑝 is a variation of the effective d-spacing resulting from various possible causes (mechanical strain, thermal load, …). From Eq. ( 5), it appears that under backscattering geometry, 𝑐𝑜𝑡𝑎𝑛𝜃 ≈ 0 since

𝜃 ≈ 𝜋 2
and that Δ𝜆 𝜆 becomes independent of the angular spread Δ𝜃. This latter quantity needs some precision ; it is generally conditioned both by the beam divergence 𝜓 and the angular width 𝜔 𝜃 of the monochromator diffraction pattern.

Assuming Gaussian distributions, we add in quadrature and get :

Δ𝜃 ≈ √(𝜔 𝜃 ) 2 + 𝜓 2 (6) 
Let us emphasize that for X-FEL radiation, the divergence 𝜓 is a few microradians while the angular width 𝜔 𝜃 is a few milliradians so that ≪ 𝜔 𝜃 and Δ𝜃 ≈ 𝜔 𝜃 . In case of a crystal, 𝜔 𝜃 is often associated with the Darwin angular width 𝜔 𝐷 . For a multilayer diffracting in the soft x-ray range where photo-absorption is generally important, Darwin dynamical theory is not well suited. Nevertheless, we assume that the Darwin model can be usefully considered for our heuristic approach. For 𝜃 < 𝜋 2

, 𝜔 𝐷 is given for a Bragg symmetric diffraction by :

𝜔 𝐷 = 2 |𝐶 𝜒| 𝑠𝑖𝑛 2 𝜃 ( 7 
)
where 𝜒 is the Fourier component of the dielectric susceptibility and C a polarizationdependant term close to 1 in backscattering geometry.

In case of a multilayer structure formed with bilayers made up with materials a and b the thickness of which are 𝑑 𝐚 and 𝑑 𝐛 and the optical indices are 𝑛 𝐚 = 1 -𝛿 𝐚 + 𝑖 𝛽 𝐚 and 𝑛 𝐛 = 1 -𝛿 𝐛 + 𝑖 𝛽 𝐛 respectively, then :

𝜒 = - 𝑖 𝜋 (𝛿 𝐚 -𝛿 𝐛 ) 𝐹(𝛾, 𝑝) (8.1) 
where

𝐹(𝛾, 𝑝) = 1 𝑝 [1 -exp (2𝜋 𝑖 𝑝 𝛾)] , 𝛾 = 𝑑 𝐚 𝑑 𝐚 + 𝑑 𝐛 (8.2)
Since 𝜒 ∝ 𝜆 2 , taking into account the Bragg law, it follows that 𝜔 𝐷 increases as 𝑡𝑎𝑛𝜃 with increasing 𝜃. Nevertheless in the backscattering geometry, an anomalous effect occurs [START_REF] Shvyd | X-Ray Optics[END_REF][START_REF] Caticha | Dynamical Theory of X-Ray Diffraction at Bragg Angles near π/2[END_REF][START_REF] Kushnir | Experimental Observation of a Half-Degree Angular Interval of x-Ray Reflection in Backscattering (Θ≈π/2 ) from a High-Quality Crystal[END_REF][START_REF] Kushnir | X-Ray Backscattering on Perfect Crystals (2θ ≈ π)[END_REF] and it can be shown that :

𝜔 𝜃 = 2 √| 𝜒| (9.1)
and the spectral width in terms of wavelength 𝜔 𝜆 is linked to

𝜔 𝜃 ∶ 𝜔 𝜆 = 1 4 (𝜔 𝜃 ) 2 (9.2)
which means that a considerable increase of the angular width and consequently of the luminosity, occurs.

For crystals, Eqs. ( 9) are valid for near backscattering geometry provided the Bragg angle deviates from 𝜋 2

only by approximately 𝜔 𝜃 . We call this case, the nearbackscattering regime. To our knowledge, this regime has not been considered nor documented in case of diffraction by a multilayer structure in the soft-x-ray domain where photo-absorption dominates except in [START_REF] Rosenbluth | PhD Thesis -Reflecting Properties of x-Ray Multilayer Devices[END_REF] where a formula similar to (9.2) is proposed. Even in this regime, it is needed to reduce the value of 𝜔 𝜃 because the exact backscattering is not possible and one has to reduce the product 𝑐𝑜𝑡𝑎𝑛𝜃 𝜔 𝜃 to diminish Δ𝜆 𝜆 , see Eq. ( 5). For 𝜃 = 89.5° taking 𝜔 𝜃 ≈ 10 -2 rad , we can expect Eq. ( 10), it appears that another way to increases D is to diminish the value of 𝜇̅ . To do, we propose to lighten the medium as explained below.

Using a patterned multilayer mirror as monochromator is an efficient way to increase the penetration depth D. Indeed, according to Eq. ( 10) if the absorption coefficient 𝜇̅ becomes smaller, D is augmented. Etching the multilayer structure allows to lighten the structure by adding empty spaces (the grooves) and consequently it allows one to diminish the value of 𝜇̅ . It has been shown that etching according to a laminar profile (see figure 3) leads to an important narrowing of the bandwidth provided that the parameters (numbers of bilayers, grating period DG , filling factor Γ, …) are judiciously chosen [START_REF] Sammar | Monochromateur multicouche à bande passante étroite pour le rayonnement X[END_REF][START_REF] Sammar | Narrow Bandpass Multilayer X-Ray Monochromator[END_REF]. Such patterned mirrors have been realized and successfully tested in the soft x-ray domain [START_REF] André | X-Ray Multilayer Monochromator with Enhanced Performance[END_REF][START_REF] Benbalagh | Lamellar Multilayer Amplitude Grating as Soft-X-Ray Bragg Monochromator[END_REF]. A reduction of the bandwidth by a factor 1/Γ can be obtained without large loss of reflectivity. To do it, a value of Γ lower than 0.2 is generally prohibited. Also, taking Γ~0.25 allows a bandwith reduction by a factor 4 with respect to the unpatterned mirror. The values of the optical indices come from [START_REF]CXRO X-Ray Interactions With Matter[END_REF]. Taking into account that the measured wavelength bandwidth Δ𝜆 is around 0.05 nm for the example considered previously [START_REF] Kuznetsov | High-Reflectance La/B-Based Multilayer Mirror for 6.x Nm Wavelength[END_REF],

the wavelength detuning shift 𝛿𝜆 𝑜𝑝 associated with the optical term seems in agreement with the expected detuning To sum up, backscattering geometry permits an enhancement of luminosity and an improvement of resolution associated with a cancellation of the angular spread and with a rise of the incident penetration depth. Detuning by a modification of the d-spacing (and not a tilt of one monochromator) ensures an improvement of the monochromator resolution while keeping the parallelism between the incoming and outgoing beams.

The choice of the materials of the multilayer structures is also important : of course, one wishes to find the best couple of materials to achieve the largest peak reflectivity of the monochromator but also to obtain simultaneously the narrower spectral bandwidth.

Reaching these two goals simultaneously may be tricky since it has been shown that increasing the reflection coefficient of a unit-cell (i.e. a bilayer) and consequently the overall reflectivity of a multilayer reflector, tends to increase the bandwidth [START_REF] Pardo | X-UV Synthetic Interference Mirrors : Theoretical Approach[END_REF].

A degradation of resolution and a spectral shift may result from variations of layer thicknesses Δ𝑑 𝑝 around their nominal value. As mentioned previously, Δ𝑑 𝑝 can arise from mechanical or thermal influences but in the case of multilayer structures, may also come from errors in the thicknesses during the deposition for various technical reasons.

In fact the more critical point is the thermal loading (see section 4). Decrease in resolution can also result from interfacial roughness. The influence of geometrical or chemical roughness on the bandwidth has been investigated [START_REF] André | Photonic Bandgaps of Periodic Multilayers with Diffuse Interfaces[END_REF].

Discussion of the Feldhaus criterion

By combining the three methods (backscattering geometry, use of patterned mirror and detuning), a reduction of the bandwidth by a factor 20 with respect to a mere unpatterned mirror working in non-backscattering geometry can be expected with an acceptable loss of the global throughput of the DMDM. Consequently it seems possible to achieve ℛ 𝑚 ≈ 10 -4 and then 𝐾 𝑠 = ℛ 𝑚 ℛ 𝑠𝑎𝑠𝑒 ≈ 10 -4 5 10 -3 = 2 10 -2 so that the criterion given by Eq. ( 1) is satisfied.

Taking into account that the average value of the length of the electron bunch 𝜎 𝑧 is around 50 𝜇𝑚, the quantity 𝜆 𝜋 𝜎 𝑧 is around 4 10 -5 at the wavelength of interest, and then the criterion given by Eq. ( 2) is also satisfied. Concerning the criterion given by Eq. ( 3), the transmission factor 𝑇 𝑚 and hence 𝑅 𝑚 must be evaluted. The integral reflection coefficient 𝑅 𝑚 of the DMDM denoted 𝑅 𝐷𝑀𝐷𝑀 , can be expressed as follows by means of the peak reflectivity of each monochomator 𝑅 𝑀𝑖 𝑃 (𝑖 = 𝐼/𝐼𝐼) :

𝑅 𝐷𝑀𝐷𝑀 = 𝑃 𝑅 𝑀𝐼 𝑃 𝑅 𝑀𝐼𝐼 𝑃 (11) 
The factor 𝑃 depends largely on the rate of overlapping in the detuning process. With the assumption of diffraction patterns with a Gaussian profile, it is possible to get a coarse estimation of a value of P (see Appendix 2) :

𝑃 ≈ √ 𝜋 exp [ -(𝛿𝜆) 2 𝜎 𝐼 2 + 𝜎 𝐼𝐼 2 ]
(12.1) with :

𝜎 𝑖 = ∆𝜆 𝑖 2 √𝐿𝑛2 (12.2)
∆𝜆 𝑖 being the FWHM of the Gaussian profile of the diffraction pattern of the monochromator i and 𝛿𝜆 the detuning wavelength shift. If one assumes that ∆𝜆 𝐼𝐼 = Γ ∆𝜆 𝐼 , Γ < 1, by virtue of the use of an etched mirror, and that the wavelength shift 𝛿𝜆 associated with the detuning is only a part of the bandwidth ∆𝜆 𝐼 : 𝛿𝜆 = 𝑔 ∆𝜆 𝐼 , 𝑔 < 1, then :

(𝛿𝜆) 2 𝜎 𝐼 2 + 𝜎 𝐼𝐼 2 = 4 𝐿𝑛2 𝑔 2 1 + Γ 2 (13.1) 𝑃 ≈ √ 𝜋 exp [- 4 𝐿𝑛2 𝑔 2 1 + Γ 2 ] (13.2)
For Γ = 0.25, 𝑔 = 0.5 then exp [

-(𝛿𝜆) 2
𝜎 𝐼 2 +𝜎 𝐼𝐼 2 ] ≈ 0.521 and 𝑃 ≈ 0. 923 . One defines 𝑇 𝑚 = 𝑇 𝐷𝑀𝐷𝑀 as the product of the integral reflection coefficient 𝑅 𝐷𝑀𝐷𝑀 of the DMDM with the coefficient 𝐾 𝑠 : 𝑇 𝐷𝑀𝐷𝑀 = 𝐾 𝑠 𝑅 𝐷𝑀𝐷𝑀 [START_REF] André | X-Ray Multilayer Monochromator with Enhanced Performance[END_REF] where 𝐾 𝑠 describes the radiation loss at the exit of the DMDM. This quantity must be sufficiently large to satisfy the criterion given in Eq. ( 3). In the practical case under consideration, 𝑅 𝑀𝐼 𝑃 ≈ 0.6, 𝑅 𝑀𝐼𝐼 𝑃 ≈ 0.8 𝑅 𝑀𝐼 𝑃 , 𝑅 𝐷𝑀𝐷𝑀 = 𝑃 𝑅 𝑀𝐼 𝑃 𝑅 𝑀𝐼𝐼 𝑃 ≈ 0.265 , so that, with 𝐾 𝑠 ≈ 2 10 -2 : 𝑇 𝐷𝑀𝐷𝑀 ≈ 53 10 -4 . It results that 𝐺 (1) 𝑇 𝐷𝑀𝐷𝑀 ≈ 530 and the criterion given by Eq. ( 3) is satisfied. As emphasized in [START_REF] Feldhaus | Possible Application of X-Ray Optical Elements for Reducing the Spectral Bandwidth of an X-Ray SASE FEL[END_REF], there is an upper limit on the value of the gain 𝐺 (1) given by the limit of the heat load that the monochromator can withstand.

To summarize, it seems possible to fulfil all the criteria given Ref. [START_REF] Feldhaus | Possible Application of X-Ray Optical Elements for Reducing the Spectral Bandwidth of an X-Ray SASE FEL[END_REF], by means of appropriate Bragg reflectors working in double-crystal non-dispersive configuration and backscattering geometry.

Dynamics of the monochromatization and of self-seeding

Reflection in the time-domain

Since the SASE-XFEL radiation consists in a train of femtosecond pulses enveloping spikes (a tenth of fs) randomly distributed within the envelop, the temporal aspect of the diffraction cannot be ignored. It is not possible to consider the FEL radiation as a plane wave whose propagation can be treated in the frequency domain. The temporal dynamics of diffraction has been investigated in case of crystal reflection through different approaches (Fourier transform, Tagaki-Taupin, …) [START_REF] Bushuev | Diffraction of X-Ray Free-Electron Laser Femtosecond Pulses on Single Crystals in the Bragg and Laue Geometry[END_REF][START_REF] Ksenzov | Reflection of Femtosecond Pulses from Soft X-Ray Free-Electron Laser by Periodical Multilayers[END_REF].

In case of multilayer mirrors, the subject has been treated directly in the time domain using the matricial method [START_REF] André | Time-Dependent Bragg Diffraction and Short-Pulse Reflection by One-Dimensional Photonic Crystals[END_REF][START_REF] André | Time-Dependent Bragg Diffraction by Multilayer Gratings[END_REF]. The case of a patterned reflector with a laminar profile as shown in figure 2 can be reduced to the one of the unpatterned mirror with a sufficient accuracy in the specular reflection case, provided that one multiplies the value of the susceptibility of each material by the factor Γ.

It is assumed that the intensity of the X-FEL radiation at the exit of the modulator is low enough so that non-linear effects do not occur : it is the low-intensity regime, LIR.

Nevertheless, even if the response of the mirror to the pulse is then purely linear in LIR, notable effects occur when the time-width of the pulse is very short. It has been shown [START_REF] André | Time-Dependent Bragg Diffraction by Multilayer Gratings[END_REF] that under the incidence of a Dirac pulse, the diffracted field can be written by means of the Bessel function of the first kind 𝐽 1 :

ℇ -(𝑧 = 0, 𝑇) Dirac = 𝑖 𝑠𝑖𝑛𝜃 𝐾 -Λ 𝜋√2𝜋 𝐽 1 [𝜁(𝑇)] 𝜁(𝑇) Θ(𝑇) ; 𝜁(𝑇) = 𝜋 Λ 𝑠𝑖𝑛𝜃 𝑐 𝑇 (15) 
One has introduced the time delay T measured with respect to the diffracted wave plane:

𝑇 = 𝑐 𝑡 -𝑥 𝑐𝑜𝑠 𝜃 𝑐 (16) 
and a length Λ ,which corresponds to the extinction length in the dynamical theory of crystal diffraction, given in the case of diffraction by Bragg artificial reflectors (unpatterned or patterned mirrors) by :

Λ 2 = - 𝜋 2 𝐾 + 𝐾 - (17.1) 
where :

𝐾 + = - 𝑘 𝑠𝑖𝑛𝜃 2𝜋 Δ𝜒 𝑢 𝑝 𝐾 -= 𝑘 𝑠𝑖𝑛𝜃 2𝜋 Δ𝜒 𝑢 -𝑝 (17.2) 
The terms Δ𝜒 and 𝑢 𝑝 are given by the Fourier expansion of the 𝜒(𝑧) profile of the multilayer reflector :

𝜒(𝑧) = 𝜒̅ + ∑ Δ𝜒 𝑢 𝑝 𝑒 𝑖 𝑝𝑔 𝑧 +∞ 𝑝=-∞ , 𝑔 = 2π 𝑑 (18) 
For a bilayered system :

𝑢 𝑝 = 𝛾 sinc(𝜋𝑝𝛾) 𝑒 -𝑖𝜋𝑝𝛾 (19) 
In exact backscattering geometry, the time delay T and the time t are merged. The term

𝐽 1 [𝜁(𝑇)] 𝜁(𝑇)
gives the profile of the wake field. As shown in figure 5, this profile oscillates and presents N maxima which correspond to the zeros of the Bessel function 𝐽 1 . The position of the j th maximum is denote by 𝑇 𝑗 . One inherent problem with the Bragg diffraction is that the outgoing beam seeding the radiator exhibits a transverse shift in position. It can be shown that this phenomenon is attenuated for near perpendicular incidence [START_REF] Shvyd | Spatiotemporal Response of Crystals in X-Ray Bragg Diffraction[END_REF] which advocates once more for the (near) Bragg scattering geometry. The preceding results agree with those given by Lindberg and Shvydd'ko [START_REF] Shvyd | Spatiotemporal Response of Crystals in X-Ray Bragg Diffraction[END_REF][START_REF] Lindberg | Time Dependence of Bragg Forward Scattering and Self-Seeding of Hard x-Ray Free-Electron Lasers[END_REF] for the self-seeding method based on diffraction by a crystal for the hard x-ray domain. The short temporal width of the SASE-XFEL pulses can be a source of problem linked to a loss of efficiency of the Bragg reflector as shown hereafter. First, we consider 𝑅 ̂𝛿(𝑇) = ℇ -(𝑧 = 0, 𝑇) Dirac the impulse response in terms of reflection which is nothing else than the temporal Green function 𝑔 𝑅 (𝑇) for reflection [START_REF] André | Time-Dependent Bragg Diffraction by Multilayer Gratings[END_REF] and is given by Eq. [START_REF] Benbalagh | Lamellar Multilayer Amplitude Grating as Soft-X-Ray Bragg Monochromator[END_REF]. For time coherent radiation with time-dependent causal distribution Ξ (normalized to unity), the indicial response 𝑅 ̂𝛩(𝑡) in terms of reflection coefficient is then given by :

𝑅 ̂𝛩(𝑡) = ∫ |𝑔 𝑅 (𝑇)| 2 +∞ -∞ Ξ(𝑡 -𝑇) 𝑑𝑇 = ∫ |𝑅 ̂𝛿(𝑇) | 2 𝑡 0 Ξ(𝑡 -𝑇) 𝑑𝑇 (19)
Eq. ( 19) allows one to draw a "universal" curve in terms of peak reflectance for the 

Ζ ̂𝛿(𝑠) being the transfer function that is the Laplace transform of the impulse response Ζ ̂𝛿(𝑡) ≡ 𝑅 ̂𝛿(𝑡); Ζ ̂𝛿(𝑡) can be determined from Ζ ̂Θ(𝑡) and then by performing an inverse Laplace transform of Eq. ( 20), one determines the temporal response [START_REF] André | Time-Dependent Bragg Diffraction and Short-Pulse Reflection by One-Dimensional Photonic Crystals[END_REF]. This approach is applied to a sine-square shaped pulse with 10 fs temporal width reflected by an ideal La/B multilayer mirror working in backscattering geometry, as illustrated by figure 7. The multilayer mirror has a period equal to 𝑑 ∞ = 3.32 nm, a ratio 𝛾 = 0.3 and 150 bilayers. It appears that, although the mirror offers a steady-time peak reflectivity around 64 %, the intensity of the reflected pulse is considerably reduced and has a temporal shape notably modified with respect to the incident pulse. Although the problem of reduction in reflection efficiency for an x-ray reflector, at reduced time less than the critical time 𝑡 𝑐 has been highlighted in 1995 by Chuhovskii and Förster for crystal diffraction [START_REF] Lindberg | Time Dependence of Bragg Forward Scattering and Self-Seeding of Hard x-Ray Free-Electron Lasers[END_REF] and then by André and Jonnard [START_REF] André | Time-Dependent Bragg Diffraction and Short-Pulse Reflection by One-Dimensional Photonic Crystals[END_REF][START_REF] André | Time-Dependent Bragg Diffraction by Multilayer Gratings[END_REF] for multilayer diffraction, it seems that this effect is little considered in the literature relative to XFEL optics.

Dynamics of the self-seeding

In the preceding section, we discussed the spatio-temporal profile of the radiation reflected by the DMDM generated by a coherent incident pulse. But since the SASE-XFEL radiation impinging the DMDM is temporally incoherent, we now discuss the dynamics to seed coherently the second ondulator (radiator). The SASE-XFEL is approximately constituted by N longitudinal Gaussian modes that have random phases. So we write the incoming field :

𝐸 𝑖𝑛𝑐 (𝑡) = ℇ(𝑡) ∑ 𝜗 𝑖 𝑒𝑥𝑝 (- 𝑐 2 Δ𝑡 𝑖 4 𝜎 ) 𝜎 √4 𝜋 𝑁 𝑖=1 (21) 
where 𝜗 𝑖 is a set of random amplitudes, Δ𝑡 𝑖 a set of random temporal shifts, 𝜎 the width of the temporal random distribution, ℇ(𝑡) the temporal envelope of the incident field caracterized by a characteristic length 𝐿 𝑆𝐴𝑆𝐸𝑝𝑢𝑙𝑠𝑒 . Provided the incident pulse is short enough, it generates a trailing field formed by a sum of wakes as shown in the previous section, each of them with an amplitude 𝜗 𝑖 and a temporal shift Δ𝑡 𝑖 . If the ensembleaveraged total power in the trailing pulse scales as N times the average power in an individual wake, then we can write the ratio of the seeding power 𝑃 𝑠𝑒𝑒𝑑 to the SASE-XFEL pulse power 𝑃 𝑝𝑢𝑙𝑠𝑒 as :

𝑃 𝑠𝑒𝑒𝑑 𝑃 𝑆𝐴𝑆𝐸𝑝𝑢𝑙𝑠𝑒 = 4𝜋𝜎 𝑁 ( 𝜋 2 𝑑 Λ 2 𝐽 1 [𝜁(𝑇 1 )] 𝜁(𝑇 1 ) ) (22) 
where 𝑇 1 is the delay time corresponding to the first maximum in .

For a long modulator acting on an electron beam with zero initial energy spread, one has 

It appears that the ratio ℛ 𝑠;𝑝 is mainly conditionned by the value of 𝑇 1 as pointed out by Shvydd'ko and Lindberg for the crystal diffraction case [START_REF] Chukhovskii | Time-Dependent X-Ray Bragg Diffraction[END_REF]. To optimize the seeding, it is then worth to increase the value of 𝑇 1 ; since this quantity varies as 𝑠𝑖𝑛𝜃, it follows that backscattering is a favorable geometry. Increase the value of 𝑇 1 is also determined by a judicious choice of the materials from which the structure of the multilayer reflectors is made up.

Conclusion

A double-crystal monochromator in non-dispersive configuration equipped with multilayered Bragg reflectors working in near backscattering geometry appears to be a powerful tool for performing self-seeding in a soft-x-ray FEL. To achieve a sufficient performance in terms of monochromatization, one of this Bragg reflector should be an etched structure which allows one to improve notably the resolution of a multilayer mirror. One of the main problems to solve is the damages in the x-ray beam transport system arising from the head load resulting from the interaction X-FEL radiation with the matter. Since the self-seeding system is exposed to the radiation coming from the modulator, one can expect that this damage problem is less acute than the one arising for optics installed after the radiator. The problem of thermal loading on La/B multilayer mirrors is not well documented. Nevertheless for B-based mirrors such as La/B4C or LaN/B4C systems also of interest in the B-K spectral domain, structural modifications and interfacial chemical reactions have been evidenced leading to spectral shift in the reflectivity curve under annealing [START_REF] Naujok | Thermal Stability of B-Based Multilayer Mirrors for next Generation Lithography[END_REF]. At the exit of a modulator, a typical energy over pulse of a few 𝜇J (say 4 μJ) is expected which corresponds, for a rms spot size of 50 μm, to a fluence of 200-300 mJ/cm 2 which seems compatible with the stability of the mirrors [START_REF] Louis | Damage Studies of Multilayer Optics for XUV Free Electron Lasers[END_REF]. Nevertheless both theoretical and experimental investigations are needed to corroborate this with the B-based multilayer systems of interest, in the B-K spectral domain. Multi-scale and multi-physics numerical models in this field are now available [START_REF] Yang | Damage Simulation Due to Heat Load from X-Ray FEL Beam at European XFEL[END_REF] but required to be validated by experiments. Another question is linked to the short-duration of the radiation pulses. It has been theoretically shown that the reflectivity of the mirrors can be affected by the temporal features of the pulse radiation.

Until now, no validation of the theory of the diffraction dynamics has been obtained and experiments in this field should be performed to check theory.

Figure 2 :

 2 Figure 2 : Double-multilayer monochromator in non-dispersive configuration and in near backscattering geometry. MI is an unpatterned multilayer; MII is a patterned multilayer. L is the distance between the two multilayers; h is the distance between the incoming and outgoing parallel beams.

  around 10 -4 since 𝑐𝑜𝑡𝑎𝑛𝜃 ≈ 9 10 -3 if the term Δ𝑑 𝑝 𝑑 𝑝 can be neglected. Let us note that the value 𝜃 = 89.5° seems reasonable since it leads to ℎ ≈ 5 𝑚𝑚 for 𝐿 ≈ 50 𝑐𝑚, see figure 2. Another reason for the choice of the backscattering geometry concerns the penetration of the radiation : the larger the number of bilayers 𝑁 𝑑𝑖𝑓𝑓 involved in the diffraction process, the narrower the bandwidth of the diffracted radiation. In the soft x-ray domain, photo-absorption is often the main cause for the limited penetration. The penetration depth (the depth into the material measured along the surface normal) D is linked to the penetration length L by 𝐷 = 𝐿 𝑠𝑖𝑛 𝜃. Increasing the value of D leads to the rise of 𝑁 𝑑𝑖𝑓𝑓 . Since 𝐿~ 1/𝜇̅ where 𝜇̅ is the average linear absorption coefficient of the multilayer medium, it comes : 𝐷~ 1/𝜇̅ 𝑠𝑖𝑛 𝜃 (10) In backscattering geometry, 𝜃 ≈ 𝜋 2 and then the penetration depth D is maximized. From
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 3 Figure 3 : Multilayer mirror patterned under lamellar profile. DG is the grating period;  DG is the width of the multilayer bars; d is the multilayer period or d-spacing.

Figure 4 :

 4 Figure 4 : Detuning of the multilayer monochromators of the DMDM. The dashed zone corresponds to the overlap of the diffraction patterns of the patterned and unpatterned multilayers.

∆𝜆 𝐼 2 (

 2 ≈ 0.025 nm), ∆𝜆 𝐼 being the wavelength bandwidth of monochromator MI. Anyway, it is possible to adjust the value of δ𝑑 𝐼,𝐼𝐼∞ to get the wavelength detuning 𝛿𝜆 at the wished value ∆𝜆 𝐼 2 .

Figure 5 :

 5 Figure 5 : Temporal profile of the Bragg reflected wave as a function of reduced time 𝑡 ̅ = 𝑡 𝑠𝑖𝑛𝜃 𝜋 𝑐 𝛬 .

  indicial response 𝑅 ̂𝛩(𝑡) versus the reduced time 𝑡 ̅ = 𝑡 𝑠𝑖𝑛𝜃 𝜋 𝑐 Λ ; see figure 6. It appears that the indicial response for reflection is conditioned by the extinction length Λ and that it presents a transient period whose duration is given by a characteristic transient time 𝑡 𝑐 approximately equal to 2 units of reduced time.

Figure 6 :

 6 Figure 6 : Indicial response in terms of peak reflectance versus reduced time for a multilayer mirror at the Bragg resonance (Bragg angle). The response is normalized to unity. The effect of the oscillations of the wake field can be observed at 𝑡 ̅ = 𝑇 1 ≈ 3.83.

Figure 7 :

 7 Figure 7 : Normalized incident sine-square shaped pulse (blue curve) and reflected pulse by a La/B multilayer working at the wavelength 6.65 nm in backscattering geometry vs time (red curve).

𝐽 1 [

 1 𝜁(𝑇)] 𝜁(𝑇)

  

  𝜎 = 𝐿 𝑆𝐴𝑆𝐸 /√3𝜋 ; moreover 𝑁 = 𝐿 𝑆𝐴𝑆𝐸𝑝𝑢𝑙𝑠𝑒 /𝐿 𝑐𝑜ℎ . Combining these relations gives the

	approximate formula :			
	ℛ 𝑠;𝑝 ≡	𝑃 𝑠𝑒𝑒𝑑 𝑃 𝑆𝐴𝑆𝐸𝑝𝑢𝑙𝑠𝑒	≈ 𝐿 𝑆𝐴𝑆𝐸 𝐿 𝑐𝑜ℎ ( 𝜋 2 𝑑 Λ 2	𝐽 1 [𝜁(𝑇 1 )] 𝜁(𝑇 1 ) )	~𝐿𝑆𝐴𝑆𝐸𝑝𝑢𝑙𝑠𝑒 𝐿 𝑐𝑜ℎ (𝑐𝑇 1 ) 2

The subscript p in 𝑑 𝑝 corresponds to the fact that the effective d-spacing is not the geometrical distance but rather the optical one taking into account optical effects (refraction and absorption) ; the optical effects depend on the order p ; when p tends towards infinty the effective d-spacing tends towards the geometrical distance 𝑑 ∞ .

Appendix 1

Following the work by Rosenbluth and Lee [START_REF] Rosenbluth | Bragg Condition in Absorbing X-ray Multilayers[END_REF], for a bilayer structure as considered in Eq. [START_REF] Caticha | Dynamical Theory of X-Ray Diffraction at Bragg Angles near π/2[END_REF], 𝐷𝜆 is given by : 𝐷𝜆 = 𝜆 -𝜆 𝐵 = 2𝑑 ∞ 𝜖(𝛿 ̅ , 𝛽 ̅ , Δ𝛿, Δ𝛽) (A1. [START_REF] Feldhaus | Possible Application of X-Ray Optical Elements for Reducing the Spectral Bandwidth of an X-Ray SASE FEL[END_REF] where 𝜖(𝛿 ̅ , 𝛽 ̅ , Δ𝛿, Δ𝛽) is a function of :

-the average unit decrement of the real part of the optical index 𝛿 ̅ = 𝛾 𝛿 𝐚 + (1 -𝛾)𝛿 𝐛 ; -the average of the imaginary part of the optical index 𝛽 ̅ = 𝛾 𝛽 𝐚 + (1 -𝛾)𝛽 𝐛 ; -the difference between the real parts of the optical index Δ𝛿 = 𝛿 𝐚 -𝛿 𝐛 of the two materials;

-the difference between the imaginary parts of the optical index Δ𝛽 = 𝛽 𝐚 -𝛽 𝐛 of the two materials.

From [START_REF] Rosenbluth | Bragg Condition in Absorbing X-ray Multilayers[END_REF], it comes with the usual notations of the paper :

Applying Eq. (A1.1) to the monochromator I leads to :

where the subscript I refers to monochromator I. The same operation can be applied mutatis mutandis to monochromator II, so that the wavelength shift 𝛿𝜆 resulting from the detuning reads :

which can be rewritten as : 

Appendix 2

The integrated reflectivity of the DMDM is given by :

If one sets 𝑥 = (𝜆 -𝜆 𝐼 ) then :

The integral can be rewritten as follows :

where :