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A B S T R A C T

We propose a statistical model suitable for large spatio-temporal data sets exhibiting complex patterns such
as simulated by physics-based hydraulic models over high resolution (HR) 2D meshes. Although necessary for
impact studies such as urban flood hazard assessment, their long computation times limit their applicability
leading to the development of statistical models that may emulate them quickly. Our model draws from the
strengths of multi-resolution analysis and relies on an extension of the lifting scheme, a flexible implementation
of discrete wavelet transforms, for spatio-temporal data. The extended lifting scheme exploits the idea that
dominant spatial features, that may be identified with clustering, remain present through time. An easily
interpretable non-parametric representation can be derived from the lifting scheme by combining a smoothed
version of the data (obtained by simple averaging) with details (given by local regression residuals). A
generative algorithm is built by introducing the information provided by a low resolution model, whose
computation times are orders of magnitude smaller, yielding a downscaling model. This downscaling model
assumes that sufficiently representative HR spatial patterns can be inferred from the training set. Our model
is applied to a 2D dam break experiment using a synthetic urban configuration and to a field-scale test case
simulating the propagation of a dike break flood wave into a Sacramento urban area. A comparison, carried
out with spatial interpolation schemes and with a variant of our model based on principal component analysis,
shows that the spatio-temporal lifting scheme based model is better at reproducing extreme events.
1. Introduction

Many natural phenomena such as meteorological or flow variables
may be simulated by numerically solving physics equations. To fully
capture important non-linear spatial features, meshes with high spatial
resolution are required leading to very demanding computations. For
instance, Mediterranean heavy precipitation is rare but impactful and
may be modeled over a restricted domain with a convection-permitting
regional model having a spatial resolution of 2.5 km (Caillaud et al.,
2021). Another example are water level and horizontal flow velocity
useful for urban flood hazard assessment that may be simulated with
2D shallow water models typically operating over meshes with tens or
hundreds of thousands of discrete cells (Sanders and Schubert, 2019).
Statistical models that can mimic the physics-based simulations of these
natural phenomena with fast computation times are an active area of
research.

The complex spatial patterns that may be exhibited by some natural
phenomena invalidate standard statistical approaches and call for the
development of more advanced methods. For instance, Nychka et al.
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(2018) proposed a convolution-based model that can capture non-
stationary features in the covariance of a gaussian process to emulate
local surface temperature. Surpassing the gaussian paradigm which
might be restrictive for some variables, other numerous examples are
provided by deep learning approaches that have attracted recently a
lot of attention. As an example, Wu et al. (2021) rely on the generative
adversarial network algorithm to simulate high resolution temperature
in urbanized areas. However, the implementation of deep learning
approaches is, in general, rather involved and requires specific do-
main expertise and computation technology such as GPU. In addition,
the modeling mechanisms lack interpretability which is one of the
reason behind the emergence of the hybrid field of physics-informed
machine learning (Kashinath et al., 2021). A different less followed
route focuses on semi- or non-parametric representations that rely on
low dimensional embedding or feature space.

One such representation is provided by Principal Component Anal-
ysis (PCA). By assuming that the data lay on a lower dimensional
hyperplan, PCA may be thought of as a multivariate gaussian model
vailable online 9 June 2023
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with the covariance matrix depending on the eigenvectors that span
the hyperplan (e.g., see the definition of probabilistic PCA in Bishop
(2006)). PCA represents any given spatial pattern as a linear combi-
nation of the eigenvectors which can be thought of as typical spa-
tial patterns. By combining probabilistic PCA distributions into mix-
tures, more flexible non-linear non-gaussian representations can be
obtained (Bishop, 2006). Powerful alternatives to represent complex
signals can be derived from the multi-resolution analysis framework.
In particular, discrete wavelet transforms have long been used in signal
analysis to model highly intricate patterns (Jensen and La Cour-Harbo,
2001). Any given signal, this may be a time series in 1D or an image
in 2D, may be decomposed into a sum of scaling coefficients (a form
of low pass filter that extracts the main features of the signal) and
wavelet coefficients (a form of high pass filter that contains the details
of the signal). Of particular interest is the lifting scheme, a simple and
intuitive procedure that allows to adapt discrete wavelet transforms
to irregular sampling locations, such as the irregular meshes used for
hydraulic simulations, and non-dyadic sample sizes (e.g., see Park and
Oh (2022)). Proposals to adapt the lifting scheme in order to handle
3D data such as video stream were developed (Zheng and Xue, 2009).
Nevertheless, to our knowledge, no adaptation of the lifting scheme
was proposed for spatio-temporal data such as physics-based simula-
tions of natural phenomena. Furthermore, some additional generative
mechanisms must be incorporated into these representations in order
to sample temporally coherent simulations.

The so-called downscaling framework in which low resolution
physics-based simulations are used to recover the high resolution ones
can be seen as a way to turn a given representation into a generative
algorithm. Despite that statistical downscaling has been developed for
several decades in the context of climate change studies (Ayar et al.,
2016), approaches that can explicitly take into account the spatial
structure are relatively recent. For instance, in Cannon (2018), spatial
dependence was modeled through iterative random projections of fields
of climate variables onto linear one-dimensional sub-spaces. In Vrac
and Friederichs (2015) and Vrac (2018), spatial patterns from the
training set, defined based on ranks, were re-sampled as is, i.e., this
approach boils down to using a very high dimensional empirical copula.
More recent statistical downscaling models make use of deep learning
algorithms (Wu et al., 2021; François et al., 2021). PCA or discrete
wavelet transforms are generally applied as a way to compress the low
resolution physics-based simulations, a form of pre-processing step to
reduce the dimensionality of the inputs to the downscaling model (Ayar
et al., 2016; Kumar et al., 2021). The use of semi- or non-parametric
representations as a model for high resolution fields in the downscaling
framework is not very common. Carreau and Guinot (2021) and Fraehr
et al. (2022) used the PCA representation to capture the spatial struc-
ture of high resolution hydraulic fields. Although the setting is slightly
different, in both cases, the PCA eigenvectors are computed on the high
resolution fields in the training set and are subsequently assumed to be
fixed. The goal of downscaling is then to predict the weights of the
linear combination of eigenvectors based on information drawn from
the low resolution hydraulic fields. Concerning the discrete wavelet
transform, Nourani et al. (2020) developed an approach for the spatial
disaggregation of rainfall based on the distributional properties of the
2D wavelet coefficients.

In this work, we propose an extension of the lifting scheme which
is suitable for the spatio-temporal physics-based simulations of natural
phenomena. This allows us to derive non-parametric representations
for spatio-temporal data that can be turned into generative algorithms
given appropriate mechanisms, see Section 2. The proposed spatio-
temporal lifting scheme and the resulting representations rely on very
simple calculations – subtractions and additions – whose implementa-
tion may run on an ordinary laptop. The powerful non-linear feature
extraction capabilities arise from easily interpretable mechanisms. We
illustrate the potential of the proposed spatio-temporal lifting scheme as
2

a spatially adaptive multi-resolution generative algorithm by designing
a downscaling model, see Section 3. The main idea behind the down-
scaling strategy is to learn a bank of high resolution spatial pattern
types by applying the spatio-temporal lifting scheme on training data.
The most relevant pattern is selected by exploiting information drawn
from the low resolution physics-based simulations. The downscaling
model that relies on the spatio-temporal lifting scheme representation
is compared to direct interpolations of the low resolution simulation
and to a downscaling model which is similar in spirits to the proposed
model but uses PCA to learn spatial pattern types. Water depth and unit
discharge norm fields simulated with 2D shallow water models serve for
the evaluation. Two configurations are considered: a synthetic urban
configuration made of a periodic layout of building blocks which is used
to simulate a 2D oblique dam break problem and a field-scale test case
consisting of a Sacramento urban area over which the propagation of
a dike break flood wave is simulated. We conclude in Section 4.

2. Spatially adaptive multi-resolution representations

The water depth data illustrated in Fig. 1 is used throughout this
section to illustrate the spatio-temporal lifting scheme. It is a subset of
a simulation obtained by solving the two dimensional shallow water
equations for a synthetic urban configuration termed the oblique dam
break problem without friction over a high resolution mesh (see Car-
reau and Guinot (2021)). The complete geometry of this configuration
is a straight street of length 1000 m made by concatenating twenty
intersections. An intersection consists of a horizontal and a vertical
segment of street forming the shape of a cross with identical fictitious
buildings at each of the four corners of the intersection. The mesh for a
single intersection contains 2304 cells organized regularly. The subset
shown in Fig. 1 concerns an intersection in the middle of the street.
The water is initially at rest, see Fig. 1(a), and the flow is subsequently
oriented in an oblique manner. The data is sampled at 5 s time intervals
for a simulation length of 75 s or 16 time steps.

2.1. 1D lifting scheme

Before explaining our version of the lifting scheme for the spatio-
temporal framework, we need to recall the basic steps of the con-
ventional implementation in 1D (Sweldens, 1998; Daubechies and
Sweldens, 1998). There are various ways to describe the multi-
resolution scheme, in particular from a mathematical perspective
(Daubechies, 1992) or from a signal processing point of view (Mallat,
1999). In our context, we prefer to highlight the statistical elements of
the lifting scheme as this will facilitate the presentation of our extension
to the spatio-temporal framework. A key element in our approach is to
view the wavelet transform as a simple local regression. Throughout
this work, we will consider only the most naive form of regression
whereby the response value is estimated directly by the value of the
predictor.

For a given 1D signal, one can expect that the value observed
at a given time could be well approximated by the value observed
immediately before or after. The lifting scheme is a recursive three step
algorithm – termed split, predict and update steps – that exploits this
idea, see Fig. 2. Let {𝑠𝑖}𝑛𝑖=1 be a 1D signal with 𝑛 = 2𝑚, i.e., its size
s assumed to be dyadic for simplicity although this restriction will
e lifted in Section 2.2. The split step, the first of the three steps of
he lifting scheme, consists in partitioning the initial signal into two
ubsets of equal size with 𝑛∕2 = 2𝑚−1 elements. These subsets can be

thought of as the response subset and the predictor subset respectively by
analogy with the regression framework. Conventionally, the predictor
subset contains the elements with even indices, i.e., {𝑠2, 𝑠4, 𝑠6,…},
while the response subset contains the elements with odd indices,
i.e., {𝑠1, 𝑠3, 𝑠5,…}. Note that the triviality of this splitting step is
often overlooked in the 1D case. However, its implementation in a
multivariate or spatial context brings a few challenges, see Section 2.2,

as the definition of odd and even indices only makes sense for a signal
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Fig. 1. Water depth in meters (Carreau and Guinot, 2021). Each panel provides a snapshot for the four first time steps (in seconds) out of 16 in total. The mesh contains 2304
cells. The x- and y-axis coordinates are in meters.
which has a single dimension. In this work, instead of focusing on the
creation of two subsets, we will most often think of the split step as
a way to determine pairs of predictor and response elements (𝑥𝑘, 𝑦𝑘),
with 1 ≤ 𝑘 ≤ 𝑛∕2, from the elements of the initial signal, i.e., 𝑥𝑘 = 𝑠𝑖𝑘
and 𝑦𝑘 = 𝑠𝑗𝑘 for some 1 ≤ 𝑖𝑘, 𝑗𝑘 ≤ 𝑛, not necessarily following even and
odd indices.

The second step of the lifting scheme, see Fig. 2, is the predict
step that implements the aforementioned naive local regression. More
precisely, for each pair of predictor and response elements, 𝑥𝑘 is used
as an approximation to 𝑦𝑘. The prediction errors or regression residuals
yield the wavelet coefficients:

𝑑𝑘 = 𝑦𝑘 − 𝑥𝑘 1 ≤ 𝑘 ≤ 𝑛∕2 (1)

which are then simply stored subsequently. Since wavelet coefficients
are regression residuals, by construction, they should be centered
around zero and, except near non-linearities in the signal, most resid-
uals should be viewed as noise. In contrast, the remaining predictor
elements 𝑥𝑘 have to be updated to contain the same overall amount
of information than the original signal. This is the role of the update
step, the third step of the lifting scheme, which computes the scaling
coefficients:

𝑐𝑘 =
𝑥𝑘 + 𝑦𝑘

2
= 𝑥𝑘 +

1
2
𝑑𝑘 1 ≤ 𝑘 ≤ 𝑛∕2. (2)

The update step ensures that the mean value of the scaling coefficients
corresponds to the mean value of the initial signal. The set of scaling
coefficients {𝑐𝑘}𝑘 of length 𝑛∕2 can be considered as a similar but
smoother and shorter version of the original signal from which the
highest frequency has been removed.

Computationally, the three lifting steps are local, fast and simple.
They can be easily repeated which brings the idea of multi-resolution.
At the second iteration of the lifting scheme, the scaling coefficients
from the update step of the preceding iteration become the input,
i.e., the current signal of length 𝑛∕2, on which the three step of the
lifting scheme are applied (see Fig. 2). The decomposition will yield
𝑛∕4 wavelet coefficients (or residuals) and 𝑛∕4 scaling coefficients (or
a smoothed signal). The number of iterations, say 𝑚, is coined the
resolution level, ranging from 𝑚 = 0 where the current signal is
the original signal of length 𝑛 to 𝑚 = [log 𝑛∕ log 2] where a single
value remains representing the average of the original signal. As 𝑚 in-
creases, the current signal provided by the scaling coefficients becomes
coarser and coarser. In addition, large wavelet coefficients indicate
local discontinuities associated with a given resolution level.

The decomposition of the lifting scheme can be reversed, i.e., the
signal may be reconstructed, by reversing iteratively the steps update,
predict and performing a merge step (the inverse of the split step). With
the naive local regression, the update and predict steps in the inverse
scheme are obtained by switching additions with subtractions and vice
versa in (1) and (2) yielding:

𝑥𝑘 = 𝑐𝑘 −
1
2
𝑑𝑘 (3)

𝑦𝑘 = 𝑑𝑘 + 𝑥𝑘, (4)

with 1 ≤ 𝑘 ≤ 𝑛∕2. In the merge step, the results of the reverse update
and predict steps from (3) and (4) are combined to re-form the predictor
subset of the preceding iteration.
3

Fig. 2. Split, predict and update steps of the lifting scheme applied iteratively.

2.2. Spatio-temporal lifting scheme

The lifting scheme has been extended to 2D, in particular in the
context of image analysis. Initial 2D schemes involved the application
of two 1D schemes, a vertical one, along the x-axis, and a horizontal
one, along the y-axis (Dong et al., 2008). However, image features
are not accounted for and these separable 2D schemes may generate
high prediction errors, yielding high wavelet coefficients, non nec-
essarily related to non-linearities in the signal. Non-separable lifting
schemes have been developed in which several additional directions
are considered (Dong et al., 2008; Kaaniche et al., 2010). Although 3D
extensions proposed to handle video streams (see Zheng and Xue (2009)
for a review) could be applied to spatio-temporal data, physics-based
simulations of natural phenomena such as the water depth data shown
in Fig. 1 have certain spatial features that persist in time (for instance,
the oblique propagation of the water) that can be exploited in the lifting
scheme.

To account for the features of spatio-temporal data, we introduce
two main modifications to the conventional lifting scheme. First of
all, elements are defined as vectors that contain the whole time series
associated to a given location. In what follows, bold font is used to
indicate vector elements, e.g., 𝒔𝑖 is a vector containing the time series
at location 𝑖 which corresponds to a given cell of the mesh in the water
depth data example. Second, a spatial partition, obtained by clustering
the elements into groups, is used to assist the split at each stage as
explained below. Indeed, clustering has long been used to perform
image segmentation and to identify features (Bishop, 2006). Clustering
is fast to run and can help quite straightforwardly to reduce prediction
errors, thereby reducing the number of significant wavelet coefficients
(see (1)), by selecting pairs of predictor-response elements within the
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Fig. 3. Six spatial features extracted by clustering the 2304 elements based on their temporal behavior (in seconds) for the water depth data of Fig. 1.
same cluster (that are thus part of the same feature). To the best of our
knowledge, clustering has not been combined with lifting schemes in
such a way.

2.2.1. Clustering assisted split step
To extract the spatial features of the water depth data from Fig. 1, a

clustering algorithm may be applied on the 2304 elements (one element
for each cell of the mesh). The aim of clustering is to define groups
(also called clusters) with the smallest intra-group distances. It will
thus seek to group the elements according to their temporal behavior
over the 16 time steps. As an illustration, a spatial partition of the
water depth data from Fig. 1 with six clusters is shown on the left
hand side of Fig. 3. The temporal water depth variation of each of
the six cluster representatives (also called medoids or prototypes) is
provided on the right hand side of Fig. 3. The main spatial features
of the flow, as identified by the temporal behavior at each cell of
the mesh, are clearly discernable. Some clusters may not be spatially
contiguous yet the clustering produced is coherent. For example, the
yellow cluster in Fig. 3(a) covers the upper and rightmost branches of
the intersection where similar behavior occurs owing to the symmetry
along the first diagonal arising from the oblique propagation of the
flow (see also Fig. 1). For the water depth data, the information on
the temporal variability is sufficient to infer spatially coherent clusters.
This should generally be the case for environmental data (see, for
example, the spatial partition of extreme precipitation from gauged
stations in Carreau et al. (2017)). In any case, as mentioned previously,
elements belonging to the same cluster have, by definition, smaller
distances. Any pair within a cluster can thus be assigned as a pair of
predictor-response elements. Even if the pair is not spatially contiguous,
prediction errors are ensured to be lower than that of any other pair
selected across two different clusters.

At each stage of the lifting scheme, clustering appears naturally
as part of the split step. If 𝑛 denotes the number of elements at the
beginning of a given stage of the lifting scheme, then the split step
can be thought of as defining a spatial partition into 𝑛∕2 groups with
each group containing a pair (𝒙, 𝒚) of elements, one from the predictor
set and the other from the response set. At the first stage, for the
water depth data example, this would mean to determine a partition
with 1152 groups with precisely two elements per group. This poses a
challenge for clustering algorithms as they are designed to identify a
partition with a pre-specified number of groups but are not equipped
to ensure a pre-specified number of elements in each group (Bishop,
2006). To alleviate this difficulty we propose a clustering assisted split
step based on the following rationale. The number of groups should
be as close as possible to 𝑛∕2 in order to capture as detailed spatial
features as possible but it may be lower to ensure that each group has
at least two elements so that the application of the lifting scheme is
feasible. With a sufficiently detailed partition, the split step can assign
pairs of predictor-response elements arbitrarily within a given cluster,
e.g., based on the sequential order of their indices as in the conven-
tional 1D lifting scheme (i.e., predictor elements have even indices and
4

response elements have odd indices). By allowing a predictor element
to be paired with two response elements, the applicability of the lifting
scheme is seamlessly extended to cases where the initial number of
elements is not a power of two.

The clustering assisted split step, detailed in Algorithm 1, has two
main parts. In the first part, a spatial partition of the 𝑛 elements com-
posing the signal at a given stage of the lifting scheme is established. To
achieve this efficiently, we rely on a hierarchical clustering algorithm
that yields a dendrogram from which clusterings for any number of
groups can be extracted quickly (Kaufman and Rousseeuw, 1990). The
desired clustering can be obtained by trial and error starting first by
extracting from the dendrogram a clustering with ⌊

𝑛∕2⌋ groups and then
reducing the number of groups, e.g., dividing the initial number by two,
until no group has less then two elements (see lines 1–7 in Algorithm
1). If the spatial variability in the data is high, it might be desirable
to ensure a larger number of clusters. This can be achieved by setting
a lower decreasing rate for the number of clusters (for example, use
𝑀 ← ⌊

𝑀∕1.2⌋ on line 5 in Algorithm 1). This would potentially require
more computation. Part two of the clustering assisted split step consists
in assigning pairs of predictor and response elements following the
sequential order of the indices within each group of the spatial partition
established in the first part. When a group of the partition has an odd
number of elements, the last element assigned as predictor is paired
with the last two elements assigned as responses. As a consequence,
the size of the partition obtained for the split step will in general be
smaller than ⌊

𝑛∕2⌋ (see lines 8–19 in Algorithm 1).

2.2.2. Adapted predict and update steps
Three modifications of the predict and update steps are required for

the lifting scheme in the spatio-temporal framework. First of all, since
the elements are vectors containing time series, the operations must
be performed component-wise. Second, at a given stage, for predictor
elements paired with two response elements, the predict step (see (1))
must be performed twice. Let us use the following simplified notation:
(𝒙, 𝒚) and (𝒙, 𝒚1, 𝒚2) denote respectively a group with two and three
elements. Then, for the naive local regression used throughout, the
predict step consists in calculating:
{

𝒅 = 𝒚 − 𝒙 group with two elements
𝒅1 = 𝒚1 − 𝒙 𝒅2 = 𝒚2 − 𝒙 group with three elements.

(5)

The third modification affects the update step in order to account
for the number of elements in the aggregated partition created by the
iterations of the lifting scheme. At a given stage, the split step creates a
partition with groups composed of one predictor element and at most
two response elements. At the next stage, these groups are merged by
applying the split step on the scaling elements which were the predictor
elements of the previous stage. As the number of stages increases, the
partition becomes more and more aggregated. This is illustrated on
a 3 by 3 toy example for two successive stages in Fig. 4. Each color
represents a group with the predictor element indicated by a white x
and either one or two paired response elements indicated by a white



Weather and Climate Extremes 41 (2023) 100580J. Carreau and P. Naveau

F
e
t
s
o
i

y
t
s
p
n
a

g
F
i
w
a

𝒄

Input : {𝒔𝑖}𝑛𝑖=1, 𝒔𝑖 ∈ R
𝑑 , the elements to split at the beginning

of the stage
Output: pairs or triplets with one predictor element and at

most two response elements
1 𝑀 ← ⌊

𝑛∕2⌋ the targeted number of groups in the spatial
partition

2 Build ▲ : the dendrogram resulting from a hierarchical
clustering applied to {𝒔𝑖}𝑛𝑖=1

3 𝑀 ← cut(▲, 𝑀), the clustering obtained by cutting ▲ to yield
𝑀 groups

4 while  contains at least one group with one element do
5 𝑀 ← ⌊

𝑀∕2⌋ // rate of decrease of 𝑀 is 2
6 𝑀 ← cut(▲, 𝑀)
7 end
8 for 𝑗 ← 1 to 𝑀 do
9 // scan each group
10 𝑛𝑗 : # of elements in group 𝑗
11 {𝒔𝑖1 ,… , 𝒔𝑖𝑛𝑗 }: the elements in group 𝑗

12 // form the pairs of predictor and response
elements

13 {(𝒙𝑘, 𝒚𝑘)}, 𝑘 ∈ N and 1 ≤ 𝑘 ≤ 𝑛𝑗∕2 with 𝒙𝑘 = 𝒔𝑖2𝑘 and
𝒚𝑘 = 𝒔𝑖2𝑘−1

14 if 𝑛𝑗 is odd then
15 // there is an additional response element
16 𝒚

⌊
𝑛𝑗∕2⌋+1 = 𝒔𝑖𝑛𝑗

17 (𝒙
⌊
𝑛𝑗∕2⌋, 𝒚⌊𝑛𝑗∕2⌋, 𝒚⌊𝑛𝑗∕2⌋+1) // the last predictor
element is paired with two response
elements

18 end
19 end
Algorithm 1: Perform the split step of the lifting scheme assisted
by clustering at a given resolution stage (see § 2.2.1).

ig. 4. Toy example: each group is indicated by a color with predictor (response)
lements indicated with a white x (y). In stage 1, a clustering algorithm could be used
o determine the groups which are then split into predictor and response elements. In
tage 2, the two groups can be obtained by clustering the updated predictor elements
f stage 1. (For interpretation of the references to color in this figure legend, the reader
s referred to the web version of this article.)

. At the end of the split step of the first stage shown in Fig. 4(a),
here are 4 groups, one of which has 2 response elements. In the second
tage shown in Fig. 4(b), the split step consists in assigning the updated
redictor elements of the first stage (the scaling coefficients, see (2)) to
ew pairs of predictor and response elements. This can be thought as
ggregating the previous partition yielding the two groups of Fig. 4(b).

At each stage, a coefficient 𝜆 such that the average over each
roup of the aggregated partition is preserved must be determined.
or groups with two elements, 𝜆 = 1∕2 and the update step from (2)
s unchanged except for the operations that are performed component-
ise. In contrast, for (𝒙, 𝒚1, 𝒚2), a group with three elements, 𝜆 = 1∕3
nd the update step becomes:

=
𝒙 + 𝒚1 + 𝒚2 = 𝒙 + 1 (𝒅 + 𝒅 ), (6)
5

3 3 1 2
with 𝒅1 and 𝒅2 as in (5). In successive stages of the lifting scheme,
𝜆 depends on the number of elements in the groups in the preceding
aggregated partition. In Fig. 4(b), 𝜆 = 1∕2 for the purple group as there is
an equal number of elements in the two groups being merged. However,
for the blue group of Fig. 4(b), 𝜆 = 2∕5 to account for the differences
in the group sizes. The implementation of the spatio-temporal lifting
scheme has to keep track of the values of 𝜆 for all groups at all stages
to perform the update step adequately:

𝒄 =

{

𝒙 + 𝜆𝒅 group with two elements,
𝒙 + 𝜆(𝒅1 + 𝒅2) group with three elements,

(7)

with 𝒅, 𝒅1 and 𝒅2 as in (5).
The inverse lifting scheme in the spatio-temporal framework follows

the same steps as in the 1D case (see (3) and (4)) except that, as pre-
viously, the operations are performed component-wise. For the naive
local regression, the reverse update and predict steps are obtained by
switching additions with subtractions and vice versa in (5) and (7).
In particular, for a group with two elements, the reverse update and
predict steps restore the predictor and response element respectively
while the merge step regroups the scaling coefficients of the previous
stage:

𝒙 = 𝒄 − 𝜆𝒅 = 𝒄 + 𝛼𝑥𝒅 (8)
𝒚 = 𝒅 + 𝒙 = 𝒄 + (1 − 𝜆)𝒅 = 𝒄 + 𝛼𝑦𝒅 (9)

where 𝛼𝑥 = −𝜆 and 𝛼𝑦 = 1 − 𝜆 are thus coefficients that depend
on the aggregated partition and are linked to the particular geometry
under study. Similar operations are carried out for groups with three
elements.

2.2.3. Illustration of the spatio-temporal lifting scheme
The spatio-temporal lifting scheme is illustrated on the water depth

data shown in Fig. 1. The split-predict-update steps described above are
illustrated for the first stage (Fig. 5(a)-5(c)), the fourth stage (Fig. 5(d)-
5(f)) and the eighth stage (Fig. 5(g)-5(i)). In Fig. 5(a), Figs. 5(d) and
5(g), the color scale corresponds to the aggregated partition, i.e., each
group of a given color is made of a predictor element and the associated
response elements, including the ones from the previous stages (see also
Fig. 4). For the predict step, Fig. 5(b), Figs. 5(e) and 5(h), the temporal
medians of the wavelet coefficients, see (5), are illustrated. In the
update step, Fig. 5(c), Figs. 5(f) and 5(i), the temporal medians of the
scaling coefficients computed using (7) are shown on the aggregated
partition, i.e., each updated predictor element value is associated to
all the elements of its group in the partition from Fig. 5(a), Figs. 5(d)
and 5(g). Note that, due to the procedure described in Section 2.2.1,
the split step always results in slightly more response than predictor
elements, i.e., a small number of predictor elements are paired with two
response elements. In some preliminary trials of the clustering assisted
split step, the K-medoids algorithm with pre-defined targeted number
of clusters for each stage (with values much lower than ⌊

𝑛∕2⌋) was used
instead of the hierarchical clustering based strategy with an adaptive
number of clusters described in Algorithm 1. We found that, for the
water depth data example, the results of the lifting scheme were not
sensitive to the clustering strategy implemented to obtain the spatial
partition.

2.3. Non-parametric representations for spatio-temporal data

From the spatio-temporal lifting scheme described in Section 2.2,
we derive an exact representation of the signal, see Section 2.3.1,
and a sparse representation that yields low reconstruction errors by
reproducing the signal main features and leaving aside more localized

details, see Section 2.3.2.



Weather and Climate Extremes 41 (2023) 100580J. Carreau and P. Naveau
Fig. 5. Three stages of the spatio-temporal lifting scheme applied to the water depth data from Fig. 1. First column: the partition resulting from the split step, where aggregation
means that the response elements of the previous stages are included. Second column: the predict step represented by the temporal medians of the wavelet coefficients. Third
column: the update step illustrated by the temporal medians of the scaling coefficients over the partition of the split step. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
2.3.1. Exact representation
A forward application of the spatio-temporal lifting scheme fol-

lowed by a backward application are necessary to derive this rep-
resentation. Let 𝑛 be the initial number of elements in the spatial
dimension and 𝑇 be the number of time steps. The forward application
consists in iterating the lifting scheme until a single element remains.
The update step ensures that the single scaling coefficient at the last
stage is equal to 𝒄 = 𝒔̄ = (𝑠̄1,… , 𝑠̄𝑇 )′, the spatial average over the
original 𝑛 elements at each time step. All the other 𝑛 − 1 elements are
transformed into wavelet coefficient 𝒅𝑘 = (𝑑𝑘1,… , 𝑑𝑘𝑇 )′, 1 ≤ 𝑘 ≤ 𝑛 − 1.
The backward application consists in reversing the steps of the lifting
scheme iteratively, i.e., by applying (8)–(9) starting from the last stage
and iterating until the original spatio-temporal field 𝒔𝑖 ∈ R𝑇 at a given
location 𝑖, 1 ≤ 𝑖 ≤ 𝑛, may be expressed as

𝒔𝑖 = 𝒔̄ +
𝑛−1
∑

𝑘=1
𝛼𝑘𝑖𝒅𝑘, (10)

where 𝛼𝑘𝑖, 1 ≤ 𝑘 ≤ 𝑛− 1 are the coefficients associated to the location 𝑖
that depend on the number of elements in each group of the partitions
at each stage (the indices 𝑥 and 𝑦 were dropped to unclutter the
notation, see (8)–(9)). Note that this representation is exact in that the
original signal is reconstructed with no error.

2.3.2. Sparse representation
The lifting scheme decomposition is typically used to carry out

compression by eliminating wavelet coefficients that have small values
6

in magnitude. Within the spatio-temporal framework, compression can
be performed by eliminating locations for which the wavelet coeffi-
cients are small in magnitude at all the time steps thereby reducing
the complexity of the expression in (10). In practice, 𝒅𝑘, the vector of
wavelet coefficients associated to location 𝑘, is eliminated (or set to
zero) if 𝑑𝑘𝑡 ∈ (𝑑min

𝜖∕2 , 𝑑max
1−𝜖∕2) ∀ 1 ≤ 𝑡 ≤ 𝑇 . The lower bound 𝑑min

𝜖∕2 of the
interval is a quantile of level 𝜖∕2 of the minimum values with respect
to time at each location. The upper bound 𝑑max

1−𝜖∕2 is set similarly as a
quantile of level 1 − 𝜖∕2 of the maximum values with respect to time at
each location. The quantile levels are thus chosen so that 𝜖 corresponds
to the approximate proportion of locations that are eliminated. Let 𝐼𝜖
be the set of selected locations. Then the sparse representation derived
by the lifting scheme is given by

𝒔̂𝑖 = 𝒔̄ +
∑

𝑘∈𝐼𝜖

𝛼𝑘𝑖𝒅𝑘, (11)

where 𝒔𝑖 indicates that the representation is now an approximation
to the original signal provided by the lifting scheme algorithm with
compressed wavelet coefficients.

In the water depth data example of Fig. 1, there are 𝑛 = 2304
locations. To keep about 𝜖 = 1% of the 𝑛−1 = 2303 wavelet coefficients,
24 coefficients 𝒅𝑘 taking the largest values over time are identified,
i.e., 𝑑𝑘𝑡 is large for at least one time step 𝑡, to constitute the set 𝐼𝜖 in
(11). With this compression level, the reconstructed signal 𝒔𝑖 based on
the quantities shown in Fig. 6 that enter in (11) yields a Root Mean
Squared Error (RMSE) of 0.076 m.
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Fig. 6. Quantities needed for the sparse lifting scheme representation in (11) shown with respect to time (in seconds) for the water depth data from Fig. 1. The initial number
of wavelet coefficients is 2303 and the reduced set of locations 𝐼𝜖 retains only 24, about 1%.
3. Spatial downscaling of hydraulic fields

In this application, the two most widely acknowledge indicators of
flood hazard, namely the water depth and the unit discharge norm,
are studied (Carreau and Guinot, 2021). Spatial downscaling, in this
case, consists in estimating the high resolution (HR) spatio-temporal
flood hazard indicator based on its low resolution (LR) counterpart. As
in Carreau and Guinot (2021), in this work we consider the so-called
perfect upscaling case, i.e., the LR counterpart is the exact average of
the HR simulation over a LR mesh consisting of sub-domains each of
which contains several HR cells.

3.1. Low and high resolution flood hazard indicator data

The data considered in this application are HR simulations obtained
by solving the two-dimensional shallow water equations in a synthetic
urban configuration, see Section 3.1.1, and a field-scale test case, see
Section 3.1.2 (this is a subset of the data described and used in Carreau
and Guinot (2021)). Let the LR mesh be defined by a partition of sub-
domains 𝛺𝑖, 1 ≤ 𝑖 ≤ 𝑁 and let the HR mesh be defined by a partition of
cells 𝜔𝑗 , 1 ≤ 𝑗 ≤ 𝑛. Let 𝑠𝜔𝑗 𝑡 be a HR hazard indicator at time step 𝑡 for
the HR cell 𝜔𝑗 . Then, as the perfect upscaling case is considered, the LR
counterpart 𝑆𝛺𝑖𝑡 at time step 𝑡 for the LR sub-domain 𝛺𝑖 is computed
as

𝑆𝛺𝑖𝑡 =
1

|𝛺𝑖|

∑

𝜔𝑗∈𝛺𝑖

𝑠𝜔𝑗 𝑡 (12)

where |𝛺𝑖| is the number of HR cells 𝜔𝑗 in the LR sub-domain 𝛺𝑖.

3.1.1. Synthetic oblique dam break configuration
This configuration corresponds to a 2D oblique urban dam break

problem without friction (Carreau and Guinot, 2021). It is the same
configuration that served to create the water depth data from Fig. 1
which contains a single intersection located in the middle of a street
made in total of 20 identical intersections. Each intersection cor-
responds to one sub-domain that contains 2304 HR cells regularly
meshed. In the downscaling application, we use the eight most central
sub-domains including the sub-domain from Fig. 1. The water depth
and unit discharge norm data simulated over these eight sub-domains
are shown in Fig. 7 over three time steps. As can be seen from
Figs. 7(a) and 7(b), the water is initially at rest with the water depth
piecewise constant: 3 m on the left extremity and 0.5 m on the right
extremity. Ten different flow scenarios are obtained by letting these
initial conditions vary, see Table 1.

3.1.2. Sacramento field-scale test case
The geometry of this test case is based on a neighborhood of the

city of Sacramento flanked by a canal protected by a dike (Guinot
et al., 2017). The simulation of the propagation, without friction, of
a flood wave caused by a breach in the dike is performed. The LR and
HR meshes are reduced to a subset of the original meshes containing
7

Table 1
Flow scenarios for the synthetic dam break configuration defined in
terms of the initial water depth values at the left and right extremities
of the street respectively used to form the training, validation and test
sets.
Set Label Initial water depth (m)

Training
(a) (3, 2.5)
(b) (3, 0.5)
(c) (1, 0.5)

Validation d (2, 0.5)
(e) (3, 1.5)

Test

f (2.3, 1.2)
(g) (2, 0.01)
(h) (5, 1.5)
(i) (0.1, 0.01)
(j) (5, 4.5)

Table 2
Flow scenarios for the Sacramento field-test case defined in terms of
the initial water depth value in the canal used to form the training,
validation and test sets.
Set Label Initial water depth (m)

Training (a) 6
(b) 4.5

Validation (c) 5.25

Test (d) 3.5
(e) 7

the area most affected by the flood. The HR mesh has 9749 cells in
total irregularly divided among the 199 subdomains of the LR mesh.
The water depth and unit discharge norm data simulated over these
meshes are shown in Fig. 8 for three time steps. The canal is located
vertically at the left-hand side and the breach occurs about the middle
of the mesh (i.e., between coordinates 596950 and 597050 on the y-
axis). The initial water depth in the canal is of 6 m. Five flow scenarios
are obtained by letting this initial condition vary, see Table 2.

3.2. Downscaling models as generative algorithms of HR fields

In the urban flood hazard application, from the operational view-
point, it is assumed that the configuration can be known ahead but the
exact flow scenario, defined by the hydraulic conditions, cannot. For
instance, if we seek to assess flood hazards for the Sacramento neigh-
borhood (see Section 3.1.2), the geometry has already been established
but it might be difficult to know in advance what will be the water
depth in the canal when the breach occurs. In addition, it is assumed
that LR hazard indicator fields can be simulated with a hydraulic model
having reasonable computation times (see for instance Guinot et al.
(2017), although in our work, we assumed that the LR fields are exact
upscaled versions of the HR fields). Therefore, for a given configuration,

our goal is to define a fast statistical downscaling model that can
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Fig. 7. Water depth (left) and unit discharge norm (right) at three time steps (in seconds) for the synthetic oblique dam break over eight sub-domains delineated with dashed
black lines (each sub-domain measures 50 m by 50 m and contains 2304 HR cells). Initial conditions correspond to flow scenario (b) in Table 1. The x- and y-axis coordinates
are in meters.

Fig. 8. Water depth (left) and unit discharge norm (right) at three time steps (in seconds) for the Sacramento field-test case (199 sub-domains delineated with dashed black lines
containing in all 9749 HR cells). The initial condition corresponds to flow scenario (a) in Table 2. The x- and y-axis coordinates are in meters.
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generate HR hazard indicator fields for any flow scenario based on LR
counterparts. Note that the mesh of the LR field is assumed to cover
the same domain as the mesh of the HR field.

By leveraging the spatio-temporal lifting scheme presented in Sec-
tion 2, we first define the model for the HR hazard indicator fields in
Section 3.2.1 and we explain how to derive the various coefficients and
variables involved in the model from a set of flow scenarios considered
for training. In Section 3.2.2, we define an alternative model that
follows the same rationale but based on principal component analysis
instead of the lifting scheme. Then, downscaling in itself consists in
providing coefficient and variable estimates for the HR models based
on the LR hazard indicator fields, a form of generative algorithm, for
which a strategy is described in Section 3.2.3.

3.2.1. Standardized HR indicator model
The flow scenarios defined by the initial hydraulic conditions affect

the overall magnitude of the flow. However, the spatial patterns may
be shared across these flow scenarios. For this reason, the HR fields are
standardized beforehand by mapping their values approximatively to
the [0, 1] interval as follows:

𝜎𝜔𝑗 𝑡 =
𝑠𝜔𝑗 𝑡 − 𝑎

𝑏 − 𝑎
, (13)

where 𝑎 = min𝛺𝑖 ,𝜏 𝑆𝛺𝑖𝜏 and 𝑏 = max𝛺𝑖 ,𝜏 𝑆𝛺𝑖𝜏 are respectively the
inimum and maximum values of the LR field across all sub-domains

nd time steps. The above standardization may be reversed relying
nly on LR hazard indicator fields which is useful in the downscaling
ontext.

The model for the standardized HR indicators relies, for each given
ub-domain 𝛺𝑖, on the exact representation arising from the spatio-
emporal lifting scheme, see Section 2.3.1. (10) is re-written to em-
hasize the temporal dynamics of 𝝈𝛺𝑖𝑡 = (𝜎𝜔1𝑡,… , 𝜎𝜔𝑛𝑖 𝑡

)′, with 𝜔𝑗 ∈
𝛺𝑖 ∀ 1 ≤ 𝑗 ≤ 𝑛𝑖 = |𝛺𝑖|, the standardized indicator at a given time step
𝑡 over all the locations in sub-domain 𝛺𝑖:

𝝈𝛺𝑖𝑡 = 𝜎̄𝛺𝑖𝑡 +
𝑛𝑖−1
∑

𝑘=1
𝜶𝛺𝑖𝑘𝑑𝛺𝑖𝑘𝑡. (14)

The representation for the whole HR field, i.e., across all sub-domains,
can be obtained by concatenating the representations of each sub-
domain yielding 𝝈𝑡 = (𝝈𝛺1𝑡,… ,𝝈𝛺𝑁 𝑡)′. Similarly, let 𝝈̄𝑡 = (𝜎̄𝛺1𝑡,
… , 𝜎̄𝛺𝑁 𝑡)′ contain the spatial averages at time 𝑡 over all sub-domains,
let  be the set of geometry coefficients 𝜶 for all sub-domains and let
𝒅𝑡 = (𝑑𝛺11𝑡,… , 𝑑𝛺1(𝑛1−1)𝑡,… , 𝑑𝛺𝑁 1𝑡,… , 𝑑𝛺𝑁 (𝑛𝑁−1)𝑡)′ contain the wavelet
coefficients at time 𝑡 over all sub-domains. The dimension of 𝒅𝑡 is
𝑛, the number of cells in the HR mesh, minus 𝑁 , the number of LR
sub-domains.

To reduce the complexity of the exact representation, instead of
letting 𝒅𝑡 vary continuously with time, we assume that there is a
finite number 𝐽 of categories characterized by fixed wavelet coefficient
values 𝒅𝑗 , with 1 ≤ 𝑗 ≤ 𝐽 . Let 𝑍𝑡 be a latent variable taking discrete
values {1,… , 𝐽} representing the category occurring on time step 𝑡. In
contrast to (14), the model for the standardized HR indicators for a
given sub-domain 𝛺𝑖 depends on 𝑍𝑡 to identify the current category
associated to the wavelet coefficients:

𝝈̂𝛺𝑖𝑡 = 𝜎̄𝛺𝑖𝑡 +
𝑛𝑖−1
∑

𝑘=1
𝜶𝛺𝑖𝑘𝑑𝛺𝑖𝑘𝑍𝑡

. (15)

An estimate 𝝈̂𝑡 of 𝝈𝑡 is thus obtained by combining the following
quantities:

• The spatial averages in 𝝈̄𝑡 at time 𝑡 over each sub-domain, scalar
values that contain no information on the spatial structure within
the sub-domains;

• The coefficients 𝜶 ∈ , the only quantities that vary spatially
within the sub-domains and depend on its geometry but do not
9

vary with time nor from one flow scenario to another; d
• The wavelet coefficients 𝒅𝑗 that describe the variation of the HR
spatial pattern within the sub-domains for each category 1 ≤ 𝑗 ≤
𝐽 and 𝑍𝑡 the category occurring on time step 𝑡.

To obtain estimates of the various quantities involved in the com-
utation of 𝝈̂𝑡 (see (15)) over all the sub-domains of a configuration
onsidering several flow scenarios in the training set, we follow a
trategy with two main parts (see Algorithm 2 for which three flow
cenarios are considered as the training set). The first part consists in
unning a forward application of the spatio-temporal lifting scheme
i.e., iterate enough stages so that a single scaling coefficient remains
s in Section 2.3.1) on the standardized HR indicators for all the flow
cenarios retained for training for each sub-domain separately. This
ields the geometry coefficients 𝜶 ∈ , the spatial average values 𝝈̄(⋅)

𝑡
nd the wavelet coefficients 𝒅(⋅)

𝑡 , one for each time step 𝑡 of each flow
cenario (⋅) (see lines 1–6 in Algorithm 2). In the second part, clustering
s performed across the temporal dimension and the flow scenarios
f the wavelet coefficients obtained with the forward application to
dentify 𝒅𝑗 . As wavelet coefficients may be very high dimensional,
ompression (see Section 2.3.2) is applied beforehand (see lines 7–12
n Algorithm 2). Clustering also yields 𝐽 , the categories to which each
ime step of each flow scenario belongs, i.e., the values most likely
aken by the latent variable 𝑍(⋅)

𝑡 .

Input : {𝝈(𝑎)
𝜔𝑗
}𝑛𝑗=1, {𝝈

(𝑏)
𝜔𝑗
}𝑛𝑗=1, {𝝈

(𝑐)
𝜔𝑗
}𝑛𝑗=1 with 𝝈(⋅)

𝜔𝑗
∈ R𝑇 , the

standardized HR hazard indicators at location 𝜔𝑗 (see
(13)) for the flow scenario (⋅) used for training
𝐽 , the number of categories of wavelet coefficients
𝜖, the approximate level of compression (see § 2.3.2)

Output: 𝝈̄(⋅)
𝑡 , the spatial average over each sub-domain at each

time step for each flow scenario
, the geometry coefficients over all sub-domains
{𝒅𝑗}𝐽𝑗=1, the wavelet coefficients describing each

category
𝐽 , the categories associated to each time step of each

flow scenario
1 // concatenate flow scenarios for each location

𝜔𝑗

2 (𝜎(𝑎)𝜔𝑗1
,… , 𝜎(𝑎)𝜔𝑗𝑇

, 𝜎(𝑏)𝜔𝑗1
,… , 𝜎(𝑏)𝜔𝑗𝑇

, 𝜎(𝑐)𝜔𝑗1
,… , 𝜎(𝑐)𝜔𝑗𝑇

) 1 ≤ 𝑗 ≤ 𝑛

3 // make a forward application of the
spatio-temporal lifting scheme on the
concatenated scenarios separately for each
sub-domain and obtain (§ 2.3.1):

4 (𝝈̄(𝑎)
1 ,… , 𝝈̄(𝑎)

𝑇 , 𝝈̄(𝑏)
1 ,… , 𝝈̄(𝑏)

𝑇 , 𝝈̄(𝑐)
1 ,… , 𝝈̄(𝑐)

𝑇 ), spatial averages per
sub-domain

5 , geometry coefficients
6 (𝒅(𝑎)

1 ,… ,𝒅(𝑎)
𝑇 ,𝒅(𝑏)

1 ,… ,𝒅(𝑏)
𝑇 ,𝒅(𝑐)

1 ,… ,𝒅(𝑐)
𝑇 ) with 𝒅(⋅)

𝑡 ∈ R𝑛−𝑁 ,
wavelet coefficients

7 // perform compression (see § 2.3.2)
8 let 𝐼𝜖 be the set of locations with significant wavelet

coefficients
9 let 𝜹(⋅)𝑡 ⊂ 𝒅(⋅)

𝑡 such that 𝜹(⋅)𝑡 ∈ R|𝐼𝜖 |

10 // perform clustering on 𝜹(⋅)𝑡 yielding:
11 𝐽 = {𝑧(𝑎)1 ,… , 𝑧(𝑎)𝑇 , 𝑧(𝑏)1 ,… , 𝑧(𝑏)𝑇 , 𝑧(𝑐)1 ,… , 𝑧(𝑐)𝑇 } with 𝑧(⋅)𝑡 ∈ {1,… , 𝐽}

the type assigned to each time step of each scenario
12 𝒅𝑗 ∈ R𝑛−𝑁 , 1 ≤ 𝑗 ≤ 𝐽 wavelet coefficients associated with the

medoids of each cluster
Algorithm 2: Estimation of the quantities involved to obtain
the estimate 𝝈̂𝑡 (see (15)) over all the sub-domains of a given
configuration for which three flow scenarios (𝑎), (𝑏) and (𝑐) are
considered for training (see § 3.2.1)).

.2.2. Alternative standardized HR indicator model
For comparison purposes, we derive a model similar to the one

escribed in Section 3.2.1 based on PCA, see Bishop (2006) for instance
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for an in-depth description. Indeed, PCA may be thought of as an
alternative to obtain exact and sparse representations such as the ones
provided by the spatio-temporal lifting scheme in Section 2.3 (see also
the approach proposed in Carreau and Guinot (2021) that relies on PCA
in a slightly different manner). As in Section 3.2.1, let 𝝈𝑡 be the vector
of standardized HR indicators over all sub-domains for a given time
step 𝑡. Let 𝛤𝛤𝛤 be the 𝑛 × 𝑛 sample variance–covariance matrix of the
standardized HR indicator vectors. Assuming that 𝑛 is much larger than
the temporal dimension 𝑇 , as is the case in our application, then 𝛤𝛤𝛤 has
𝑇 eigenvectors 𝒖𝑘 ∈ R𝑛, 1 ≤ 𝑘 ≤ 𝑇 . The exact PCA representation for
𝑡 ∈ R𝑛, the spatial signal at a given time 𝑡 over all the sub-domains,

s given by

𝑡 =
𝑇
∑

𝑘=1
𝛽𝑘𝑡𝒖𝑘, (16)

here 𝛽𝑘𝑡 are scalar coefficients that represent the orthogonal projec-
ion of 𝝈𝑡 onto 𝒖𝑘 (Bishop, 2006). To perform compression and derive a
parser approximate representation, a reduced number of eigenvectors
smaller than 𝑇 ) corresponding to the largest eigenvalues may be
etained.

The PCA representation in (16) describes the signal in terms of a
eighted sum of the eigenvectors 𝒖𝑘 that can be thought of as spatial
atterns that carry no temporal information. The temporal variation in
he signal is conveyed by the weights 𝛽𝑘𝑡 of the eigenvectors. Instead of
etting these weights vary continuously in time, we make an assumption
imilar to the one yielding (15), i.e., there is only a finite number 𝐽 of

categories characterized by fixed weight values 𝜷𝑗 = (𝛽1𝑗 ,… , 𝛽𝑇 𝑗 )′. As
reviously, let 𝑍𝑡 be a latent variable taking discrete values {1,… , 𝐽}

representing the category occurring on time step 𝑡. The alternative PCA
model for the standardized HR indicators over all the sub-domains
involves 𝑍𝑡 to identify the current category associated to the PCA
weights:

𝝈̂𝑡 =
𝑇
∑

𝑘=1
𝛽𝑘𝑍𝑡

𝒖𝑘. (17)

To obtain the quantities involved in (17), the aforementioned strat-
egy summarized in Algorithm 2 is modified as follows. In the first part,
instead of running a forward application of the spatio-temporal lifting
scheme, PCA is applied on the standardized HR indicators over all the
sub-domains for all the flow scenarios retained for training. This will
yield the eigenvectors 𝒖(⋅)𝑘 , 1 ≤ 𝑘 ≤ 𝑇 , for each flow scenario (⋅) of
he training set and the coefficients 𝜷(⋅)

𝑡 for each time step 𝑡 and each
low scenario (⋅) of the training set. In the second part, clustering is
erformed across the temporal dimension and the flow scenarios of
he coefficients 𝜷(⋅)

𝑡 to identify 𝜷𝑗 , the coefficients associated to the
edoids, and to estimate 𝐽 , the categories most likely associated to

ach time step of each flow scenario. As previously, the dimension of
he coefficients 𝜷(⋅)

𝑡 may be reduced prior to clustering by including only
he coefficients associated to the principal eigenvectors, i.e., associated
ith the highest eigenvalues.

.2.3. Downscaling strategy
To perform downscaling, an estimate of the standardized HR field

̂ 𝑡 must be computed, i.e., the quantities involved in (15) or in (17)
ave to be estimated, based only on information provided by the LR
azard indicator fields.

We present first the downscaling model that allows to turn into a
enerative algorithm the HR model in (15) arising from the spatio-
emporal lifting scheme. The strategy to obtain the estimates of the
oefficients and latent variables of the HR model (see Algorithm 2)
s ran on the HR fields of the flow scenarios available for training.
mong the quantities that are estimated, the geometry coefficients in

he set  and the wavelet coefficients 𝒅𝑗 associated to each category
efine the types of spatial patterns that occur in the standardized HR
10

ields. Assuming that the training set is sufficiently representative, 
nd 𝒅𝑗 are henceforth held fixed given the configuration. The spatial
verage values 𝝈̄(⋅)

𝑡 correspond directly to LR field values since the exact
pscaling case is considered. The main challenge rests in estimating the
alues of 𝑍(⋅)

𝑡 , the variable representing the category occurring on time
tep 𝑡 for each flow scenario (⋅).

As likely category values 𝐽 for 𝑍(⋅)
𝑡 over the training set are

computed with the estimation of the HR model (see Algorithm 2), a
classifier may be set up to learn which category is associated with given
LR field values. The input 𝑿 ∈ R𝐷 that enters in the classifier must be
derived from the LR hazard indicator fields. To provide a maximum of
information to predict the category which is associated to the current
HR spatial pattern of a given hazard indicator, we decided to use in the
input both LR hazard indicator fields, i.e., the water depth and the norm
of the unit discharge. For each configuration and each flow scenario,
each LR hazard indicator is first standardized similarly as the HR hazard
indicators (see (13)):
𝑆𝛺𝑖𝑡 − 𝑎

𝑏 − 𝑎
∀ 𝛺𝑖 (18)

where, as previously, 𝑎 = min𝛺𝑖 ,𝜏 𝑆𝛺𝑖𝜏 and 𝑏 = max𝛺𝑖 ,𝜏 𝑆𝛺𝑖𝜏 are re-
pectively the minimum and maximum values of the LR field across
ll sub-domains and time steps. Each standardized LR indicator field
as values, for a given time step, over the whole domain and can
hus be very high dimensional. To reduce the dimension, we resort to
he scaling coefficients of a given stage of the spatio-temporal lifting
cheme described in Section 2.2 applied to each of the standardized
R indicators. Indeed, scaling coefficients can be seen as extracting the
ain features of the spatial pattern, see the right column of Fig. 5. To

um up, 𝑿 contains the scaling coefficients at a given stage of the lifting
cheme for each of the two standardized LR indicators. For simplicity,
he same stage is used for both indicators.

We consider in this implementation a flexible classifier consisting
f a feed-forward one hidden layer neural network with a skip layer
onnection as provided in the R library described in Venables and
ipley (2002). With zero hidden units, the neural network boils down

o a linear classifier. With a sufficient number of hidden units, it can
n principle approximate any non-linear classification problems. This
pecific architecture was selected as it allows automatic tuning, by
eans of the selection of the number of hidden units, of the complexity

evel (from linear to highly non-linear) suitable to model optimally
he decision surfaces of any classification problem. More precisely, the
eural network consists of three stacked layers: the input layer 𝑿 ∈ R𝐷,
he hidden layer with 𝐻 neurons 𝑎𝑘, with 1 ≤ 𝑘 ≤ 𝐻 , and the output
ayer that has 𝐽 neurons computing the probability 𝑝𝑗 of belonging to
given category 𝑗, with 1 ≤ 𝑗 ≤ 𝐽 . Each hidden neuron computes the

ollowing transformation of the inputs:

𝑘 = 𝑎(𝑿;𝒘hid
𝑘 ) = tanh

( 𝐷
∑

𝑖=1
𝑤hid

𝑘,𝑖𝑋𝑖 +𝑤hid
𝑘,0

)

𝑘 = 1,… ,𝐻, (19)

ith 𝒘hid
𝑘 the (𝐷+1) weight vector dedicated to the 𝑘th hidden neuron.

ach output neuron 𝑗 then makes the following computation:

𝑗 = 𝑝𝑗 (𝑿;𝒘) = 𝑔(𝑜𝑗 ) (20)

= 𝑔

( 𝐻
∑

𝑘=1
𝑤out

𝑗𝑘 𝑎𝑘 +
𝐷
∑

𝑖=1
𝑤lin

𝑗𝑖 𝑋𝑖 +𝑤lin
𝑗0

)

, (21)

here 𝒘out
𝑗 = (𝑤out

𝑗1 ,… , 𝑤out
𝑗𝐻 ) contains the 𝐻 weights connecting the

idden layer to the 𝑗th output neuron, 𝒘lin
𝑗 = (𝑤lin

𝑗0 , 𝑤
lin
𝑗1 ,… , 𝑤lin

𝑗𝐷) are
he weights of the skip layer connection for the 𝑗th output neuron and
𝑔(𝑜𝑗 ) = exp(𝑜𝑗 )

∑𝐽
𝑘=1 exp(𝑜𝑘)

is the so-called softmax transform that allows to

interpret the outputs as probabilities (i.e., 0 ≤ 𝑝𝑗 ≤ 1, ∀𝑗 and ∑𝐽
𝑗=1 𝑝𝑗 =

1). The weights of all the layers of the neural network are gathered
in 𝒘 and are optimized by minimizing the cross-entropy criterion
which can also be seen as the negative conditional log-likelihood of
the multinomial model, see Venables and Ripley (2002). To avoid local



Weather and Climate Extremes 41 (2023) 100580J. Carreau and P. Naveau

t
2
l
i
r
r
(
t
8
i
o
n
c
𝐾
T
p
w
c
c
c
l
8

minima, the optimization is re-started 10 times and the neural network
weights yielding the lowest training error are kept.

Several hyper-parameters control the complexity level of the above
downscaling model. Concerning the standardized HR indicator model
(see Section 3.2.1 and Algorithm 2), the level of compression defined by
𝜖 applied before clustering (in other words, the proportion of retained
locations for the wavelet coefficients) and the number of categories 𝐽
are considered as hyper-parameters. In the neural network classifier,
the stage 𝑚 at which the scaling coefficients are retained for each LR
hazard indicator that determines the input dimension and the number
of hidden units 𝐻 are hyper-parameters directly influencing the overall
number of free parameters. All the above hyper-parameter values are
selected with a training-validation procedure, i.e., by selecting values
that yield the best performance as measured on the validation sets.

The downscaling model that allows the HR model in (17) relying on
PCA to become a generative algorithm is very similar. The variant of
the strategy to estimate coefficients and latent variables for this model
is ran on the HR fields of the flow scenarios used for training. This
will yield the eigenvectors 𝒖(⋅)𝑘 , 1 ≤ 𝑘 ≤ 𝑇 , for each flow scenario (⋅) of
the training set and 𝜷𝑗 1 ≤ 𝑗 ≤ 𝐽 , the coefficients associated to each
category. As previously, we assume that the training set is sufficiently
representative so that these quantities are henceforth held fixed given
the configuration. To estimate the values of 𝑍(⋅)

𝑡 , the same neural
network classifier approach is considered based on the likely values 𝐽
obtained for the training set. The dimension of the LR hazard indicator
fields used as inputs in the classifier is reduced with PCA instead of
the lifting scheme. As previously, the same number of components is
selected for both LR indicators. The hyper-parameters in this alterna-
tive downscaling model are the compression level before performing
clustering controlled by 𝐾HR, the number of retained eigenvectors from
PCA applied to the HR fields, the number of categories 𝐽 for the PCA co-
efficients, 𝐾LR, the number of retained eigenvectors from PCA applied
to the LR fields to create the inputs to the classifier and the number of
hidden units 𝐻 of the neural network. These hyper-parameter values
are also selected with a training-validation procedure.

3.3. Evaluation and comparison

The two downscaling models described in Section 3.2.3 based on
models for the HR standardized hazard indicators, derived either from
the spatio-temporal lifting scheme (see Section 3.2.1) or from PCA (see
Section 3.2.2), are evaluated and compared on the hazard indicator
fields from the two configurations described in Section 3.1. The LR
hazard indicator field, which in this work is the exact average of the
HR field over each sub-domain, is included in the comparison as a
benchmark (i.e., no downscaling is performed). Bilinear or bicubic in-
terpolation approaches used to interpolate the LR values at the centers
of the sub-domains to the HR cells are commonly used as benchmarks.
However, these are not straightforwardly applicable in the geometries
considered here as the meshes are irregular. We include as alter-
natives a local-linear non-parametric regression with cross-validated
bandwidth selection as implemented by Hayfield and Racine (2008) for
the Sacramento field-scale test and the inverse distance interpolation
approach for the synthetic dam break configuration (since the centers
of the sub-domains are co-linear, the former interpolation approach is
not applicable).

3.3.1. Hyper-parameter selection
For both downscaling models, we followed a conventional training-

validation procedure to select hyper-parameter values (see for in-
stance Bishop (2006)). To this end, several sets of hyper-parameter
values are considered. The sets are built by listing potential values for
each hyper-parameter and by taking the cartesian product of these lists,
i.e., all the combination of values from the lists are included. Several
rounds of selection may be necessary to modify the lists in order to
ensure that the selected values are not unduly limited by the choices
11

c

Table 3
Selected hyper-parameter values for each downscaling model either based on the lifting
scheme or PCA (see Section 3.2), on each configuration (see Section 3.1) for each of
the two considered flood hazard indicators (water depth and unit discharge norm). 𝜖:
proportion of retained location in the compression, 𝐽 : the number of categories, 𝑚: the
resolution stage for the LR fields, 𝐻 : the number of hidden units, 𝐾HR, 𝐾LR: number
of retained eigenvectors for the HR and LR fields.

Configuration Hazard indicator Lifting scheme PCA

𝜖 𝐽 𝑚 𝐻 𝐾HR 𝐽 𝐾LR 𝐻

dam break Water depth 0.015 36 0 1 48 32 8 2
Unit discharge norm 0.02 40 0 1 2 40 2 2

Sacramento Water depth 0.1 40 5 0 4 36 8 0
Unit discharge norm 0.015 36 4 0 98 40 8 1

of values available (e.g., the minimum or maximum value of the list
is selected). In our R implementation running on an ordinary laptop, a
typical round of selection takes between 3 to 6 min for the PCA based
downscaling model and between 1 to 1.5 h for the lifting scheme based
downscaling model. The implementation of the latter can certainly
be optimized and brought up to the speed of the PCA based model.
The training and validation sets for each configuration are made of a
number of flow scenarios, see Tables 1 and 2. For each set of hyper-
parameter values, training is performed on the flow scenarios forming
the training set of each configuration to estimate the coefficients related
to the HR spatial patterns in each model (either lifting scheme or PCA)
and the weights of the neural network classifier. The set of hyper-
parameter values yielding the best performance measured on the flow
scenarios of the validation sets is retained. Performance is evaluated in
terms of root-mean-square error of the estimated standardized HR field
𝝈̂𝑡.

The hyper-parameter values selected for each downscaling model on
each configuration for each hazard indicator are provided in Table 3.
The compression level for the model based on the lifting scheme before
performing clustering is quite high (the list of potential values for 𝜖,
the proportion of retained locations, ranges from 0.015 to 0.5 while
the select values vary between 0.015 and 0.1). For the model based on
PCA, 𝐾HR indicates the number of retained eigenvectors. The higher
𝐾HR, the lesser the compression applied. The potential values ranges
from 2 to the training set size (48 time steps for the dam break configu-
ration and 98 for Sacramento), which is the maximum possible number
of retained eigenvectors meaning that no compression is performed.
Hyper-parameter selection in Table 3 indicates a number of retained
eigenvectors that can be either very small (𝐾HR is 2 or 4) or very
high (the maximum possible). The number of categories 𝐽 describing
he spatial patterns is rather high in all cases, with a minimum of

and a maximum of 40 permitted which is often reached. For the
ifting scheme model on the dam break configuration, no compression
s applied (the list of potential values for 𝑚, the lifting scheme stage,
anges from 0, which means no compression, to 7) to the LR fields to
educe the dimensionality of the input in the neural network classifier
the input dimension is thus 16). For the Sacramento configuration, as
he number of sub-domains is much higher (199 sub-domains instead of

for the dam break configuration), a certain amount of compression
s required (𝑚 equals to 4 or 5 that corresponds to input dimension
f 18 or 8 respectively). For the PCA model, the maximum possible
umber of retained eigenvectors (no compression) for the LR fields
orresponds to the number of sub-domains, i.e., the maximum possible
LR equals to 8 for the dam break configuration or 199 for Sacramento.
he minimum value for 𝐾LR was set to 1. Thus, no compression is
erformed for the water depth in the dam break configuration (𝐾LR = 8
hich corresponds to input dimension of 16). In all other cases, a

ertain level of compression was selected (𝐾LR equals to 2 or 8 which
orresponds to input dimension of 4 or 16 respectively). For all the
ases, the number of hidden units 𝐻 in the neural network classifier is
ow (𝐻 varies between 0, a linear model, and 2 while a maximum of

was permitted) meaning that the classification problem is not very

omplex.
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3.3.2. Test set evaluation
Each downscaling model, either based on the lifting scheme or PCA,

is trained anew combining the flow scenarios from the training set
and the validation set with the set of hyper-parameter values selected
on the validation set indicated in Table 3 above. Generation of HR
hazard indicator fields is then performed on the test set with the trained
downscaling models using as inputs the LR fields only, see Tables 1
and 2 for the definition of the flow scenarios forming the test set.
Computation times for the test set evaluation are of about 5 s for
both versions of the downscaling models. Performance is evaluated
by comparing the original HR fields of the test set with the re-scaled
estimates:

𝒔̂𝑡 = (𝑏 − 𝑎)𝝈̂𝑡 + 𝑎, (22)

here, as in (13), 𝑎 = min𝛺𝑖 ,𝜏 𝑆𝛺𝑖𝜏 and 𝑏 = max𝛺𝑖 ,𝜏 𝑆𝛺𝑖𝜏 are respectively
he minimum and maximum values of the LR field across all sub-
omains and time steps. In contrast, the interpolation approaches are
pplied directly for each time step 𝑡 to 𝑺 𝑡, the LR values across all
ub-domains, to obtain HR estimates 𝒔̂𝑡 over the HR mesh.

To compare 𝒔𝑡 = (𝑠1𝑡,… , 𝑠𝑛𝑡)′ with 𝒔̂𝑡 = (𝑠̂1𝑡,… , 𝑠̂𝑛𝑡)′ where 𝑛 is
he number of cells in the HR mesh, three performance criteria are
onsidered:

Root-mean-square error ∶ 𝑅𝑀𝑆𝐸(𝒔𝑡, 𝒔̂𝑡) =

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1
(𝑠𝑖𝑡 − 𝑠̂𝑖𝑡)2 (23)

Mean-absolute error ∶ 𝑀𝐴𝐸(𝒔𝑡, 𝒔̂𝑡) =
1
𝑛

𝑛
∑

𝑖=1
|𝑠𝑖𝑡 − 𝑠̂𝑖𝑡| (24)

Peak-signal-to-noise ratio ∶ 𝑃𝑆𝑁𝑅(𝒔𝑡, 𝒔̂𝑡) = 20 log10

(

max𝑖 𝑠𝑖𝑡
𝑅𝑀𝑆𝐸(𝒔𝑡, 𝒔̂𝑡)

)

. (25)

PSNR is commonly used to assess the quality of reconstructed im-
ages (Korhonen and You, 2012). A higher value indicates a recon-
struction of better quality, sharper contrast between signal and noise.
PSNR has been used also in the context of spatial downscaling, see for
instance Rezvov et al. (2021). For each configuration and each hazard
indicator, the performance criteria are summarized by computing their
average and standard deviation over the 10% time steps for which the
LR field yielded the poorest performance across the flow scenarios in
the test set. The aim is to assess the added value of the HR estimates,
obtained either with downscaling or interpolation, with respect to using
the LR field as is when the HR patterns deviate substantially from the
spatial average and are thus more complex and more extreme.

Table 4 contains the three performance criteria averaged over the
10% time steps across all test scenarios for which the LR field yielded
the worst performance along with the standard deviation in parenthe-
ses. The top (bottom) panel of

Table 4 is devoted to the water depth (unit discharge norm) indica-
tor. The lower the RMSE and the MAE, the better the performance is.
On the contrary, larger values of PSNR indicate a higher performance.
Italic font highlights that a given HR estimates outperform the estima-
tion provided by the LR field. Bold font signals which HR estimates
has the best performance. The HR estimates from the downscaling
model based on the lifting scheme always outperform the LR field
and, most of the times, the differences are fairly large (such as in the
Sacramento configuration). Moreover, the HR estimates based on the
lifting scheme also outperform the HR estimates from the PCA based
downscaling model in most instances, especially so in the Sacramento
configuration. In contrast, the downscaling model based on PCA yields
in some cases HR estimates that are worst than the LR field (this is the
case for the water depth indicator in the Sacramento configuration).
The inverse distance approach used in the synthetic oblique dam break
configuration to interpolate the LR values to the HR mesh yielded a
performance equivalent to the direct use of constant LR values over the
12

sub-domains while the more sophisticated local-linear non-parametric
regression used in the Sacramento configuration, in most cases, worsen
the performance.

As a complement to these quantitative results, we illustrate the error
𝒔̂𝑡 − 𝒔𝑡 for a time step 𝑡 that displays a complex and extreme spatial
pattern. Figs. 9 and 10 show the original HR indicator field along
with the spatial errors for the water depth and unit discharge norm
indicators respectively made by the LR field and each downscaling
model. These two figures concern the flow scenario (e) of the test
set of the Sacramento configuration (see Table 2) at the time step
corresponding to 𝑡 = 100 s. In Fig. 10, the color scale for the error of
the LR field is capped at the maximum error made by the downscaling
models so that areas in gray (outside the color scale) indicate that
the LR field was outperformed by both downscaling models. For both
hazard indicators, it can be seen that the errors made by the two
downscaling models are much lower than the ones made by the LR field
although the gain of the downscaling models is far more important for
the unit discharge norm shown in Fig. 10. In addition, the errors made
by the downscaling model based on the lifting scheme are much smaller
than the ones made by the downscaling model based on PCA for both
hazard indicators.

4. Conclusion

We presented in this work two main methodological contributions.
The first one is the adaptation of the lifting scheme to the spatio-
temporal framework in order to exploit the dominant spatial features
of natural phenomena such as simulated by physics-based models. To
this end, the basic elements of the lifting scheme are taken to be
the time series associated to each spatial location. This allows us to
determine a spatial partition with a clustering algorithm so that each
cluster or group may be thought of as a dominant spatial feature.
These spatial features are thus defined as regions with similar temporal
behavior. Once these dominant spatial features are established, the
local regression implementing the wavelet transform can be applied
straightforwardly within each feature. The local regression residuals
contain the details of the signal, i.e., the wavelet coefficients. High
wavelet coefficient values indicate the presence of non-linearities that
occur along the temporal dimension. Compression can thus be achieved
by eliminating spatial locations with small wavelet coefficient values
at all the time steps. The more detailed the spatial partition, the more
efficient the compression is (i.e., less wavelet coefficients are needed
to represent the signal with a small loss). At each stage of the lifting
scheme, the scaling coefficients obtained by a simple averaging opera-
tion provide a smoother version of the original signal. A non-parametric
spatio-temporal representation can be derived from the adapted lifting
scheme which is easy to interpret and to compute as it merely relies on
additions and subtractions.

The second main methodological contribution of this work is the
development of a downscaling model that allows to turn the represen-
tation derived from the spatio-temporal lifting scheme (or PCA) into
a generative algorithm. In this case, the temporal coherence of the
simulations is entirely driven by the LR fields. The key step in the
downscaling model is to build a bank of spatial pattern types as defined
by the wavelet coefficients (or by the weights in the linear combina-
tions of eigenvectors in the case of PCA). Downscaling then consists in
predicting the type of spatial patterns that occurs based on the LR fields.
This discretization of the spatial patterns thus yields a classification task
which may be much less difficult, especially if the number of classes
is small, than attempting to predict directly the values of the wavelet
coefficients (or the PCA weights), i.e., to perform a regression task.
Although other choices might be necessary for other applications, in
our cases study the classification was implemented with a classic one
hidden layer feed-forward neural network with a skip layer connection
which proved to be amply flexible (the training set was always perfectly
classified with a low number of hidden units). The foremost assumption

made in the downscaling strategy is that the spatial patterns contained
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Table 4
Water depth hazard indicator (top panel) and unit discharge norm (bottom panel). Average and standard
deviation in parentheses computed on the 10% time steps from the flow scenarios in the test set (see
Table 1-2) for which the LR field performance is the poorest. Lower values of RMSE (23) and MAE (24),
higher values of PSNR (25), indicate better performance. Italic font highlights that a given HR estimate
outperformed the LR field while bold font signals which HR estimate has the best performance.
Water depth

Configuration Criterion LR HR estimates

Lifting scheme PCA Interp.

Dam break
RMSE 0.28 (0.063) 0.13 (0.046) 0.15 (0.053) 0.27 (0.059)
MAE 0.21 (0.032) 0.074 (0.039) 0.078 (0.041) 0.21 (0.029)
PSNR 29 (11) 36 (12) 34 (11) 30 (11)

Sacramento
RMSE 0.26 (0.0013) 0.061 (0.025) 0.36 (0.39) 0.53 (0.017)
MAE 0.18 (0.0025) 0.035 (0.015) 0.44 (0.44) 0.45 (0.0028)
PSNR 25 (1.7) 33 (6.6) 23 (9) 19 (1.5)

Unit discharge norm

Configuration Criterion LR HR estimates

Lifting scheme PCA Interp.

Dam break
RMSE 3 (0.038) 0.5 (0.15) 0.5 (0.12) 3 (0.037)
MAE 2.6 (0.084) 0.37 (0.11) 0.38 (0.1) 2.6 (0.084)
PSNR 15 (2) 25 (5.9) 24 (5.2) 15 (2)

Sacramento
RMSE 1.8 (0.016) 0.12 (0.015) 0.23 (0.057) 2.7 (0.025)
MAE 1.3 (0.0063) 0.079 (0.0051) 0.16 (0.028) 2.3 (0.021)
PSNR 20 (3) 33 (6.1) 26 (9) 17 (3.4)
Fig. 9. Sacramento configuration, water depth for flow scenario (e) in Table 2. Original HR indicator and estimation errors 𝒔̂𝑡 − 𝒔𝑡 on time step 𝑡 = 100 s.
in the training set are sufficiently representative to constitute the bank
of pattern types. Indeed, the classifier is only able to predict a spatial
pattern type that has been seen in the training set. To generate new
spatial patterns, a possibility would be to use a mixture of existing
spatial patterns (e.g., by using a probabilistic classifier). Nevertheless,
this downscaling model provides a rather innovative and intuitive
approach in order to take into account the spatial structure.

Both methodological contributions may be used with large spatio-
temporal data sets such as the simulations of physics-based models.
They could also be applied to observational data sets which would
be, in general, much less dense spatially and often not very deep
temporally. The core underlying rationale behind the approaches is to
exploit recurrent spatial patterns in the data. Both data sets considered
in this work are available upon request. There are two rather large HR
hydraulic data sets containing either 9749 or 18432 spatial locations
13
(i.e., cells in the HR meshes of the Sacramento or dam break configura-
tion respectively) and either 49 or 16 time steps. The spatial dimension
of the LR data sets, i.e., the number of sub-domains, is either 199 or 8.
In simple words, the downscaling model accomplishes a regression with
inputs that are of very low dimension (either 199 or 8) with respect
to its outputs (either 9749 or 18432). To face this challenging task, a
modeling assumption such as the representativity of the spatial patterns
contained in the training set is necessary. This is, in our opinion, a
rather mild assumption since the spatial structure is modeled with
great flexibility with the non-parametric representations derived from
the lifting scheme or PCA. In the hydraulic data sets considered, the
spatial patterns are highly complex (non isotropic and non-stationary)
so that conventional statistical approaches such as kriging would be
challenged. However, the HR meshes are very dense and the spatial
patterns in the data are rather smooth. In applications with less densely
distributed data and more irregular or jagged spatial patterns, the
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Fig. 10. Sacramento configuration, unit discharge norm for flow scenario (e) in Table 2. Original HR indicator and estimation errors 𝒔̂𝑡 − 𝒔𝑡 on time step 𝑡 = 100 s. Gray areas in
the LR field error indicate errors larger than the ones made by both downscaling models. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
proposed approaches may not performed as well and may require some
adaptations. All the algorithms are implemented in the R language
and were applied to the aforementioned data sets on an ordinary
laptop. Although the lifting scheme implementation could certainly
be optimized to run faster, results (including the selection of hyper-
parameter values) were obtained within a few hours. The code will be
made available as an official R library in the near future.

There are many possible perspectives to this work. Concerning
the lifting scheme, instead of operating on vectors of time series, we
could consider to operate truly in the spatio-temporal space, such as
in spatio-temporal geostatistics, e.g., Montero et al. (2015). In other
words, the local regression from (5) and the update step from (7)
could be applied to neighbors in that space. Another issue to look at
would be to model several variables, e.g., the water depth and the
unit discharge norm, jointly. Besides, other possible invertible simple
local regression models instead of the naive local regression could be
considered. Finally, the clustering assisted split step might need to be
fine-tuned (in terms of which clustering algorithm to apply and what
rate of decrease to select for the number of clusters, see Algorithm
1) to account for the complexity level of the spatial structure in the
data. Concerning the downscaling strategy, we could seek to explicitly
model the temporal dependence with, for instance, an auto-regressive
scheme, and to introduce stochasticity in order to provide uncertainty
assessment. Furthermore, it only addresses spatial disaggregation as we
considered the perfect upscaling case. Thus, it would be interesting to
evaluate the consequences of more realistic imperfect upscaling cases,
in particular, whether a form of bias correction would be necessary
(e.g., François et al. (2021)).
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