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Sustainable intensification through low-input production systems can mitigate agriculture's environmental impact while meeting the food demands of a growing population. However, comparing the performance of low-input system to conventional one, particularly in terms of productivity and yield, is challenging due to selection bias. To effectively develop policies promoting the adoption of low-input system and assess their impact on pesticide use and yields, it is crucial to employ an econometric framework that addresses these issues. This article proposes an endogenous switching approach combined with control functions to tackle selection bias and input endogeneity simultaneously. Using unbalanced panel data on Swiss wheat production, which includes both low-input and conventional systems, our framework reveals significant disparities in input demands and production functions. These differences have implications for how farmers, their input demands, and yields respond to public policies targeting pesticide use.

Introduction

The need for a more sustainable agriculture is pressing and the reduction of adverse environmental and health effects of agriculture is on top of the agenda of food-value chain actors in Europe and globally (Möhring, et al., 2020). The Farm to Fork strategy of the European Union and the Convention for Bioloigcal Diversity's Global Biodiversity Framework aim to largely reduce pesticide use and risk and fertilizer use [START_REF] Möhring | Successful implementation of global targets to reduce nutrient and pesticide pollution requires suitable indicators[END_REF][START_REF] Schebesta | Game-changing potential of the EU's Farm to Fork Strategy[END_REF]. While current agricultural practices often have deleterious effect on the environment and on biodiversity, there is a need to maintain high production levels for food security [START_REF] Foley | Global Consequences of Land Use[END_REF][START_REF] Foley | Solutions for a cultivated planet[END_REF]. Low-input production systems have been proposed as a compromise between environmental and food production concerns as they are scalable and thus applicable for large shares of production practices [START_REF] Aune | Conventional, Organic and Conservation Agriculture: Production and Environmental Impact[END_REF][START_REF] Fess | Crop Breeding for Low Input Agriculture: A Sustainable Response to Feed a Growing World Population[END_REF][START_REF] Maitra | Intercropping-A Low Input Agricultural Strategy for Food and Environmental Security[END_REF][START_REF] Loyce | Interaction between cultivar and crop management effects on winter wheat diseases, lodging, and yield[END_REF]. They are characterized by the use of adjusted management, e.g., using agronomic principles and new technologies (e.g., new varieties) that substantially reduce the use of synthetic pesticides and/or mineral fertilizers [START_REF] Bertrand | Comment intégrer la maîtrise de la flore adventice dans le cadre général d'un système de production intégrée ?[END_REF][START_REF] Meynard | Produire autrement[END_REF][START_REF] Rolland | Technical systems for wheat using low input quantities and rustic varieties : a solution to conciliate economy with environment<BR>[Des itinéraires techniques à bas niveaux d'intrants pour des variétés rustiques de blé tendre : une alternative pour concilier économie et environnement[END_REF]. A key question is the comparison of low-input and conventional production systems, e.g., in terms of yield and productivity. This also has implications for the efficiency of policies such as input taxes in low-input vis-à-vis conventional production systems. However, this comparison is often hampered by methodological challenges, e.g., due to selection biases. This paper seeks to estimate and compare the production function of low-input production systems regarding conventional, high-input production systems. We proprose an endogenous switching approach to test and control for production system selection bias. More specifically, this article considers a non-linear framework while allowing the selection bias to impact the response variable (e.g., farmer's yield) as well as the endogenous covariates (e.g., the variable inputs). The resulting production technology is described both by a production function and input demand equations that are specific to the considered production system. We illustrate the approach using Swiss wheat production, where both conventional high-input and a lowinput wheat production practices exist in parallel. More precisely, our empirical analysis uses unbalanced panel data containing detailed information on output and input use obtained from field journals [START_REF] De Baan | Pflanzenschutzmittel im Feldbau: Einsatz und Gewässerrisiken von 2009 bis 2018[END_REF][START_REF] Gilgen | The Swiss agri-environmental data network (SAEDN): Description and critical review of the dataset[END_REF]. Arable crops and especially cereals represent a large part of the European agricultural crop area and are crucial to reach food security objectives. We here focus especially on wheat that represents half of grown cereals and thus represents a significant share of European pesticide usein European agriculture. The here developed approach aims to help designing efficient policies for the uptake of these extensive production systems while evaluating the impact on pesticide use and yields. Consequently, we choose to use a primal approach of the production function to be able to quantify the relation between input uses and output in low-input and conventional production systems. Whilst organic production system has been widely compared to the conventional one in the literature [START_REF] Acs | Comparison of Conventional and Organic Arable Farming Systems in the Netherlands by Means of Bio-Economic Modelling[END_REF][START_REF] Gardebroek | Analysing Production Technology and Risk in Organic and Conventional Dutch Arable Farming using Panel Data[END_REF][START_REF] Lansink | Effciency and productivity of conventional and organic farms in Finland 1994-1997[END_REF][START_REF] Serra | Differential uncertainties and risk attitudes between conventional and organic producers: the case of Spanish arable crop farmers[END_REF][START_REF] Seufert | Comparing the yields of organic and conventional agriculture[END_REF], studies considering low-input production system more generally are limited. Earlier research on low-input production systems was especially focussed on agronomic aspects [START_REF] Dawson | Characterizing nitrogen use efficiency in natural and agricultural ecosystems to improve the performance of cereal crops in low-input and organic agricultural systems[END_REF][START_REF] Kong | Microbial community composition and carbon cycling within soil microenvironments of conventional, low-input, and organic cropping systems[END_REF][START_REF] Loyce | Interaction between cultivar and crop management effects on winter wheat diseases, lodging, and yield[END_REF][START_REF] Schrama | Crop yield gap and stability in organic and conventional farming systems[END_REF] or on the determinants of (non-) adoption (Finger & El Benni 2013;[START_REF] Ricome | The Role of Marketing Contracts in the Adoption of Low-Input Production Practices in the Presence of Income Supports: An Application in Southwestern France[END_REF][START_REF] Vanloqueren | Why are ecological, low-input, multi-resistant wheat cultivars slow to develop commercially? A Belgian agricultural "lock-in" case study[END_REF]. [START_REF] Femenia | How to significantly reduce pesticide use: An empirical evaluation of the impacts of pesticide taxation associated with a change in cropping practice[END_REF] is a notable exception as they rely on two production functions -a conventional and a low-input one -to evaluate the impact of a pesticide tax. Yet, they rely on experimental agronomic data on low-input production system to estimate the changes from the conventional production technology. Most data sets used by agricultural production economists do not contain relevant information to distinguish lowinput production system from conventional ones.

When available, a key methodological challenge using observationalinstead of experimentaldata is selection biases. For example, [START_REF] Finger | Farmers' adoption of extensive wheat production -Determinants and implications[END_REF], low-input adopters of low-input production system tend to be "smaller" farmers with already "lower" yields, which may indicate that opportunity costs of adopting low-input production system are lower for smaller farms. Additionally, the choice to adopt practices with more uncertain payoffs might reflect differences in farmers' behavior. [START_REF] Mzoughi | Farmers adoption of integrated crop protection and organic farming: Do moral and social concerns matter?[END_REF] shows that farmers adopting integrated crop protection tend to value social (here environmental) concern. Such factors, that are affecting both technology choice and other production choices and outcomes, if unobserved, induce endogeneity issues (that are known in this case as selection bias). 1 Such self-selection effects and selection biases are well-known when dealing with technology choice. Endogenous regime switching models are standard in production choice models to account for such selection biases [START_REF] Abdulai | The Adoption and Impact of Soil and Water Conservation Technology: An Endogenous Switching Regression Application[END_REF][START_REF] Alene | The effects of education on agricultural productivity under traditional and improved technology in northern Nigeria: an endogenous switching regression analysis[END_REF][START_REF] Asfaw | Impact of modern agricultural technologies on smallholder welfare: Evidence from Tanzania and Ethiopia[END_REF]).

In addition to selection biases, agricultural production functions generally suffer from input endogeneity issues [START_REF] Marschak | Random Simultaneous Equations and the Theory of Production[END_REF]. Especially primal production functions as they make explicit the relationship between output (e.g., yield) and inputs (e.g., pesticides). Yet, most drivers of inputs use choice are unobserved to the analyst and might also affect the observed yield. Whilst applied economists have devoted much attention to this endogeneity problem and approaches to solve it [START_REF] Ackerberg | Identification Properties of Recent Production Function Estimators[END_REF], there are only few studies that consider endogenous covariates within a endogenous switching framework [START_REF] Murtazashvili | A control function approach to estimating switching regression models with endogenous explanatory variables and endogenous switching[END_REF][START_REF] Takeshima | Sales location among semi-subsistence cassava farmers in Benin: a heteroskedastic double selection model[END_REF]. If they allow for correlation between the selection term and the endogenous covariates, none of these studies consider that the selection bias can affect both the endogenous covariates and the response function. Yet, when considering production system choice, it is unlikely to consider that such choice affects observed yield without impacting farmer's input choice as well.

We aim to fill this gap by estimating the production function of low-input wheat production system and compare it to the conventional one. We consider an endogenous switching approach to test for production system selection bias on the yield and input use levels. In particular, we use a control function approach to account for input endogeneity endogeneity [START_REF] Ackerberg | Identification Properties of Recent Production Function Estimators[END_REF][START_REF] Marschak | Random Simultaneous Equations and the Theory of Production[END_REF] and a corrected inverse Mills ratio to account for the production system selection bias on the input demand equation. We find that, whilst this selection bias does not directly affect Swiss farmers' production function, it does affect their input demand and thus, indirectly, their yield. This result speaks in favor of accounting for selection bias not only on farmers' production function but also on their input demand.

Our framework also allows us to investigate how farmer's input demand reacts to price variations. Because variable inputs are used more parcimoniously in low-input production system, one can assume that they respond less to price variation. On the other hand, conventional production system allows for quantity adjustment when the relative price of input increases. Deriving from that is the fact that pesticidesespecially if targeting herbicidestaxation policies could have a negative impact on low-input production systems. Low-input herbicide demand being rather inelastic, an increase in herbicide cost would result in a decrease profitability for those farmers. Conventional farmers, as they benefit from adjustment margins in their input uses, could more easily absorb the induced cost increase.

Finally, our examination of the production functions shows that the role inputs are playing in productione.g., productive or damage abatingcan be different across production systems. More generally, we find that the role of production conditions, such as temperature and rainfall levels, might differ between conventional and low-input yields. This needs to be accounted for when estimating the low-input and conventional production functions and evaluating the potential yield impact of policies that might affect pesticide use levels (e.g., a glyphosate ban).

Overall, our results advocate for considering separately low-input and conventional producers when implementing pesticide reduction policies.

The remainder of this article is structured as follows. The next section is dedicated to the presentation of our endogenous regime switching framework with selection on both the output and inputs. Following is the section where we present the Swiss observational data we consider for our empirical application. Then, we describe and compare the Swiss low-input and conventional production systems for wheat. Finally, results will be discussed so we can draw conclusions from this work.
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An endogenous regime switching model with endogenous covariates and double selection process 2.1. From an endogenous switching regime model Most studies comparing conventional with alternative production systems -in terms of productivity, production risk or efficiency -consider separate functions thereby considering that they represent different technologies [START_REF] Gardebroek | Comparing risk attitudes of organic and non-organic farmers with a Bayesian random coefficient model[END_REF][START_REF] Gardebroek | Analysing Production Technology and Risk in Organic and Conventional Dutch Arable Farming using Panel Data[END_REF][START_REF] Lansink | Effciency and productivity of conventional and organic farms in Finland 1994-1997[END_REF]. Similarly, low-input farming systems may be considered separately from conventional farming systems when estimating production functions. Indeed, low-input farming systems were conceived by agronomist to allow for chemical input, e.g. pesticides and mineral fertilizers, reduction [START_REF] Meynard | Construction d'itinéraires techniques pour la conduite du blé d'hiver (phdthesis)[END_REF][START_REF] Rolland | Technical systems for wheat using low input quantities and rustic varieties : a solution to conciliate economy with environment<BR>[Des itinéraires techniques à bas niveaux d'intrants pour des variétés rustiques de blé tendre : une alternative pour concilier économie et environnement[END_REF]). To substitute chemical inputs, farmers adopting low-input production system can benefit from integrated production practices (e.g., soil preparation operations, beneficial management practices or crop rotations) but also from innovation such as crop breeding [START_REF] Fess | Crop Breeding for Low Input Agriculture: A Sustainable Response to Feed a Growing World Population[END_REF][START_REF] Möhring | Pathways for advancing pesticide policies[END_REF][START_REF] Rolland | Technical systems for wheat using low input quantities and rustic varieties : a solution to conciliate economy with environment<BR>[Des itinéraires techniques à bas niveaux d'intrants pour des variétés rustiques de blé tendre : une alternative pour concilier économie et environnement[END_REF]. Instead of being at the core of crop protection, pesticides are one element among others that should only be used when there is no other option left in integrated production [START_REF] Lucas | Le concept de la protection intégrée des cultures[END_REF]. Consequently, we have two equations corresponding to the production technology of low-input farming systems (denoted as regime

) and the production technology of conventional ones ( ):

where correspond to observed yield in regimen , are farming system specific production functions, the vector of input use levels and the vector of control variables that might impact production choices (e.g., topographic and weather conditions). Finally, terms and represent respectively the vector of parameters and the error term of the yield model.

If the underlying agronomic principles of low-input and conventional farming systems ask for separate production function, our economic modelling should also account for the potential endogenous selection issues in the farming system choice. As aforementioned, farmers might face heterogenous opportunity costs and different utility functions that affect both their decision to adopt low-input farming system and their production function (Finger & El Benni 2013;[START_REF] Mzoughi | Farmers adoption of integrated crop protection and organic farming: Do moral and social concerns matter?[END_REF]). If such selection bias is not accounted for when estimating the lowinput and conventional production technology, it will lead to biased estimates. The most adopted strategy to account for such bias in the agricultural production literature are endogenous regime switching models [START_REF] Lee | Some Approaches to the Correction of Selectivity Bias[END_REF]. This approach was adopted for instance by [START_REF] Alene | The effects of education on agricultural productivity under traditional and improved technology in northern Nigeria: an endogenous switching regression analysis[END_REF] to evaluate the impact of farmer education on the productivity with traditional and improved technology. Endogenous regime switching model were also used by [START_REF] Asfaw | Impact of modern agricultural technologies on smallholder welfare: Evidence from Tanzania and Ethiopia[END_REF] and [START_REF] Abdulai | The Adoption and Impact of Soil and Water Conservation Technology: An Endogenous Switching Regression Application[END_REF]. In line with these previous studies, we consider in this article an endogenous regime switching model. To define such model, we need to define a selection equation for farming system choice in addition to Equation [START_REF] Ricome | The Role of Marketing Contracts in the Adoption of Low-Input Production Practices in the Presence of Income Supports: An Application in Southwestern France[END_REF]. Let consider a standard linear index model: where is the latent variable for farming system choice and its observable counterpart.

and respectively correspond to the vector of parameters and the error term of this dichotomous choice model and is used as a vector of instrument variables for endogenous farming system choice . Among those instrument variables are the set of control variables and variables that are expected to affect the farming system choice without directly impacting the yield (e.g., age, education).

In presence of self-selection effects, or more generally selection bias, the covariance between the error terms and is non-zero. It implies that the expected values of error terms conditional on are different from zero and that our estimates of are biased. To test and correct for this potential selection bias, the endogenous regime switching model relies on Heckman's approach (1979). In particular, [START_REF] Lee | Some Approaches to the Correction of Selectivity Bias[END_REF] extension of the Heckman selection correction approach gives us that:

where corresponds to the covariance between error terms and , and respectively denote the probability and cumulative distribution function of the standard normal distribution. 2 Terms and correspond to the inverse Mills ratios and are integrated as a covariate in Equation ( 1) to control for selection bias. If estimates of are significantly different from zero it indicates that selection bias is significant in our model.

To an endogenous switching regime with endogenous covariate model

Apart from the potential selection bias, our model as defined in Equation ( 1) might suffer from another estimation problem due to the input endogeneity issue, a long standing issue that has received much attention in the econometric literature [START_REF] Ackerberg | Identification Properties of Recent Production Function Estimators[END_REF]. Thus, we need to consider an "extended" endogenous regime switching model to the case of endogenous covariates [START_REF] Murtazashvili | A control function approach to estimating switching regression models with endogenous explanatory variables and endogenous switching[END_REF][START_REF] Takeshima | Sales location among semi-subsistence cassava farmers in Benin: a heteroskedastic double selection model[END_REF]. [START_REF] Takeshima | Sales location among semi-subsistence cassava farmers in Benin: a heteroskedastic double selection model[END_REF] consider an approach comibining an heteroskedastic probit to calculate the inverse Mills ratio coupled to a two-stage least square (2SLS) approach to estimate the model for the response variable and the endogenous covariate. On the other hand, [START_REF] Murtazashvili | A control function approach to estimating switching regression models with endogenous explanatory variables and endogenous switching[END_REF] consider a control function approach to control for the endogenous continuous covariates and a corrected inverse Mills ratio to allow for correlation between the discrete and continuous endogenous covariates. The approach we adopt in this article is similar to the one of [START_REF] Murtazashvili | A control function approach to estimating switching regression models with endogenous explanatory variables and endogenous switching[END_REF] but (i) considering a non-linear framework and (ii) assuming that the endogenous switching not only affect the response variable but also our endogenous covariates. The resulting model could be considered as an endogenous regime switching model with endogenous covariates and double selection process.

Let first define farming system specific input demand functions yield model as: 2 Heckman's selection correction relies on the assumption that with .

Despite being standard, the normalization restriction stating that can be problematic in our case as farmers are generally observed for several years. This point is further examined in the Discussion section.

where corresponds to the index of the variable input considered, represents the vector of relevant prices (e.g., crop and input prices), are the vector of parameters and is the error term. Input endogeneity implies that the covariances between error terms and are non-zero and that our estimates of in Equation ( 1) are still biased. To correct for such bias, we consider a control variable approach (Wooldridge 2015). Assuming that there is only one input k that is endogenous and putting aside the selection bias, we can define the control function as:

where terms are to be estimated and represents the intensity of the correlation between error terms and . 3 The selection bias and input endogeneity corrections presented respectively in Equation ( 3) and ( 5) might be additive assuming that error terms and are uncorrelated. Yet, one can reasonably assume that the unobserved factor that are affecting both the farming system choice and the observed yield are also affecting the input demand. In that case, it means that corrections (3) and ( 5) are not additive and that estimates of are biased due to uncorrected selection bias. As for Equation ( 1), we consider a Heckman selection correction for the input demand equations: where corresponds to the covariance between error terms and . The error term of the input demand functions can be decomposed in two parts: the selection correction part as presented in Equation ( 7) and a random part . Thus, seeting aside the selection bias, the control function as presented in Equation ( 5) can be rewritten as:

where represents the inverse Mills ratio and represents the intensity of the correlation between error terms and .

Last step so we can write and is to correct for the existing correlation between the selection correction of Equation ( 3) and the control function 3 We are only assuming that there is one endogenous input to simplify the notation. We can easily extend the approach to the case of multiple endogenous inputs. Instead of the vector and the scalar we have a matrix and a vector with respectively as much columns, as much elements, as the number of endogenous inputs.

presented in Equation ( 8). Indeed, the inverse Mills ratio is part of the control function. To account for such correlation, we consider a corrected version of the inverse Mills ratio:4 where represents the covariance between error terms and and is a scale parameter. 5 Finally, combining Equations ( 7) and ( 8) we have:

A Cobb-Douglas crop production function with a damage abatement part

In this part, when not necessary we omit the farming system specific index to simplify notations. To represent the damage abating role of pesticides in the production process compared with the ''productive'' inputs we consider a damage abatement function as proposed by [START_REF] Lichtenberg | The Econometrics of Damage Control: Why Specification Matters[END_REF]. Hence, the production function is separated in two parts: a potential yield function ( noted) and a damage abating function (noted ). The potential yield function describes how productive inputs contribute to the maximum potential crop yield level, i.e., the yield level that is free of any damage due to weeds, pests and/or diseases. On the other hand, the damage abating function gives the share of potential yield that is saved by using pesticides:

range is positive and should not exceed 1. Besides, to account for the potential complementary of inputs between them we allow inputs to have both a productive and damage abating role on crop yields [START_REF] Saha | The Economics and Econometrics of Damage Control[END_REF]. Thus, we have three different set of inputs: the purely productive inputs (noted ), the purely damage abating inputs (noted ) and the interactive inputs (noted ). As low-input and conventional farming system rely on different agronomic principles, we allow the sets of purely productive, purely damage abating and interactive inputs to differ across production technologies.

Following [START_REF] Zhengfei | Damage control inputs: a comparison of conventional and organic farming systems[END_REF][START_REF] Zhengfei | Integrating Agronomic Principles into Production Function Specification: A Dichotomy of Growth Inputs and Facilitating Inputs[END_REF] and [START_REF] Möhring | Are pesticides risk decreasing? The relevance of pesticide indicator choice in empirical analysis[END_REF], our empirical crop yield function models combine Cobb-Douglas potential yield functions: where represents the impact of production conditions and farms' characteristics on crop yiels; and quadratic damage abatement functions: with . In particular, the quadratic damage abating function is convenient because it ensures range to be contained between 0 and 1 without imposing estimation restrictions on the signs of parameters. We can thus rewrite the farming system specific yield function from Equation (1) as: with the following decomposition for the error term:

where and represent respectively the correction for selection bias and input endogeneity, and represents the random part of the error term.

Estimation strategy

The estimation approach we consider can be seen as an extension of Heckman's two-step approach for estimating standard endogenous switching regime models to the case with endogenous regressors [START_REF] Heckman | Simple Estimators for Treatment Parameters in a Latent-Variable Framework[END_REF][START_REF] Wooldridge | Econometric analysis of cross section and panel data[END_REF]Wooldridge , 2015)). In particular, our modeling framework relies on two sets of control functions: one to deal with the input use endogeneity issue and the other to deal with the sample selection issues.

First, we estimate the probit model for farming system choice -Equation (2) -by maximum likelihood. Estimates of are used to estimate the inverse Mills ratio . Then, we can estimate by least squares the input demand functions -Equation (4) -augmented by the inverse Mills ratio to control for potential selection bias. Essentially, input demand functions are estimated following the standard Heckman two-step procedure. As for the yield function, we can easily estimate the terms with the estimates of obtained at step 2. The problem comes when considering the estimation fo the corrected Mills ratio . Equation (8) gives us that:

We already have estimates for and for . We thus need to get estimates for and . [START_REF] Devilliers | Modelling farmers' production choices and chemical inputs demand with a latent function approach (Theses)[END_REF] shows that both terms can be estimated using moment conditions. 6Once we have estimated the corrected inverse Mills ratio , the yield function given in Equation ( 12) can be estimated with non-linear least square.

In practice, each estimation step is fairly easy to implement. Yet, computing the asymptotic distribution of the estimators obtained by using the considered multiple step estimation procedure is not straightforward. Bootstrap methods were used so to get the empirical standard errors of the obtained estimates for the input demand and yield production functions [START_REF] Efron | Bootstrap Methods for Standard Errors, Confidence Intervals, and Other Measures of Statistical Accuracy[END_REF][START_REF] Fess | Crop Breeding for Low Input Agriculture: A Sustainable Response to Feed a Growing World Population[END_REF].
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Data To investigate into the production technology of low-input farming systems compared to the conventional one, we consider Swiss data obtained from Agroscope, the Swiss center of excellence for agricultural research and provided by the Swiss Central Evaluation of Agri-Environmental Indicators (de Baan et al. 2020; [START_REF] Gilgen | The Swiss agri-environmental data network (SAEDN): Description and critical review of the dataset[END_REF]. Switzerland benefits from a voluntary integrated production program since 1992 (El Benni & Finger 2013). Farmer participation in the program is incentivized with a price mark-up of around 5 CHF/100kg (reflecting a ca. 10% price mark-up) and federal, per hectare direct payments of 400 CHF [START_REF] Mack | Modelling policies towards pesticide-free agricultural production systems[END_REF][START_REF] Möhring | Pesticide-free but not organic: Adoption of a large-scale wheat production standard in Switzerland[END_REF]. These payments are conditional on farmers not using any fungicides, insecticides, plant growth regulators or chemical-synthetic stimulators of natural resistance.7 Among eligible crops -cereals, sunflower, rapeseed peas and beanswe focus on winter wheat production. This low-input "Extenso" wheat production currently represents more than 50% of the total Swiss wheat production (Finger & El Benni 2013).

Out dataset contains information on each management operation performed by the farmersoil preparation, sowing, fertilization, crop protection operations and harvest, from 2009 to 2015. Following Möhring et al. (2020), we transform initial data consisting of daily records on crop management and inputs use as follows: we (i) calculate cost-equivalents for used machinery and working time, (ii) convert fertilizer applications into nitrogen equivalents and (iii) express pesticide use in terms of pesticide load. To this end, we use the Pesticide Load Index as implemented by [START_REF] Möhring | An R package to calculate potential environmental and human health risks from pesticide applications using the "Pesticide Load" indicator applied in Denmark[END_REF] which accounts for differences in standard dosages and the heterogeneous properties of pesticides [START_REF] Kudsk | Pesticide Load-A new Danish pesticide risk indicator with multiple applications[END_REF][START_REF] Möhring | Quantity based indicators fail to identify extreme pesticide risks[END_REF]. We combine this first dataset with farm-level bookkeeping data8 to obtain information on whether the farmer is participating in the Extenso production system for winter wheat (based on direct payments they receive).

The data is gathering 575 observations from 148 winter wheat farmers from 2009 to 2015. Among those farmers, 107 (resp. 60) experimented low-input (resp. conventional) practices representing 381 (resp. 194) observations. Switches between low-input and conventional farming systems are only concerning 19 farmers. Among those 19 farmers, 8 switched from conventional to low-input farming, 5 from low-input to conventional farming and 6 switched more than one time. 9 Altogether, farmers were observed on average 3.56 (resp. 3.23) years in the low-input subsample. Apart from switches and data collection, missing years for farmers could come from (i) crop rotation as we only consider winter wheat production, (ii) stopping winter wheat production, (iii) end of farming activity. In the absence of further information and given that farmer average number of years of observation is similar in the low-input and conventional subsamples, we consider those missing values to be randomly distributed and not affecting our estimators.

Table 1 provides crop specific and more general characteristics of high-and low-input farmers. In addition to standard descriptive statistics, we performed (i) Wilcoxon nonparametric test for the equality of mean of continuous variables and (ii) chi-squared contingency table test for categorical variables. As expected, for winter wheat cropping characteristics, farmers using low-input production system are using fewer chemical inputs and are facing lower yields than farmers using conventional production system.10 Yet, when looking at their economic return, we can see that despite their yield loss, their revenues per hectare are higher. If we remove the 400CHF/ha direct payment, low-input producers tend to have similar revenues from their conventional counterpart despite lower yield level. This can be explained by (i) the cost reduction associated to pesticide and work and machinery less intensive use and (ii) the wheat price premium they are benefiting from.

Apart from farmers' inputs uses and output, we also look at general characteristics of farms that can affect both their input uses and yield levels as well as the type of production practices farmers will adopt. First, low-input farmers tend to have smaller farms and a smaller area dedicated to winter wheat cropping. Second, farms located in mountaineous region are more represented among low-input farms. Yet, the average altitude of conventional farmers is not significantly different from the one of low-input farmers. Cantons were also considered to try to control for (i) heterogenous soil characteristics and (ii) potential differences in extension services (see Online Appendix B for cantonal repartition). We also introduced weather variables obtained for MeteoSwiss as to control for the variability of observed yield in the time that are due to environmental conditions [START_REF] Frei | Interpolation of temperature in a mountainous region using nonlinear profiles and non-Euclidean distances[END_REF][START_REF] Frei | Future change of precipitation extremes in Europe: Intercomparison of scenarios from regional climate models[END_REF]. We can see that weather conditions -average annual temperatures in °C and average annual rainfall in 1000 liter -are comparable between the two subsamples. Based on the previous work of [START_REF] Finger | Adoption of Agri-environmental Programmes in Swiss Crop Production L'adoption des programmes agroenvironnementaux dans les grandes cultures suisses Die Adoption von Agrarumweltprogrammen in der Schweizer Getreideproduktion[END_REF], we investigate other farm/farmer characteritics that could specifically impact the choice of production practices' type. Farmers with low-input production system tend to have a greater revenue coming from nonagricultural activities, in absolute and relative terms.11 Also, farmers adopting low-input farming systems tend to be more educated than the one with conventional production system. For the other expected determinants of production practices' type choice -age of farm head, share of rented land and labour intensity -the observed difference between the high-and lowinput farmers is not statistically significant. Yet, this descriptive analysis on the subsamples' characteristics is to be completed later with the analysis from the probit model results.

We also consider price variables to estimate the models for the choice of production practices' type and input uses. As for input prices, we consider the national representative price index (in CHF 2015) from [START_REF] Agristat | Statistische Erhebungen und Schätzungen über Landwirtschaft und Ernährung[END_REF]. Winter wheat prices, also from Agristat, can differ depending on (i) the chosen variety and (ii) the adoption of the Extenso production system. Extenso farmers benefit from a price premium that is around 5CHF/100kg. We keep the different variety prices to control for wheat quality, but the price premium is not accounted for as it is a consequence of the choice of production practices, not an explanatory factor. As winter wheat prices (and input prices to a lesser extent) are not observed by farmers when choosing technology and input uses, we should consider price anticipations. The most naïve anticipation is to use the observed prices at time . By doing so, we would have lost more than 10% of our sample as 2009 is the year when we have most observations. Steadiness of prices over the period encouraged us to use current year price as price anticipation.

A recapitulative table of the considered variables, their data source, and their role in our endogenous switching regime framework is provided in Online Appendix A.
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Results and Discussion 4.1. The choice of production system and their specific variable input demand functions Estimated predicted probability of choosing low-input production system is presented in Table 2. The negative impact of farm size and of the share of arable surface allocated to winter wheat cropping from our descriptive analysis is confirmed by our Probit model. An increase of one percentage point of the share of winter wheat reduces by 50% the probability to adopt a low-input production system among our sample. We also find that being in a mountaineous region increase by almost 15% the probability to adopt low-input farming systems production practices. It confirms the findings of [START_REF] Finger | Farmers' adoption of extensive wheat production -Determinants and implications[END_REF] on freerider effects of the program for farms with a lower yield potential. Also, rainy years and/or being in rainier areas seem to be decrease the probabilty to adopt of low-input production system.

As for the variables we consider as specific determinants of the production system choice, our model shows that adoption of low-input production system tends to be favored by younger and more educated farmers. Also, a greater labour intensity and a greater share of revenue coming from non-agricultural activites increase the probability to adopt such production system. As for prices, input prices seem to have no significant impact on such choice. However, wheat price seems to have a quadratic -but no linear -effect on low-input production system adoption. Higher wheat prices are discouraging adoption at first but at a decreasing rate. Thus, it confirms at least partially the economic principle underlying the adoption og low-input production systemw. Low-input farming systems were designed to reduce the production costs in a context where support was increasingly decoupled. Hence, when crop prices are low, the incentive to reduce input costs is more important. On the contrary, high crop prices enact as an incentive to maximize yields, i.e., using conventional production system, for farmers. Estimation results from the farming system choice were used to compute the inverse Mills ratio controlling for the potential selection bias in the input use demand equations. Results for the high-and low-input input demand equations are gathered in Table 3 and 4 respectively. The presence of selection bias seems to be confirmed for herbicide demand at least. The negative selection bias associated to low-input herbicide demand means that low-input farmerss unobserved characteristics tend to decrease their herbicide uses. On the other hand, the positive selection bias associated to conventional herbicide demand means that conventional farmers' unobserved characteristics tend to increase their herbicide uses.

Among observed characteristics, few seems to affect variable inputs demand. Globally, variable inputs demand in conventional production systems decreases by farm size. Yet, nitrogen fertilization demand increases with the share of winter wheat. This might indicate that winter wheat is more intensive in nitrogen fertilization than other crops. Otherwise, we find that conventional herbicide demand responds negatively to rainfall and positively to altitude. In low-input production system, we show that herbicide demand responds positively to being in a mountaineous region. Indeed, mechanical weed control is easier to implement in plains than in sloped areas. At the same time, when controlling for the fact to belong to a mountaineous region, altitude negatively affects the herbicide demand for low-input farmers. This might indicate a lower level of weed competition when altitude is higher. We can see significant differences between input demand price elasticites across production systems. First, in low-input production system, variable inputs demand is not significantly affected by price variables. The only exception is for nitrogen demand which increases when the herbicide price index ratio increase. Pesticides in low-input production system are one element among other and should only be used when there is no other option left [START_REF] Lucas | Le concept de la protection intégrée des cultures[END_REF].

Given that, and assuming that herbicides are used parsimiously as they should in complement of mechanical pest control, the limited response to price variation is not surprising. To understand the impact of the herbicide price index ratio on the low-input nitrogen demand, we can mobilize the theory of opportunity costs. As aforementioned, the economic principle of low-input farming systems relies on cost reduction in a context of relative low crop prices. An increase in the herbicide price index results in a lower profitability of low-input production system and increases the opportunity cost of yield loss. A strategy could thus be to increase the level of fertilizers to try and increase the yield to avoid a profitability drop.

In conventional production system, we show a greater responsiveness of inputs demand to price variations. Both nitrogen fertilizers and fungicide demand are negatively impacted by an increase in fertilizer or fungicide price index ratios. On the other hand, they are positively impacted by an increase in herbicide or energy price index ratios. From an agronomic viewpoint, conventional production system was designed to achieve high target yield levels with high levels of fertilization and crop protection. If nitrogen fertilizers tend to trigger weed competition, they also tend to increase wheat susceptibility to diseases [START_REF] Boquet | Fertilizer Effects on Yield, Grain Composition, and Foliar Disease of Doublecrop Soft Red Winter Wheat1[END_REF][START_REF] Henson | Wild Oat (Avena fatua) Competition with Wheat (Triticum aestivum and T. turgidum durum) for Nitrate[END_REF][START_REF] Howard | Nitrogen and Fungicide Effects on Yield Components and Disease Severity in Wheat[END_REF][START_REF] Lintell-Smith | The effects of reduced nitrogen and weed competition on the yield of winter wheat[END_REF]). An increase in the fertilizer price index might encourage farmers to be more parsimonious in their use, without impacting too much their yield level. As for the negative impact of the increase of fertilization price index ratio on the conventional fungicide demand, it can be fostered by agronomic and economic factors. First, by reducing their fertilization levels, conventional farmers might also reduce wheat susceptibility to disease [START_REF] Howard | Nitrogen and Fungicide Effects on Yield Components and Disease Severity in Wheat[END_REF][START_REF] Lintell-Smith | The effects of reduced nitrogen and weed competition on the yield of winter wheat[END_REF]). Hence a lower need for fungicides and a decrease in fungicide demand. Second, even if the yield reduction is limited, the decrease in revenue associated with a reduction in nitrogen fertilization might encourage the farmer to reduce his costs by reducing fungicide applications. The same reasoning can be applied when considering an increase in the fungicide price index.

On the other hand, despite triggering weed competition, an increase in the fertilizer price index does not negatively affect the herbicide demand. Statistics from Table 1, in particular the similar levels of herbicide use and mechanical pest control across production systems, might indicate that even conventional farmers make a parsimonious use of herbicides and use mechanical weed control as a substitute. Hence the relative inelasticity of the herbicide demand, even for conventional farmers. Such herbicide inelasticity also permits to understand why fungicide and nitrogen demands are positively affected by an increase in herbicide price index ratio. Indeed, such increase induces a higher opportunity cost of yield loss. As a response, and because of the inelasticity of herbicide demand, farmers may increase their fertilization level, as well as their fungicide uses, to try to increase their yield and absorb this herbicide price increase. The rationale behind the negative impact of a rise in the energy price index is analogous.

High and low-input production system specific production functions

Before estimating the production functions specific to each type of production system, we need to determine for each farming system the set of purely productive, interactive, and purely damage abating inputs. The agronomic principles of high-and low-input farming systems being different, we allow for these sets of inputs to differ across types of production practices. Hercibides, fungicides and mechanical pest control are considered as purely damage abating inputs. Thus, we need to determine among fertilizers and work and machinery which are productive inputs, if they belong to the set of purely productive inputs or if they need to be considered as interactive inputs. Based on [START_REF] Saha | The Economics and Econometrics of Damage Control[END_REF] separability tests, we consider (i) work and machinery as a purely productive input for both conventional and low-input functions (ii) fertilizers as a purely productive -respectively interactive -input for conventional function -respectively low-input function.12 Then, based on [START_REF] Zhengfei | Integrating Agronomic Principles into Production Function Specification: A Dichotomy of Growth Inputs and Facilitating Inputs[END_REF], we perform asymmetry tests to see whether or not it is relevant to consider that inputs have an asymmetric role on the crop production or if their role is symmetric (i.e., we just need the productive part with all inputs as covariates). For both low-input and conventional farmers, results from the asymmetry tests confirm the asymmetric role of inputs. 13Table 5 gathers the results from the conventional and low-input asymmetric production functions. First, for both conventional and low-input farmer, we notice that the coefficient associated to the corrected inverse Mills ratio is not statistically significant. It might indicate that selection bias only affects farmer yield through its impact on herbicide demand functions. 14 Control function coefficients for input endogeneity are only significant in the low-input production function. As for inputs themselves, their effect on the conventional and low-input production functions seems to differ. While productive inputs have no significant impact on conventional yields, work and machinery is found to increase low-input yields.

Nitrogen fertilizers are impacting low-input yields only through their interactive role in the damage abating part. Herbicide damage abating role is found to be significant in both conventional and low-input production functions.

Observed characteristics such as farm size and the share of winter wheat surface are not significantly affecting conventional nor low-input yields. However, being in a mountaineous region has a positive impact on low-input yields. This might indicate that low-input production system is more profitable when cropping conditions are more difficult as in mountaineous region. Table 5 also shows that conventional yields are sensitive to rainfall while low-input yields are rather sensitive to temperatures. This result can be interpreted considering the results on the probability to adopt the low-input production system. Rainfall decreases the probability to adopt low-input practices. Then we might argue that, in the perspective of high yield losses due to excessive rainfall, farmers would rather use fungicides, which mean being classified as a "conventional" farmer, to limit their losses. In here, we consider 250 bootstrap replications to ensure that our bootstrapped standard errors are obtained at least on 100 converging replications.

In Table 6, we compare the average marginal effect of inputs on the yields from three different specifications. 15 Model (1) corresponds to the main specification of this article, i.e. the endogenous regime switching model with both selection bias and input endogeneity. Model (3) shows the results from a joint production function with no distinction according to the production system considered. Finally, model ( 2) is an in-between as we consider separate production functions for conventional and low-input farmers with no selection bias nor input endogeneity. Given the non-linear functional form of our production function, we cannot compute marginal effect of inputs on yields. We need to consider mean marginal effect, i.e. we consider the effect on yields when increasing the quantity of a particular input when other variables equal the sample average. As such, coefficients' direct interpretation is difficult as they heavily depend on other variables values.

First, we notice that contrary to model ( 1) and (3), there is no significant coefficients associated to input use in model (2). Considering separate conventional and low-input production function is not enough: selection bias and input endogeneity should be accounted for. While the comparison with the separate functions with no selection bias nor input endogeneity suffers from the lack of significant coefficients, the joint production function comparison is insightful. Model (3) shows a positive effect of additional work and machinery on yields. Yet, model [START_REF] Ricome | The Role of Marketing Contracts in the Adoption of Low-Input Production Practices in the Presence of Income Supports: An Application in Southwestern France[END_REF] shows that this positive effect of work and machinery only affects the low-input production function. In the conventional case, we do not find a significant effect of work and machinery on yields. The positive mean marginal effect of fungicide on yield from model (3) becomes negative for conventional producers when considering model [START_REF] Ricome | The Role of Marketing Contracts in the Adoption of Low-Input Production Practices in the Presence of Income Supports: An Application in Southwestern France[END_REF].

Model [START_REF] Ricome | The Role of Marketing Contracts in the Adoption of Low-Input Production Practices in the Presence of Income Supports: An Application in Southwestern France[END_REF] and model (3) also gives different results in terms of significancy. Unlike separate functions, the joint production function allows to show a significant mean marginal effect of mechanical pest control on yields. On the other hand, model [START_REF] Ricome | The Role of Marketing Contracts in the Adoption of Low-Input Production Practices in the Presence of Income Supports: An Application in Southwestern France[END_REF] shows a significant (and opposite) mean marginal effect of herbicides on conventional and low-input yields. In model (3), herbicide mean marginal effect is not statistically significant.

Overall, our results advocate for considering both selection bias and input endogeneity when estimating production function when farmers are using different production systems. One should not empirically assess the effects of the adoption of the low-input practices on input uses and yields without considering selection and input endogeneity issues. This is in line with previous findings from the literature, e.g., [START_REF] Pietola | Farmer response to policies promoting organic farming technologies in Finland[END_REF] who advocate for an adverse selection issue for agri-environmental programs as adopters have lower yields at baseline. In particular, our results show that, in the Swiss case, the low-input production system is adopted by younger and more educated farmers with smaller farm and more diversified source of revenue, as previously highlighted by [START_REF] Finger | Farmers' adoption of extensive wheat production -Determinants and implications[END_REF]. Hence, if the Swiss extenso program seems to be successful as it is well-diffused among farmers, our findings show its impact on pesticide use is limited as it was adopted with farmers with already lower input use levels. Plus, pesticide savings mainly concern fungicide uses but are very limited when considering herbicide uses. Yet, herbicides also have a negative impact on the environment. A cost-benefit analysis of the existing Extenso program should be considered. Whereas the question on an herbicide-free Extenso program has been raised [START_REF] Böcker | Herbicide free agriculture? A bio-economic modelling application to Swiss wheat production[END_REF][START_REF] Böcker | Implications of herbicide-free Extenso wheat cultivation in Switzerland[END_REF], the question on how to encourage the reluctant conventional farmers to adopt the low-input production system seems to remain. In particular, from our descriptive statistics we find that low-input farmers benefit from similar, if not superior, economic returns. Hence the need for a more thorough investigation into the factors that explain such a lock-in could help to design policy instruments that would specifically target the "laggards".

Conclusion

This paper investigates the production function of low-input production systems compared to conventional ones. We consider observational data from Swiss wheat producers. To investigate and account for the potential selection bias in production system choice, we consider an endogenous regime switching model combined with control functions to account for input endogeneity. We find selection bias for both the conventional and low-input herbicide demand, meaning that unobservables that are affecting the choice of production practices are also affecting the level of herbicide demand for farmers. At the same time, we find endogeneity in farmers input choices, meaning that unobservables affecting inputs demand are also impacting the observed yields. Finally, we find that both biases are interlinked, and highlight the need to account for both selection bias and endogeneity.

Our article also highlights a few differences across the conventional and low-input wheat production systems when accounting for their differences in estimation. First, input demands of low-input farmers seem to be rather inelastic to relative price of inputs. On the other hand, input demands of conventional farmers, particularly nitrogen and fungicide demand, vary in function of the relative price of inputs. Second, production functions also display significant differences across conventional and low-input production systems. First, the role of inputs -e.g., productive, damage abating or interactivein the production function varies across production systems. In the low-input production system, nitrogen fertilizers and herbicides ahev a significant interactive effect on pest control. By trigerring weed competition, nitrogen fertilizers affect the productivity of herbicides. Whereas in conventional system, this interactive effect does not appear as statistically significant. As for the effect of inputs and other factors on yields, our approach permits to highlight differences across production systems. For instance, conventional yields are significantly impacted by rainfall while lowinput yields rather seem to respond to temperature variations. The highlighted differences in the high-and low-input production functions are robust across the different specifications we tested in Online Appendix C. Such differences in the farmer's inputs demand and production function are worth accounting for when designing pesticide public policies. For instance, pesticide taxation policies, especially if targeting herbicide uses, might have a more harmful effect for low-input farmers than conventional ones. Inputs demand of low-input farmers being inelastic to input prices, a tax would result in an increase in their production cost. On the other hand, conventional farmers can adjust their input demand to input price variations to limit the impact of such taxation policy on their profitability. If not differentiated across production system, a pesticide taxation policy could reduce the low-input production system profitability and potentially encourage the adoption of conventional production system. More globally, because of the differentiated role they play on low-input and conventional yields, we need to assess separately the impact of any pesticide policy impacting the use of variable inputs.

Future research could expand our modelling framework in two main directions. First, future research may account for the panel nature of datasets with farm-level observations. Our modelling framework mostly ignores the panel dimension of our dataset. We try to account for the panel dynamics in our models by including a time trend while the canton dummies try to account for "individual" heterogeneity. 16 Except for the low-input herbicide demand, it seems that there is no time trend in low-input adoption, input demand or observed yield. Yet, our assumption on the functional form of the error terms fully ignores the panel dimension of our dataset. We assume that the choice of cropping practice is independent across farmers but also across time. Despite the flexibility of the Swiss Extenso program, it remains highly unlikely that the farmer choice to adopt low-input practices is independent across time.17 Similarly, we do not directly account for the panel dimension of our dataset in the error terms of the input demand functions or in the error terms of the production functions. An extension of the Carlson generalized two-step Heckman estimator (2022) to our endogenous regime switching model would allow for heteroskedastic error terms. Such extension would allow for autoregressive error terms to investigate the time-interdependence of the low-input adoption decision as well as farmer's input demands and yields.

Second, future research shall consider entire crop roations, not single crops. We here consider low-input practices rather than low-input farming systems because our data is limited to winter wheat. Only investigating winter wheat means that we neglect the affects and adaptations introduced using different crop rotation, which is especially important for lowinput farming systems. Considering a multicrop approach wouldl allow to (i) integrate the crop rotation effects in our model while (ii) investigating the extensive margin impact of public policies implementing taxes or subsidies on pesticides. Indeed, such policies might impact the intensive margin through the choice of production practices and input uses but might also conduct the farmer to change the crops he is cultivating as well as the share attributed to each culture [START_REF] Möhring | Crop insurance and pesticide use in European agriculture[END_REF]).

Table 1 : Descriptive statistics for conventional and low-input Swiss wheat farmers

 1 Education is a score variable from 1, no agricultural education, to 5, technical schooling. An increase in education score denotes a more educated farmer.

		Conventional farmers	Low-input farmers Mean-test
		Mean (sd)	Mean (sd)	p-value
	Yield (t/ha)	65.41	58.50	***
		(10.90)	(8.88)	
	Nitrogen (kg/ha)	151.81	141.78	***

Notes: * p<.1, ** p<.05, *** p<.01; LI = Load Index.

⁺

Table 2 : Estimated predicted probability of choosing low-input production system

 2 

	Conditional probability of adopting low-input
	production system

ª Wheat price variable was centered as we also consider its squared value. b Cantonal results can be found in Online Appendix B.

Table 3 : Estimated inputs demand for conventional production system

 3 

			Nitrogen	Herbicide	Fungicide
	Farm size		-0.531 *	-0.030 ***	0.006
			(0.305)	(0.012)	(0.009)
	Share of winter wheat	117.499 ***	-1.725	0.729
	surface			(1.279)	(1.079)
	Mountain		22.604	0.032	0.068
			(14.704)	(0.409)	(0.334)
	Altitude		-0.057	0.004 **	0.003
			(0.098)	(0.002)	(0.002)
	Temperatures		12.951	-0.192	0.359
			(11.031)	(0.302)	(0.276)
	Log(Rainfall)		-39.197	-1.210 ***	-0.734
			(26.979)	(0.459)	(0.689)
	Herbicide Price Index	1854.597 **	-2.152	41.122 *
	Ratio		(895.753)	(23.197)	(23.636)
	Fungicide	Price	-1723.428 **	0.685	-38.858 *
	Index Ratio		(823.616)	(21.090)	(21.572)
	Nitrogen Price Index	-316.471 **	0.978	-7.255 *
	Ratio		(152.786)	(4.218)	(4.182)
	Energy Price Index	160.289 **	-0.181	4.427 **
	Ratio		(77.373)	(2.038)	(2.088)
	Selection bias		-3.155	1.383 **	0.494
			(14.349)	(0.590)	(0.384)
	Time trend		2.747	0.038	-0.090
			(3.254)	(0.076)	(0.078)
	Intercept		-5196.968	-64.099	183.808
			(6432.161)	(148.922)	(152.696)
	Cantonal dummies b	Yes	Yes	Yes

Table 4 : Estimated inputs demand for low-input production system

 4 

			Nitrogen	Herbicide
	Farm size		-0.054	0.010
			(0.252)	(0.008)
	Share of winter	-36.522	0.650
	wheat surface		(32.856)	(0.760)
	Mountain		3.071	1.046 ***
			(7.873)	(0.310)
	Altitude		0.024	-0.003 *
			(0.044)	(0.002)
	Temperatures		-4.563	0.040
			(4.846)	(0.223)
	Log(Rainfall)		2.349	0.647
			(17.407)	(0.900)
	Herbicide	Price	-156.667	-3.912
	Index Ratio		(544.381)	
	Fungicide	Price	142.496	4.762
	Index Ratio		(502.278)	(26.293)
	Nitrogen	Price	22.059	-0.410
	Index Ratio		(93.455)	(4.633)
	Energy Price Index	-15.250	0.649
	Ratio		(46.121)	(2.576)
	Selection bias		12.889	-1.129 ***
			(13.050)	(0.430)

b Cantonal results can be found in Online Appendix B.

Standard errors are obtained using 100 bootstrap replications.

Table 5 : The estimated coefficients from the conventional and low-input production functions
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	Conventional	Low-input

Table 6 : Mean marginal effect of inputs on yields

 6 

	Mean marginal effect on yields	Model (1)	Model (2)	Model (3)
			Conventional	Low-input	Conventional	Low-input	All
	Work & machinery	-1.32	5.71**	-0.02	4.05	4.99**
	Fertilizers		-7.93	-7.85	-0.28	-0.99	1.65
	Mechanical control	pest	-0.003	-0.009	-0.003	-0.008	-0.005**
	Herbicide		0.58*	-8.32**	0.45	0.72	0.11
	Fungicide		-0.99*		0.95		3.31***
	Notes: * p<.1, ** p<.05, *** p<.01				

Many common factors are impacting both production system choice on the one hand, and production choices and outcomes on the other hand. If many of these factors are observed (e.g. market prices, weather conditions or general farmer characteristics), many of them are unobserved --including soil quality, farmer skills or their environmental preferences.

The corresponding assumption for Heckman's selection correction is that with .

The proof of result for the general case with mutliple endogenous inputs is to be found in Chapter 1 of Devilliers (2021).

In the case where we only have one endogenous input, corresponds to the empirical counterpart of the covariance between error terms and .

In this low input scheme, fungicide and growth regulator use is substituted by variety choice and adjustment in farming practices. For weed control, both herbicides and mechanical weed control can be used. Note that the use of mineral fertilizer is not restricted in the low-input scheme.

This data is from retrieved Agroscope(Mouron & Schmid, 2012).

Among the farmers who switched more than once, we have the same number of farmers who switch from low-input to conventional first than the opposite.

Table 1 also shows that the use of insecticides is very limited, even among farmers using conventional production system. In the rest of this article, we only consider herbicide and fungicide uses.

We only keep the share of non-agricultural income as a potential instrument for the production system choice. Keeping both the value of non-agricultural income and its share could lead to endogeneity issues as we would get a proxy for the agricultural income, which likely depends on the choice of production practices.

Separability tests were also performed considering a quadratic and translog functional form for the production function. Results are robust across all specifications for the conventional production function. For the low-input function, result is robust when considering the quadratic specification while the translog specification concludes that there is no interactive input. Accordingly, a robustness check for low-input production function can be found in Online Appendix C with fertilizer considered as a purely productive input.

As for separability tests, we also performed the asymmetry tests considering a quadratic and translog functional forms. Results are robust when considering the translog specification. As for the quadratic specification, assymmetry test results do not permit to conclude as both hypotheses are rejected. Accordingly, we consider a symmetric specification for both functions as a robustness check in Online Appendix C.

Accordingly, we present the estimates from the high-and low-input production functions without inverse Mills ratio as robustness check in Online Appendix C.

The mean marginal effects are not directly interpreted. We are rather interested in comparing the effect of different production function specifications on the sign and significancy of these parameters.

We choose a time trend approach over year fixed-effects as the introduction of year fixed-effects captures price and weather variations simultaneously. Yet, we need prices as instrumental variables to build our control functions to account for input endogeneity.

Indeed, entering the Extenso program is not binding for the farmer. At any time between or even during cropping season, he could decide to quit the program so he could use fungicides and insecticides. Switching back to conventional production system does not prevent him to benefit from the program in the future.
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