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Toward Practical 128-bit General Purpose
Microarchitectures

Chandana S. Deshpande, Arthur Perais and Frédéric Pétrot

Abstract—Intel introduced 5-level paging mode to support 57-
bit virtual address space in 2017. This, coupled to paradigms
where backup storage can be accessed through load and store
instructions (e.g., non volatile memories), lets us envision a future
in which a 64-bit address space has become insufficient. In that
event, the straightforward solution would be to adopt a flat 128-
bit address space. In this early stage letter, we conduct high-
level experiments that lead us to suggest a possible general-
purpose processor micro-architecture providing 128-bit support
with limited hardware cost.

Index Terms—128-bit microprocessors, microarchitecture,
clustered microarchitectures, region based compression

I. INTRODUCTION

THE virtual address (VA) space has steadily grown over
the past decades. For instance, x86 extended VA width

from 48 to 57 bits in 2017 [1]. Moreover, there is already a
signal from industry that we may run out of 64-bit addresses
within two decades in specific use cases (e.g., 8 EiB –263– files
by 2040 [2]). In that event, the most straightforward strategy
would be to double the VA width again, to 128 bits [3]. Such
a change would impact the whole stack, from compilers and
operating systems to processor cores. In this context, it is
necessary to start stirring the pot as early as possible, as the
band-aids (e.g., Physical Address Extensions) that were added
during the 32- to 64-bit transition phase turned out to be bur-
dens that disappeared as soon as it became possible to remove
them. In this letter, we focus on microarchitecture and propose
a 128-bit processor microarchitecture, in a context where
Dennard scaling and Moore’s Law cannot be entirely trusted
to absorb hardware cost [4]. In particular, naively scaling
datapaths and structures is bound to increase area, latency, and
power consumption. A “business as usual” approach to 128-
bit microarchitecture is therefore likely to incur a performance
penalty. Under the high-level assumption that integer width
used in programs need not increase with the width of VAs,
we propose to divide and conquer hardware complexity using
clustering. Specifically, we architect the processor back-end
around a 128-bit cluster mostly dedicated to address com-
putations, while general purpose integer computations remain
performed on a distinct 64-bit cluster.
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II. NAIVE 128-BIT MICROARCHITECTURE

Despite opening access to more memory, naively supporting
128-bit VAs in a modern microarchitecture [5], [6] by doubling
datapath width and the size of specific structures will incur
significant area, power and latency costs.

In Fetch, the iTLB tags (virtual page number, VPN) and data
(physical page number, PPN) as well as I-Cache tags (PPN
or VPN for VI* and PI* caches respectively) almost double
in size. The BTB and indirect branch predictor data (VAs)
suffer the same increase. BTB, direction and indirect branch
predictor tags may not grow as full tags are not required.
Nonetheless, iTLB, I-Cache, BTB and predictors area, power,
and latency are impacted. In Decode, the predicted targets
of direct branches are checked against the targets computed
from the instruction bytes. Both comparison and computation
now require 128-bit operators, whose latency scales logarith-
mically with operand width. Register Rename is not affected
as the stage only manipulates register names, whose width
depends on the number of registers, not their width. Dispatch
is similarly not affected, as no operand value or address
is manipulated. The exception is instruction PCs that are
inserted in the Reorder Buffer (ROB) or a microarchitecture-
specific FIFO to handle pipeline flushes. From the Scheduler,
instructions are scheduled for execution if operands and a
functional unit (FU) are available. Since operand values are
not stored in the scheduler, the stage is not affected. However,
once scheduled, the instructions read operands from either the
Physical Register File (PRF) or bypass network. Their area,
power and latency increase as 128-bit values are now stored
and routed. The logic determining whether a value should
be taken from the bypass network or the PRF is unchanged
(comparison on the register name), and the muxes depth
does not change, although the muxes are now wider. Broadly
speaking, the latency of common functional units (ALU, shift,
multiplication, division) grows linearly or better with operand
width, while the area grows linearly or worse. Finally, on the
data access side, dTLB and D-Cache suffer the same area,
power and latency increase as the iTLB and I-Cache. More-
over, the Load/Store Queue area, power and latency increase
as the structure is responsible for determining memory read-
after-write hazards by comparing physical addresses (PAs) of
incoming load/stores with PAs stored in LSQ entries. Since
modern LSQ support 128-bit accesses for SIMD instructions,
the data fields of LSQ entries remain unchanged.

To summarize, in the front-end, the transition to 128-bit
mostly impacts caching structures, as the front-end does not
deal with actual operand values. The exception is any control



flow speculation or checking logic (e.g., next PC selection,
direct target check in Decode). In the back-end, both storage
(e.g., PRF, D-Cache) and logic (e.g., functional units, bypass
network) are affected. Depending on the specific design, this
could impact frequency, e.g., if the PRF read is the critical
path. Combined with the increased footprint of pointers in
memory, this transition will probably decrease overall perfor-
mance.

The virtual memory paging structures may also be impacted.
However, this would not impact first level TLBs who would
still map a VPN to a PPN regardless of the page table structure.
As a result, this letter does not discuss changes to the virtual
memory structures themselves. Rather, our objective is to
address part of the hardware overhead incurred by a 128-bit
transition.

III. A PRACTICAL 128-BIT MICROARCHITECTURE

Implemented VA width will not initially be 128-bit, just
as currently implemented VAs are not yet 64-bit [1]. This
significantly limits the increase in tag size in, e.g. TLBs.
Moreover, techniques such as region-based compression [7]
can be leveraged to mitigate the increase in tag and/or data
arrays of relevant structures. The idea is to map high-order
bits to region identifiers (RIDs) such that structures store the
lower bits and an RID, while a small table stores the higher
bits mapped to each identifier. Since the tags (caches, TLBs,
BTB, predictors) and –part of the– data (TLBs, BTB, LSQ,
ROB) of the structures are addresses, they exhibit high locality.
Therefore, given a sufficiently large region size, only a handful
of RIDs (i.e., mapping table entries) are necessary to minimize
RID reclamation, which is a costly operation. In the back-
end, the same scheme can be applied to the PRF, with lower
efficiency. Indeed, the PRF contains both addresses and plain
integers, which increases value entropy and implies more RIDs
to minimize RID reclamations. Nevertheless, we note that
despite the transition from 32- to 64-bit, some computations
are still performed on 32-bit in current programs. In fact,
the typical width of a C int is 32-bit. Moreover, although a
32-bit unsigned loop counter might not be enough to walk
through a large structure, a 64-bit counter can cover any
structure up to 16 Ei-entries. As a result, we hypothesize that
future 128-bit programs will only use 128-bit instructions for
address manipulation, as would be the case if an existing code
source were taken and compiled for a 128-bit machine today.
Under that assumption, we propose to divide and conquer the
microarchitecture complexity using clustering.

In a nutshell, clustering partitions critical parts of the
microarchitecture (scheduler, PRF, FUs, bypass network) into
clusters and steers instructions to respective clusters using spe-
cific criteria. A steering mechanism is responsible for distribut-
ing instructions [8]. Modern processors already implement
integer and floating point clusters [5], [6] and naturally steer
instructions to clusters based on their type. However, address
calculation is performed in the integer cluster: Addresses are
treated as integers.

In this letter, we propose to implement a 128-bit cluster
dedicated to executing instructions that manipulate addresses

(loads, stores, indirect branches and all producers), and a 64-
bit cluster for other integer instructions. As a result, most
values in the 128-bit PRF will be addresses, enabling highly
efficient region-based compression of the structure.

A. A Clustered 128-bit Address/Value Microarchitecture

This microarchitecture implements three clusters with dy-
namic steering: Address (A, 128 bits), integer (I, 64 bits),
and FP/SIMD (FP, implementation dependent). The A and I
clusters each maintain their own PRFs (128- and 64-bit respec-
tively), and communication is transparent to the programmer.
Each integer rename map table entry is augmented with a bit
to determine if a value resides in the A or I cluster. If the
steering policy finds that an instruction it is sending to the A
cluster requires a value currently living in the I cluster, it will
inject a copy µ-op in the pipeline to perform the copy, using an
execution unit in the I cluster and dedicated cluster-to-cluster
wires, incurring latency [9]. Note that steering only applies
to instructions that are not explicitly 128-bit (e.g., 64-bit or
32-bit arithmetic operations). Instructions that are explicitly
128-bit (e.g., 128-bit arithmetic operations) are trivially steered
towards the 128-bit cluster. Depending on the percentage of
instructions to steer to the 128-bit cluster as well as their nature
(e.g., addition vs. multiplication), the hardware footprint of the
A cluster may vary.

In the next section, we quantify the number of instructions
that would be steered to the A cluster. We further highlight
that region-based compression is indeed an adapted tool to
mitigate the area increase of microarchitectural structures.

B. Experimental Framework

As RISC-V already features material for a 128-bit extension
[3], we use the functional simulator Spike [10] to study
metrics in Polybench [11] (standard inputs) and SPEC CPU
2017 speed [12] (ref inputs). omnetpp, xalancbmk, pop2 and
fotonik3d are excluded due to lack of system support by the
proxy kernel provided with Spike.

For SPEC CPU 2017, we skip the first 100 B instructions to
avoid the initialization phase of the workload, then run 10 B
instructions. For Polybench, we run the first 10 B instructions.
We analyze only 10 B because our first experiment maintains
an arbitrarily large dependency graph of the execution in mem-
ory to gather statistics of interest. We assume that the current
benchmarks are representative enough to draw meaningful
conclusions for our experiments, as the nature of the future
128-bit workloads is still hypothetical.

C. Experiments and Results

1) Quantifying Address Calculating Instructions: The
backward address slice (BAS) of address generating (AGEN)
instructions (loads, stores, and indirect branches) is a directed
graph with instruction nodes and register data dependency
edges. The last node is the AGEN instruction, and all previous
nodes are direct or indirect producers. To identify instructions
on BASes, which would be steered to the address cluster, we
build the dynamic register data dependency graph at runtime



Fig. 1: Percentage of dynamic instructions on (at least) a BAS.

and walk it backwards for each AGEN instruction. The walk
stops when an instruction does not have producers (e.g., load
immediate) or when another load instruction is reached, as
we separately build its own BAS. A comparable algorithm
can be implemented in hardware to iteratively build BASes
and drive the steering decision for instructions that are not
explicitly 128-bit but are indirect or direct producers of AGEN
instructions [13]. Figure 1 shows that around 55% (INPSpeed),
58%(FPSpeed) and 63% (Polybench) of the dynamic instruc-
tions are on a BAS for a global average of 59%. Figure 2
further depicts that most non AGEN instructions on BASes are
ALU or shift instructions. The number of div instructions on
BASes is negligible, suggesting that a microcoded or purely
software implementation of 128-bit division may be accept-
able. The number of mul instructions is significant in a handful
of cases: deriche, deepsjeng, exchange2 and nab. For instance,
79 M dynamic mul instructions are on a BAS in deepsjeng,
with 43% of them in a single function, FindFirstRemove
(deepsjeng/bits.cpp:49-53). As a result, a hardware 128-bit
multiplier may be required to guarantee good performance
in the address cluster. We also found that on average, 45%,
17% and 1% of the dynamic instructions are on load, store
and indirect branches BASes. However, the ratio of the sum
of dynamic instructions on the different BAS types to the
number of dynamic instructions on BASes is on average 1.11,
indicating that a moderate amount of dynamic instructions
are on two or more BAS types. Despite implementing vastly
different algorithms (especially SPEC), most workloads have
a reasonably balanced utilization of the address and integer
clusters. As a consequence, the address cluster will in fact
require enough resources and especially functional units to
deliver high throughput, although complex operations can be
pushed to software to save area.

2) Region-based Compression: In addition to functional
units, the address cluster will require a large enough instruction
window to allow many instructions in flight in the cluster. This
includes physical registers, which have now doubled in area,
increasing access time as a side effect.

Fortunately, most values in the address cluster registers will
be addresses. As a result, and as discussed in Section III, we
can leverage region-based compression to not only compress
tags and or data in caches, predictors and TLBs, but also
greatly reduce the size of the physical registers in the address
cluster.

For the PRF, a 128-bit datum is compressed before being
written back to the PRF by matching the upper bits to an RID

in the mapping table (associative search) and concatenating
it with the lower bits. A compressed value is uncompressed
after being read from the PRF by retrieving the upper bits
corresponding to the RID in the mapping table (indexed read)
and concatenating them to the lower bits of the compressed
value.

For caches, BTB and predictors, similar operations are
needed. For tag matches, the tag array is read in parallel to
the mapping table being associatively searched with the VPN
or PPN of the address of interest, and only the lower bits of
the tag and RIDs are actually compared. Writing a new tag
to the array also requires an associative search. For (VI/PI)PT
instruction and data caches, a single mapping table associative
search is needed to perform the TLB tag match followed by
the cache tag match since the PPN is already compressed in
the TLB data array. However, it is likely that two mapping
tables will be required, one for PAs and one for VAs. Each
compressed structure may implement its own table.

For the PRF, however, enough RIDs must be available to
represent a valid architectural state. This means that we need at
least 32 RIDs in case i) All architectural registers are currently
in the address cluster PRF and ii) All architectural registers
have different upper bits. This requirement will impact the
timing of the mapping table, which is on the critical path of
register reads (indexed read) and writes (associative search).
An RID is reclaimed from the mapping table when a value
that cannot be compressed using existing mappings is written
to the PRF (or another structure that uses that mapping table).
Reclaiming an RID requires ensuring that all the physical
registers using that RID are unreachable. This can be done
non-speculatively by waiting for the problematic instruction
to reach Commit, flushing the pipeline, then reclaiming any
RID not currently used by architectural registers living in the
address cluster. If all RIDs are used, then each architectural
register uses its own RID. Thus, the RID used by the archi-
tectural register being written can be reclaimed safely. While
slow, this process is straightforward and the region size can be
chosen such that reclamation is rare, at the cost of slightly less
efficient compression. RID reclamation caused by ROB (PCs)
and LSQ (PAs) would be handled similarly by waiting for the
pipeline to drain and reclaiming an RID. For other structures
(caches, TLBs, BTB), reclaiming an RID implies invalidating
all the tags or data using that RID, which can be done non
speculatively in an iterative fashion.

To determine what a good region size would be, we sample
the number of unique regions being accessed every 40 M
instructions (1 IPC @ 4GHz during 10 ms) for region sizes
from 116 bits (4 KB region offset) to 92 bits (64 GB region
offset), using only SPEC CPU 2017. We excluded Polybench
from this experiment because the control flow is highly regular
and prevents access to many unique memory regions within
a sample. Figure 3 depicts the average number of accessed
regions per sample, across all 40 M samples, for each region
size, for each workload. The Figure confirms the intuition
that as the region size grows, the number of regions accessed
within an epoch increases. In this experiment, using a region
size of 102 upper bits (64 MB region offset) yields fewer than
32 regions tracked within an epoch, on average (19 and 13
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Fig. 2: Dynamic distribution of instruction type on BAS (Groups from L to R: Polybench, INTSpeed, FPSpeed)

Fig. 3: Average unique memory regions accessed over 40M
instructions, per region size, per workload suite. Logscale.

regions for INTSpeed and FPSpeed). Using this region size
would save 66% of the PRF storage if a 256-entry 128-bit
PRF and a 32-entry RID table are considered. Nevertheless,
future machines running workloads with large datasets could
want to consider smaller regions to ensure region identifier
reclamation remains rare. For instance, using a region size of
94 upper bits (16 GB region offset) would still save 60% of
the PRF storage.

IV. RELATED WORK

State of the art clustered microarchitectures can be cate-
gorised as homogeneous or heterogeneous. In the former, an
instruction may be executed by multiple identical clusters [14],
and each cluster maintains a copy of the physical register
file. Conversely, in heterogeneous clustering, instructions have
to be executed in a specific cluster [5], [6], each featuring
their own disjoint register files. Our proposal is a form
of heterogeneous clustering, although some instructions can
technically be executed on both A and I clusters (e.g. 64-bit
add initially executing on I cluster before it is determined
to belong to a BAS). However, in existing heterogeneous
designs, transferring values between clusters is done through
memory using loads and stores or directly using dedicated
instructions [3], as the clusters usually own different portion
of the architectural registers (e.g., integer vs. FP). Since
both A and I clusters own the integer architectural registers,
value transfer between clusters is done implicitly by the
hardware. Steering can be performed dynamically in hardware
or statically by the compiler. The former does not require ISA
change and generally performs better as the compiler does not
have all the dynamic latency information that hardware does

[8], [9], [14]. Since out-of-order machines are notorious for
their latency variability, dynamic steering appears the natural
choice. Regarding 128-bit machines, only RISC-V defines a
flat 128-bit general purpose extension [3]. However, no actual
128-bit microarchitectures implementing this extension ISA
have been proposed.

V. CONCLUSION AND FUTURE WORK

This letter proposes an efficient 128-bit microarchitecture.
Instructions are steered to the dedicated 128-bit address cluster
by iteratively learning [13] the backward address slices (BAS)
of address generating instructions. Other 64- and 32-bit in-
structions are steered to the cheaper 64-bit cluster. This letter
showed that this would allow around 41% of the dynamic in-
structions to not consume 128-bit resources, on average, under
the hypothesis that non address related integer computations
would remain performed on 32 or 64 bits when compiling for
a 128-bit machine. We further suggest to leverage an existing
region-based compression scheme to significantly reduce the
footprint of many common structures, including the 128-bit
physical register file in the address cluster.
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