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The Horton-Strahler number, also known as the register function, provides a tool for quantifying the branching complexity of a rooted tree. We consider the Horton-Strahler number of critical Galton-Watson trees conditioned to have size n and whose offspring distribution is in the domain of attraction of an α-stable law with α ∈ [1, 2]. We give tail estimates and when α = 1, we prove that it grows as 1 α log α/(α-1) n in probability. This extends the result in Brandenberger, Devroye & Reddad [6] dealing with the finite variance case for which α = 2. We also characterize the cases where α = 1, namely the spectrally positive Cauchy regime, which exhibits more complex behaviors.

Introduction

The Horton-Strahler number of a finite rooted tree is an integer that quantifies its branching complexity. One possible formal definition is given recursively as follows.

Definition 1.1 Let t be a finite rooted tree. Its Horton-Strahler number S(t) is defined as follows.

(a) If t reduces to a single node, then S(t) = 0.

(b) Otherwise, S(t) is the maximum of the Horton-Strahler numbers of the subtrees t 1 , ..., t k that are attached to the root, plus one if that maximum is not uniquely achieved. Namely,

S(t) = max 1≤i≤k S(t i ) + 1 # argmax 1≤i≤k S(t i )≥2 .
Alternatively, S(t) is also the height of the largest perfect binary tree that can be embedded into t (see Section 3.1 for more details). In this article, we provide estimates on the Horton-Strahler number of critical Galton-Watson trees conditioned to be large. Before discussing our results precisely, let us provide a brief history with general references on related topics.

Background. The Horton-Strahler number was introduced independently by the two hydrogeologists Horton [START_REF] Horton | Erosional development of streams and their drainage basins ; hydrophysical approach to quantitative morphology[END_REF] and Strahler [START_REF] Strahler | Hypsometric (area-altitude) analysis of erosional topography[END_REF] to obtain quantitative empirical laws about river systems, that are represented by trees whose leaves are springs and whose root corresponds to the outlet of the basin. Many key physical characteristics of stream networks have been since modeled with the help of this number: see e.g. Peckham [START_REF] Scott | New Results for Self-Similar Trees with Applications to River Networks[END_REF], Fac-Beneda [START_REF] Fac-Beneda | Fractal structure of the Kashubian hydrographic system[END_REF], Chavan & Srinivas [START_REF] Sagar | Effect of DEM source on equivalent Horton-Strahler ratio based GIUH for catchments in two Indian river basins[END_REF] and Bamufleh et al. [START_REF] Bamufleh | Developing a geomorphological instantaneous unit hydrograph (GIUH) using equivalent Horton-Strahler ratios for flash flood predictions in arid regions[END_REF]. The Horton-Strahler number appears independently in other scientific fields (anatomy, botany, molecular biology, physics, social network analysis, etc). In computer science, it is used to optimize the amount of memory or time needed to manipulate data structures. It is sometimes called the register function in this context because the minimum number of registers needed to evaluate an arithmetic expression A is equal to the Horton-Strahler number of the syntax tree of A. We refer to Viennot [START_REF] Viennot | Trees. In Mots, mélanges offert à M.P. Schützenberger[END_REF] for a survey on those various applications. The Horton-Strahler number is encountered in many areas of mathematics: see for instance Esparza, Luttenberger & Schlund [START_REF] Esparza | History of Strahler Numbers -with a Preface[END_REF] for connections with mathematical logic, formal language theory, algebra, combinatorics, topology, approximation theory, and more. In the probability area, let us mention Kovchegov & Zaliapin [START_REF] Kovchegov | Random self-similar trees: A mathematical theory of Horton laws[END_REF], which considers the Horton-Strahler number through the prism of pruning operations on trees. Here, we rather focus on probabilistic works that discuss the Horton-Strahler number of uniform samples of standard families of combinatorial trees. Flajolet, Raoult & Vuillemin [START_REF] Flajolet | The number of registers required for evaluating arithmetic expressions[END_REF] and Kemp [START_REF] Kemp | The average number of registers needed to evaluate a binary tree optimally[END_REF] consider the Horton-Strahler number of a uniform random ordered rooted binary tree T n with n leaves (a uniform n-Catalan tree) and they prove that

E[S(T n )] = log 4 n + D(log 4 n) + o(1)
as n → ∞, where log b x = ln x/ ln b stands for the logarithm of x to the base b, and D is a 1-periodic continuous function. Here, all the random variables that we consider are defined on the same probability space (Ω, F , P) whose expectation is denoted by E. In particular, S(T n ) is subject to deterministic oscillations. Moreover, Devroye & Kruszewski [START_REF] Devroye | A note on the Horton-Strahler number for random trees[END_REF] proved that S(T n ) is highly concentrated around its expected value via exponential tail estimates. These results were extended to k-ary trees by Drmota & Prodinger [START_REF] Drmota | The Register Function for T-Ary Trees[END_REF].

More recently, Brandenberger, Devroye & Reddad [START_REF] Brandenberger | The Horton-Strahler number of conditioned Galton-Watson trees[END_REF] showed that the Horton-Strahler number of a critical Galton-Watson tree with finite variance offspring distribution conditioned to have n vertices always grows as log 4 n in probability, which extends all the results that have been previously obtained on first-order behavior. In a companion paper [START_REF] Khanfir | Fluctuations of the Horton-Strahler number of stable Galton-Watson trees[END_REF], we go further and we study, among other things, the fluctuations and deterministic oscillations of the Horton-Strahler number of large Catalan trees.

Framework and main results. Let us give a precise overview of the present article which provides tail estimates and characterizes the first-order behavior of the Horton-Strahler number of critical Galton-Watson trees conditioned to have size n and whose offspring distribution is in the domain of attraction of an α-stable law with α ∈ [START_REF] Abraham | Local limits of conditioned Galton-Watson trees: the infinite spine case[END_REF][START_REF] Aldous | Tree-valued Markov chains derived from Galton-Watson processes[END_REF]. This framework extends the finite variance case, where α = 2, and it includes the so-called spectrally positive Cauchy (or 1-stable) laws. To that end, let us introduce our basic notations and assumptions.

Throughout this work, µ = (µ(k)) k∈N stands for a probability measure on the set N of nonnegative integers. We shall always assume µ to be non-trivial and critical, namely [START_REF] Abraham | Local limits of conditioned Galton-Watson trees: the infinite spine case[END_REF] µ(0) > 0 and k∈N kµ(k) = 1.

We view it as the critical offspring distribution of a (rooted and ordered) Galton-Watson tree denoted by τ , which is then almost surely finite. See Section 2.1 for a formal definition. Several results are expressed in terms of the following functions that are strictly convex thanks to [START_REF] Abraham | Local limits of conditioned Galton-Watson trees: the infinite spine case[END_REF].

Our first contribution consists in four propositions that connect S(τ ) to other simple characteristics of τ and that hold under the sole assumption that µ is non-trivial and critical. More precisely, -Proposition 3.5 provides an upper bound for the size #τ of τ when S(τ ) is small, -Proposition 3.6 provides a lower bound for the height |τ | of τ when S(τ ) is large, -Proposition 3.7 provides a lower bound for S(τ ) when the height |τ | of τ is large , -Proposition 3.9 provides a lower bound for S(τ ) when the maximal out-degree of τ is large.

We will use these propositions to derive the order of magnitude of S(τ ) under P( • | #τ = n). These estimates are fairly general and they are sufficiently accurate to be interesting in their own right.

Our second goal is to estimate the tail of the Horton-Strahler number of Galton-Watson trees whose offspring distribution has possibly infinite variance. We work under the assumption that [START_REF] Bamufleh | Developing a geomorphological instantaneous unit hydrograph (GIUH) using equivalent Horton-Strahler ratios for flash flood predictions in arid regions[END_REF] µ belongs to the domain of attraction of a stable law.

We denote the scaling index of (the type of) the limiting law by α: since µ has a finite mean, we get α ∈ [1, 2] and since µ is supported on [0, ∞), we only deal with spectrally positive stable laws: namely, their skewness parameter β is equal to 1 and the support of their Lévy measure is included in (0, ∞). By standard results, see e.g. [START_REF] Nicholas | Regular Variation. Number 27 in Encyclopedia of Mathematics and its Applications[END_REF]Theorem 8.3.1], Assumption (3) is equivalent to the existence of a function L : [0, ∞) → (0, ∞) that is slowly varying and such that

(4) µ ([n, ∞)) ∼ n -α L(n) if α ∈ [1, 2) and n k=0 k 2 µ(k) -1 ∼ 2L(n) if α = 2.
Note that n k=0 k 2 µ(k) -1 is nondecreasing and ultimately positive since µ satisfies (1) (we refer to Proposition 2.9 for more details). We first discuss our results in the cases where α ∈ (1, 2], and then we consider the cases where α = 1 that feature more complicated behaviors.

The cases where α ∈ [START_REF] Abraham | Local limits of conditioned Galton-Watson trees: the infinite spine case[END_REF][START_REF] Aldous | Tree-valued Markov chains derived from Galton-Watson processes[END_REF]. In these cases, our results are simply expressed in terms of the index α only. First of all, we prove in Proposition 3.12 that if µ is in the domain of attraction of an α-stable law with α ∈ (1, 2], then the tail of S(τ ) follows the universal exponential decay

-log α α-1 P(S(τ ) ≥ n) ∼ n,
where log b x = ln x/ ln b stands for the logarithm of x to the base base b. This extends the work of Brandenberger, Devroye & Reddad [START_REF] Brandenberger | The Horton-Strahler number of conditioned Galton-Watson trees[END_REF] who proved the α = 2 case under the assumption that µ has a finite variance.

We next discuss the behaviour of S(τ ) under P( • | #τ = n) and to that end, we assume that (5) µ is aperiodic (namely that µ is not supported by a proper additive subgroup of Z) because this implies that P(#τ = n) > 0 for all n that are large enough. Then, we prove the following.

Theorem 1.2 Assume that µ is critical and aperiodic and that it belongs to the domain of attraction of a stable law of index α ∈ [START_REF] Abraham | Local limits of conditioned Galton-Watson trees: the infinite spine case[END_REF][START_REF] Aldous | Tree-valued Markov chains derived from Galton-Watson processes[END_REF]. Then, the following convergence holds in probability.

(6) αS(τ ) log α α-1 n under P( • | #τ = n) -→ 1.
This extends the work of Brandenberger, Devroye & Reddad [START_REF] Brandenberger | The Horton-Strahler number of conditioned Galton-Watson trees[END_REF] who proved the α = 2 case under the assumption that µ has a finite variance. Our proof of Theorem 1.2 relies on results in Duquesne [START_REF] Duquesne | A limit theorem for the contour process of conditioned Galton-Watson trees[END_REF] on the height of α-stable trees and in Kortchemski [START_REF] Kortchemski | A simple proof of Duquesne's theorem on contour processes of conditioned Galton-Watson trees[END_REF] on the asymptotic behavior of the positive excursion of the random walk (W n ) n∈N . These results are recalled precisely in Section 2.2, Proposition 2.11. Let us mention that (6) holds true when µ is not aperiodic by restricting to the integers such that P(#τ = n) > 0.

The 1-stable cases. In these more complex cases, we need to specify a converging sequence of rescaled centered sums of µ-distributed independent random variables. More precisely, we denote by (W n ) n∈N a (left-continuous) random walk starting at W 0 = 0, whose jump law is given by ( 7)

P(W 1 = k) = µ(k + 1), k ∈ {-1} ∪ N.
Note that E[W 1 ] = 0. Then µ belongs to the domain of attraction of a 1-stable law if and only if there exists a (0, ∞)-valued sequence (a n ) n∈N tending to ∞ such that (8)

W n + b n a n (law) ---→ n→∞ X, where b n = nE[W 1 1 {|W 1 |>an} ] and E[e -λX ] = e λ ln λ
for all n ∈ N and λ ∈ (0, ∞). Let us mention here that a n ∼ nL(a n ) and that b n /a n → ∞, necessarily. The law of X is a spectrally positive Cauchy (or 1-stable) law. Its Fourier transform is given by E[exp(iuX)] = exp(-π 2 |u| -iu ln |u|), u ∈ R. We refer to Proposition 2.12 for details. The asymptotic behavior of S(τ ) in the 1-stable case is expressed in terms of the sequence (b n ) n∈N and the following function Υ that is derived from ψ in (2) as follows. [START_REF] Devroye | A note on the Horton-Strahler number for random trees[END_REF] ∀s ∈ (0, 1), Υ(s) =

1 s dr r ln Λ(r)
, where

Λ(s) = sψ ′ (s) sψ ′ (s) -ψ(s)
.

We refer to Section 3.3 for more details on the definition of Υ. Proposition 3.12 asserts that if µ is in the domain of attraction of a 1-stable law, then the tail of S(τ ) satisfies

(10) Υ P (S(τ ) ≥ n) ∼ n.
In contrast to the cases where α ∈ (1, 2] for which we can show that Υ(s)

∼ 0 + log α α-1
1/s, the asymptotic behavior of Υ when α = 1 depends on the slowly varying function L appearing in (4): see Proposition 3.11 for a precise statement. As discussed in Examples 3.13, the following holds.

(a) If L(n) ∼ (ln n) -1-κ with κ ∈ (0, ∞), then Υ(s) ∼ 0 + ln 1/s ln ln 1/s and -ln P(S(τ

) ≥ n) ∼ n ln n. (b) If L(n) ∼ exp(-(ln n) κ ) with κ ∈ (0, 1), then Υ(s) ∼ 0 + 1 1-κ ln 1/s ln ln 1/s and -ln P(S(τ ) ≥ n) ∼ (1-κ)n ln n. (c) If L(n) ∼ exp(-ln n/ ln ln n) then Υ(s) ∼ 0 + ln 1/s
ln ln ln 1/s and -ln P(S(τ ) ≥ n) ∼ n ln ln n. When the Galton-Watson tree τ is conditioned to be large, the size of its Horton-Strahler number is of order Υ( 1 bn ) as proved by the following theorem that first handles the case where τ is conditioned to have at least n vertices.

Theorem 1.3 Assume that µ is critical and that it belongs to the domain of attraction of a 1-stable law. Then, the following convergence holds in probability.

(11) S(τ ) Υ( 1 bn ) under P( • | #τ ≥ n) -→ 1,
where Υ is given by ( 9) and (b n ) n∈N by [START_REF] Sagar | Effect of DEM source on equivalent Horton-Strahler ratio based GIUH for catchments in two Indian river basins[END_REF].

Our proof of Theorem 1. [START_REF] Kortchemski | Condensation in critical Cauchy Bienaymé-Galton-Watson trees[END_REF] and Berger [START_REF] Berger | Notes on Random Walks in the Cauchy Domain of Attraction[END_REF], it is not clear how one could control τ under P( • | #τ = n) by assuming only that µ ([n, ∞)) ∼ L(n)/n as in [START_REF] Berger | Notes on Random Walks in the Cauchy Domain of Attraction[END_REF]. Here, we work under the stronger assumption that µ(n) ∼ L(n)/n 2 , which implies the previous one and also implies that µ is aperiodic.

Theorem 1.4 Assume that µ is critical and that there is a slowly varying function L such that

(12) µ(n) ∼ L(n) n 2 .
Then, the following convergence holds in probability.

(13) S(τ ) Υ( 1 bn ) under P( • | #τ = n) -→ 1,
where Υ is given by ( 9) and (b n ) n∈N by [START_REF] Sagar | Effect of DEM source on equivalent Horton-Strahler ratio based GIUH for catchments in two Indian river basins[END_REF].

As already mentioned, when α = 1, the rescaling sequence Υ( 1 bn ) depends on the slowly varying function L appearing in (4): as discussed in Examples 4.2, the following holds true.

(a) If L(n) ∼ (ln n) -1-κ with κ ∈ (0, ∞), then Υ( 1 bn ) ∼ ln n ln ln n . (b) If L(n) ∼ exp(-(ln n) κ ) with κ ∈ (0, 1), then Υ( 1 bn ) ∼ 1 1-κ ln n ln ln n . (c) If L(n) ∼ exp(-ln n/ ln ln n), then Υ( 1 bn ) ∼ ln n ln ln ln n .
Organisation of paper. In Section 2, we properly set our framework and we recall from previous works the tools that we use later on in the paper: Section 2.1 is devoted to Galton-Watson trees and Section 2.2 to known limit theorems for random walks and Galton-Watson trees. In Section 3, we study the distribution of the Horton-Strahler number of Galton-Watson trees. In Section 3.1, we first establish new technical results on Horton-Strahler numbers (especially in Lemmas 3.1 and 3.2). Section 3.2 focuses on proving Propositions 3.5, 3.6, 3.7, and 3.9 that link the Horton-Strahler number to size, height, and maximal out-degree of Galton-Watson trees. Section 3.3 is devoted to the tail asymptotics of Galton-Watson trees whose offspring distribution belongs to the domain of attraction of a stable law: in particular, we prove Proposition 3.12, that is one of the main results of the paper and we discuss Examples 3.13 

Framework and tools

In this section, we recall a set of well-known results that are used in the rest of the article and in the proofs of Theorems 1.2, 1.3 and 1.4. With the exception of Lemma 2.13, this section contains no new result.

Galton-Watson trees

Rooted ordered trees. We recall Ulam's formalism on rooted ordered trees. Let N * = {1, 2, 3, ...} be the set of positive integers and let U be the following set of finite words

U = n∈N (N * ) n
with the convention (N * ) 0 = {∅}. The set of words U is totally ordered by the lexicographic order denoted by ≤. Let u = (u 1 , ..., u n ) ∈ U and v = (v 1 , ..., v m ) ∈ U, we write u * v = (u 1 , ..., u n , v 1 , ..., v m ) ∈ U for the concatenation of u and v. We denote by |u| = n the height of u, and if n ≥ 1 then we denote by ←u = (u 1 , ..., u n-1 ) the parent of u. We also say that u is a child of v when ←u = v. The genealogical order is a partial order on U defined by u v ⇐⇒ ∃u ′ ∈ U, v = u * u ′ . When u v, we will say that u is an ancestor of v. When u v but u = v, we write u ≺ v. Finally, we write u ∧ v ∈ U for the most recent common ancestor of u and v, that is their common ancestor with maximal height. Definition 2.1 We say that a subset t of U is a tree when the following is satisfied:

(a) ∅ ∈ t, (b) for all u ∈ t, if u = ∅ then ← - u ∈ t, (c 
) For all u ∈ t, there exists an integer k u (t) ∈ N such that u * (i

) ∈ t ⇐⇒ 1 ≤ i ≤ k u (t).
We denote by T the space of all trees.

Let t ∈ T. The size of t is simply the (possibly infinite) number #t of its vertices and we say that t is finite if #t < ∞. As a graph, the edges of t are given by the unordered pairs {u, ←u } for all u ∈ t\{∅}. Therefore the degree of u ∈ t is k u (t) + 1 if u = ∅ and k ∅ (t) otherwise. Namely, k u (t) is the out-degree of u (alternatively, if one views t as a family tree whose ancestor is ∅, then k u (t) stands for the number of children of u). We use the following notations for the height of t and its maximal out-degree. We also denote the subtree stemming from u ∈ t and the tree pruned at u respectively by ( 15)

θ u t = {v ∈ U : u * v ∈ t} and Cut u t = t\{v ∈ t : u ≺ v}
Observe that θ u t and Cut u t both belong to T.

Galton-Watson trees and the Many-To-One Principle. Let us equip the set of trees T with the sigma-field F (T) generated by the sets {t ∈ T : u ∈ t}, where u ranges in U. Formally, a random tree is a function τ : Ω → T that is (F , F (T))-measurable.

Definition 2.2 Let µ = (µ(k)) k∈N be a probability measure on N. A Galton-Watson tree with offspring distribution µ (a GW(µ)-tree, for short) is a random tree τ that satisfies the following.

(a) k ∅ (τ ) has law µ.

(b) For all k ∈ N * such that µ(k) > 0, the subtrees θ (1) τ, . . . , θ (k) τ under P( • | k ∅ (τ ) = k) are independent with the same law as τ under P.

It is well-known that a GW(µ)-tree τ is almost surely finite if and only if its offspring distribution is subcritical or critical and non-trivial, namely if (1) holds, and in that case for all finite tree t ∈ T,

P(τ = t) = u∈t µ k u (t) . (16) 
As observed by Kesten [START_REF] Kesten | Subdiffusive behavior of random walk on a random cluster[END_REF], a critical GW(µ)-tree conditioned to be large locally converges in law to a tree τ ∞ with a single infinite line of descent and whose law can be informally described as follows: all individuals of τ ∞ reproduce independently, the individuals of the infinite line of descent reproduce according to the µ-size-biased distribution (kµ(k)) k∈N whereas the others reproduce according to µ. More precisely, we introduce the following. Definition 2.3 Let µ be a non-trivial critical offspring distribution. A size-biased GW(µ)-tree is a random tree τ ∞ that satisfies the following.

(a) For all n ∈ N, there is a unique u ∈ τ ∞ such that |u| = n and #(θ u τ ∞ ) = ∞. We denote this vertex by U n . Note that U 0 = ∅ and that ← -U n+1 = U n . Hence, there exists a N * -valued sequence of random variables (J n ) n∈N * such that U n is the word (J 1 , . . . , J n ) for all n ∈ N * . (b) The random variables (k Un (τ ∞ ), J n+1 ), for n ∈ N, are independent and distributed as follows:

(17) ∀j, k ∈ N * , P(J n+1 = j ; k Un (τ ∞ ) = k) = 1 {j≤k} µ(k).
(c) Conditionally given (k Un (τ ∞ ), J n+1 ) n∈N , the finite subtrees stemming from the infinite line of descent, which are the θ Un * (j) τ ∞ for j ∈ {1, . . . , k Un (τ ∞ )}\{J n+1 } and n ∈ N, are independent GW(µ)-trees.

Remark 2.4 Note that the individual U n+1 on the infinite line of descent has J n+1 -1 siblings strictly on the left hand side and k Un (τ ∞ ) -J n+1 siblings strictly on the right hand side. Their joint law is given by the following bivariate generating function:

(18) ∀s, r ∈ [0, 1], E r J n+1 -1 s k Un (τ∞)-J n+1 = ϕ(r) -ϕ(s) r -s ,
where ϕ is given by ( 2) and where the quotient is equal to ϕ ′ (r) when r = s.

As mentioned above, size-biased trees are the local limits of critical Galton-Watson trees conditioned to be large and therefore appear in many results concerning the asymptotic behavior of branching processes: we refer to Lyons, Pemantle & Peres [START_REF] Lyons | Conceptual Proofs of L Log L Criteria for Mean Behavior of Branching Processes[END_REF], Aldous & Pitman [START_REF] Aldous | Tree-valued Markov chains derived from Galton-Watson processes[END_REF] and Abraham & Delmas [START_REF] Abraham | Local limits of conditioned Galton-Watson trees: the infinite spine case[END_REF] for general results in this vein. One key tool involving size-biased GW(µ)-trees is the so-called Many-To-One Principle, which is part of folklore (see e.g. Duquesne [START_REF] Duquesne | An elementary proof of Hawkes's conjecture on Galton-Watson trees[END_REF]Equation (24)] for a proof) and which we use in our article in the following form.

Proposition 2.5 (Many-To-One Principle) Let τ be a GW(µ)-tree and let τ ∞ be a size-biased GW(µ)-tree. We keep the notations of Definition 2.3. Then, for all n ∈ N and for all bounded functions G 1 :

T × U -→ R and G 2 : T -→ R, it holds that E u∈τ 1 {|u|=n} G 1 (Cut u τ, u) G 2 (θ u τ ) = E G 1 (Cut Un τ ∞ , U n ) E G 2 (τ ) .
Lukasiewicz path associated with a tree. We recall here a key combinatorial tool to study Galton-Watson trees via random walks.

Definition 2.6 Let t ∈ T be finite and let u(t) = (u j (t)) 0≤j<#t be the sequence of its vertices listed in increasing lexicographic order:

u 0 (t) = ∅ < u 1 (t) < . . . < u j (t) < u j+1 (t) < . . . < u #t-1 (t).
The sequence u(t) is often called the depth-first exploration of t. We then define a Z-valued path

W (t) = (W j (t)) 0≤j≤#t by setting W 0 (t) = 0 and (19) W j+1 (t) = W j (t) + k u j (t) (t) -1
for all 0 ≤ j < #t, that is the Lukasiewicz path of t.

In probability, Lukasiewicz paths originate from queuing systems theory to study the waiting line of a single server subject to the Last-In-First-Out policy and they have been used by Le Gall & Le Jan [START_REF] Gall | Branching processes in levy processes: The exploration process[END_REF] to define Lévy trees. In the following lemma, we recall that Lukasiewicz paths are adapted processes that completely encode finite trees and that are particularly well-suited to study Galton-Watson trees (see e.g. Le Gall [19, Proposition 1.1] and [START_REF] Gall | Random trees and applications[END_REF]Corollary 1.6] for more details).

Proposition 2.7 Let t ∈ T be finite. Let τ be a GW(µ)-tree where µ is non-trivial and critical.

Then the following holds true.

(i) Lukasiewicz paths provide a one-to-one correspondence between the set of finite trees and the set of finite nonnegative excursions of left-continuous walks, which is defined by n∈N * (w j ) 0≤j≤n ∈ Z n : w 0 = 0, w n = -1, w j ≥ 0 and w j+1 -w j ≥ -1 for all 0 ≤ j < n .

(ii) For all m ∈ N, we denote by R m t the tree t restricted to its m + 1 first vertices (with respect to the lexicographic order). Namely,

(20) R m t = {u j (t) : 0 ≤ j ≤ min(m, #t -1)}
where (u j (t)) stands for the vertices of t listed in lexicographic order. Then, R m t is a measurable function of W j (t) ; 0 ≤ j ≤ min(m, #t) . (iii) Let (W n ) n≥0 be a Z-valued random walk whose jump distribution is given by [START_REF] Burd | A Self-Similar Invariance of Critical Binary Galton-Watson Trees[END_REF]. We set

H 1 = inf{j ∈ N : W j = -1}, which is an a.s. finite stopping time since E[W 1 ] = 0. Then, W j (τ ) 0≤j≤#τ (law) = W j 0≤j≤H 1 .
In particular, #τ and H 1 have the same law. (iv) More generally, for all p ∈ N, we set

(21) H 0 = 0 and H p = inf{j ∈ N : W j = -p} .
Then there is an i.i.d. sequence (τ p ) p∈N of GW(µ)-trees such that

(22) ∀p ∈ N, p + W Hp+j 0≤j≤H p+1 -Hp = W j (τ p ) 0≤j≤#τp .

Limit theorems.

In this section we recallmostly from Bingham, Goldies & Teugels [START_REF] Nicholas | Regular Variation. Number 27 in Encyclopedia of Mathematics and its Applications[END_REF] and Feller [START_REF] Feller | An Introduction to Probability Theory and Its Applications[END_REF] limit theorems for sums of i.i.d. random variables belonging to the domain of attraction of stable laws. We also recall useful limit theorems for Galton-Watson trees and random walks from Berger [START_REF] Berger | Notes on Random Walks in the Cauchy Domain of Attraction[END_REF], Duquesne [START_REF] Duquesne | A limit theorem for the contour process of conditioned Galton-Watson trees[END_REF], Kortchemski [START_REF] Kortchemski | A simple proof of Duquesne's theorem on contour processes of conditioned Galton-Watson trees[END_REF], and Kortchemski & Richier [START_REF] Kortchemski | Condensation in critical Cauchy Bienaymé-Galton-Watson trees[END_REF].

Regularly and slowly varying functions. Recall that a measurable and locally bounded function l : (0, ∞) → (0, ∞) is slowly varying at infinity (resp. at 0 + ) if l(cx) ∼ l(x) as x → ∞ (resp. as x → 0 + ) for all c ∈ (0, ∞). Also recall that f : (0, ∞) → (0, ∞) is regularly varying of index α ∈ R at ∞ (resp. at 0 + ) if there exists a slowly varying function l at ∞ (resp. at 0 + ) such that f (x) = x α l(x). Below we gather in a single proposition several well-known results on slowly and regularly varying functions that are used in this article.

Proposition 2.8 Let l be a slowly varying function at ∞. Then the following holds true.

(i) (Potter's bound) For all ε ∈ (0, ∞) and all c ∈ (1, ∞), there exists

x 0 ∈ (0, ∞) such that for all x ∈ [x 0 , ∞) and all λ ∈ [1, ∞), it holds 1 c λ -ε ≤ l(xλ) l(x) ≤ cλ ε . Therefore, ln l(x) = o(ln x) and if f is regularly varying with index ρ ∈ R\{0}, then ln f (x) ∼ ρ ln x. Moreover, if x n ∼ y n → ∞ then l(x n ) ∼ l(y n ) and f (x n ) ∼ f (y n ). (ii) (Karamata's Abelian Theorem for Tails) Let ρ ∈ (0, ∞). Then ∞ y -1-ρ l(y) dy < ∞ and, as x → ∞, ∞ x y -1-ρ l(y) dy ∼ 1 ρ x -ρ l(x) and x 1 y ρ-1 l(y) dy ∼ 1 ρ x ρ l(x).
(iii) Suppose that ∞ y -1 l(y) dy < ∞ and set l(x) = ∞ x y -1 l(y) dy. Then l is slowly varying at ∞ and lim x→∞ l(x)/l(x) = ∞.

(iv) (Monotone Density Theorem) Let u : [0, ∞) → R be a locally Lebesgue integrable function and set U (x) =

x 0 u(y) dy for all x ∈ R. Assume that there are c, ρ ∈ (0, ∞) such that U (x) ∼ cx ρ l(x) as x → ∞ and furthermore assume that u is ultimately monotone. Then

u(x) ∼ cρx ρ-1 l(x) as x → ∞. (v) (Karamata's Abelian Theorem for Laplace Transform) Let U : [0, ∞) → [0, ∞) be a mea- surable function such that U (λ) := λ ∞ 0 e -λx U (x) dx < ∞ for all λ ∈ (0, ∞). Assume that there are c ∈ (0, ∞) and ρ ∈ (-1, ∞) such that U (x) ∼ c Γ(1+ρ) x ρ l(x) as x → ∞, then U (λ) ∼ cλ -ρ l(1/λ) as λ → 0 + .
Proof. For (i), see e. Limit theorems: the cases where α ∈ (1, 2]. We next recall equivalent formulations of the property for a probability measure µ on N to belong to the domain of attraction of a stable law of index α ∈ (1, 2] (we handle 1-stable laws separately). Proposition 2.9 Let µ be a probability measure on N that satisfies [START_REF] Abraham | Local limits of conditioned Galton-Watson trees: the infinite spine case[END_REF]. Recall from (2) the definition of ψ. Let (W n ) n∈N be a random walk whose jumps distribution is specified in [START_REF] Burd | A Self-Similar Invariance of Critical Binary Galton-Watson Trees[END_REF]. Let α ∈ (1, 2]. Then, the following assertions are equivalent.

(a) µ belongs to the domain of attraction of an α-stable law.

(b) There exists

L : (0, ∞) → (0, ∞) that varies slowly at ∞ such that if α ∈ (1, 2) then µ([n, ∞)) ∼ n -α L(n), and if α = 2 then 0≤k≤n k 2 µ(k) -1 ∼ 2L(n) which is ultimately positive by (1). (c) If α ∈ (1, 2) then ψ(s) ∼ 0 + α-1 Γ(2-α) s α L(1/s), and if α = 2 then ψ(s) ∼ 0 + s 2 L(1/

s). (d)

There exists a (0, ∞)-valued sequence (a n ) n∈N tending to ∞ such that 1 an W n converges in law to the spectrally positive α-stable random variable X α whose Laplace exponent is given for all

λ ∈ [0, ∞) by ln E[exp(-λX α )] = α-1 Γ(2-α) λ α if α ∈ (1, 2)
and by λ 2 if α = 2. Moreover, if one of the four equivalent assumptions from above holds true, then a α n ∼ nL(a n ) and a n ∼ n 1/α L * (n) where the function L * : x ∈ (0, ∞) → x -1/α inf{y ∈ (0, ∞) : y α /L(y) > x} is slowly varying at ∞. [START_REF] Kesten | Subdiffusive behavior of random walk on a random cluster[END_REF] implies that (b) ⇔ (c). Let us prove the last point of the proposition. We assume that (a-d) hold true. By Grimvall [START_REF] Grimvall | On the Convergence of Sequences of Branching Processes[END_REF]

Proof. For

∈ (0, ∞), set (23) f 1 (λ) := ϕ(e -λ ) -1 + λ = ψ(1 -e -λ ) + 1 2 λ 2 + O(λ 3 ). If α ∈ (1, 2) then [5, Theorem 8.1.6] asserts that (b) is equivalent to f 1 (λ) ∼ 0 + α-1 Γ(2-α) λ α L(1/λ), which implies that (b) ⇔ (c) in these cases (with Proposition 2.8 (i)). If α = 2 then [5, Theorem 8.1.6] asserts that (b) is equivalent to f 1 (λ) ∼ 0 + λ 2 ( 1 2 + L(1/λ)) and
, Theorem 2.1], lim n→∞ E[exp(-λ an W n )] = E[e -λXα ] for all λ ∈ (0, ∞). Observe that E[exp(-λW n )] = (e λ (f 1 (λ) + 1-λ)) n . If α ∈ (1, 2), we easily get nf 1 (λ/a n ) ∼ α-1 Γ(2-α) λ α as n → ∞ for all λ ∈ (0, ∞) and thus a α n ∼ nL(a n ). If α = 2, we get nλ an + n ln 1-λ an 1-λ an 1 2 +L(a n ) (1 + o(1)) ∼ nL(an) a 2 n λ 2 ,
which implies that a 2 n ∼ nL(a n ). In both cases, we observe that a α n /L(a n ) ∼ n and we use [5, Theorem 1.5.12] to complete the proof of the proposition.

We next recall standard results on the size of Galton-Watson trees, which are expressed in terms of random walks thanks to Proposition 2.7.

Proposition 2.10 Let µ be a probability measure on N that satisfies [START_REF] Abraham | Local limits of conditioned Galton-Watson trees: the infinite spine case[END_REF]. Let (W n ) n∈N be a random walk whose jumps distribution is specified by [START_REF] Burd | A Self-Similar Invariance of Critical Binary Galton-Watson Trees[END_REF]. Recall from [START_REF] Horton | Erosional development of streams and their drainage basins ; hydrophysical approach to quantitative morphology[END_REF] the definition of the stopping times (H p ) p∈N . Let τ be a GW(µ)-tree. Then the following holds true.

(i) (H p ) p∈N is a random walk with positive jumps.

(ii) (Kemperman) P(H p = n) = p n P(W n = -p) for all n, p ∈ N * . (iii) Suppose that µ satisfies Proposition 2.9 (a-d) and is aperiodic. Then, P(#τ = n) ∼ cα nan and

P(#τ ≥ n) ∼ αcα
an where c α is the value at 0 of the (continuous version) of the density of X α , and where (a n ) and X α are as in Proposition 2.9 (d).

(iv) Suppose that µ satisfies Proposition 2.9 (a-d). Recall that |τ | stands for the height of τ . Then, 

P(|τ | ≥ n) ψ (P(|τ | ≥ n)) ∼ (α -1)n. Proof. Note that (i)
P(#τ = n) = 1 n P(W n = -1)
. We next use Gnedenko's local limit Theorem (see e.g. [START_REF] Nicholas | Regular Variation. Number 27 in Encyclopedia of Mathematics and its Applications[END_REF]Theorem 8.4.1]) to get lim n→∞ |a n P(W n = -1) -c α | = 0 and thus P(#τ = n) ∼ cα nan . Since (a n ) varies regularly with index 1/α by Proposition 2.9, we get P(#τ ≥ n) ∼ αcα an by Karamata's Abelian Theorem for Tails (see Proposition 2.8 (ii)). For (iv), see Slack [START_REF] Slack | A branching process with mean one and possibly infinite variance[END_REF]Lemma 2].

We next recall two limit theorems that are used to prove Theorem 1.2. One follows from the convergence of rescaled GW(µ)-trees to stable trees due to Duquesne [START_REF] Duquesne | A limit theorem for the contour process of conditioned Galton-Watson trees[END_REF]. The other is the uniform integrability of the density of the law of (roughly speaking) the Lukasiewicz path of a GW(µ)-tree τ under P( • | #τ = n) with respect to P( • | #τ ≥ n) that has been proved in Kortchemski [START_REF] Kortchemski | A simple proof of Duquesne's theorem on contour processes of conditioned Galton-Watson trees[END_REF].

Proposition 2.11 Assume that µ satisfies [START_REF] Abraham | Local limits of conditioned Galton-Watson trees: the infinite spine case[END_REF], that it is aperiodic, and that it belongs to the domain of attraction of a stable law of index α ∈ [START_REF] Abraham | Local limits of conditioned Galton-Watson trees: the infinite spine case[END_REF][START_REF] Aldous | Tree-valued Markov chains derived from Galton-Watson processes[END_REF]. More precisely, we assume that Proposition 2.9 (d) holds true. Let τ be a GW(µ)-tree. Recall from ( 14) that |τ | stands for the maximal height of τ , and that W (τ ) stands for its Lukasiewicz path as in Definition 2.6. Then, the following holds true.

(i) There exists a random variable M ∈ (0, ∞) such that an n |τ | under P(

• | #τ = n) converges in law to M as n → ∞. (ii) Let r ∈ (0, 1). Then for all large enough n ∈ N, there is a function D (r) n : N → [0, ∞) such that (24) E f W min(⌊nr⌋,•) (τ ) #τ = n = E f W min(⌊nr⌋,•) (τ ) D (r) n W ⌊rn⌋ (τ ) #τ ≥ n for all bounded function f : N N → [0, ∞).
Moreover, these functions satisfy

(25) lim c→∞ lim sup n→∞ E 1 {D (r) n (W ⌊rn⌋ (τ ))≥c} D (r) n W ⌊rn⌋ (τ ) #τ ≥ n = 0.
Proof. The point (i) is a consequence of the convergence of rescaled Galton Watson trees to the αstable tree: see Duquesne [START_REF] Duquesne | A limit theorem for the contour process of conditioned Galton-Watson trees[END_REF]Theorem 3.1]. Here, M is the height of the normalized α-stable tree that is a (0, ∞)-valued random variable. See Kortchemski [25, Equation (1) and Lemma 2] for [START_REF] Khanfir | Fluctuations of the Horton-Strahler number of stable Galton-Watson trees[END_REF]. For [START_REF] Kortchemski | A simple proof of Duquesne's theorem on contour processes of conditioned Galton-Watson trees[END_REF], [START_REF] Kortchemski | A simple proof of Duquesne's theorem on contour processes of conditioned Galton-Watson trees[END_REF]Equation (12)] shows that D

n (a n • ) uniformly converges on all compact intervals of (0, ∞) towards a continous function. Moreover, the laws of a -1 n W ⌊rn⌋ (τ ) under P( [START_REF] Kortchemski | A simple proof of Duquesne's theorem on contour processes of conditioned Galton-Watson trees[END_REF]Equation (17)]), which completes the proof of ( 25) by [START_REF] Khanfir | Fluctuations of the Horton-Strahler number of stable Galton-Watson trees[END_REF].

• | #τ = n) are tight in (0, ∞) (see
Limit theorems: the 1-stable case. We now consider the spectrally positive 1-stable law, which features more complicated behaviors. Proposition 2.12 Let µ be a probability measure on N that satisfies [START_REF] Abraham | Local limits of conditioned Galton-Watson trees: the infinite spine case[END_REF]. Recall from (2) the definition of ψ. Let (W n ) n∈N be a random walk whose jumps distribution is given by [START_REF] Burd | A Self-Similar Invariance of Critical Binary Galton-Watson Trees[END_REF].

(i) The following assertions are equivalent.

(a) µ belongs to the domain of attraction of a 1-stable law.

(b) There exists L : (0, ∞) → (0, ∞) that varies slowly at ∞ such that ∞ y -1 L(y) dy < ∞

and such that µ([n, ∞)) ∼ n -1 L(n). (c) There exists a (0, ∞)-valued sequence (a n ) n∈N tending to ∞ such that 1 an (W n + b n ) converges in law to X, where b n = nE[W 1 1 {|W 1 |>an}
] and where X is the spectrally positive 1-stable random variable whose Laplace exponent is given for all λ ∈ (0, ∞) by ln E[exp(-λX)] = λ ln λ.

(ii) Assume that (a-c) hold true. Then, k≥n kµ(k) ∼ ℓ(n) where ℓ is the slowly varying function defined by

(26) ∀x ∈ (0, ∞), ℓ(x) = ∞ x L(y) y dy.
This implies that ψ(s) ∼ 0 + sℓ(1/s). Moreover, L(x) = o(ℓ(x)) as x → ∞. (iii) Assume that (a-c) hold true. Then, a n ∼ nL(a n ) and a n ∼ nL * (n) where the function

L * : x ∈ (0, ∞) → x -1 inf{y ∈ (0, ∞) : y/L(y) > x} varies slowly at ∞. Moreover, b n ∼ nℓ(a n )
where ℓ is given by ( 26) and therefore 

a n = o(b n ).
(k) = j≥1 µ([max(n, j), ∞)) = nµ([n, ∞)) + j>n µ([j, ∞)). Then note that nµ([n, ∞)) ∼ L(n) and that j>n µ([j, ∞)) ∼ ℓ(n)
where ℓ is defined by [START_REF] Kortchemski | Condensation in critical Cauchy Bienaymé-Galton-Watson trees[END_REF]. By Proposition 2.8 (iii), L(n) = o(ℓ(n)) and we get k≥n kµ(k) ∼ ℓ(n). By [START_REF] Nicholas | Regular Variation. Number 27 in Encyclopedia of Mathematics and its Applications[END_REF]Theorem 8.1.6], this is equivalent to f 1 (λ) ∼ 0 + λℓ(1/λ) where f 1 is given by [START_REF] Kesten | Subdiffusive behavior of random walk on a random cluster[END_REF]. This implies ψ(s) ∼ 0 + sℓ(1/s) by Proposition 2.8 (i), which completes the proof of (ii). Then, we prove a n ∼ nL(a n ) and a n ∼ nL * (n) as in Proposition 2.9. Next observe that b n = n k>an kµ(k + 1) ∼ nℓ(a n ). Thus a n /b n ∼ L(a n )/ℓ(a n ) → 0 by (ii). This completes the proof of (iii).

Suppose that Proposition 2.12 (c) holds true. Since

a n = o(b n ), it holds b -1
n W ⌊ns⌋ → -s in law, and thus in probability, for all s ∈ [0, ∞). Standard arguments (or a stronger result such as Skorokhod [31, Theorem 2.7]) entail the following convergence (27)

1 bn W ⌊ns⌋ ; s ∈ [0, ∞) -→ -s ; s ∈ [0, ∞)
in probability for the topology of uniform convergence on all compact intervals. Recall from [START_REF] Horton | Erosional development of streams and their drainage basins ; hydrophysical approach to quantitative morphology[END_REF] the definition of the stopping times (H p ) p∈N . Then, [START_REF] Kovchegov | Random self-similar trees: A mathematical theory of Horton laws[END_REF] implies for all x ∈ [0, ∞) that (28) Lemma 2.13 Let µ be a probability measure on N that satisfies [START_REF] Abraham | Local limits of conditioned Galton-Watson trees: the infinite spine case[END_REF] and that belongs to the domain of attraction of a 1-stable law. Let τ be a GW(µ)-tree. Then, (29)

P(#τ ≥ n) ∼ L(b n ) b n ℓ(b n ) ,
where (b n ), L and ℓ are as in Proposition 2.12. If the more restrictive assumption (12) holds, then [START_REF] Kovchegov | Invariance and attraction properties of Galton-Watson trees[END_REF] implies that there is a sequence (c n ) tending to ∞ such that 1 cn H n → 1 in probability: namely, the law of H 1 is relatively stable. Then, [5, Theorem 8.8.1] asserts the existence of a function l that slowly varies at ∞ such that 0≤k≤n P(H 1 ≥ k) ∼ l(n) and 1-E[e -λH 1 ] ∼ 0 + λ l(1/λ). Thus, [START_REF] Kovchegov | Invariance and attraction properties of Galton-Watson trees[END_REF] Proposition 12], we get (29) because within the notations of [START_REF] Kortchemski | Condensation in critical Cauchy Bienaymé-Galton-Watson trees[END_REF], we necessarily get Λ(n) ∼ 1/ℓ(b n ). Moreover, Berger [START_REF] Berger | Notes on Random Walks in the Cauchy Domain of Attraction[END_REF]Theorem 2.4] asserts that if [START_REF] Duquesne | An elementary proof of Hawkes's conjecture on Galton-Watson trees[END_REF] holds then

P(#τ = n) ∼ 1 n P(#τ ≥ n) ∼ L(b n ) b 2 n . Proof. Since b n /n ∼ ℓ(a n ) → 0 as n → ∞, (30) 
easily entails that ℓ(a n )l(n) → 1. By Berger [4, Lemma 4.3], we get ℓ(a n ) ∼ ℓ(b n ) and thus, 0≤k≤n P(#τ ≥ k) = 0≤k≤n P(H 1 ≥ k) ∼ 1/ℓ(b n ). By Kortchemski & Richier [26,
P(W n = -1) ∼ nL(b n )/b 2
n , so [START_REF] Scott | New Results for Self-Similar Trees with Applications to River Networks[END_REF] follows from Kemperman's identity (Proposition 2.10 (ii)).

Remark 2.14 Although the difficult part of ( 29) is the very content of Kortchemski & Richier [26, Proposition 12], the relatively explicit form of the right member of (29) seems novel under the sole assumption that µ belongs to the domain of attraction of a 1-stable law.

We next recall two limit theorems on the maximal out-degree of a GW(µ)-tree when µ belongs to the domain of attraction of a 1-stable law. They are part of more general results due to Kortchemski & Richier [START_REF] Kortchemski | Condensation in critical Cauchy Bienaymé-Galton-Watson trees[END_REF].

Proposition 2.15 Let τ be a GW(µ)-tree with offspring distribution µ that satisfies [START_REF] Abraham | Local limits of conditioned Galton-Watson trees: the infinite spine case[END_REF] and that belongs to the domain of attraction of a 1-stable law. Recall from ( 14) that the notation ∆(τ ) stands for the maximal out-degree of τ . Then, the following holds true.

(i) The following convergence holds in distribution on [0, ∞):

(31) 1 b n ∆(τ ) under P( • | #τ ≥ n) -→ J,
where the law of J is given by P(J ≥ x) = 1/x for all x ∈ [1, ∞). (ii) Under the more restrictive assumption [START_REF] Duquesne | An elementary proof of Hawkes's conjecture on Galton-Watson trees[END_REF], the following convergence holds in probability:

(32) 1 b n ∆(τ ) under P( • | #τ = n) -→ 1.
Proof. For (i), see [START_REF] Kortchemski | Condensation in critical Cauchy Bienaymé-Galton-Watson trees[END_REF]Theorem 6]. For (ii), see [START_REF] Kortchemski | Condensation in critical Cauchy Bienaymé-Galton-Watson trees[END_REF]Theorem 1].

Recall that W (τ ) stands for the Lukasiewicz path of τ , as in Definition 2.6. We conclude this section by recalling a result from Kortchemski & Richier [START_REF] Kortchemski | Condensation in critical Cauchy Bienaymé-Galton-Watson trees[END_REF] that shows that the law of W (τ ) under P( • | #τ = n) is closed in variation distance to the law of the Vervaat transform of the path (W 0 , W 1 , . . . , W n-1 , -1) under P. More precisely, let (W n ) n∈N be as in Proposition 2.12. For all n ∈ N * , we introduce the following notations. ( 33)

I n = -min 0≤j≤n-1 W j and σ n = inf{0 ≤ k ≤ n -1 : W k = -I n } and (34) Z (n) j = W σn+j + I n if 0 ≤ j < n -σ n , I n -1 + W j-(n-σn) if n ≥ j ≥ n -σ n .
Namely, Z (n) is constructed by reading the increments of (W 0 , W 1 , ..., W n-1 , -1) from left to right in cyclic order by starting at time σ n : this is a kind of Vervaat transform of (W 0 , W 1 , ..., W n-1 , -1) (see Vervaat [START_REF] Vervaat | A Relation between Brownian Bridge and Brownian Excursion[END_REF] for more details). We shall use Kortchemski & Richier [26, Theorem 21], which we re-state by convenience into the following proposition. Proposition 2.16 Assume that µ satisfies (1) and [START_REF] Duquesne | An elementary proof of Hawkes's conjecture on Galton-Watson trees[END_REF]. We keep the above notation. Then,

sup A∈B(R n+1 ) P W (τ ) ∈ A #τ = n -P Z (n) ∈ A -→ 0,
where B(R n+1 ) stands for the Borel sigma-field of R n+1 . [START_REF] Kortchemski | Condensation in critical Cauchy Bienaymé-Galton-Watson trees[END_REF]Theorem 21] and note P(I n > 1) → 1 by e.g. [START_REF] Kovchegov | Random self-similar trees: A mathematical theory of Horton laws[END_REF].

Proof. See Kortchemski & Richier

Distribution of the Horton-Strahler number of Galton-Watson trees 3.1 Alternative definitions of the Horton-Strahler number and basic results

In this section, we prove basic results on the Horton-Strahler number: firstly, we provide alternative definitions, secondly we state a key upper bound in Lemma 3.1, and finally we prove in Lemma 3.2 a recursive equation satisfied by the tail of the Horton-Strahler of GW(µ)-trees that is the starting point of the analysis of their asymptotic behavior.

Let us first recall alternative definitions of the Horton-Strahler number. The first one uses Horton pruning of a finite tree t ∈ T that is defined as follows: remove the leaves of t and merge each line into one edge (a line in t is a maximal sequence of vertices v 0 , . . . , v n ∈ t such that k v 1 (t) = . . . = k v n-1 (t) = 1 and v j = ←v j+1 for all 0 ≤ j < n). The resulting tree is called the Horton-pruned tree, which we denote here by Prun(t). Then, S(t) is the minimal number of Horton prunings that are necessary to obtain {∅} from t. Namely, ( 35)

S(t) = min n ∈ N : Prun n (t) = {∅} ,
where Prun n stands for the n-th iteration of Prun for all n ∈ N * and where Prun 0 stands for the operation that merges each line into one edge. We refer to Kovchegov & Zaliapin [27, Section 2.3] for a proof and more details. Another useful definition uses embeddings of perfect binary trees. More precisely, let t, t ′ ∈ T be finite. Then, φ : t → t ′ is an embedding if it is injective and if φ(u ∧ v) = φ(u)∧φ(v) for all u, v ∈ t. For all n ∈ N, we denote by T 2,n = 0≤k≤n {1, 2} k the n-perfect binary tree, with the convention that {1, 2} 0 = {∅}. Then, for all finite tree t ∈ T, (36)

S(t) = max n ∈ N : ∃φ : T 2,n → t embedding .
This result seems to be 'part of the folklore'. Let us however provide a short proof.

Proof of (36). We reason by induction on the height of t. Note that (36) obviously holds true if |t| = 0. Now assume k := k ∅ (t) ≥ 1 and let φ : T 2,n+1 → t be an embedding, we separate the cases according to the positions of φ(∅), φ(1), φ(2). If (i) φ(∅) with 1 ≤ i ≤ k, then we have (i) φ(u) for all u ∈ T 2,n+1 by definition, and we check that setting φ(u) = (i) * φ i (u) defines an embedding φ i : T 2,n+1 → θ (i) t. Conversely, an embedding φ i : T 2,n+1 → θ (i) t induces an embedding φ : T 2,n+1 → t such that (i) φ(∅). Thus,

max n ∈ N : ∃φ : T 2,n → t embedding, (i) φ(∅) = S(θ (i) t).
Otherwise, ∅ = φ(∅) = φ(1) ∧ φ(2) so we have distinct 1 ≤ i, j ≤ k such that (i) φ( 1) and (j) φ(2). Similarly as before, we see that setting φ((1) * u) = (i) * φ i (u) and φ((2) * u) = (j) * φ j (u) respectively defines two embeddings φ i : T 2,n → θ (i) t and φ j : T 2,n → θ (j) t. Conversely, two embeddings φ i : T 2,n → θ (i) t and φ j : T 2,n → θ (j) t induces an embedding φ : T 2,n+1 → t such that φ(∅) = ∅, (i) φ(1), and (j) φ(2). Thus, max n ∈ N : ∃φ : T 2,n → t embedding, (i) φ(1), (j) φ(2) = 1+min S(θ (i) t), S(θ (j) t) .

Taking the maximum over φ(∅), φ(1), φ(2) and recalling Definition 1.1 concludes the proof.

The definition (36) immediately implies the following. Let t, t ′ ∈ T be finite.

(37)

If there is an embedding φ : t → t ′ , then S(t) ≤ S(t ′ ).

We next use (36) and (37) to get an upper bound of S(t) in terms of S(R m t), where R m t is defined in [START_REF] Grimvall | On the Convergence of Sequences of Branching Processes[END_REF] (recall that it is the tree consisting in the first m + 1 vertices of t in lexicographic order) and of R m t ⋆ , where t ⋆ is the mirror image of t that is formally defined as follows.

Let t ∈ T and u ∈ t\{∅} be the word (j 1 , . . . , j n ). We set u |0 = ∅ and u |p = (j 1 , . . . , j p ) for all 1 ≤ p ≤ n. Then, the mirror image of u is the word u ⋆ = (j ⋆ 1 , . . . , j ⋆ n ) where

j ⋆ p := k u |p-1 (t) -j p + 1, 1 ≤ p ≤ n.
We also set ∅ ⋆ = ∅. Then t ⋆ = {u ⋆ : u ∈ t} and it is easy to show that t ⋆ ∈ T. Observe that u → u ⋆ is a bijective embedding so S(t ⋆ ) = S(t) by (37). We stress that the word u ⋆ depends on the tree t on which u is observed. Nevertheless, this notation should not lead to confusion here because the underlying tree will always be clear according to context. Since k u ⋆ (t ⋆ ) = k u (t), [START_REF] Feller | An Introduction to Probability Theory and Its Applications[END_REF] implies that if τ is a GW(µ)-tree whose offspring distribution µ satisfies (1), then so is τ ⋆ . Furthermore, since #τ ⋆ = #τ , if n ∈ N * is such that P(#τ = n) > 0, then we easily check that (38) under P(

• | #τ = n), τ ⋆ (law) = τ.
The following lemma plays a key role in the proofs of Theorems 1.2 and 1.4.

Lemma 3.1 Let t ∈ T be finite. Then the following holds true.

(i) For all u ∈ t, we set t ≤u = {v ∈ t : v ≤ u}. Then,

(39) S(t) ≤ 1 + max S(t ≤u ) , max{S(θ v t) : v ∈ t, ← -v u and v > u} . (ii) Let m ∈ N be such that 2m ≥ #t + |t|. Then, (40) 
S(t) ≤ 1 + max S(R m t), S(R m t ⋆ ) .
(iii) If τ is a random finite tree such that τ ⋆ has the same law as τ , then for all n, m ∈ N * , we get

(41) P(S(τ ) ≥ n) ≤ 2P S(R m τ ) ≥ n -1 + P(#τ + |τ | > 2m).
Proof. We first prove (i). If S(t) = 0, then (39) is obviously true. We next suppose that S(t) = n ≥ 1, and to simplify notation, we set ∅, u = {v ∈ t : v u} and B = {v ∈ t : ←v u and v > u}.

By (36), there is an embedding φ : T 2,n → t. Observe that φ(1) and φ(2) cannot both belong to ∅, u , otherwise it would imply φ(1) ∧ φ(2) = φ(∅) ∈ {φ(1), φ(2)} (by definition of embeddings since ∅ = (1) ∧ (2)), which contradicts the injectivity of φ. Thus, there is j ∈ {1, 2} such that either φ(j) ∈ t ≤u \ ∅, u or φ(j) ∈ t\t ≥u . In the first case, by definition of embeddings, φ(j) φ((j) * v) for all v ∈ T 2,n-1 and so φ((j) * T 2,n-1 ) ⊂ t ≤u . Then, (36) entails n-1 ≤ S(t ≤u ). Suppose next that φ(j) ∈ t\t ≥u . Since t\t ≥u is the disjoint union of the v * (θ v t) for v ∈ B, there exists v ∈ B such that φ((j) * T 2,n-1 ) ⊂ φ(j) * (θ φ(j) t) ⊂ v * (θ v t). Then, (36) entails n-1 ≤ max v∈B S(θ v t), which completes the proof of (39).

Let us now prove (ii). To that end, we denote by u the ≤-minimal leaf of θ u t. We also set t ≥u = {v ∈ t : v ≥ u} ∪ ∅, u . By definition, t = t ≤u ∪ t ≥u and ∅, u = t ≤u ∩ t ≥u . Then, note that for all v ∈ B, v * (θ v t) ⊂ t ≥u . Moreover, note that (t ≥u ) ⋆ = t ⋆ ≤u ⋆ . Therefore, (37) and (i) imply ( 42)

S(t) ≤ 1 + max S(t ≤u ), S(t ≥u ) = 1 + max S(t ≤u ), S(t ⋆ ≤u ⋆ ) . Next set m+1 = #t ≤u = #{v ∈ t : v ≤ u} and m ′ +1 = #t ≥u = #{v ∈ t ⋆ : v ≤ u ⋆ }. Observe that R m t = t ≤u and R m ′ t ⋆ = t ⋆ ≤u ⋆ . Moreover, #t = #t ≤u + #t ≥u -# ∅, u = m + m ′ + 1 -|u|. Thus, m + m ′ < #t + |t|. If 2m ≥ #t + |t|, then m ′ < 1 2 (#t + |t|) ≤ m and R m ′ t ⋆ ⊂ R m t ⋆
. By (37), we get S(R m ′ t ⋆ ) ≤ S(R m t ⋆ ) and we obtain (40) by (42).

Inequality ( 41) is an easy consequence of (40): we leave the details to the reader.

We next prove the main equation that is satisfied by the tail distribution of the Horton-Strahler number of a Galton-Watson tree. Lemma 3.2 Let τ be a GW(µ)-tree whose offspring distribution µ satisfies [START_REF] Abraham | Local limits of conditioned Galton-Watson trees: the infinite spine case[END_REF]. Recall ϕ and ψ from [START_REF] Aldous | Tree-valued Markov chains derived from Galton-Watson processes[END_REF]. For all n ∈ N, we set q n = P(S(τ ) > n). Then,

(43) 1 -q 0 = µ(0) 1 -µ(1)
and

1 -q n+1 = ϕ(1 -q n ) + (q n -q n+1 )ϕ ′ (1 -q n ), n ∈ N.
This equation can be rewritten in terms of ψ as q n -q n+1 = ψ(q n )/ψ ′ (q n ). 

1 {S(θ (j) τ )≤n} + 1≤j≤k∅(τ ) 1 {S(θ (j) τ )=n+1} 1≤i≤k∅(τ ) j =i 1 {S(θ (i) τ )≤n} .
Taking the expectation yields (43) by Definition 2.2 and since ϕ is the generating function of µ.

Remark 3.3 Although it seems difficult to solve (43) explicitly in general, it can be done actually for the so-called α-stable offspring distribution µ α , α ∈ (1, 2], whose generating function is

∀s ∈ [0, 1], ϕ α (s) = s + 1 α (1 -s) α .
Namely, if τ α is a GW(µ α )-tree then S(τ α ) is a geometric random variable with parameter 1 α , i.e. [START_REF] Duquesne | Hereditary tree growth and Lévy forests[END_REF] who show that α-stable offspring distributions are the only laws that are invariant under any hereditary pruning.

P(S(τ

α ) = n) = 1 α 1-1 α n , n ∈ N.
We end this section with a lemma that lists basic properties of ψ, that are useful to analyse (43).

Lemma 3.4 Let µ be a probability on N that satisfies [START_REF] Abraham | Local limits of conditioned Galton-Watson trees: the infinite spine case[END_REF]. Recall from (2) the definition of ψ. Then, the following holds true.

(i) ψ is nonnegative, increasing, strictly convex, and analytic on (0, 1]. Moreover, ψ ′ is increasing, concave, and ψ(0) = ψ ′ (0) = 0.

(ii) For all s ∈ (0, 1], 1 2 ψ ′ (s) ≤ ψ(s) s ≤ ψ ′ (s). Proof. The point (i) is elementary. The upper bound in (ii) is a consequence of the convexity of ψ and to obtain the lower bound we apply Hermite-Hadamard inequality that asserts that for all convex functions f :

[a, b] → R, it holds (45) f 1 2 (a + b) ≤ 1 b -a b a f (t) dt ≤ 1 2 f (a) + f (b) .
We apply (45) to ψ ′ after observing 1 s ψ(s) = 1 s s 0 ψ ′ (s)ds.

Tail estimates of joint laws

In this section, we provide four estimates of the tail of the joint distribution of the Horton-Strahler number of a Galton-Watson tree with either its size, its height, or its maximal out-degree. We fix an offspring distribution µ that satisfies (1) and τ stands for a GW(µ)-tree. Recall from (2) the definition of ϕ and ψ. Observe that ψ ′ (1) = 1-ϕ ′ (0) = 1-µ(1) > 0 by [START_REF] Abraham | Local limits of conditioned Galton-Watson trees: the infinite spine case[END_REF]. It is convenient to write (46)

q n = P(S(τ ) > n), n ∈ {-1} ∪ N,
where q -1 = 1 obviously.

Proposition 3.5 Let τ be a GW(µ)-tree where µ satisfies (1). Then, for all n ∈ N,

(47) E #τ 1 {S(τ )=0} = µ(0) (1 -µ(1)) 2 and ψ ′ (q n-1 )E #τ 1 {S(τ )≤n} ≤ 2. Proof. Although E[#τ ] = ∞, let us first prove that e n := E[#τ 1 {S(τ )≤n} ] < ∞. By Definition 1.1, if S(τ ) ≤ n then S(θ u τ ) ≤ n
for all children u of ∅ in τ (if any) and S(θ u τ ) = n for at most one child. This implies that for all m, n ∈ N,

(48) min(m, #τ )1 {S(τ )≤n} ≤ 1 + k∅(τ ) i=1 min m, #θ (i) τ 1 {S(θ (i) τ )≤n-1} + k∅(τ ) i=1 min m, #θ (i) τ 1 {S(θ (i) τ )≤n} 1≤j≤k∅(τ ) j =i 1 {S(θ (j) τ )≤n-1}
which makes sense even when n = 0: the first sum in the right-hand side of (48) being null. To simplify notations, we set e n (m) = E[min(m, #τ )1 {S(τ )≤n} ] for all integers m ≥ 0 and n ≥ -1 (with e -1 (m) = 0). Taking the expectation in (48) gives e n (m) ≤ 1+e n-1 (m)+e n (m)ϕ ′ (1-q n-1 ).

It easily implies that e n ≤ (1 + e n-1 )/(1 -ϕ ′ (1 -q n-1 )) because lim m→∞ e n (m) = e n . This recursively entails e n < ∞ for all integer n ≥ -1.

To simplify notations, we set k ∅ = k ∅ (τ ), τ j = θ (j) τ and S j = S(θ (j) τ ) for all 1 ≤ j ≤ k ∅ (τ ). We first explicitly compute e 0 by observing that #τ 1 {S(τ )=0} = 1 {k∅=0} +1 {k∅=1} (1+τ 1 )1 {S 1 =0} . Taking the expectation entails e 0 = µ(0) + µ(1)(1-q 0 + e 0 ). By (43), this becomes (49)

e 0 = E[#τ 1 {S(τ )=0} ] = 1 -q 0 1 -µ(1) = µ(0) (1 -µ(1)) 2 .
Next, by using the fact that #τ = 1 + 1≤j≤k∅ #τ j and by the decomposition (44), we get

#τ 1 {S(τ )≤n+1} = 1 {S(τ )≤n+1} + k∅ j=1 #τ j 1 {S j ≤n} 1≤i≤k∅ j =i 1 {S i ≤n} + k∅ j=1 #τ j 1 {S j =n+1} 1≤i≤k∅ j =i 1 {S i ≤n} + 1≤i,j≤k∅ j =i #τ j 1 {S j ≤n} 1 {S i =n+1} 1≤l≤k∅ l =i,j 1 {S l ≤n} .
Taking the expectation term-by-term, we get

e n+1 = 1 -q n+1 + e n ϕ ′ (1 -q n ) + (e n+1 -e n )ϕ ′ (1 -q n ) + e n (q n -q n+1 )ϕ ′′ (1 -q n ) for all n ∈ N. Recall from (2) that ψ(s) = ϕ(1-s)-1 + s. By Lemma 3.2, we find (50) e n+1 ψ ′ (q n ) = 1 -q n+1 + e n (q n -q n+1 )ψ ′′ (q n ) = 1 -q n+1 + e n ψ ′′ (q n ) ψ ′ (q n ) qn 0 ψ ′ (s) ds
since ψ(0) = 0 by Lemma 3.4 (i). Still from Lemma 3.4, we know that ψ ′ is concave, so we get ψ ′ (s) ≤ ψ ′ (q n ) -(q n -s)ψ ′′ (q n ). Thus,

ψ ′′ (q n ) ψ ′ (q n ) qn 0 ψ ′ (s) ds ≤ q n ψ ′′ (q n ) - (q n ψ ′′ (q n )) 2 2ψ ′ (q n ) = 1 2 ψ ′ (q n ) 1 -(1-x) 2 ,
where x = ψ ′′ (q n )/(ψ ′ (q n )/q n ) belongs to [0, 1] since ψ ′ is concave. Thus, we get

x n+1 := e n+1 ψ ′ (q n ) ≤ 1 + 1 2 e n ψ ′ (q n ) ≤ 1 + 1 2 e n ψ ′ (q n-1 ) = 1 + 1 2 x n since (q n ) is decreasing and ψ ′ is increasing. This entails x n ≤ 2 -2 -n (1 -x 0 )
, which leads to (47) because x 0 = ψ ′ (1)e 0 = (1-µ( 1))e 0 = 1 -q 0 < 1 by (49).

For all t ∈ T, we set

Z(t) = max{|u| : u ∈ t such that S(θ u t) = S(t)}.
Note that Z(t) ≤ |t| where recall from ( 14) that |t| stands for the height of t.

Proposition 3.6 Let τ be a GW(µ)-tree where µ satisfies (1). Recall ψ from (2) and q n from (46). Recall from ( 14) that |τ | stands for the height of τ . Then, P(Z(τ

) ≥ m S(τ ) = n) = (1-ψ ′ (q n-1 )
) m for all m, n ∈ N. This implies that for all λ ∈ (0, ∞),

P ψ ′ (q n-1 )|τ | ≤ λ S(τ ) = n ≤ 1 -e -λ . (51) lim sup n→∞ 
Proof. By Definition 1.1, for all integers n ≥ 0 and m ≥ 1, it holds

1 {Z(τ )≥m ; S(τ )=n} = k∅(τ ) i=1 1 {Z(θ (i) τ )≥m-1 ; S(θ (i) τ )=n} 1≤j≤k∅(τ ) j =i 1 {S(θ (j) τ )≤n-1}
By taking the expectation, we get

P Z(τ ) ≥ m ; S(τ ) = n = P Z(τ ) ≥ m-1 ; S(τ ) = n ϕ ′ (1 -q n-1 ),
which implies the first desired equality as ϕ ′ (1-q n-1 ) = 1-ψ ′ (q n-1 ). Note that ψ ′ (q n-1 ) → ψ ′ (0) = 0. Thus,

lim n→∞ P(Z(τ ) ≥ λ/ψ ′ (q n-1 ) | S(τ ) = n) = e -λ which implies (51) since Z(τ ) ≤ |τ |.
In [START_REF] Brandenberger | The Horton-Strahler number of conditioned Galton-Watson trees[END_REF], Brandenberger, Devroye & Reddad study the Horton-Strahler number of a Galton-Watson tree conditioned to have exactly n vertices under the assumption that the variance of the offspring distribution is finite. To that end, they use a (little more than) local convergence of the conditioned Galton-Watson tree towards the corresponding size-biased tree. We adapt and extend this idea in a more general context using only the Many-To-One Principle to get the following. Proposition 3.7 Let τ be a GW(µ)-tree where µ satisfies (1). Recall ψ from (2) and q n from (46). For all integers n, m ∈ N such that 2ψ ′ (P(|τ | ≥ ⌊n/2⌋)) ≤ ψ ′ (q m ), the following inequality holds:

(52) P S(τ ) ≤ m |τ | ≥ n ≤ exp -1 8 nψ ′ (q m ) .
Proof. For all n ∈ N, we denote by ϕ n the n-iterate of ϕ with the convention ϕ 0 = Id. It is classical that P(|τ | < n) = ϕ n (0). Then, observe the following: the ≤-smallest vertex of τ at height n is the only vertex u ∈ τ such that |u| = n and such that for all v ∈ τ with v < u and ←v ≺ u, we have

|θ v τ | + |v| < n. Moreover for all p ∈ N, (37) implies that if S(τ ) ≤ m then S(θ v τ ) ≤ m for all v ∈ τ . Therefore, (53) 1 {|τ |≥n ; S(τ )≤m} ≤ u∈τ 1 {|u|=n} w∈τ,i≥1 w * (i) u i-1 j=1 1 {|θ w * (j) τ |+|w * (j)|<n} kw(τ ) j=i+1 1 {S(θ w * (j) τ )≤m} .
Here we adopt the following convention: a product over an empty set of indices is taken equal to 1. Recall Definition 2.3 of the size-biased GW(µ)-tree τ ∞ and recall from (18) in Remark 2.4 the joint law of the number of left/right siblings of individuals on the infinite line of descent. We now use the Many-To-One Principle (Proposition 2.5) after taking the expectation in (53) to get (54)

P |τ | ≥ n ; S(τ ) ≤ m ≤ n-1 p=0 ϕ(1-q m ) -ϕ(ϕ p (0)) 1-q m -ϕ p (0) .
We now use convexity properties of ϕ and ψ given in Lemma 3.4 to get an upper bound of the righthand side of (54). First observe that the convexity of ϕ implies that for all real numbers s, r

∈ [0, 1] such that s ≤ r, we have (ϕ(r)-ϕ(s))/(r-s) ≤ (1-ϕ(s))/(1-s). Therefore, ( 55 
) ⌊n/2⌋-1 p=0 ϕ(1-q m ) -ϕ(ϕ p (0)) 1-q m -ϕ p (0) ≤ ⌊n/2⌋-1 p=0 1 -ϕ(ϕ p (0)) 1 -ϕ p (0) = 1 -ϕ ⌊n/2⌋ (0) .
To get an upper bound of (ϕ(1-q m ) -ϕ(ϕ p (0)))/(1-q m -ϕ p (0)) when p ≥ ⌊n/2⌋, we use the following: let s, r ∈ [0, 1] and suppose that 2ψ ′ (s) ≤ ψ ′ (r), then

ϕ(1-r) -ϕ(1-s) s -r = 1 -ϕ(1-s) s + ϕ(1-s) -1 s + ϕ(1-r) -ϕ(1-s) s -r = 1 -ϕ(1-s) s + ψ(s) s - ψ(r) -ψ(s) r -s = 1 -ϕ(1-s) s + ψ(s) s - 1 r -s r s ψ ′ (x) dx ≤ 1 -ϕ(1-s) s + ψ ′ (s) -1 2 ψ ′ (r) + ψ ′ (s) ≤ 1 -ϕ(1 -s) s -1 4 ψ ′ (r) ≤ 1 -ϕ(1 -s) s 1 -1 4 ψ ′ (r) . (56) 
Here, we have used Hermite-Hadamard inequality (45) for concave functions, and the two convexity inequalities 1 s ψ(s) ≤ ψ ′ (s) and

1 s (1-ϕ(1-s)) ≤ ϕ ′ (1) = 1. Assume that m, n ∈ N satisfy 2ψ ′ (1-ϕ ⌊n/2⌋ (0)) ≤ ψ ′ (q m ).
Then, for all p ≥ ⌊n/2⌋, we have 2ψ ′ (1-ϕ p (0)) ≤ ψ ′ (q m ). Applying (56) successively with s = 1-ϕ p (0) and r = q m gets us

P(|τ | ≥ n ; S(τ ) ≤ m) ≤ 1 -ϕ ⌊n/2⌋ (0) 1 -1 4 ψ ′ (q m ) n/2 n-1 p=⌊n/2⌋ 1 -ϕ p+1 (0) 1 -ϕ p (0) ≤ 1 -1 4 ψ ′ (q m ) n/2 P(|τ | ≥ n),
by (54) and (55). This easily entails (52) since ln(1-x) ≤ -x for all x ∈ [0, 1).

Although Proposition 3.7 holds under the sole assumption that µ satisfies (1), its application requires knowing the behavior of the tail of the height |τ | of the GW(µ)-tree τ . When µ belongs to the domain of attraction of a stable law of index α ∈ (1, 2], Proposition 2.10 (iv) provides such information, and then Proposition 3.7 entails the following more convenient result.

Corollary 3.8 Let τ be a GW(µ)-tree where µ satisfies (1) and belongs to the domain of attraction of a stable law of index α ∈ [START_REF] Abraham | Local limits of conditioned Galton-Watson trees: the infinite spine case[END_REF][START_REF] Aldous | Tree-valued Markov chains derived from Galton-Watson processes[END_REF]. Recall ψ from (2) and q n from (46). There exists a constant C µ ∈ (0, ∞) that only depends on µ such that for all integers n, m ∈ N, it holds

(57) P S(τ ) ≤ m |τ | ≥ n ≤ C µ exp -1 8 nψ ′ (q m ) .
Proof. To simplify the notations, we set s n = P(|τ | ≥ ⌊n/2⌋) for all n ∈ N. By Proposition 2.10 (iv), the constant 2c µ := sup n∈N (n + 1) ψ(sn) sn is finite and positive. Then, we get from Lemma 3.4 (ii) that 2ψ ′ (s n ) ≤ 8c µ /(n + 1) for all n ∈ N, by definition of c µ . Let us set C µ = e cµ ∈ (0, ∞) and let n, m ∈ N. If ψ ′ (q m ) ≥ 8c µ /(n + 1), then 2ψ ′ (s n ) ≤ ψ ′ (q m ) so Proposition 3.7 yields (57) because 1 ≤ C µ . Otherwise, ψ ′ (q m ) < 8c µ /(n + 1) and C µ exp(- 1 8 nψ ′ (q m )) ≥ 1 by choice of C µ . Thus, (57) clearly holds in that case, which completes the proof.

Our last estimate relies on the same idea as Proposition 3.7: if the maximal out-degree of a Galton-Watson tree is large, then the tree contains several independent disjoint copies of itself. Proposition 3.9 Let τ be a GW(µ)-tree where µ satisfies (1). Recall ψ from (2) and q n from (46). Recall from ( 14) that ∆(τ ) stands for the maximal out-degree of τ . Then, for all integers n, m ≥ 1 such that P(∆(τ ) ≥ n) > 0, the following inequality holds true:

(58) P S(τ ) ≤ m ∆(τ ) ≥ n ≤ e -nqm .
Moreover, for all λ ∈ (0, ∞), we also have

(59) E e -λ#τ ∆(τ ) ≥ n ≤ E e -λ#τ n .
Proof. On the event {S(τ ) ≤ m ; ∆(τ ) ≥ n}, we decompose τ along the ancestral line of the ≤-first vertex u such that k u (τ ) ≥ n and, by (37), we see S(θ u * (j) τ ) ≤ m for all 1 ≤ j ≤ n. Hence, We take the expectation and apply the Many-To-One Principle (Proposition 2.5) 'forwards and backwards' to get

P (S(τ ) ≤ m ; ∆(τ ) ≥ n) ≤ E u∈τ 1 {ku(τ )≥n} v∈τ :v<u 1 {kv(τ )<n} P S(τ ) ≤ m n = P ∆(τ ) ≥ n 1 -q m n ,
which entails (58) since ln(1-x) ≤ -x for all x ∈ [0, 1). To prove (59), we observe that

e -λ#τ 1 {∆(τ )≥n} ≤ u∈τ 1 {ku(τ )≥n} v∈τ :v<u 1 {kv (τ )<n} n j=1 e -λ#θ u * (j) τ .
Then, as in the previous argument, we take the expectation and apply the Many-To-One Principle (Proposition 2.5) 'forwards and backwards' to get the desired result.

Tail estimates.

In this section, we prove results on the tail of the Horton-Strahler number of a GW(µ)-tree. These results are expressed in terms of the functions Λ and Υ that are given by [START_REF] Devroye | A note on the Horton-Strahler number for random trees[END_REF] ∀s ∈ (0, 1), Υ(s) = , where Λ(s) = sψ ′ (s) sψ ′ (s) -ψ(s) , and where ψ is defined in [START_REF] Aldous | Tree-valued Markov chains derived from Galton-Watson processes[END_REF]. Their basic properties are listed in the following lemma.

Lemma 3.10 Let µ be a probability on N that satisfies [START_REF] Abraham | Local limits of conditioned Galton-Watson trees: the infinite spine case[END_REF]. Then, the functions Λ and Υ in ( 9) are well-defined, Λ ≥ 2, and Υ is continuous, positive, and decreasing on (0, 1).

Proof. The inequality 1 s ψ(s) ≥ 1 2 ψ ′ (s) from Lemma 3.4 (ii) entails that Λ(s) ≥ 2 for all s ∈ (0, 1), and (iii) follows immediately.

Under the additional assumption that µ belongs to the domain of attraction of a stable law, the following lemma shows that Λ varies slowly at 0 + . Proposition 3.11 Let us assume that µ satisfies [START_REF] Abraham | Local limits of conditioned Galton-Watson trees: the infinite spine case[END_REF] and that it belongs to the domain of attraction of a stable law of index α ∈ [START_REF] Abraham | Local limits of conditioned Galton-Watson trees: the infinite spine case[END_REF][START_REF] Aldous | Tree-valued Markov chains derived from Galton-Watson processes[END_REF].

(i

) If α ∈ (1, 2], then lim s→0 + Λ(s) = α α-1 and Υ(s) ∼ 0 + log α α-1 1/s.
(ii) Suppose that α = 1. Let L be such that µ([n, ∞)) ∼ n -1 L(n) and ℓ be the slowly varying function given by ℓ(x) = ∞ x y -1 L(y) dy for all x ∈ (0, ∞) (see Proposition 2.12). Then,

Λ(s) ∼ 0 + ℓ(1/s) L(1/s) and lim s→0 + Λ(s) = ∞.
Proof. Let us prove (i) first. By Proposition 2.9, ψ is regularly varying of index α at 0 + . Then, recall that ψ ′ is increasing, and since ψ(s) = s 0 ψ ′ (x) dx, the Monotone Density Theorem (recalled in Proposition 2.8 (iv)) implies that sψ ′ (s) ∼ 0 + αψ(s). This entails lim s→0 + Λ(s) = α α-1 and thus Υ(s) ∼ 0 + log α α-1 1/s. This completes the proof of (i).

Let us assume that α = 1 to prove (ii). To simplify, we denote by ξ a random variable whose distribution is µ. Thus, xP(ξ > x) ∼ ∞ L(x). Proposition 2.12 (ii) asserts that E[ξ1 {ξ>x} ] ∼ ∞ ℓ(x) and ψ(s) ∼ 0 + sℓ(1/s). The Monotone Density Theorem again asserts that sψ ′ (s) ∼ 0 + sℓ(1/s). We next consider sψ ′ (s)-ψ(s), s ∈ (0, 1) being fixed. To simplify notations, we set λ = -ln(1-s) and we first observe that We estimate the second term of the right-hand side by writing (60)

s 1-s + ln(1 -s) ∞ 0 P(ξ > x)e -λx dx ∼ 0 + 1 2 s 2 E[ξ] = 1 2 s 2 .
Next, Karamata's Abelian Theorem for Laplace transform (as recalled in Proposition 2.8 (v)) asserts ( 61)

λ ∞ 0 xP(ξ > x) e -λx dx ∼ 0 + L(1/λ).
Since λ = -ln(1-s), (60) and (61) entail that sψ ′ (s)-ψ(s) ∼ 0 + sL(1/s) thanks to Potter's bound (see Proposition 2.8 (i)), which implies the desired estimate for Λ since sψ ′ (s) ∼ 0 + sℓ(1/s). Finally, lim s→∞ Λ(s) = ∞ comes from an application of Proposition 2.8 (iii).

Proposition 3.12 Let us assume that µ satisfies [START_REF] Abraham | Local limits of conditioned Galton-Watson trees: the infinite spine case[END_REF] and that it belongs to the domain of attraction of a stable law of index α ∈ [START_REF] Abraham | Local limits of conditioned Galton-Watson trees: the infinite spine case[END_REF][START_REF] Aldous | Tree-valued Markov chains derived from Galton-Watson processes[END_REF]. Recall the definition of Υ from (9). Then,

Υ P(S(τ ) > n) ∼ n. (62) 
In particular, if α ∈ (1, 2], we get -ln P(S(τ ) > n) ∼ n ln α α-1 .

Proof. Recall from (46) that q n = P(S(τ ) > n) and note that q n → 0. Lemma 3.2 asserts that q n -q n+1 = ψ(q n )/ψ ′ (q n ), namely q -1 n+1 = q -1 n Λ(q n ). To simplify, we set Q n = -ln q n . Therefore, (63)

Q n+1 = Q n + ln Λ(e -Qn ), n ∈ N.
By Proposition 3.11, Λ varies slowly at 0 + . Thus, Potter's bound (recalled in Proposition 2.8 (i)) applies to l(y) = Λ(1/y): for any ε ∈ (0, 1 10 ), there is n ε ∈ N such that for all n ≥ n ε and for all

x ∈ [Q n , Q n+1 ], ln Λ(e -x ) -ln Λ(e -Qn ) = ln Λ(e -(x-Qn) e -Qn ) Λ(e -Qn ) ≤ ε + ε(x -Q n ) ≤ ε + ε ln Λ(e -Qn ).
by (63) (we apply Proposition 2.8 (i) with l(y) = Λ(1/y), c = e ε and λ = e x-Qn ). This implies

1 ln Λ(e -x ) - 1 ln Λ(e -Qn ) ≤ ε ln Λ(e -Qn ) • 1 + ln Λ(e -Qn ) ln Λ(e -x ) ≤ ε ln Λ(e -Qn ) • 1 + ln Λ(e -Qn ) (1 -ε) ln Λ(e -Qn ) -ε ≤ ε ln Λ(e -Qn ) • (ln 2) -1 + 1 1 -ε -ε(ln 2) -1 ≤ 100ε ln Λ(e -Qn )
because Λ ≥ 2, by Lemma 3.10, and since ε ∈ (0, 1 10 ). Therefore, by (63), we get

Q n+1 Qn 1 ln Λ(e -x ) - 1 ln Λ(e -Qn ) dx ≤ 100ε • Q n+1 -Q n ln Λ(e -Qn ) = 100ε.
This implies that for all ε ∈ (0, 1 10 ) and for all n ≥ n ε ,

nε≤k<n Q k+1 -Q k ln Λ(e -Q k ) - Qn Qn ε dx ln Λ(e -x ) = n -n ε - Qn Qn ε dx ln Λ(e -x ) ≤ 100ε(n -n ε ).
Hence, lim n→∞ 1 n Qn Q 0 dx ln Λ(e -x ) = 1, which proves (62) after the change of variable r = e -x . In the 1-stable cases, we provide below three examples of slowly varying functions L that may govern the tail of µ via the estimate nµ([n, ∞)) ∼ L(n). We use the notations of Proposition 3.11.

Example 3.13 (a) Let κ ∈ (0, ∞). We consider the case where L(x) = (ln x) -1-κ for x ∈ (0, ∞). Indeed, this function varies slowly at ∞ and is such that ∞ y -1 L(y) dy < ∞. Clearly, we have

ℓ(x) = 1 κ (ln x) -κ = 1 κ L(x) ln x. Therefore, Proposition 3.11 (ii) yields Λ(s) ∼ 0 + 1 κ ln 1/s and Υ(s) ∼ 0 + ln 1/s ln ln 1/s .
If one sets x n = -ln P(S(τ ) > n), Proposition 3.12 asserts that x n / ln x n ∼ n, which implies that

-ln P(S(τ ) > n) ∼ n ln n.
(b) Let κ ∈ (0, 1). We next consider the case where L(x) = exp(-(ln x) κ ) for x ∈ (0, ∞). Again, this function varies slowly at ∞ and verifies ∞ y -1 L(y) dy < ∞. An integration by parts gives

ℓ(x) = 1 κ (ln x) 1-κ L(x) + 1-κ κ ∞ x L(y) y(ln y) κ dy ∼ ∞ 1 κ (ln x) 1-κ L(x),
and Proposition 3.11 (ii) thus implies that Λ(s) ∼ 0 + 1 κ (ln 1/s) 1-κ and Υ(s) ∼ 0 + 1 1-κ • ln 1/s ln ln 1/s .

If one sets x n = -ln P(S(τ ) > n), Proposition 3.12 asserts that x n / ln x n ∼ (1-κ)n, which yields

-ln P(S(τ ) > n) ∼ (1-κ) n ln n.
(c) We finally consider the case where L(x) = exp(-ln x/ ln ln x) for all x ∈ (e e , ∞). This function still slowly varies and verifies ∞ y -1 L(y) dy < ∞. We make the change of variable z = ln y/ ln ln y and then an integration by parts to compute

ℓ(x) ∼ ∞ ∞ ln x ln ln x e -z ln(z) dz ∼ ∞ -e -z ln z ∞ ln x ln ln x ∼ ∞ L(x) ln ln x.
Therefore, Proposition 3.11 (ii) implies that Λ(s) ∼ 0 + ln ln 1/s and Υ(s) ∼ 0 + ln 1/s ln ln ln 1/s .

If one sets x n = -ln P(S(τ ) > n), Proposition 3.12 asserts that x n / ln ln x n ∼ n, which entails

-ln P(S(τ ) > n) ∼ n ln ln n.
We use further the following estimates.

Proposition 3.14 Let us assume that µ satisfies [START_REF] Abraham | Local limits of conditioned Galton-Watson trees: the infinite spine case[END_REF] and that it belongs to the domain of attraction of a stable law of index α ∈ [START_REF] Abraham | Local limits of conditioned Galton-Watson trees: the infinite spine case[END_REF][START_REF] Aldous | Tree-valued Markov chains derived from Galton-Watson processes[END_REF]. Then, for all λ ∈ (0, ∞) and all κ ∈ R, the following holds true:

ln ln 1/s = s→0 +
o (Υ(s)) , Υ(λs ln κ 1/s) ∼ 0 + Υ(s), and Υ (sΛ(s) κ ) ∼ 0 + Υ(s).

In particular, Υ is slowly varying at 0 + .

Proof. Recall that Λ is slowly varying at 0 + from Proposition 3.11 so ln Λ(s) = o(ln 1/s) by Proposition 2.8 (i). This allows us to write

ln ln 1/s ∼ 0 + 1/2 s dr r ln 1/r = s→0 + o Υ(s) .
Next, without loss of generality, we may assume that λ ∈ [1, ∞), so that 1 ≤ λ ln |κ| 1/s when s is small enough. Recall from Lemma 3.10 that Λ ≥ 2. Thus,

Υ(λs ln κ 1/s) -Υ(s) ≤ λs ln |κ| 1/s s λ ln -|κ| 1/s dr r ln Λ(r) ≤ 1 ln 2 ln λ 2 ln 2|κ| 1/s = s→0 + o Υ(s) ,
which is the second estimate. Then, observe that lim s→0 + sΛ(s) |κ| = 0 because Λ slowly varies at 0 + . Another application of Proposition 2.8 (i), together with Λ ≥ 2, entails that ln Λ(r) ≥ 1 2 ln Λ(s) for all small enough s and for all r ∈ (0, 1) such that sΛ(s) -|κ| ≤ r ≤ sΛ(s) |κ| . Therefore,

Υ(sΛ(s) κ ) -Υ(s) ≤ sΛ(s) |κ| sΛ(s) -|κ| dr r ln Λ(r) ≤ 2 ln Λ(s) ln Λ(s) 2|κ| = 4|κ| = s→0 + o Υ(s) .
which completes the proof. In all this section, we assume that the critical offspring distribution µ belongs to the domain of attraction of an α-stable law with α ∈ (1, 2], and more precisely, we assume that Proposition 2.9 (a-d) hold. Let us set γ = ln α α-1 . Recall from Propositions 3.11 (i) and 3.12 that (64) γΥ(s) ∼ 0 + ln 1/s and -ln P(S(τ ) > n) ∼ γn.

The proof of Theorem 1.2 is separated into two parts: a lower bound and an upper bound.

Lower bound. We first prove for all ε ∈ (0, 1) that (65)

P αγS(τ ) ≤ (1 -ε) ln n #τ = n ----→ n→∞ 0.
The idea is to apply Proposition 3.7, or rather Corollary 3.8, and to switch the conditioning on the size of τ with the conditioning on the height of τ . To that end, we use Proposition 2.11 (i) to find lim sup We roughly bound the conditional probability by the ratio of the probabilities as follows. To bound the right-hand side of (66), we want to apply Corollary 3.8 and to that end, we first control ψ ′ P S(τ ) > 1-ε αγ ln n . By Potter's bound and Proposition 2.9 (c), we get ln ψ(s) ∼ 0 + α ln s. Lemma 3.4 (ii) then yields ln ψ ′ (s) ∼ 0 + (α -1) ln s. Together with (64), this implies that (68) ψ ′ P S(τ ) > 1-ε αγ ln n ∼ n -(1-ε) α-1 α +o [START_REF] Abraham | Local limits of conditioned Galton-Watson trees: the infinite spine case[END_REF] .

We eventually apply Corollary 3.8, and then (67) and (68), to get that P S(τ ) ≤ 1-ε αγ ln n |τ | > ηn an ≤ C µ exp -ηn 8an ψ ′ P S(τ ) > 1-ε αγ ln n ≤ exp -n ε α-1 2α for all sufficiently large n. The previous upper bound combined with (66) and (67) implies (65).

Upper bound. We want to prove for all ε ∈ (0, 1) that (69) P αγS(τ ) ≥ (1 + 2ε) ln n #τ = n ----→ n→∞ 0.

To that end, we first show Proof. Let us prove (i). By Proposition 3.12 then Proposition 3.14, we have Υ q (1±ε)Υ( 1 bn ) ∼ (1 ± ε)Υ 1 bn ) ∼ (1 ± ε)Υ (ln bn) ∓κ bn .

Then, for all sufficiently large n, Υ q (1+ε)Υ( 1 bn ) > Υ (ln bn) -κ bn and Υ q (1-ε)Υ( 1 bn ) < Υ (ln bn) κ bn , which implies that b n q (1+ε)Υ( 1 bn ) ≤ (ln b n ) -κ and b n q (1-ε)Υ( 1 bn ) ≥ (ln b n ) κ because Υ decreases (see Lemma 3.10). By Proposition 2.12 (iii), b n varies regularly with index 1 and by Proposition 2.8 (i), ln b n ∼ ln n, which implies the desired result. We use similar arguments to prove (ii): by Proposition 3.12 then Proposition 3.14, we get

Υ q (1+ε)Υ( 1 bn ) ∼ (1 + ε)Υ 1 bn ) ∼ (1 + ε)Υ 1 bn Λ 1 bn -1-κ , so Υ q (1+ε)Υ( 1 bn ) > Υ 1 bn Λ 1
bn -1-κ for all sufficiently large n, which implies that

b n Λ 1 bn q (1+ε)Υ( 1 bn ) ≤ Λ 1 bn -κ .
This implies (ii) since lim x→∞ Λ(1/x) = ∞ by Proposition 3.11 (ii).

To prove (iii), we first use (i) with e.g. κ = 2. Then, Proposition 3.9 implies that

n κ P S(τ ) ≤ (1-ε)Υ 1 bn ∆(τ ) > 1 2 b n ≤ n κ exp -1 2 b n q (1-ε)Υ( 1 bn ) ≤ n κ exp -1 2 (ln n) 2
for all sufficiently large n, which entails the desired result.

The proof of Theorem 1.3 is cut into two parts: firstly an upper bound and secondly a lower bound.

Upper bound. We first prove for all ε ∈ (0, 1) that To that end, we use a direct upper bound, then we combine Lemma 2.13 with Proposition 3.11 (ii):

P S(τ ) ≥ (1+ε)Υ 1 bn #τ ≥ n ≤ q (1+ε)Υ( 1 bn ) P(#τ ≥ n) ∼ Λ 1 bn b n q (1+ε)Υ( 1 bn ) .
Next, we use Lemma 4.1 (ii) to conclude.

Lower bound. We next prove for all ε ∈ (0, 1) that To that end, we first prove that Indeed, by (59) in Proposition 3.9 combined with Markov inequality, for all λ ∈ (0, ∞), it holds P #τ < n ∆(τ ) ≥ 2b n ≤ e λ E e -λ n #τ ⌊2bn⌋ .

where we recall from (20) in Proposition 2.7 that R m (t) = R m t stands for the tree consisting of the first m + 1 vertices of t taken in lexicographic order. We now look at the subtrees that are grafted either at u (n) n-σn-1 or to the right of its ancestral line: namely, the subtrees that are grafted at the following set of vertices

B = v ∈ τ (n) : ← -v u (n)
n-σn-1 and v > u If we denote by v(0) < v(1) < . . . < v(#B -1) the vertices of B listed in lexicographic order, then by definition of Z (n) and by definition of the trees τ p as recalled above, we get that if W n-1 ≤ 0 then (80)

θ v(p) τ (n) = τ p , 0 ≤ p ≤ I n -1 = #B -1.
To prove (78), we then use (39) in Lemma 3.1 (i) that asserts on the event {W n-1 ≤ 0} that

S τ (n) ≤ 1 + max S R n-σn-1 τ (n) , max v∈B S θ v τ (n) .
Then, the identities (79) and ( 80), together with the monotony property (37) of S, yield that S τ (n) ≤ 1 + max 0≤p≤In S τ p .

Therefore, we obtain the following:

x n := P τ (n) = ⋆ n ; S(τ (n) ) ≥ (1+ε)Υ since the τ p are GW(µ)-trees. Then, recall from (28) that 1 n H ⌊2bn⌋ → 2 in probability, which implies that P 1 n H ⌊2bn⌋ ≤ 1 → 0. Then, Lemma 4.1 (i) asserts that b n P S(τ ) ≥ (1+ε)Υ 1 bn -1 → 0, which finally implies (78) and which completes the proof of Theorem 1.4.

We conclude this article by providing an asymptotic equivalent of the rescaling sequence Υ 1 bn , that gives the order of S(τ ) under P( • | #τ = n), in the three cases considered in Example 3.13. Example 4.2 We recall from Proposition 2.12 (iii) that b n varies regularly with index 1, which implies ln b n ∼ ln n by Proposition 2.8 (i). (a) Let κ ∈ (0, ∞). We consider the case where L(x) = (ln x) -1-κ for all x ∈ (0, ∞). Recall from Example 3.13 that Υ(s) ∼ 0 + (ln 1 s )/(ln ln 1 s ). Therefore, we easily get

Υ 1 bn ∼
ln n ln ln n .

(b) Let κ ∈ (0, 1). We next consider the case where L(x) = exp(-(ln x) κ ) for all x ∈ (0, ∞).

Recall from Example 3.13 that Υ(s) ∼ 0 + 1 1-κ (ln 1 s )/(ln ln 1 s ). Therefore, we easily get

Υ 1 bn ∼ 1 1-κ
• ln n ln ln n .

(c) Let us finally consider the case where L(x) = exp(-ln x/ ln ln x) for all x ∈ (e e , ∞). Recall from Example 3.13 that Υ(s) ∼ 0 + (ln 1 s )/(ln ln ln 1 s ). Therefore, we easily get

Υ 1 bn ∼
ln n ln ln ln n .

( 2 )

 2 ∀s ∈ [0, 1], ϕ(s) = k∈N s k µ(k) and ψ(s) = ϕ(1 -s) -(1 -s),

  (a), (b), and (c). Section 4 is devoted to the proof of Theorems 1.2, 1.3 and 1.4 and we discuss Examples 4.2 (a), (b), and (c), in the end of Section 4.3.

  g. [5, Theorem 1.5.6]. For (ii), see e.g. [5, Theorem 1.5.8 and Proposition 1.5.10]. For (iii), see e.g. [5, Theorem 1.5.9b]. For (iv), see e.g. [5, Theorem 1.7.2]. For (v), see e.g. [5, Theorem 1.7.6].

  (a) ⇔ (b), see e.g. [5, Theorem 8.3.1]. The equivalence (a) ⇔ (d) follows from the definition of the domain of attraction of a stable law: the limiting law is necessarily spectrally positive since µ is supported by N and among the spectrally positive α-stable types, it is always possible to choose a centered one as α ∈ (1, 2] (see e.g [5, Section 8.3] and [16, Chapter XVII.5]). For (b) ⇔ (c) see e.g. [5, Theorem 8.1.6]. More precisely, recall from (2) the definitions of ϕ and ψ. Then, for all λ

Proof.

  The equivalences (a) ⇔ (b) and (a) ⇔ (c) are proved as in Proposition 2.9 (for the form of b n , see e.g.[START_REF] Feller | An Introduction to Probability Theory and Its Applications[END_REF] Chapter IX.8, Equation (8.15)]). To prove (ii), first observe that k≥n kµ

1 n

 1 H ⌊bnx⌋ -→ x in probability. Namely the law of H 1 is relatively stable (see e.g. [5, Section 8.8 § 1]). Since the total size of a GW(µ)-tree τ has the same distribution as H 1 (by Proposition 2.7 (iii)), the law of #τ is thus relatively stable. By use of Berger [4, Theorem 2.4 and Lemma 4.3] and Kortchemski & Richier [26, Proposition 12], we get the following.

Proof. By Definition 1 . 1 ,

 11 S(τ ) = 0 if and only if k ∅ (τ ) = 0 or (k ∅ (τ ) = 1; S(θ (1) τ ) = 0). Thus, by Definition 2.2, we get P(S(τ ) = 0) = µ(0) + µ(1)P(S(τ ) = 0), which gives the first equality in (43). Let us prove the recursive relation in (43). Let n ∈ N. By Definition 1.1, S(τ ) ≤ n + 1 if and only if S(θ u τ ) ≤ n for all children u of ∅ in τ (if any) with the possible exception of one child v, which may satisfy S(θ v τ ) = n + 1. More precisely, (44) 1 {S(τ )≤n+1} = 1≤j≤k∅(τ )

1

  {S(τ )≤m ; ∆(τ )≥n} ≤ u∈τ 1 {ku(τ )≥n} v∈τ :v<u 1 {kv(τ )<n} n j=1 1 {S(θ u * (j) τ )≤m} .

1 s

 1 dr r ln Λ(r)

  sψ ′ (s) -ψ(s) = E 1 -e -λξsξ 1-s e -λξ = E ξ 0λe -λxs 1-s e -λx + sxλ 1-s e -λx dx , > x)e -λx dx.

P

  |τ | ≤ η n an #τ = n = 0.Therefore, to prove (65), we only need to prove for all η ∈ (0, 1) thatlim sup n→∞ P |τ | > η n an ; αγS(τ ) ≤ (1-ε) ln n #τ = n = 0.

( 66 )Since a n ∼ n 1 α

 661 P |τ | > η n an ; αγS(τ ) ≤ (1-ε) ln n #τ = n ≤ P αγS(τ ) ≤ (1-ε) ln n |τ | > η n an P(#τ = n). +o(1) by Proposition 2.9 and Potter's bound (see Proposition 2.8 (i)), Proposition 2.10 (iii) entails the following estimate for the denominator of the right-hand side of (66):(67)P(#τ = n) ∼ c α na n ∼ n -1-1 α +o(1) .

  (70)P αγS(τ ) ≥ (1 + ε) ln n #τ ≥ n ----→ n→∞ 0.

P

  #τ < n ∆(τ ) ≥ 2b n ----→ n→∞ 0.

  3 and of Theorem 1.4 below, rely on several results of Kortchemski & Richier[START_REF] Kortchemski | Condensation in critical Cauchy Bienaymé-Galton-Watson trees[END_REF] and ofBerger [4] that specify the asymptotic behavior of positive excursion of the random walk (W n )

n∈N . They are recalled precisely in Section 2.2, Lemma 2.13 and Propositions 2.15 and 2.16. As discussed by Kortchemski & Richier

Acknowledgements I am deeply indebted to my Ph.D. advisor Thomas Duquesne for introducing me to the Horton-Strahler number, for suggesting me several problems about it, and for many insightful discussions. I am especially grateful for his help to prove Proposition 3.11 and to improve the quality of this paper. I warmly thank Guillaume Boutoille et Yoan Tardy for a stimulating discussion about the correct order of magnitude that should appear in the Cauchy regime. Many thanks are due to Quentin Berger for some feedback about the proof of the estimate (29). I also thank Igor Kortchemski for some precisions about his work.

Indeed, we use the following rough bound

Then, by Propositions 2.10 (iii) and 2.9 on the one hand, and by (64) on the other hand, we observe

α +o [START_REF] Abraham | Local limits of conditioned Galton-Watson trees: the infinite spine case[END_REF] and P αγS(τ ) ≥ (1+ε) ln n ∼ n -(1+ε) 1 α +o [START_REF] Abraham | Local limits of conditioned Galton-Watson trees: the infinite spine case[END_REF] , which implies (70).

We then recall from (38) that under P( • | #τ = n), τ and its mirror image have the same law. Therefore, (41) in Lemma 3.1 applies with m = ⌊ 7 8 n⌋ and one gets, for all sufficiently large n,

To control the first term of the right-hand side of the previous inequality, we use Proposition 2.11 (ii): to that end, recall from Proposition 2.7 (ii) that R ⌊ 7 8 n⌋ τ is a measurable function of the Lukasiewicz path (W k (τ )) 0≤k≤⌊ 7 8 n⌋ . Therefore, for all n ∈ N and c ∈ (0, ∞),

by (37). We make n → ∞ then c → ∞, and thus, by (70) and (25) in Proposition 2.11, we get lim sup n→∞ x n = 0. This implies (69) and readily completes the proof of Theorem 1.2.

Proof of Theorem 1.3

In all this section, we assume that the critical offspring distribution µ belongs to the domain of attraction of a 1-stable law, and more precisely, we assume that Proposition 2.12 (a-c) hold. It is convenient to set ∀x ∈ [0, ∞), q x = P S(τ ) ≥ x .

Recall from ( 14) that ∆(τ ) stands for the maximal out-degree of τ , which is the relevant quantity to consider in the 1-stable cases. Note that P(∆(τ

We first prove the following estimates.

Lemma 4.1 Under the same assumption and notations as in Theorem 1.3, the following holds true for all ε ∈ (0, 1) and all κ ∈ (0, ∞).

(i) There is n 0 ∈ N that depends on ε and κ such that for all integers n ≥ n 0 ,

The convergence (28) with x = 2 then implies that lim n→∞ E e -λ n #τ ⌊2bn⌋ = e -2λ . Thus,

which entails (73).

We next prove that for all c ∈ (0, ∞),

Indeed, we first prove the case where c = 2. Observe that

By (73), for all sufficiently large n, we get 31) in Proposition 2.15. This proves (74) when c = 2. Then, recall from Proposition 2.12 (iii) that (b n ) is 1-regularly varying. Then for all sufficiently large n, we get cb n ≥ 2b ⌊ 1 4 cn⌋ and thus

This implies the desired result since we know from Lemma 2.13 that the sequence n → P(#τ ≥ n) varies regularly with exponent -1, and since lim sup n→∞ u(⌊ 1 4 cn⌋) ≤ 1 as proved above. We complete the proof of (72) as follows.

This first term of the above right-hand side converges to 0 by (74) with c = 1/2 and by Lemma 4.1 (iii). Moreover, (31) in Proposition 2.15 asserts that lim n→∞ P ∆(τ ) ≤ 1 2 b n #τ ≥ n = 0. This completes the proof of (72), and of Theorem 1.3.

Proof of Theorem 1.4

Throughout this section, we assume there exists a function L that varies slowly at ∞ such that µ(n) ∼ n -2 L(n). This implies that µ([n, ∞)) ∼ n -1 L(n) so, by Proposition 2.12, µ belongs to the domain of attraction of a 1-stable law. The proof of Theorem 1.4 is separated into two parts: firstly a lower bound and secondly an upper bound.

Lower bound. We prove for all ε ∈ (0, 1) that (75)

Indeed, observe that

Then recall from (30) in Lemma 2.13 that nP(#τ = n) ∼ P(#τ ≥ n). Thus, by (74), we get

.

Then, (32) in Proposition 2.15 applies and asserts that lim n→∞ P ∆(τ ) ≤ 1 2 b n #τ = n = 0, which finally implies (75).

Upper bound. We finally show for all ε ∈ (0, 1) that

To prove (76), we use the result of Kortchemski & Richier [START_REF] Kortchemski | Condensation in critical Cauchy Bienaymé-Galton-Watson trees[END_REF]Theorem 21] that is recalled in Proposition 2. [START_REF] Feller | An Introduction to Probability Theory and Its Applications[END_REF] and that shows that the law of the Lukasiewicz path (W j (τ )) 0≤j≤n of τ under

j ) 0≤j≤n as defined in [START_REF] Vervaat | A Relation between Brownian Bridge and Brownian Excursion[END_REF]. First, let us briefly recall the definition of Z (n) : let (W n ) n∈N be a left-continuous random walk starting at 0 and whose jump distribution is given by [START_REF] Burd | A Self-Similar Invariance of Critical Binary Galton-Watson Trees[END_REF]. We recall from [START_REF] Strahler | Hypsometric (area-altitude) analysis of erosional topography[END_REF] the two notations

Next, we interpret Proposition 2.16 in terms of trees, i.e. we view Z (n) as the Lukasiewicz path of a random tree τ (n) . Namely, observe that Z 

the jumps of Z (n) are larger or equal to -1. Consequently, if W n-1 ≤ 0 then Proposition 2.7 (i) applies and Z (n) is the Lukasiewicz path associated with a tree τ (n) . If W n-1 > 0 then we take τ (n) equal to the star-tree with n-1 leaves, which we denote by ⋆ n (or any tree with n vertices).

(77

Moreover, observe that Proposition 2.12 (c) easily implies that P τ

Thus, thanks to Proposition 2.16, in order to prove (76), we only need to show

To that end, we discuss a decomposition of τ (n) at the 'cutting time' n-σ n -1 and we recall from [START_REF] Kemp | The average number of registers needed to evaluate a binary tree optimally[END_REF]