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Abstract
In order to study convergences of looptrees, we construct continuum trees and looptrees from

real-valued càdlàg functions without negative jumps called excursions. We then provide a toolbox to
manipulate the two resulting codings of metric spaces by excursions and we formalize the principle
that jumps correspond to loops and that continuous growths correspond to branches. Combining
these codings creates new metric spaces from excursions that we call vernation trees. They consist
of a collection of loops and trees glued along a tree structure so that they unify trees and looptrees.
We also propose a topological definition for vernation trees, which yields what we argue to be the
right space to study convergences of looptrees. However, those first codings lack some functional
continuity, so we adjust them. We thus obtain several limit theorems. Finally, we present some
probabilistic applications, such as proving an invariance principle for random discrete looptrees.
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1 Introduction

Background Informally, a looptree consists of a collection of loops tangently glued together along
some genealogical structure. Perhaps more clearly, one can associate a looptree with a finite ordered
tree by replacing each vertex with a circle of length proportional to its degree and each edge with a
unique point of tangency between the corresponding circles, thereby preserving the ordered tree struc-
ture. An example will be given with Figure 3 in Section 6.3. Ever since their introduction by Curien
and Kortchemski in [18], looptrees have generated a growing interest thanks to their natural appearances
in some random geometric models and because they can provide useful tools or insights to study other
objects. Let us mention some of them. To begin with, when a sequence of trees admits a scaling limit
and if the maximum degree becomes negligible against the height, then the scaling limit is often a con-
tinuum tree whose all branch points are of infinite degree. In this situation, it is then difficult to recover
the limiting joint distribution of the scaled degrees from that object. However, a scaling limit of the
associated looptrees would not only give such information (merely via the lengths of the loops) but also
the whole asymptotic degree structure. This is exactly what happens for large critical Galton-Watson
trees whose offspring distribution belongs to the domain of attraction of an α-stable law, with α ∈ (1, 2).
While Duquesne showed in [21] these random trees converge, after suitable scaling, towards the α-stable
tree introduced in [32, 23], Curien and Kortchemski proved the rescaled associated looptrees converge
towards a random compact metric space they called the α-stable looptree. There are even more striking
cases where the associated looptrees admit a non-degenerate scaling limit but the trees themselves do
not so they are an interesting means to give sense to scaling limits of highly dense trees. An instance of
such a situation is studied in [16] by Curien, Duquesne, Kortchemski, and Manolescu with the model of
random trees built by linear preferential attachment, which was introduced and popularized in [41, 7, 11].
The scaling limit for this model is called the Brownian looptree and is distinct from the stable looptrees.

In addition to their help to study trees, looptrees spontaneously appear as scaling limits of other ran-
dom structures. For example, random Boltzmann dissections of a regular polygon, that were introduced
in [29], have a similar geometry as looptrees in some regimes. Indeed, Curien and Kortchemski proved
in [18] that their scaling limit as the number of sides of the polygon tends to infinity is the α-stable
looptree, depending on the regime. Let us mention links between looptrees and dissections were also
detected in [17]. Several instances of looptrees can be found within random planar maps too. The goal
of this active area of research is to understand universal large-scale properties of graphs or their proper
embeddings in the two-dimensional sphere. We refer to [1, 37] for surveys of this field. In [19], Curien
and Kortchemski considered boundaries of percolation clusters on the uniform infinite planar triangula-
tion introduced in [6]. These boundaries are almost looptrees and the authors showed that in the critical
case of the percolation, their scaling limit is the 3/2-stable looptree. Similarly, in [30, 39], Kortchemski
and Richier discussed asymptotics for the boundaries of Boltzmann planar maps conditioned on having
a large perimeter. Once again, stable looptrees arise as scaling limits in some regimes.

Nevertheless, the most important application of looptrees may be their substantial connections with
scaling limits of random planar maps. The bijections of Bouttier, Di Fransesco, Guitter [12] and of
Janson, Stefánsson [26] yield a one-to-one correspondence between planar maps and some labeled trees
(where each vertex is equipped with an integer), which can be reformulated into a bijection between
planar maps and some labeled looptrees. Looptrees seem to be the right objects to consider here because
the scaling limits of random planar maps with large faces introduced by Le Gall and Miermont in [33] are
implicitly constructed from a Gaussian field on stable looptrees. Furthermore, Marzouk obtained limit
theorems for planar maps in [34] without a strong control on the corresponding trees, but by observing
their Lukasiewicz walks instead. As we will see later, the Lukasiewicz walk directly codes the geometry
of the associated looptree. For more detailed discussions on the relations between maps and looptrees,
we refer to Marzouk [35].

Motivations and main results The purpose of the present work is to build a framework and to provide
a toolbox to construct, manipulate, and demonstrate convergences involving looptrees under the most
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general setting possible. A first issue is how to define compact continuum fractal looptrees that may
appear as scaling limits. Although compact continuum fractal trees are well-known since the introduction
of the Brownian Continuum Random Tree (CRT) by Aldous in [3], mimicking the discrete setting to
define continuum looptrees associated with them is not so easy. On the one hand, it could be not clear
how to choose the lengths of the loops while ensuring the compactness of the resulting space. On the
other hand, when the branch points are dense in the tree, it might be possible that two different cycles in
the associated looptree would never share a common point. It is indeed what happens for the α-stable
looptree Lα of Curien and Kortchemski, with any α ∈ (1, 2). They avoided the above difficulties [18] by
building directly Lα from the excursion Xexc,(α) of an α-stable spectrally positive Lévy process. This
process also codes the α-stable tree, and Curien and Kortchemski justified that Lα can be interpreted
as its associated looptree. The idea to encode metric spaces by real-valued functions is in line with
the founding work of Le Gall [25] which studies and constructs compact real trees from continuous
excursions. Namely, if f : [0, 1] −→ [0,∞) is continuous with f(0) = f(1) = 0 then setting

dclasf (t, s) = dclasf (s, t) = f(s) + f(t)− 2 inf
[s,t]

f (1)

for all s, t ∈ [0, 1] with s ≤ t defines a pseudo-distance on [0, 1], which in turn induces a compact real
tree by quotient. See [25, 22] for an extensive study of this coding. The definition of real trees will be
reminded in Section 5 and the quotient metric space induced by a pseudo-distance is defined in Section
2.3. Similarly, the α-stable looptree is induced by another pseudo-distance inherited from Xexc,(α).

Definition 1. A càdlàg function f : [0, 1] −→ R is a right-continuous function that has left limits
everywhere. In that case, we write f(0−) = 0, ∆0(f) = 0, f(t−) = lims→t− f(s) and we denote
∆t(f) = f(t) − f(t−) for all t ∈ (0, 1]. If no confusion over the function is possible, we will simply
write ∆t. We say a non-negative càdlàg function f : [0, 1] −→ [0,∞) is an excursion when f(1) = 0
and when all jumps of f are non-negative, namely ∆t ≥ 0 for all t ∈ [0, 1]. We denote by H the set of
excursions.

We straightforwardly extend the work of Curien and Kortchemski in [18] to construct a pseudo-
distance dLf from any excursion f . We denote by Lf and we call the looptree coded by f the quotient
metric space induced by dLf . In particular, we have Lα = LXexc,(α) . Without immediately giving the
definition of dLf , let us already state that each jump of f of height ∆ corresponds to a circle of length
∆ in Lf , that those circles are dense in Lf , and that if g is a "sub-excursion" of f then Lg is a subset
of Lf . This method has many benefits. While it allows an automatic construction of a large diversity
of complex looptrees, it is also fairly simple to find an excursion coding a given discrete looptree. This
kind of behavior is especially useful to tackle problems involving transitions from discrete to continuous
worlds.

However, dL alone is not enough to understand all convergences of looptrees. Indeed, a looptree
consisting of a chain of n loops of lengths 1/n put back to back is asymptotically close to a segment
that has no loops. It is not an unusual situation, as [17], [18], [19], and [30] provide as many examples
of looptrees that converge towards loopless compact real trees. In particular, it ensures dL lacks the key
property of being continuous with respect to the coding function, contrary to dclas. Furthermore, the
coding brought by dL does not fully exploit the diversity of excursions because it only cares about the
jumps: if f is a continuous excursion with f(0) = 0, then dLf = 0 and the looptree coded by f is reduced
to a single point. In fact, dL disregards continuous growth that would classically code a real tree with
dclas. In contrast, applying dclas to a discontinuous excursion would still give a tree but without really
distinguishing between jumps and continuous growth. These observations motivate us to define a new
pseudo-distance dTf that induces a real tree, and thus codes additional limits of looptrees we were lacking,
but that only harnesses the continuous growth of f . Informally, dTf is obtained by stripping f of its jumps
then by taking dclas. We denote by Tf and we call the tree coded by f the quotient metric space induced
by dTf . Plus, we clarify that it naturally holds dL0 = dT0 = 0. Our first main result describes the relations
between trees and looptrees coded by excursions. It will be specified by Theorems 4 and 5.
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Figure 1: All eight figures have to be understood as intrinsic one-dimensional spaces. Left: Four exam-
ples of vernation trees. Right: Four non-examples of vernation trees.

Theorem 1. Let us set I : f ∈ H 7−→ f ∈ H. There exists an operator J : H −→ H such that J ◦J = J
and J ◦ (I − J) = 0. Moreover, it holds dLf = dLJf and dTf = dTf−Jf = dclasf−Jf for all excursions f .
Furthermore, f is a continuous excursion with f(0) = 0 if and only if Jf = 0.

An excursion f such that Jf = f or Jf = 0 will be respectively called a pure jump growth (PJG)
excursion or a continuous excursion. These two classes of excursions and the operator J will be properly
defined at the beginning of Section 3. A linear combination of dTf and dLf gives a pseudo-distance that
induces a new hybrid metric space, denoted by Vf , composed of loops and trees tangently glued together
along some genealogical structure. More precisely, we choose dVf = dTf + 2dLf because the diameter
of a metric circle is half of its length. We call Vf the vernation tree coded by f . The name vernation
tree was chosen to distinguish this new object from the looptree Lf . It refers to the arrangement of bud
scales or young leaves in a leaf bud before it opens. Figure 1 presents some examples and non-examples
of vernation trees. Let us already mention that independently, Blanc-Renaudie in [10] and Marzouk in
[35] construct the same kind of spaces as part of their studies of scaling limits of models with prescribed
degrees. While Blanc-Renaudie took the point of view of stick-breaking constructions and managed to
mimic the association of a looptree with a discrete tree, Marzouk found the same coding by excursions as
us and also identified the significance of PJG excursions. However, our methods to study convergences
are completely different and we truly believe both should be useful according to context.

We argue vernation trees yield the right notion to study convergences of looptrees. Theorem 1 jus-
tifies this notion unifies the classical encoding of real trees and the encoding of looptrees introduced in
[18] by Curien and Kortchemski. Moreover, vernation trees can naturally appear as limits of looptrees.
Indeed, looptrees may converge to trees or other looptrees, and gluing two looptrees together still gives
a looptree. Conversely, the limits of vernation trees are also vernation trees in some sense. To make this
point rigorous, we will provide an intrinsic and topological definition for vernation trees in Section 5.
Informally, a metric space is a vernation tree when any two points at distance r are joined by a path of
length r and any two distinct loops do not intersect at more than one point. We let the reader compare
this definition with Figure 1. Then, Theorems 9, 10, 11 imply the following result.

Theorem 2. The space of compact vernation trees is the closure for the Gromov-Hausdorff topology of
the set of vernation trees coded by excursions.

The definition of the Gromov-Hausdorff topology, which formalizes convergence of (isometry classes
of) compact metric spaces, is recalled in Section 4.3. Vernation trees reveal another interesting observa-
tion. Again in [18], Curien and Kortchemski have proved the α-stable looptrees converge in distribution
to the Brownian CRT (up to a constant multiplicative factor) as α tends to 2, while the excursionXexc,(α)

converge in distribution to a multiple of the Brownian excursion. However, we will see in Section 6.2
that the excursions Xexc,(α) are PJG and the Brownian excursion is continuous. Plus, the multiplica-
tive constants match. Hence, the vernation trees coded by the Xexc,(α) converge to the vernation tree
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coded by the limiting excursion. Furthermore, [18] and [30] exhibit several instances where rescaled
looptrees associated with discrete trees converge to the looptree or the tree coded by the scaling limit of
their Lukasiewicz walks. Thereby, it is natural to hope the coding f ∈ H 7−→ Vf enjoys some kind of
functional continuity. If it were true, understanding convergences of looptrees and vernation trees would
merely be reduced to studying the convergences of their coding excursions. In general, it is a much sim-
pler problem thanks to a lot of tools and methods that were developed over the years. In fact, one could
argue the functional continuity of the classical coding f 7−→ dclasf is the main reason for its success.
Sadly, it does not hold for dV or V. We will discuss in more depth why this fails at the beginning of
Section 4, but [17, Theorem 13] and [30, Theorem 2] already provide a counterexample where the limit
differs from a strange multiplicative factor from what one could expect. In order to address this issue,
we define another metric space Ṽf , induced by a pseudo-distance d̃Vf , called the shuffled vernation tree

coded by f . Informally, Ṽf is obtained by shuffling the positions on which the components of Vf are
glued on each loop while keeping the loops and the trees arranged in the same genealogical structure as
Vf . See Figure 2 for an example. Shuffling instructions are contained in an object Φ we will call shuffle
and that one can choose with some freedom. The coding f 7−→ Ṽf is continuous in some sense, which
justifies its definition. Let us denote by D([0, 1]) the space of càdlàg functions on [0, 1] and let us endow
it with the Skorokhod distance ρ defined by

ρ(f1, f2) = inf
λ∈Λ

max (||λ− id||∞, ||f1 − f2 ◦ λ||∞)

for all f1, f2 ∈ D([0, 1]), where Λ is the set of increasing bijections from [0, 1] into itself. The distance
ρ is not complete but induces a separable and completely metrizable topology on D([0, 1]) called the
Skorokhod topology, see [9, Chapter 3]. We set

Θ : D([0, 1]) −→ D([0, 1])

f 7−→ Θf : t 7→ 12t≥1f(2t− 1)

and we write fn −→ f for the relaxed Skorokhod topology when Θfn −→ Θf for the Skorokhod
topology on D([0, 1]). This induces a weaker separable and completely metrizable topology than the
Skorokhod topology. It is clear that the set of excursions is closed for both of those topologies. We are
now ready to state our limit theorem.

Theorem 3. We denote by ∂ the metric space with a unique point. Let f be an excursion and let (fn) be
a sequence of excursions such that fn −→ f for the relaxed Skorokhod topology.

(i) If Bf ∩ B(Φ) = ∅, then the convergence Ṽfn −→ Ṽf holds for the pointed Gromov-Hausdorff-
Prokhorov topology.

(ii) If there is N ≥ 1 such that all the fn have at most N jumps, then the convergences Lfn −→ Lf ,
Tfn −→ Tf , and Vfn −→ Vf hold for the pointed Gromov-Hausdorff-Prokhorov topology.

(iii) If f is PJG, then the convergences Lfn −→ Lf , Tfn −→ ∂, and Vfn −→ Vf hold for the pointed
Gromov-Hausdorff-Prokhorov topology.

The pointed Gromov-Hausdorff-Prokhorov topology formalizes convergence of (equivalence classes
of) compact metric spaces endowed with a distinguished point and a Borel probability measure. We will
give a proper definition in Section 4.3. The assumption Bf ∩ B(Φ) = ∅ is a minimal condition that is
presented in Section 4.1. The price for the functional continuity of f 7−→ Ṽf is that there is no simple or
canonical choice for the shuffle Φ. Moreover, it lacks some other useful properties that f 7−→ Vf shares
with f 7−→ dclasf . That makes Ṽf inconvenient to use with explicit or discrete examples. Thus, we think
it is best to first define a model or to express a given vernation tree by using (unshuffled) Vf , and then to
study the asymptotic behavior thanks to the point (ii) and (iii) of Theorem 3 or by comparing Vf with
Ṽf . While this technical task will not be automatic, a nice choice of shuffle may ease it. For example, if
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X is a random excursion, it may be possible to select Φ such that ṼX and VX have the same distribution.
Another advantage of the flexibility of the choice for the shuffle is that it is easy to ensure the condition
Bf ∩ B(Φ) = ∅ holds. We will give three concrete probabilistic applications of this method.

The first one reformulates in metric terms the asymptotics in terms of processes found by Aldous,
Miermont, and Pitman in [5] for uniform random mappings. Indeed, such a mapping M can be repre-
sented by a graph on {1, 2, ..., n} with edges (i,M(i)) and each connected component of this graph is
a vernation tree, as a collection of trees rooted on the same cycle. We give scaling limits for these com-
ponents. The second application retrieves and completes [18, Theorem 1.2] of Curien and Kortchemski
about the convergences of α-stable looptrees when α tends to 1 or 2 by showing that their whole family
is continuous in distribution with respect to α. The strategy of the proof is to prove the coding excursions
Xexc,(α) are PJG and to find a shuffle such that ṼXexc,(α) is distributed as VXexc,(α) . The last applica-
tion provides two invariance principles for discrete looptrees associated with finite ordered trees. We
first retrieve [18, Theorem 4.1] of Curien and Kortchemski under the PJG case. In the general case, we
prove that if a sequence of exchangeable random ordered trees admits X as the scaling limit of their
Lukasiewicz walks and if their heights become negligible against the scaling, then the scaling limit of
their associated looptrees is 1/2 · VX , where c · E stands for the metric space obtained from E by mul-
tiplying all distances by c > 0. Of course, we will clarify what it means for a random ordered tree to be
exchangeable, but informally, it means its distribution is invariant by changing the order.

Outline In Section 2, we construct the mentioned pseudo-distances and the metric spaces they induce
by quotient. Section 3 gives some tools to better understand the relations between trees, looptrees, and
excursions, and shows vernation trees generalize both trees and looptrees. Section 4 studies convergences
of vernation trees by first stating the functional continuity of f 7−→ d̃Vf and then deducing other limit
theorems under some particular cases. This results in a proof of Theorem 3. In Section 5, we introduce
our topological notion of vernation trees and demonstrate Theorem 2. Section 6 is devoted to the three
probabilistic applications of our work.

2 Tree, looptree, and vernation tree coded by an excursion

In all this Section, we fix an excursion denoted by f .

2.1 Genealogy associated with an excursion

In order to encode a looptree by an excursion f , we begin to construct a genealogy on [0, 1] from f ,
which will give the tree structure of the loops in the associated looptree. If we take as a principle that f
codes a looptree L with root 0, then if f(s−) ≤ inf [s,t] f , s ≤ t ≤ r, and f(s−) = f(r), the excursion
u 7→ f(s+u(r− s))− f(u−) should encode a sub-looptree of L, with root s, and containing t. Hence,
the point s is an ancestor of t according to the genealogy of L. This motivates the following definition,
which is a direct extension of the genealogy defined by Curien and Kortchemski in [18] for the stable
looptrees. We set for all s, t ∈ [0, 1],

s ⪯f t when both s ≤ t and f(s−) ≤ inf
[s,t]

f.

We also write s ≺f t when s ⪯f t and s < t. If the excursion f is obvious according to context, we
would just write ⪯ and ≺.

Proposition 1. The relation ⪯ enjoys the following properties.

(i) The relation ⪯ is a partial order on [0, 1].

(ii) The genealogy admits 0 as its root, namely 0 ⪯ t for all t ∈ [0, 1].
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(iii) Two points have a most recent common ancestor. For any s, t ∈ [0, 1], there is a unique u ∈ [0, 1]
such that for all r ∈ [0, 1], r ⪯ u ⇐⇒ r ⪯ s, t. We denote it by s ∧f t, or just by s ∧ t if the
excursion f is obvious according to context.

(iv) The ancestral lineages are totally ordered. For any t ∈ [0, 1], the relation ⪯ induces a total order
on {s ∈ [0, 1] : s ⪯ t}.

Proof. Let t, s, r ∈ [0, 1]. Obviously, we have t ≤ t and f(t−) ≤ f(t) = inf [t,t] f because f is an
excursion. So t ⪯ t and the relation ⪯ is reflexive. If s ⪯ t and t ⪯ s, then by definition s ≤ t ≤ s,
so t = s, and ⪯ is antisymmetric. To prove the transitivity, we suppose that s ⪯ t and t ⪯ r and we
can assume s < t < r. We find f(s−) ≤ inf [s,t] f ≤ f(t−) ≤ inf [t,r] f , which entails s ⪯ r and
(i). The point (ii) is simply deduced from the fact that f is an excursion. Let us prove (iii). We set
u = sup{r ∈ [0, 1] : r ⪯ s, t}. By definition, u ≤ s and u ≤ t. We give ourselves a sequence (rn)n≥1

that converges towards u and such that 0 ≤ rn ≤ rn+1 ≤ u and rn ⪯ s, t for all n ≥ 1. We have
f(rn−) −→ f(u−) and thanks to the inequality

f(rn−) ≤ inf
[rn,t]

f ≤ inf
[u,t]

f,

we obtain u ⪯ t. Likewise, u ⪯ s. Conversely, if r ⪯ t and r ⪯ s, then r ≤ u by definition and
f(r−) ≤ inf [r,t] f ≤ inf [r,u] f , so r ⪯ u. The uniqueness of s ∧ t immediately follows from the
antisymmetry of ⪯. Let us prove (iv). We suppose s, r ⪯ t and without loss of generality, we assume
r ≤ s. Then, f(r−) ≤ inf [r,t] f ≤ inf [r,s] f , so r ⪯ s, which concludes the proof.

Lemma 1. Let s, t ∈ [0, 1]. If s ≤ t, then it holds that inf [s∧t,t] f = inf [s,t] f and

s ∧ t = sup {r ≤ s : r ⪯ t} = sup

{
r ≤ s : f(r−) ≤ inf

[s,t]
f

}
.

Proof. If r ≤ s and r ⪯ t, then f(r−) ≤ inf [r,t] f ≤ inf [r,s] f , and so r ⪯ s. Thus, r ⪯ s∧t. Conversely,
if r ⪯ s ∧ t, then r ≤ s and r ⪯ t. So, we have shown s ∧ t = sup{r ≤ s : r ⪯ t}. In particular, if
s ∧ t < r ≤ s, then we cannot have r ⪯ t. It follows that for all r ∈ (s ∧ t, s], it holds

f(r) ≥ f(r−) > inf
[r,t]

f

Since f is càdlàg, this leads to inf [r,s] f > inf [r,t] f . Hence, inf [r,t] f = inf [s,t] f for all r ∈ (s ∧ t, s] and
we end the proof by making r tend towards s ∧ t.

As same as in [18], we define a quantity xts which will represent the relative position of the ancestor
of t on the loop containing s on the looptree associated with f , when s ⪯ t. For all s, t ∈ [0, 1], we set

xts(f) = 1s≤tmax

(
inf
[s,t]

f − f(s−), 0
)
.

When the excursion f is obvious according to context, we would just write xts. Let us remark that
xts ∈ [0,∆s], xss = ∆s, and xts > 0 =⇒ s ⪯ t. We finish this first step by providing two convenient
lemmas about xts.

Lemma 2. Let u, s, t ∈ [0, 1]. If u < t ∧ s, then xtu = xsu = xt∧su .

Proof. We merely write inf [u,t∧s] f ≤ f(t ∧ s−) ≤ min
(
inf [t∧s,t] f, inf [t∧s,s] f

)
.

Lemma 3. Let s, t ∈ [0, 1]. If s < t, then∑
s<r
r≺t

xtr ≤ f(t−)− inf
[s,t]

f. (2)
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Proof. Let {ri : 1 ≤ i ≤ n} be a finite subset of {r ∈ [0, 1] : r ≺ t, s < r} such that ri < ri+1 for any
1 ≤ i ≤ n− 1. Let us also set rn+1 = t. With these notations, we have ri+1 ∈ (ri, t] for any 1 ≤ i ≤ n,
so we can write

n∑
i=1

xtri =
n∑
i=1

(
inf
[ri,t]

f − f(ri−)
)
≤

n∑
i=1

f(ri+1−)− f(ri−) = f(t−)− f(r1−).

Eventually, f(r1−) ≥ inf [s,t] f because r1 ∈ (s, t]. The lemma follows.

2.2 Pseudo-distances coded by an excursion

We denote by (C, δ) the metric circle of perimeter 1, seen as [0, 1] endowed with the pseudo-distance δ
given by δ(a, b) = min(|a−b|, 1−|a−b|) so that 0 and 1 are identified. We say that a function is càglàd
when it is left-continuous with right limits (continue à gauche, limite à droite in French). We denote by←−
D([0, 1], C) the set of càglàd functions from [0, 1] to C and we endow it with the Skorokhod distance←−ρ
given by

←−ρ (ϕ1, ϕ2) = inf
λ∈Λ

max

(
||λ− id||∞, sup

x∈[0,1]
δ(ϕ1(x), ϕ2 ◦ λ(x))

)

for all ϕ1, ϕ2 ∈
←−
D([0, 1], C), where Λ is the set of increasing bijections from [0, 1] into itself.

Definition 2. A shuffle is a Borel application Φ : ∆ > 0 7−→ ϕ∆ ∈
←−
D([0, 1], C) such that for all ∆ > 0,

ϕ∆ is surjective,

sup
u∈(0,∆]

sup
x∈(0,1]

∣∣∣∣2xδ (ϕu(0), ϕu(x))− 1

∣∣∣∣ <∞, and sup
x∈(0,1]

∣∣∣∣2xδ (ϕ∆(0), ϕ∆(x))− 1

∣∣∣∣ −→∆→0+
0. (3)

Remark 1. Our requirements for the ϕ∆ to be surjective with the convergence in (3) lead to the fact that
the ϕ∆ have to oscillate more and more quickly near x = 0 when ∆ is small enough. Moreover, when
∆ gets smaller, ϕ∆ needs to jump an infinite number of times near 0. As a result, there is no simple or
canonical choice for Φ. Nevertheless, it is not too difficult to construct various examples of shuffles. For
instance, we could choose ϕ∆(x) = x when ∆ ≥ 1 and

ϕ1−∆(x) =


x− ∆k

2 if x ∈
(
∆k+∆k+1

2 ,∆k
]

with an integer k

1− x+ ∆k+1

2 if x ∈
(
∆k+1, ∆

k+∆k+1

2

]
with an integer k

0 if x = 0

when ∆ ∈ (0, 1), for all x ∈ [0, 1].

For the following, we fix a shuffle and let the dependence on it be implicit. As we said before, the
loops of our space will match the jumps of f , and the lengths of the loops will be equal to the heights of
the jumps. For t ∈ [0, 1], we provide the pseudo-distances

δt(a, b) = ∆tδ

(
a

∆t
,
b

∆t

)
= min (|a− b|,∆t − |a− b|) ,

δ̃t(a, b) = ∆tδ

(
ϕ∆t

(
a

∆t

)
, ϕ∆t

(
b

∆t

))
to the segment [0,∆t] when ∆t > 0. When ∆t = 0, we set δt(0, 0) = δ̃t(0, 0) = 0. If needed, we would
precise the dependence on f by writing δft (·, ·) or δ̃ft (·, ·). Let us notice that ([0,∆t], δt) and ([0,∆t], δ̃t)
are isometric to a circle of length ∆t.
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We are now ready to define our pseudo-distances of interest. For s, t ∈ [0, 1] with s ⪯ t, we set

d◦f (s, t) =
∑
s≺r⪯t

δr(0, x
t
r),

d̃◦f (s, t) =
∑
s≺r⪯t

δ̃r(0, x
t
r).

It is the distance to run through between t and its ancestor on the loop of s. Indeed, each term of the
sum corresponds to the length of the path getting through one of the loops between s and t. For d̃◦, the
points where two loops are glued were shuffled. We reach t from s by going through the loop of t ∧ s.
Explicitly, we set

dLf (s, t) = δs∧t(x
s
s∧t, x

t
s∧t) + d◦f (s ∧ t, s) + d◦f (s ∧ t, t),

d̃Lf (s, t) = δ̃s∧t(x
s
s∧t, x

t
s∧t) + d̃◦f (s ∧ t, s) + d̃◦f (s ∧ t, t),

for all s, t ∈ [0, 1]. The pseudo-distance dL is exactly the one constructed by Curien and Kortchemski in
[18] for the stable looptrees. Now, we want to define a pseudo-distance from f that should induce a tree.
For s, t ∈ [0, 1] with s ⪯ t, we set

dTf (s, t) = f(t)− inf
[s,t]

f −
∑
s≺r⪯t

xtr.

While the term f(t)− inf [s,t] f should correspond to the distance to travel if the metric space was a tree,
the excursion has jumps we have to erase because we do not want to count the distance traveled on loops.
Thus, we subtract the terms xtr that are already counted in the term f(t) − inf [s,t] f . More generally, if
s, t ∈ [0, 1], we set

dTf (t, s) = dTf (t ∧ s, t) + dTf (t ∧ s, s).

Observe the definition of dT is consistent because dT(s, s) = f(s)− f(s) = 0. In order to combine the
paths on the loops and on the tree branches, we set

dVf = dTf + 2dLf ,

d̃Vf = dTf + 2d̃Lf .

The constant 2 before dL (or d̃L) could be replaced with another one but we will justify this choice by
the fact that f 7−→ d̃Vf enjoys a functional continuity with the constant 2. It would be not the case
with another constant. Nevertheless, Marzouk showed in [35] that metrics dL + adT with a ̸= 1/2 can
naturally appear as scaling limits of uniformly random discrete looptrees with prescribed degrees. When
the function f is obvious according to context, we will just write d◦, d̃◦, dL, d̃L, dT, dV, and d̃V. It is
important to be aware that the shuffle Φ was used to construct d̃L and d̃V, but not for dL, dT, and dV.

We now show our quantities are finite. The functions d◦, d̃◦, dL, and d̃L obviously are non-negative
because they are series of non-negative terms. Keeping only the term for r = t yields that if s ≺ t then
dT(s, t) ≤ f(t−)− inf [s,t] f . Moreover, the bound (2) implies that if s ≺ t then

0 ≤ d◦(s, t) ≤ f(t−)− inf
[s,t]

f, (4)

0 ≤ dT(s, t) ≤ f(t−)− inf
[s,t]

f, (5)

because δt(0, xtt) = δt(0,∆t) = 0 and δ(0, x) ≤ x for all x ∈ [0, 1]. If we only have s ⪯ t, the upper
bound given by f(t) − inf [s,t] f stays true. Now, we only assume s < t. We observe t ∧ s ≤ s < t and
δt∧s(x

s
s∧t, x

t
s∧t) ≤ xst∧s − xtt∧s. Recall we know inf [s,t] f = inf [t∧s,t] f from Lemma 1, so if s < t then

0 ≤ dL(s, t) ≤ f(s) + f(t−)− 2 inf
[s,t]

f, (6)

0 ≤ dT(s, t) ≤ f(s) + f(t−)− 2 inf
[s,t]

f. (7)
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Remark we cannot find these bounds for d̃L because δ̃t(0,∆t) ̸= 0 and δ̃t(a, b) ≰ |a− b|. Nethertheless,
the bound in (3) ensures there exists a constant K ∈ (0,∞) which only depends on ||f ||∞ and Φ such
that δ̃t(0, x) ≤ Kx for any t ∈ [0, 1] and x ∈ [0,∆t]. In particular, if s ⪯ t, then the bound (2) implies

0 ≤ d̃◦(s, t) ≤ K
(
f(t)− inf

[s,t]
f

)
. (8)

While the definitions of these quantities are intuitive and natural, the fact that s ∧ t appears could
make them a little troublesome to manipulate, from a computational point of view. To handle this issue,
we verify that for all s, t ∈ [0, 1] with s ≤ t, it holds

dL(s, t) =
∑
r∈[0,1]

δr(x
s
r, x

t
r), (9)

d̃L(s, t) =
∑
r∈[0,1]

δ̃r(x
s
r, x

t
r), (10)

dT(s, t) = f(s) + f(t)− 2 inf
[s,t]

f −
∑
r∈[0,1]

|xsr − xtr|. (11)

Indeed, Lemma 2 ensures xsr = xtr when r ≺ t ∧ s, which yields

δr(x
s
r, x

t
r) = δr(0, x

s
r)1s∧t≺r⪯s + δr(0, x

t
r)1s∧t≺r⪯t + δr(x

s
r, x

t
r)1s∧t=r

δ̃r(x
s
r, x

t
r) = δ̃r(0, x

s
r)1s∧t≺r⪯s + δ̃r(0, x

t
r)1s∧t≺r⪯t + δ̃r(x

s
r, x

t
r)1s∧t=r,

|xsr − xtr| = xsr1s∧t≺r⪯s + xtr1s∧t≺r⪯t +

(
inf
[r,s]

f − inf
[r,t]

f

)
1s∧t=r.

Thus, (9) and (10) follow and Lemma 1 leads to (11). Let us show our quantities are pseudo-distances.

Proposition 2. The functions dL, d̃L, and dT are pseudo-distances on [0, 1]. As linear combinations of
pseudo-distances, dV and d̃V are also pseudo-distances on [0, 1].

Proof. We already proved these functions are well-defined and non-negative. The symmetries are ob-
vious. Let t ∈ [0, 1], it holds clearly dL(t, t) = d̃L(t, t) = 0 and we already saw dT(t, t) = 0. Let
s, r ∈ [0, 1]. We want to prove the triangular inequalities on dL(t, r), d̃L(t, r), and dT(t, r). The formula
(9) makes it easy for dL as a simple application of the triangular inequality of δu:

dL(t, r) =
∑
u∈[0,1]

δu(x
t
u, x

r
u) ≤

∑
u∈[0,1]

(
δu(x

t
u, x

s
u) + δu(x

s
u, x

r
u)
)
= dL(t, s) + dL(s, t).

The proof for d̃L is identical with (10) but the proof for dT requires some more care. We know either
s ∧ r ⪯ t ∧ s or t ∧ s ⪯ s ∧ r, because the ancestral lineage of s is totally ordered. By symmetry, we
can assume s ∧ r ⪯ t ∧ s without loss of generality. Then, we also have s ∧ r ⪯ t ∧ r. Thanks to the
total order of the ancestral lineage of t, it holds either t ∧ r ⪯ t ∧ s or t ∧ s ≺ t ∧ r. If t ∧ r ⪯ t ∧ s,
then t ∧ r ⪯ s ∧ r, and by antisymmetry of ⪯, we have t ∧ r = s ∧ r. Likewise, if t ∧ s ≺ t ∧ r then
t∧ s ⪯ s∧ r and t∧ s = s∧ r. From here, we treat the two cases separately. Recall Lemma 2 which we
will use several times.

• If t ∧ r = s ∧ r ⪯ t ∧ s: We can write dT(t, r) = dT(t ∧ r, t) + dT(s ∧ r, r). Let us begin by
bounding the distance between t ∧ r and t. Because t ∧ r ⪯ t ∧ s ⪯ t, we can easily make the
distance between t ∧ s and t appear, which gives

dT(t ∧ r, t) = dT(t ∧ s, t) +
(

inf
[t∧s,t]

f − inf
[t∧r,t]

f

)
−

∑
t∧r≺u⪯t∧s

xtu.
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Now, we use Lemma 2 to transform the sum indexed by s ∧ r = t ∧ r ≺ u ≺ t ∧ s. We point out
that the lemma does not allow us to transform the term for u = t ∧ s, thus we isolate it. Then, we
recognize some terms of the distance between s ∧ r and s, namely∑

t∧r≺u⪯t∧s
xtu =

∑
s∧r≺u≺t∧s

xsu + xtt∧s1s∧r<t∧s.

We make dT(s ∧ r, s) appear by adding and subtracting the xsu for t ∧ s ⪯ u ⪯ s, so that

−
∑

t∧r≺u⪯t∧s
xtu = dT(s ∧ r, s) + inf

[s∧r,s]
f − dT(t ∧ s, s)− inf

[t∧s,s]
f − (xtt∧s − xst∧s)1s∧r<t∧s.

Since dT(t ∧ s, s) ≥ 0, it follows

dT(t ∧ r, t) ≤ dT(t ∧ s, t) + dT(s ∧ r, s)− (xts∧r − xss∧r) + (xtt∧s − xst∧s)1s∧r=t∧s.

Then, we remark that −(xts∧r − xss∧r) + (xtt∧s − xst∧s)1s∧r=t∧s = −(xts∧r − xss∧r)1s∧r<t∧s, so
Lemma 2 ensures dT(t ∧ r, t) ≤ dT(t ∧ s, t) + dT(s ∧ r, s). Eventually, we find

dT(t, r) ≤ dT(s ∧ r, r) + dT(t ∧ s, t) + dT(s ∧ r, s) ≤ dT(t, s) + dT(s, r).

• If t ∧ s = s ∧ r ≺ t ∧ r: In this case, the triangular inequality is rougher, so its proof is simpler.
To bound dT(t ∧ r, t), we first make dT(t ∧ s, t) appear by writing

dT(t ∧ r, t) = dT(t ∧ s, t) + inf
[t∧s,t]

f − inf
[t∧r,t]

f +
∑

t∧s≺u⪯t∧r
xtu.

We transform the sum thanks to Lemma 2 once again and we see inf [t∧r,t] f = xtt∧r−xt∧rt∧r+f(t∧r),
so that we get

dT(t ∧ r, t) = dT(t ∧ s, t) + inf
[t∧s,t]

f − inf
[t∧s,t∧r]

f − dT(t ∧ s, t ∧ r).

Lemma 2 also implies inf [t∧s,t] f = inf [t∧s,t∧r] f . Plus, dT(t ∧ s, t ∧ r) is non-negative, so it
follows dT(t ∧ r, t) ≤ dT(t ∧ s, t). Thanks to the symmetry between t and r in this case, we find

dT(t, r) ≤ dT(t ∧ s, t) + dT(s ∧ r, r) ≤ dT(t, s) + dT(s, r).

Remark 2. The triangular inequality for dT will become clearer later. Indeed, we will prove with The-
orem 4 that there exists a continuous excursion g with g(0) = 0 such that dTf = dclasg , where dclas is the
classical tree pseudo-distance defined by (1). In fact, Marzouk defines the same pseudo-distance dT as
such in [35].

2.3 Quotient metric spaces induced by those pseudo-distances

A pointed metric space is a triple (X, d, a) where (X, d) is a metric space equipped with a distinguished
point, also called a root, a ∈ X . We say two pointed metric spaces (X1, d1, a1) and (X2, d2, a2) are
pointed-isometric when there exists an bijective isometry λ from X1 to X2 such that λ(a1) = a2. A
pointed weighted metric space is a quadruple (X, d, a, µ) where (X, d, a) is a pointed metric space also
equipped with a Borel probability measure µ on (X, d). We say two pointed weighted metric spaces
(X1, d1, a1, µ1) and (X2, d2, a2, µ2) are GHP-isometric when there exists an bijective isometry λ from
X1 to X2 such that λ(a1) = a2 and λ∗µ1 = µ2. When no confusion is possible, we will denote a metric
space (possibly endowed with a root and/or a Borel probability measure) by its underlying set. Finally,
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when c > 0, we write c · (X, d, a, µ) = (X, cd, a, µ) for the pointed weighted metric space obtained after
multiplying all distances by c. As same, we write c · (X, d, a) = (X, cd, a) and c · (X, d) = (X, cd).

Let d be a pseudo-distance on a set X . We denote by X/{d = 0} the quotient space obtained by
identifying the points x, y ∈ X such that d(x, y) = 0 and we endow it with the genuine distance (still
denoted by d with a slight abuse of notation) induced by d. When X = [0, 1], we equip the metric space
[0, 1]/{d = 0} with the canonical projection of 1 and with the image of the Lebesgue measure on [0, 1],
so that it is a pointed weighted metric space. We define the following pointed weighted metric spaces:

• the tree coded by f , denoted by Tf , as [0, 1]/{dTf = 0},

• the looptree coded by f , denoted by Lf , as [0, 1]/{dLf = 0},

• the shuffled (with Φ) looptree coded by f , denoted by L̃f , as [0, 1]/{d̃Lf = 0},

• the vernation tree coded by f , denoted by Vf , as [0, 1]/{dVf = 0},

• the shuffled (with Φ) vernation tree coded by f , denoted by Ṽf , as [0, 1]/{d̃Vf = 0}.

Proposition 3. The functions dL, dT, dV are continuous on [0, 1]2. The metric spaces Lf , Tf , and Vf
are thus compact.

Proof. Since dL is a pseudo-distance, we only need to show that dL(t, tn) −→ 0 when tn → t− or
tn → t+. We use the inequality (6) and the fact that f is an excursion. If tn < t < tm then

dL(t, tn) ≤ f(t−) + f(tn)− 2 inf
[tn,t]

f −→
tn→t−

f(t−) + f(t−)− 2f(t−) = 0,

dL(t, tm) ≤ f(t) + f(tm−)− 2 inf
[t,tm]

f −→
tm→t+

f(t) + f(t)− 2f(t) = 0.

We prove the continuity of dT in the same way with (7). The continuity of dV follows.

The pseudo-distance d̃L (as well as d̃V) is not continuous in general because of the possible disconti-
nuities of the ϕ∆. However, it still enjoys some regularity.

Definition 3. We denote by D([0, 1]2) the set of functions ψ : [0, 1]2 −→ R such that for every
monotonous sequences (sn) and (tn) of elements of [0, 1], the sequence (ψ(sn, tn)) converges, and
such that its limit is ψ(lim sn, lim tn) when (sn) and (tn) are non-increasing. We provide a distance ρ2
to D([0, 1]2) by setting

ρ2(ψ1, ψ2) = inf
λ,µ∈Λ

max (||ψ1 − ψ2 ◦ (λ, µ)||∞, ||λ− id||∞, ||µ− id||∞)

for all ψ1, ψ2 ∈ D([0, 1]2), where Λ is the set of increasing bijections from [0, 1] into itself. The distance
ρ2 is not complete but induces a separable and completely metrizable topology onD([0, 1]2), that we call
the Skorokhod topology.

This is a generalization of the Skorokhod spaceD([0, 1]) for bivariate functions, and is more precisely
presented in [40]. Let us at least mention that if (ψn) converges to ψ for this topology and if ψ is
continuous on [0, 1]2, then the convergence also happens uniformly on [0, 1]2. Indeed, such ψ would be
continuous on a compact, so uniformly continuous, which is enough to conclude.

Proposition 4. The metric spaces L̃f and Ṽf are compact and the functions d̃L and d̃V are inD([0, 1]2).
Equivalently, the canonical projection maps from [0, 1] to L̃f or Ṽf are càdlàg.
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Proof. By triangular inequality, it is enough to show that if sn ↑ s and tn ↓ t, then d̃L(tn, t) −→ 0 and
there is s̄ ∈ [0, 1] such that d̃L(sn, s̄) −→ 0 and dT(s, s̄) = 0. We begin by proving d̃L(t, tn) −→ 0.
Thanks to the inequality (8) and Lemma 1, there exists a constant K ∈ (0,∞) such that

d̃◦(t ∧ tn, t) + d̃◦(t ∧ tn, tn) ≤ K
(
f(t) + f(tn)− 2 inf

[t,tn]
f

)
,

but f(t)+f(tn)−2 inf [t,tn] f −→ 0 because f is càdlàg. Hence, we only need to show δ̃t∧tn(x
t
t∧tn , x

tn
t∧tn)

tends to 0. Thanks to Lemma 1, we observe the sequence (t ∧ tn) is non-decreasing. Moreover, the set
{r ∈ [0, 1] : ∆r ≥ ε} is finite for all ε > 0, so only two cases are possible: either ∆t∧tn −→ 0, or there
exists τ ∈ [0, 1] with ∆τ > 0 such that t ∧ tn = τ for n large enough.

• In the first case: We have δ̃t∧tn(x
t
t∧tn , x

tn
t∧tn) ≤ ∆t∧tn −→ 0.

• In the second case: When n is large enough, we have δ̃t∧tn(x
t
t∧tn , x

tn
t∧tn) = δ̃τ (x

t
τ , x

tn
τ ). But,

xtnτ ↑ xtτ because f is càdlàg. The function ϕ∆τ is càglàd, so δ̃τ (xtτ , x
tn
τ ) −→ δ̂τ (x

t
τ , x

t
τ ) = 0.

This concludes the proof of d̃L(t, tn) −→ 0.
We set s′ = inf{r ≥ s : f(r) ≤ f(s−)}, so that inf [s,s′] f = f(s−) = f(s′) = f(s′−) because

f is an excursion. Thus, s ⪯ s′ and dT(s, s′) = 0 by the inequality (5). The sequence (sn ∧ s′) is
non-decreasing according to Lemma 1, so as before, either ∆sn∧s′ −→ 0, or there exists σ ∈ [0, 1] with
∆σ > 0 such that sn ∧ s′ = σ for n large enough.

• In the first case: We set s̄ = s′. As f is càdlàg, it holds f(s̄) + f(sn) − 2 inf [sn,s̄] f −→ 0 by
definition of s′ = s̄. Plus, we have δ̃s̄∧sn(x

sn
s̄∧sn , x

s̄
s̄∧sn) ≤ ∆sn∧s′ −→ 0 by asssumption. Then,

recall the use of (8) and of Lemma 1 to conclude d̃L(sn, s̄) −→ 0. We already know dT(s, s̄) = 0.

• In the second case: When n is large enough, it holds σ = sn ∧ s′ ⪯ s′ so inf [σ,s′] f = inf [sn,s′] f
according to Lemma 1. But, we see inf [sn,s′] f −→ f(s′) by definition of s′, so the inequality (5)
yields dT(σ, s′) = 0. We already know dT(s, s′) = 0 so dT(σ, s) = 0. Let us set

s̄ = inf

{
r ≥ σ : ϕ∆σ

(
f(r)− f(σ−)

∆σ

)
= ϕ∆σ

(
xsσ
∆σ

+

)}
,

which is well-defined because ϕ∆σ is surjective and càglàd, and because f is an excursion. Using
properties of excursions, we find σ ⪯ s̄ and f(s̄) = inf [σ,s̄] f . As a result, σ ⪯ sn ∧ s̄ when n is
large enough and if r ∈ (σ, s̄] then xs̄r = 0. It follows dT(σ, s̄) = 0 = dT(s, s̄) and

d̃L(sn, s̄) ≤ d̃◦(sn ∧ s′, sn) + δ̃σ(x
sn
σ , x

s̄
σ)

when n is large enough. As seen in the previous case, f(sn) − inf [sn,s′] f −→ 0 so (8) and
Lemma 1 ensure d̃◦(sn ∧ s′, sn) −→ 0. Then, we check ϕ∆σ(x

s̄
σ/∆σ) = ϕ∆σ(x

s
σ/∆σ+) using

the left-continuity of ϕ∆σ . Since f(s) ≥ f(s−), xsnσ non-increasingly tends towards xsσ. Thus,
δ̃σ(x

sn
σ , x

s̄
σ) −→ 0 and the proof is completed.

2.4 First properties and an example

Here, we provide some basic properties of the codings f ∈ H 7−→ dLf , d̃
L
f , d

T
f , d

V
f , d̃

V
f , that they share

with the classical coding of a tree (1). These properties make the codings somewhat easy to manipulate.

Proposition 5. The application f ∈ H 7−→ dLf (respectively dTf , dVf ) is homogeneous. Namely, if α > 0,
then it holds dLαf = αdLf . Thus, the pointed weighted metric spaces Lαf and α ·Lf are GHP-isometric.

The application f ∈ H 7−→ dLf (respectively dTf , d̃Lf , dVf , d̃Vf ) enjoys the time-changing property.
Namely, for any increasing bijection λ : [0, 1] −→ [0, 1], it holds dLf◦λ(s, t) = dLf (λ(s), λ(t)) for all
s, t ∈ [0, 1]. Thus, the pointed metric spaces Lf◦λ and Lf are pointed-isometric.
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Proof. The first thing to see is that αf and f ◦λ are indeed excursions. Then, it is obvious that xts(αf) =
αxts(f) and xts(f ◦λ) = x

λ(t)
λ(s)(f), for all s, t ∈ [0, 1]. In particular, ∆s(αf) = α∆s(f) and ∆s(f ◦λ) =

∆λ(s)(f). By definition of δs and δ̃s and thanks to the identities (9), (10), and (11), the proposition
follows. Let us point out that we have used δs(αa, αb) = αδs(a, b) which does not hold for δ̃s, which
explains why f 7−→ d̃Lf and f 7−→ d̃Vf are not homogeneous.

Another important property of the codings is the branching property. It tells that a "sub-excursion"
codes a subspace of the looptree or the vernation tree. It allows observing directly the structure of the
coded space on the graph of the excursion. We have already presented this idea when we defined the
genealogy ⪯.

Definition 4. Let (X0, d0, a0) and (X1, d1, a1) be two pointed metric spaces and let a ∈ X0. We
write a∗0 = a and a∗1 = a1. The gluing of X1 on X0 at a is the pointed metric space denoted by
(X0 ∨a X1, d, a0) that is obtained from the quotient of the disjoint union X0 ⊔X1 by the identification
a ∼ a1, endowed with the distance d defined by setting d(x, y) = di(x, y) if x, y ∈ Xi with i ∈ {0, 1},
and by setting d(x, y) = di(x, a

∗
i ) + d1−i(a

∗
1−i, y) if x ∈ Xi and y ∈ X1−i with i ∈ {0, 1}. We see X0

and X1 as closed subsets of X0 ∨a X1, so that X0 ∪X1 = X0 ∨a X1, X0 ∩X1 = {a} = {a1}, and the
distinguished points of X0 and X0 ∨a X1 are the same.

Proposition 6. The application f ∈ H 7−→ dLf (respectively dTf , d̃Lf , dVf , d̃Vf ) enjoys the branching
property. Namely, let u, v ∈ [0, 1] be such that u ≺ v and f(u−) = f(v−), and let us set

g : t ∈ [0, 1] 7−→

{
f(t) if t /∈ [u, v)

f(u−) if t ∈ [u, v)
,

h : t ∈ [0, 1] 7−→

{
f(u+ t(v − u))− f(u−) if t < 1

0 if t = 1
.

If s, t ∈ [0, 1) and a, b ∈ [0, 1]\[u, v), then

dLf (a, b) = dLg(a, b),

dLf (u+ s(v − u), u+ t(v − u)) = dLh(s, t),

dLf (u+ s(v − u), a) = dLg(a, u) + dLh(s, 1).

Thus, the pointed metric space Lf is pointed-isometric to the gluing of Lh on Lg at the canonical
projection of u.

Proof. First, we observe that g and h are indeed excursions. We only show the result for dL and dT, as
the same proof holds for d̃L and because the branching property is preserved by linear combination. Let
a, b ∈ [0, 1]\[u, v) and s, t ∈ [0, 1). We assume a ≤ b and s ≤ t, and we set w = u + s(v − u) to
lighten the notations. We immediately observe that xu+t(v−u)u+s(v−u)(f) = xts(h), and if [u, v) ∩ [a, b] = ∅
then xba(f) = xba(g). If [a, b] ⊂ [u, v) then we still have xba(f) = xba(g) because inf [u,v) f = f(u−) =
inf [u,v) g. Concerning xwa , if w < a then xwa (f) = xua(g) = 0 by definition, since u ≤ w. If a ≤ w then
a < u ≤ w < v, so xwa (f) = xua(g) still holds, because

inf
[u,w]

f ≥ inf
[u,v]

f ≥ f(u−) = inf
[u,w]

g ≥ inf
[a,u]

f = inf
[a,u]

g.

Concerning xaw, if a < w then xaw(f) = xaw(g) = 0 by definition. If w ≤ a then u ≤ w < v ≤ a, so
xaw(f) = xaw(g) = 0 still holds because

f(w−) ≥ min

(
f(u−), inf

[u,v]
f

)
≥ f(u−) = g(w−) = f(v−) = g(v−) ≥ max

(
inf
[w,a]

f, inf
[w,a]

g

)
.
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Moreover, xuw(g) ≤ ∆w(g) = 0 and x1s(h) ≤ h(1) = 0, so that xuw(g) = x1s(h) = 0. To sum up, we
have

∆a(f) = ∆a(g) and ∆u+s(v−u)(f) = ∆s(h),

xba(f) = xba(g) and xu+t(v−u)u+s(v−u)(f) = xts(h),

xwa (f) = xua(g) and xaw(f) = xaw(g) = xuw(g) = x1s(h) = 0.

Combining these identities with the formula (9), we obtain the branching property for dL. Some easy
other observations together with the formula (11) and the above identities lead to the branching property
for dT.

Corollary 1. Let s, t ∈ [0, 1]. If s ⪯ t, then dT(t, 1) = dT(s, 1) + dT(s, t).

Proof. Let s̄ = inf{r ≥ t : f(r) = f(s−)}, we have t ≤ s̄, s ⪯ s̄, and f(s−) = f(s̄) = f(s̄−).
Observe f(s̄) = inf [t,s̄] f ≤ inf [s,t] f so dTf (s, s̄) = 0 thanks to (5). If t = s̄ then the result becomes
obvious. Let us assume that t < s̄. We use the notations of Proposition 6 with u = s and v = s̄. The
inequality (5) gives dTf (0, 1) = dTh (0, 1) = dTf (s, s̄) = dTg (s, s̄) = 0. Then, the branching property
implies the desired result.

Let us discuss how one can intuitively understand the looptree or the vernation tree coded by an
excursion f from a glance at its graph. On the one hand, if f does not have any jump, then (9) and (11)
ensure that dL = 0 and that dT is equal to the classical tree pseudo-distance dclas defined by (1). On the
other hand, each jump of f indeed corresponds to a loop in the associated looptree or vernation tree. Let
s ∈ [0, 1] such that ∆s > 0 and let x ∈ C, the times

τ(x) = inf

{
t ≥ s :

f(t)− f(s−)
∆s

= x

}
,

τ̃(x) = inf

{
t ≥ s : ϕ∆s

(
f(t)− f(s−)

∆s

)
= x

}
are well-defined, with xτ(x)s /∆s = x and ϕ∆s(x

τ̃(x)
s /∆s) = x. Then, we let the reader check that

dT(τ(x), τ(y)) = dT(τ̃(x), τ̃(y)) = 0 and

dL(τ(x), τ(y)) = δs(x
τ(x)
s , xτ(y)s ) = ∆sδ(x, y) = δ̃s(x

τ̃(x)
s , xτ̃(y)s ) = d̃L(τ̃(x), τ̃(y))

for any x, y ∈ C. Hence, the metric subspaces of Lf and L̃f respectively induced by {τ(x) : x ∈ C}
and {τ̃(x) : x ∈ C} are both isometric to ∆s · C, namely a metric circle of length ∆s. The metric
subspaces of Vf and Ṽf induced by the same previous subsets of [0, 1] are isometric to 2∆s · C, namely
a metric circle of length 2∆s. These observations together with the homogeneity, the time-changing
property, and the branching property are generally enough to accurately draw Tf , Lf , or Vf from the
graph of f when it has simple variations. We give an example with Figure 2. For L̃f and Ṽf , the lack of
homogeneity and the complexity of the shuffle can make them hard to be precisely drawn. Nevertheless,
we can understand them as transformed versions of Lf and Vf where the positions of the joint points
between loops or trees were shuffled, see Figure 2 once again.

3 Unification and relations between trees, looptrees, and vernation trees

In this section, we inspect more in-depth the intuitive principle that jumps code for loops and continuous
growths code for branches in the associated vernation tree. The vernation distance dV, or d̃V, is the
combinaison of two distances dL, or d̃L, and dT. Similarly, we will see that we can always decompose an
excursion into two others whose associated vernation pseudo-distances are respectively reduced to 2dL

and dT. Let us begin with the definition of these two kinds of excursions.
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(a) An excursion f . (b) Its coded tree Tf .

(c) Its coded looptree Lf . (d) Its coded shuffled looptree L̃f .

(e) Its coded vernation Vf . (f) Its coded shuffled vernation tree Ṽf .

Figure 2: An example of an excursion with simple variations and of the quotient metric spaces that it
codes. We point out that the representations of the shuffled looptree and the shuffled vernation tree are
only likely examples because they could differ depending on the chosen shuffle Φ. The representations
given are isometric with respect to the scale of the y-axis of the graph of the excursion.
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Definition 5. Let f be an excursion. We say f is a continuous excursion when ∆t = 0 for all t ∈ [0, 1].
Notice that it do not only require f to be continuous on [0, 1] but also that f(0) = 0. We say f is a pure
jump growth (PJG) excursion when f(t) =

∑
r⪯t

xtr for all t ∈ [0, 1].

The following lemma is practical to both wrap one’s head around the notion of PJG excursions and
to identify them in simple cases.

Lemma 4. Let f be an excursion. If there exists a partition 0 = r0 < r1 < ... < rn < rn+1 = 1 such
that f is non-increasing on [ri, ri+1) for all 0 ≤ i ≤ n, then f is PJG.

Proof. First, observe that f is PJG if and only if dT(t, 1) = 0 for all t ∈ [0, 1]. Indeed, x1s ≤ f(1) = 0 for
all s ∈ [0, 1] so the identity (11) becomes dT(t, 1) = f(t)−

∑
r⪯t

xtr. We prove the lemma by induction

on n. If n = 0, then f is non-increasing on [0, 1] so

dT(t, 1) ≤ f(t)− xt0 = f(t)− inf
[0,t]

f = 0,

and it follows that f is PJG. If n ≥ 1, we set r̄ = inf{r ≥ rn : f(r) = f(rn−)} so that rn ⪯ r̄
and f(rn−) = f(r̄) = f(r̄−). We can assume rn < r̄ because otherwise, f(rn) = f(rn−) which
means that f is in fact non-increasing on [rn−1, 1] and so f is PJG by induction. We apply the branching
property as given by Proposition 6 with u = rn and v = r̄ and we keep the same notations. It is easy
to see that h is non-increasing on [0, 1] and that g is non-increasing on [rn−1, 1] and on [ri, ri+1) for all
0 ≤ i ≤ n − 2. By induction, g and h are PJG, so dTg (t, 1) = dTh (t, 1) = 0 for all t ∈ [0, 1]. The
branching property then ensures dTf (t, 1) = 0 for all t ∈ [0, 1], so f is PJG.

For any ε > 0, we define the two following operators.

J : H −→ H Jε : H −→ H

f 7−→ Jf : t 7→
∑
r⪯t

xtr f 7−→ Jεf : t 7→
∑
r⪯t

∆r≥ε

xtr

The operator J is the same as in Theorem 1 and the operator Jε will be necessary for some approx-
imations later. We are now ready to formulate the decomposition of an excursion into a sum of a
continuous excursion with a PJG excursion, and how this decomposition translates into the associated
pseudo-distances.

Theorem 4. Let f be an excursion and let ε > 0. The following points hold.

(i) The function f − Jf is a continuous excursion and the functions Jf and Jεf are PJG excursions.
Moreover, for any t ∈ [0, 1], ∆t(J

εf) > 0 =⇒ ∆t(J
εf) ≥ ε.

(ii) The excursion f is PJG if and only if Jf = f .

(iii) The excursion f is a continuous excursion if and only if Jf = 0.

(iv) We have Jf = Jεf if and only if for any t ∈ [0, 1], ∆t(f) > 0 =⇒ ∆t(f) ≥ ε.

(v) The function f − Jf + Jεf is an excursion and J(f − Jf + Jεf) = Jεf .

Proof. For any t ∈ [0, 1], the quantities Jf(t) and Jεf(t) are sums of non-negative terms, so Jf(t) ≥ 0
and Jεf(t) ≥ 0. Plus, x1t (f) ≤ f(1) = 0 so Jf(1) = Jεf(1) = 0 = f(1). It is clear f(0)− J(0) = 0.
As seen in the proof of the above lemma, we have

dTf (t, 1) = f(t)− Jf(t). (12)
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Since dTf is a continuous pseudo-distance, this immediately gives that f − Jf is continuous and non-
negative on [0, 1], that Jf is càdlàg, and that ∆t(Jf) = ∆t(f) for all t ∈ [0, 1]. We remark the fact that
f is an excursion implies that for any r ∈ [0, 1], the function t ∈ [0, 1] 7−→ xtr(f) is càdlàg with a unique
jump at r, which has height ∆r(f). Hence, the expression

Jεf(t) =
∑
r∈[0,1]

∆r(f)≥ε

xtr(f)

shows Jεf is càdlàg as a finite sum of càdlàg functions and ∆t(J
εf) = ∆t(f)1∆t(f)≥ε. Let us show

that Jf and Jεf are PJG to complete the proof of the point (i). The set {s ∈ [0, 1] : ∆s(f) ≥ ε} is
finite, so it provides a partition 0 = s0 < s1 < ... < sn−1 < sn = 1 such that Jεf is non-increasing on
[si, si+1) for all 0 ≤ i ≤ n−1, as a finite sum of non-increasing functions. Hence, Jεf is PJG according
to Lemma 4. Let s, t, u ∈ [0, 1] such that s ≤ u ≤ t. If s ⪯f t then s ⪯f u and

Jf(u) = Jf(s−) + f(u)− f(s−)− dTf (s, u)

thanks to (12) and Corollary 1. The inequality (5) leads to

xus ≤ Jf(u)− Jf(s−) ≤ f(u)− f(s−).

By taking the infimum over u, we can deduce that if s ⪯f t then xts(Jf) = xts(f). Now, we set
s̄ = inf{r ≥ s : f(r) = f(s−)}, so that s ⪯f s̄ but xs̄s(f) = 0. Then, if we do not have s ⪯f t then
s̄ < t, and xts(Jf) ≤ xs̄s(Jf) = xs̄s(f) = 0 = xts(f). Thus, we have proven that for all s, t ∈ [0, 1],

xts(Jf) = xts(f). (13)

It follows that Jf is PJG because

Jf(t) =
∑
r∈[0,1]

xtr(f) =
∑
r∈[0,1]

xtr(Jf) =
∑
r⪯Jf t

xtr(Jf).

The point (ii) is a rewording of the definition of PJG excursions. The point (iii) follows from the
definition of J and from (12), by continuity of dT. Proving the point (iv) is easy by using the identities
∆t(Jf) = ∆t(f) and ∆t(J

εf) = ∆t(f)1∆t(f)≥ε.
It remains to prove the point (v). We set g = f − Jf + Jεf . First, it is easy to see that g is

indeed an excursion with the expression g(t) = dTf (t, 1)+ Jεf(t) inherited from (12). Plus, it also gives
∆t(g) = ∆t(J

εf) = ∆t(f)1∆t(f)≥ε. Also recall ∆t(Jf) = ∆t(f). Let s, t ∈ [0, 1] with s ⪯f t and
u ∈ [s, t], so that s ⪯f u. We obtain

Jf(u)− Jεf(u) ≥ (Jf(s)−∆s(f))−
(
Jεf(s)−∆s(f)1∆s(f)≥ε

)
(14)

by expressing the left-hand-side as a series over r ∈ [0, 1], then by cutting the series at s, and by applying
Lemma 2. A similar trick together with Corollary 1 leads to

dTf (u, 1) + Jεf(u) ≥ dTf (s, 1) +
(
Jεf(s)−∆s(f)1∆s(f)≥ε

)
+ xus (f)1∆s(f)≥ε. (15)

The expressions for ∆s(Jf), ∆s(J
εf), and g and the bounds (14) and (15) eventually get us

xus (f)1∆s(f)≥ε ≤ g(u)− g(s−) ≤ f(u)− f(s−),

which yields xts(f)1∆s(f)≥ε ≤ xts(g) ≤ xts(f) by taking the infimum over u. But as xts(g) ≤ ∆s(g) =
∆t(f)1∆s(f)≥ε, we deduce that if s ⪯f t then xts(g) = xts(f)1∆s(f)≥ε. Conversely, the same argument
as for Jf gives that if we do not have s ⪯f t then xts(g) = xts(f) = 0. Thus, we have shown that for all
s, t ∈ [0, 1],

xts(f − Jf + Jεf) = xts(f)1∆s(f)≥ε. (16)
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Finally, we end the proof by writing

J(f − Jf + Jεf)(t) =
∑
r∈[0,1]

xtr(f − Jf + Jεf) =
∑
r∈[0,1]

∆r(f)≥ε

xtr(f) = Jεf(t).

Theorem 5. Let f be an excursion. It holds dTf = dTf−Jf = dclasf−Jf , dLf = dLJf , and d̃Lf = d̃LJf . Moreover,

dLJεf (s, t) =
∑
r∈[0,1]

∆r(f)≥ε

δfr
(
xsr(f), x

t
r(f)

)
, (17)

d̃LJεf (s, t) =
∑
r∈[0,1]

∆r(f)≥ε

δ̃fr
(
xsr(f), x

t
r(f)

)
, (18)

for all s, t ∈ [0, 1].

Before proving the latter theorem, we sum up why vernation trees can be considered as a natural
unification of trees and looptrees. On the one hand, if f is a continuous excursion then dL = 0 and
dV = dT = dclas, so f naturally codes a real tree. On the other hand, if f is a PJG excursion then dT = 0
and dV = 2dL, so f naturally codes a looptree. Conversely, each excursion has a natural continuous part,
which codes its tree distance dT, and a natural PJG part, which codes its looptree distance dL. Observe
Theorem 1 is a direct consequence of Theorems 4 and 5.

Proof. Recall (1) for the definition of dclas. Let s, t ∈ [0, 1] with s < t. The identities (12) and (11) yield

dTf−Jf (s, t) = dclasf−Jf (s, t) = dTf (s, 1) + dTf (t, 1)− 2 inf
u∈[s,t]

dTf (u, 1)

because f − Jf is a continuous excursion. If u ∈ [s, t] then s ∧f t ⪯f u so dTf (u, 1) ≥ dTf (s ∧f t, 1) by
Corollary 1. Moreover, Lemma 1 and the inequality (5) allow us to bound

inf
u∈[s,t]

dTf (s ∧f t, u) ≤ inf
u∈[s,t]

f(u)− inf
[s,t]

f = 0.

Hence, we conclude

dTf−Jf (s, t) = dTf (s, 1) + dTf (t, 1)− 2dTf (s ∧f t, 1) = dTf (s ∧f t, s) + dTf (s ∧f t, t) = dTf (s, t)

with another application of Corollary 1. Thanks to (13), it holds ∆r(Jf) = ∆r(f) and xtr(Jf) = xtr(f)
for all r ∈ [0, 1]. The formula (9) then implies dLJf = dLf , and the formula (10) implies d̃LJf = d̃Lf .
The same argument can be applied to f − Jf + Jεf , so that ∆r(J

εf) = ∆r(f − Jf + Jεf) and
xtr(J

εf) = xtr(f − Jf + Jεf) thanks to the point (v) of Theorem 4. Furthermore, the identity (16)
ensures ∆r(f − Jf + Jεf) = ∆r(f)1∆r(f)≥ε and xtr(f − Jf + Jεf) = xtr(f)1∆r(f)≥ε. Eventually,
the formulas (9) and (10) lead to

dLJεf (s, t) =
∑
r∈[0,1]

∆r(Jεf)>0

δJ
εf

r

(
xsr(J

εf), xtr(J
εf)
)
=

∑
r∈[0,1]

∆r(f)≥ε

δfr
(
xsr(f), x

t
r(t)
)
,

d̃LJεf (s, t) =
∑
r∈[0,1]

∆r(Jεf)>0

δ̃J
εf

r

(
xsr(J

εf), xtr(J
εf)
)
=

∑
r∈[0,1]

∆r(f)≥ε

δ̃fr
(
xsr(f), x

t
r(t)
)
.
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Corollary 2. For all excursion f and ε ∈ (0, 1), it holds

||dLf − dLJεf ||∞ ≤ 2||Jf − Jεf ||∞,

||d̃Lf − d̃LJεf ||∞ ≤ 2K||Jf − Jεf ||∞,

where K is a finite constant which only depends on the shuffle Φ, as

K = sup
∆∈(0,1]

sup
x∈(0,1]

1

x
δ (ϕ∆(0), ϕ∆(x)) .

Proof. From the definition of a shuffle, we know K is indeed finite. By definition, we have δ̃fr (0, x) ≤
Kx for any r ∈ [0, 1] such that ∆r(f) ≤ 1 and for any x ∈ [0,∆r(f)]. Plus, it is clear that δfr (0, x) ≤ x.
It follows ∑

r∈[0,1]
∆r(f)<ε

δfr
(
0, xtr(f)

)
≤

∑
r∈[0,1]

∆r(f)<ε

xtr(f) = Jf(t)− Jεf(t),

∑
r∈[0,1]

∆r(f)<ε

δ̃fr
(
0, xtr(f)

)
≤

∑
r∈[0,1]

∆r(f)<ε

Kxtr(f) = K (Jf(t)− Jεf(t)) .

We conclude by applying the formulas (9), (10), (17), and (18), as well as the triangular inequalities of
the δfr and the δ̃fr .

We finish this section by providing some tools to study convergences involving J or Jε.

Proposition 7. Let f be an excursion, ε > 0, and let λ : [0, 1] −→ [0, 1] be an increasing bijection. The
following points hold.

(i) J(Θf) = Θ(Jf) and Jε(Θf) = Θ(Jεf),

(ii) J(f ◦ λ) = (Jf) ◦ λ and Jε(f ◦ λ) = (Jεf) ◦ λ,

(iii) If ε /∈ {∆t(f) : t ∈ [0, 1]}, then Jε is continuous at f with respect to the topology of uniform
convergence,

(iv) ||Jf − Jεf ||∞ −→ε→0
0.

Proof. When s, t ∈ [1/2, 1], recall Θf(s) = f(2s−1) so xts(Θf) = x2t−1
2s−1(f). Then, the point (i) comes

from the fact that ∆r(Θf) = 0 when r ∈ [0, 1/2). As for the proof of the time-changing property, we
deduce (ii) from the strict monotony of λ and from the equality xts(f ◦λ) = x

λ(t)
λ(s)(f) for all s, t ∈ [0, 1].

Let us prove (iii). The excursion f is càdlàg so the set {t ∈ [0, 1] : ∆t(f) > ε/2} is finite. Thus,

η1 = max{∆t(f) : t ∈ [0, 1] such that ε/2 < ∆t(f) < ε} ∪ {ε/2},
η2 = min{∆t(f) : t ∈ [0, 1] such that ∆t(f) ≥ ε} ∪ {2ε}

are well-defined and η1 < ε < η2. Let g be an excursion such that ||f − g||∞ < min(ε− η1, η2 − ε)/2.
If ∆r(g) ≥ ε then ∆r(f) > η1 and we obtain ∆r(f) ≥ ε by definition of η1. Likewise, if ∆r(g) < ε
then ∆r(f) < η2 and we obtain ∆r(f) < ε by definition of η2. Hence,

Jεg(t) =
∑
r∈[0,1]

∆r(f)≥ε

xtr(g)
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for all t ∈ [0, 1], so ||Jεf − Jεg||∞ ≤ 2N(f) × ||f − g||∞ where we denote by N(f) the number of
jumps of f of height at least ε. The point (iii) follows. To show the point (iv), we mimic the proof of
Dini’s theorem. We fix ν > 0 and we set

Un = {t ∈ [0, 1] : Jf(t)− J1/nf(t) < ν and Jf(t−)− J1/nf(t−) < ν}

for all n ≥ 1. We remark that Un ⊂ Un+1 because J1/nf ≤ J1/(n+1)f ≤ Jf . The functions Jf and
J1/nf are càdlàg, so Un is open for all n ≥ 1. Furthermore, the monotone convergence theorem implies
that J1/nf(t) −→

n→∞
Jf(t) for all t ∈ [0, 1]. When n is large enough (depending on t), we have

∆t(J
1/nf) = ∆t(f)1∆t(f)≥1/n = ∆t(f) = ∆t(Jf)

which yields Jf(t−) − J1/nf(t−) = Jf(t) − J1/nf(t). Therefore, the family (Un)n≥1 covers [0, 1],
so there exists N ≥ 1 such that UN = [0, 1] by compactness. As a result, ||Jf − J1/nf ||∞ ≤ ν when
n ≥ N .

4 Limit theorems

The main flaw of the pseudo-distances dL, dT, and dV is that they do not enjoy any good property of
functional continuity, unlike the classical pseudo-distance dclas which induces a real tree from a contin-
uous excursion f . We have already explained why a PJG excursion should code a looptree. However, it
is possible to show every encoding of a pseudo-distance from an excursion cannot be continuous if it is
equal to dLf whenever f is PJG. For example, we observe the two sequences of functions defined by

(fn(t), gn(t)) =

{
(k/2n+ 1/n− (t− k/2n), (k + 1)/2n) if k

2n ≤ t <
k+1
2n with 0 ≤ k ≤ n− 1

(1/2− (t− 1/2), 1/2− (t− 1/2)) if 1/2 ≤ t ≤ 1

are PJG thanks to Lemma 4. Both have the same asymptotic behavior because both uniformly converge
to the same continuous excursion f : t ∈ [0, 1] 7−→ 1/2−|t−1/2|, while their associated looptrees have
very different limits. Indeed, on the one hand, Lfn consists of a chain of n loops of length 1/n put back
to back. Intuitively, this sequence converges to a segment of length 1/2, which is also Tf . On the other
hand, Lgn consists of a bouquet of n loops of length 1/2n all glued at the same point. This sequence
converges to a single point, which is also Lf , as the sequence of the diameters tends to 0.

4.1 Continuity for the shuffled vernation tree pseudo-distance

We fix a shuffle Φ and we set B(Φ) = B1(Φ) ∪ B2(Φ), where

B1(Φ) = {∆ > 0 : ∆ discontinuity point of Φ for the Skorokhod topology} ,
B2(Φ) = {(∆, x) : ∆ > 0, x ∈ [0, 1], x discontinuity point of ϕ∆} .

We are going to show that d̃V enjoys a property of functional continuity, which justifies its construction.
The set B(Φ) will represent the imperfections of that continuity. Let us remark the definition of a shuffling
implies B(Φ) ∩ ((0,∞)× {0, 1}) = ∅. For any excursion f , we also define Bf = B1

f ∪B2
f , where

B1
f = {∆t : t ∈ [0, 1] such that ∆t > 0} ,

B2
f =

{(
∆r,

xtr
∆r

)
: r, s, t ∈ [0, 1] such that s ̸= t,∆r > 0, and xtr = xsr > 0

}
,

which will indicate if the functional g 7−→ d̃Vg is continuous at f . We remind that the set of excursions
H is a closed subset of the Skorokhod space D([0, 1]), endowed with the Skorokhod distance ρ. Also
recall from Definition 3 the Skorokhod topology on D([0, 1]2) induced by the distance ρ2. Furthermore,
we already know from Proposition 4 that d̃Vf ∈ D([0, 1]2) for any f ∈ H.
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Theorem 6. Let f be an excursion. If Bf ∩ B(Φ) = ∅, then the functional g ∈ H 7−→ d̃Vg ∈ D([0, 1]2)
is continuous at f for the Skorokhod topologies.

Proof. The proof requires a lot of care and can be tedious sometimes. The main idea is to use the
convergence in (3) to forget the small jumps of f . Then, the hypothesisBf ∩B(Φ) = ∅ and the continuity
of Φ allow us to control the variations generated by the big jumps.

Choice of some parameters. Let ε ∈ (0, 1). We are able to choose some ∆ ∈ (0, ε) such that

if u ∈ (0, 2∆) then sup
x∈(0,1]

∣∣∣∣2xδ (ϕu(0), ϕu(x))− 1

∣∣∣∣ ≤ ε (19)

thanks to (3). The set {s ∈ [0, 1] : ∆s ≥ ∆} is finite because f is càdlàg. We denote by N its size and
by r1 < r2 < ... < rN its elements. The functions ϕ∆rn are càglàd and continuous at 0. Hence, we have
some ν > 0 and some partitions of [0, 1] denoted by 0 < yn,1 < yn,2 < ... < yn,kn < 1, where the yn,i
are discontinuity points of ϕ∆rn for any 1 ≤ i ≤ kn, such that for all 1 ≤ n ≤ N ,

max
1≤i≤kn

sup
y,y′∈(yn,i,yn,i+1]

|y−y′|≤ν

δ(ϕ∆rn (y), ϕ∆rn (y
′)) ≤ ε

N + 1
, (20)

sup
y,y′∈[0,yn,1]
|y−y′|≤ν

δ(ϕ∆rn (y), ϕ∆rn (y
′)) ≤ ε

N + 1
, (21)

with yn,kn+1 = 1 by convention. We now take a parameter η > 0 that respects the following inequalities:

η ≤ min

(
∆

4
,

ε

N + 1

)
and

(
1 +

4

∆
+

4

∆2
||f ||∞

)
η ≤ ν. (22)

The fact that f is an excursion ensures that for 1 ≤ n ≤ N and 1 ≤ i ≤ kn,

tn,i = inf{t ≥ rn : f(t)− f(rn−) = yn,i∆rn}

is well-defined, f(tn,i) = f(tn,i−), and xtn,irn = yn,i∆rn > 0. In particular, the tn,i, for 1 ≤ n ≤
N and 1 ≤ i ≤ kn, are continuity points of f , so they are distinct from the rn, for 1 ≤ n ≤ N .
Moreover, if tn,i = tm,j with n < m, 1 ≤ i ≤ kn and 1 ≤ j ≤ km, then xtn,irn = xrmrn because
f(rm−) ≤ inf [rm,tm,j ] f . Since tn,i ̸= rm, we find (∆rn , yn,i) ∈ Bf . By choice of yn,i, we also have
(∆rn , yn,i) ∈ B(Φ), which contradicts the assumptionBf ∩B(Φ) = ∅. If tn,i = tn,j , with 1 ≤ i, j ≤ kn,
then yn,i∆rn = x

tn,i
rn = x

tn,j
rn = yn,j∆rn so i = j. Thus, the tn,i are distinct.

Eventually, we obtain the existence of some γ ∈ (0, ε) such that the intervals [tn,i − γ, tn,i + γ], for
1 ≤ n ≤ N and 1 ≤ i ≤ kn, are included in [0, 1], disjoint, do not contain any of the rm, and such that

if t ∈ [0, 1] with |t− tn,i| ≤ γ then |f(t)− f(tn,i)| ≤ η/3. (23)

We set
ω = min

1≤n≤N
1≤i≤kn

min(x
tn,i−γ
rn − xtn,irn , x

tn,i
rn − x

tn,i+γ
rn ),

and we know ω > 0 thanks to the assumption Bf ∩ B(Φ) = ∅. Then, we choose ξ ∈ (0, η/3) such that(
8

∆
+ 1

)
ξ <

ω

2 + ||f ||∞
. (24)

Recall the definition of the Skorokhod distance←−ρ for C-valued càglàd functions given just before Def-
inition 2. Because Φ : u > 0 7−→ ϕu is continuous at ∆rn for 1 ≤ n ≤ N thanks to the assumption
Bf ∩ B(Φ) = ∅, we can choose some ν ′ ∈ (0,∆) such that for all 1 ≤ n ≤ N ,

sup
|u−∆rn |≤ν′

←−ρ (ϕu, ϕ∆rn ) ≤ ξ/2. (25)
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Correspondence between big discontinuities. Let g ∈ H such that ||f−g||∞ ≤ min(ξ, ν ′/2). We are
going to construct an increasing bijection from [0, 1] to itself which makes correspond the discontinuity
points of d̃Vf and d̃Vg . If s, t ∈ [0, 1] then |xts(f)− xts(g)| ≤ 2||f − g||∞. In particular for s = t, we have
|∆s(f) − ∆s(g)| ≤ ν ′, so (25) gives us some increasing bijections from [0, 1] to itself, denoted by µn
for 1 ≤ n ≤ N , such that

||µn − id||∞ ≤ ξ and sup
x∈[0,1]

δ
(
ϕ∆rn (g)(x), ϕ∆rn (f) ◦ µn(x)

)
≤ ξ. (26)

Let λ be the continuous function which is affine on the intervals generated by the points

{tn,i, tn,i + γ, tn,i − γ : 1 ≤ n ≤ N and 1 ≤ i ≤ kn}

such that λ(0) = 0, λ(1) = 1, λ(tn,i − γ) = tn,i − γ, λ(tn,i + γ) = tn,i + γ, and

λ(tn,i) = inf

{
t ≥ rn :

xtrn
∆rn

(g) ≤ µ−1
n (yn,i)

}
.

It is well-defined because g is an excursion. Observe that xλ(tn,i)rn (g) = ∆rn(g) × µ−1
n (yn,i). Let us

prove that λ is an increasing function, close to the identity. Let 1 ≤ n ≤ N and 1 ≤ i ≤ kn. We use
||f − g||∞ ≤ ξ then we recall the definitions of tn,i and ω to find

x
tn,i−γ
rn

∆rn

(g) ≥ x
tn,i−γ
rn (f)− 2ξ

∆rn(g)
≥ yn,i∆rn(f) + ω − 2ξ

∆rn(g)
.

Plus, we found ∆rn(g) ≥ ∆rn(f) − 2ξ ≥ ∆ − 2η, so ∆rn(g) ≥ ∆/2 according to (22). We also have
∆rn(g) ≤ ∆rn(f) + 2ξ ≤ 2 + ||f ||∞. It follows

x
tn,i−γ
rn

∆rn

(g) ≥ yn,i +
ω

2 + ||f ||∞
− 8ξ

∆
,

then successive applications of (26) and (24) lead to

x
tn,i−γ
rn

∆rn

(g) ≥ µ−1
n (yn,i) +

ω

2 + ||f ||∞
−
(

8

∆
+ 1

)
ξ > µ−1

n (yn,i).

We prove xtn,i+γrn (g)/∆rn(g) < µ−1
n (yn,i) in the same way. Thus, |λ(tn,i) − tn,i| < γ. We deduce that

λ is strictly increasing and
||λ− id||∞ ≤ γ ≤ ε. (27)

Moreover, λ is a bijection from [0, 1] to itself because λ(0) = 0, λ(1) = 1, and λ is continuous.

Control on the big loops. We easily see that if t is outside all the intervals [tn,i − γ, tn,i + γ] then
λ(t) = t. But if t ∈ [tn,i − γ, tn,i + γ] then λ(t) ∈ [tn,i − γ, tn,i + γ] too. Therefore, (23) allows us to
deduce

||f − g ◦ λ||∞ ≤ ||f − f ◦ λ||∞ + ||f − g||∞ ≤ 2η/3 + η/3 = η.

Now, we set h = g ◦ λ so that ||f − h||∞ ≤ η. Our goal is to show that ||d̃Vf − d̃Vh ||∞ is small,
but before that, we are going to bound the difference of the distances on the big loops. We begin by
recalling that the point rn is outside all the intervals [tn,i − γ, tn,i + γ] so λ(rn) = rn, which implies
∆rn(h) = ∆rn(g) and xtrn(h) = x

λ(t)
rn (g). Let t ≥ rn and 1 ≤ i ≤ kn. Recall (∆rn(f), yn,i) /∈ Bf

because (∆rn(f), yn,i) ∈ B(Φ), so

xtrn
∆rn

(f) ≤ yn,i ⇐⇒ tn,i ≤ t.
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Then, λ(rn) = rn ≤ λ(t) because λ is increasing. By definition of λ(tn,i) together with the observation
that xλ(tn,i)rn (g) = ∆rn(g)× µ−1

n (yn,i), we have xλ(t)rn (g)/∆rn(g) ≤ µ−1
n (yn,i)⇐⇒ λ(tn,i) ≤ λ(t). The

functions λ and µn are strictly increasing so it follows

xtrn
∆rn

(f) ≤ yn,i ⇐⇒ µn

(
xtrn
∆rn

(h)

)
≤ yn,i.

Hence, the points xtrn(f)/∆rn(f) and µn
(
xtrn(h)/∆rn(h)

)
are either both in the interval [0, yn,1] or

both in the same interval (yn,i, yn,i+1] with 1 ≤ i ≤ kn. Furthermore, we can bound∣∣∣∣ xtrn∆rn

(f)− µn
(
xtrn
∆rn

(h)

)∣∣∣∣ ≤ ||µn − id||∞ +
2||f − h||∞
∆rn(g)

+ |xtrn(f)|
2||f − h||∞

∆rn(f)∆rn(g)
,

so that the inequalities ∆rn(g) ≥ ∆/2, (26), and (22) give∣∣∣∣ xtrn∆rn

(f)− µn
(
xtrn
∆rn

(h)

)∣∣∣∣ ≤ (1 + 4

∆
+

4

∆2
||f ||∞

)
η ≤ ν.

Therefore, it follows from (20) and (21) that

δ

(
ϕ∆rn (f)

(
xtrn
∆rn

(f)

)
, ϕ∆rn (f)

(
µn

(
xtrn
∆rn

(h)

)))
≤ ε

N + 1
(28)

for all t ∈ [0, 1], the case t < rn being obvious. Now, let s, t ∈ [0, 1], the triangular inequality on δ
implies∣∣∣δ̃frn (xsrn(f), xtrn(f))− δ̃hrn (xsrn(h), xtrn(h))∣∣∣ ≤ |∆rn(f)−∆rn(h)|

+∆rn(f)× δ
(
ϕ∆rn (f)

(
xtrn
∆rn

(f)

)
, ϕ∆rn (h)

(
xtrn
∆rn

(h)

))
+∆rn(f)× δ

(
ϕ∆rn (f)

(
xsrn
∆rn

(f)

)
, ϕ∆rn (h)

(
xsrn
∆rn

(h)

))
.

Recall that ∆rn(h) = ∆rn(g), ||f − h||∞ ≤ η, and ξ ≤ η. We apply the inequalities (22), (26), and (28)
into the previous bound to conclude that for all s, t ∈ [0, 1],∣∣∣δ̃frn (xsrn(f), xtrn(f))− δ̃hrn (xsrn(h), xtrn(h))∣∣∣ ≤ (2 + 4||f ||∞)

ε

N + 1
. (29)

Uniform control. We are now ready to bound ||d̃Vf − d̃Vh ||∞. Let s, t ∈ [0, 1] with s ≤ t. With the help
of Lemma 1 and of the identities (10) and (11), we verify we can write∣∣∣d̃Vf (s, t)− d̃Vh (s, t)∣∣∣ ≤|f(s)− h(s)|+ |f(t)− h(t)|+ 2

∣∣∣∣inf[s,t]
f − inf

[s,t]
h

∣∣∣∣
+

N∑
n=1

∣∣xsrn(f)− xsrn(h)∣∣+ N∑
n=1

∣∣xtrn(f)− xtrn(h)∣∣
+ 2

N∑
n=1

∣∣∣δ̃frn (xsrn(f), xtrn(f))− δ̃hrn (xsrn(h), xtrn(h))∣∣∣
+ 3∆s∧f t(f)1∆s∧f t(f)<∆ + 3∆s∧ht(h)1∆s∧ht(f)<∆

+
∑
r∈[0,1]

∆r(f)<∆

∣∣∣2δ̃fr (0, xsr(f))− xsr(f)∣∣∣+ ∑
r∈[0,1]

∆r(f)<∆

∣∣∣2δ̃fr (0, xtr(f))− xtr(f)∣∣∣
+

∑
r∈[0,1]

∆r(f)<∆

∣∣∣2δ̃hr (0, xsr(h))− xsr(h)∣∣∣+ ∑
r∈[0,1]

∆r(f)<∆

∣∣∣2δ̃hr (0, xtr(h))− xtr(h)∣∣∣ .
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The sum of all the terms in the first two rows of the right-hand side can be easily bounded by 8ε because
||f − h||∞ ≤ η ≤ ε/(N + 1), thanks to (22). The term of the third row is smaller than (4 + 8||f ||∞)ε
by a direct application of (29). Next, if ∆r(f) < ∆ then ∆r(h) < ∆ + 2η < 2∆, since the inequality
(22) justifies η ≤ ∆/4. As we chose ∆ so that ∆ < ε, the sum of the terms in the fourth row is bounded
by 9ε. Moreover, the fact (19) ensures that if ∆r(f) < ∆, then it holds∣∣∣2δ̃fr (0, x)− x∣∣∣ ≤ εx and

∣∣∣2δ̃hr (0, y)− y∣∣∣ ≤ εy
for all x ∈ [0,∆r(f)] and for all y ∈ [0,∆r(h)]. It allows us to control the last four terms of the
right-hand side. For instance,∑

r∈[0,1]
∆r(f)<∆

∣∣∣2δ̃fr (0, xsr(f))− xsr(f)∣∣∣ ≤ ε ∑
r∈[0,1]

∆r(f)<∆

xsr(f) ≤ εJf(s) ≤ ||f ||∞ε,

∑
r∈[0,1]

∆r(f)<∆

∣∣∣2δ̃hr (0, xsr(h))− xsr(h)∣∣∣ ≤ ε ∑
r∈[0,1]

∆r(f)<∆

xsr(h) ≤ εJh(s) ≤ (1 + ||f ||∞) ε,

because we know from Theorem 4 that f − Jf ≥ 0. Eventually, we find∣∣∣d̃Vf (s, t)− d̃Vh (s, t)∣∣∣ ≤ (23 + 12||f ||∞) ε.

Conclusion. To sum up, we have shown that for all ε > 0, there exists η > 0 such that if ||f−g||∞ ≤ η
then there exists λ an increasing bijection from [0, 1] to itself with ||d̃Vf −d̃Vg◦λ||∞ ≤ ε and ||λ−id||∞ ≤ ε.
Indeed, recall (27). Now, if the Skorokhod distance between f and g is smaller than min(η, ε)/2, then
we have µ an increasing bijection from [0, 1] to itself such that ||µ− id||∞ ≤ ε and ||f − g ◦ µ||∞ ≤ η.
Hence, there exists λ an increasing bijection from [0, 1] to itself such that ||µ ◦ λ − id||∞ ≤ 2ε and
||d̃Vf − d̃Vg◦µ◦λ||∞ ≤ ε. Eventually, thanks to the time-changing property, d̃Vg◦µ◦λ = d̃Vg ◦ (µ ◦ λ, µ ◦ λ).
Thereby, if ρ(f, g) ≤ min(η, ε)/2 then ρ2

(
d̃Vf , d̃

V
g

)
≤ 2ε, where we remind that ρ is the Skorokhod

distance onH and ρ2 is the Skorokhod distance for bivariate functions.

4.2 Two particular cases for convergences of unshuffled pseudo-distances

Even if dL, dT, and dV do not enjoy a property of functional continuity, we are still able to provide two
particular cases where it is possible to automatically deduce a convergence for (dLfn), (d

T
fn
), or (dVfn)

from the convergence of (fn).

Theorem 7. If fn −→ f for the Skorokhod topology on H and if there exists N ≥ 1 such that all the
fn have at most N jumps, then dLfn −→ dLf and dTfn −→ dTf uniformly on [0, 1]2. It follows dVfn −→ dVf
uniformly on [0, 1]2.

Proof. The limiting excursion f also has at mostN jumps. Let ε ∈ (0, 1) such that all the jumps of f are
higher than 2ε. Hence, we get Jεfn −→ Jεf = Jf for the Skorokhod topology thanks to Theorem 4
and to Proposition 7. Let s ∈ [0, 1], we know there is t ∈ [0, 1] such that |∆t(f)−∆s(fn)| ≤ 2ρ(fn, f).
If ρ(fn, f) < ε/2 and ∆s(fn) < ε, then ∆t(f) < 2ε, so that ∆t(f) = 0 and ∆s(fn) ≤ 2ρ(fn, f).
Hence, when n is large enough, we find

||Jfn − Jεfn||∞ ≤
∑
s∈[0,1]

∆s(fn)10<∆s(fn)<ε ≤ 2Nρ(fn, f) −→
n→∞

0.

In particular, the sequence of excursions gn := fn − Jfn + Jεfn converges to f for the Skorokhod
topology. Let us fix Φ : ∆ > 0 7−→ ϕ∆ such that ϕ∆(x) = x for all ∆ ≥ ε and ϕ1−∆(x) is expressed
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as in Remark 1 for all 1−∆ ∈ (0, ε), for all x ∈ [0, 1]. It is straightforward to check that Φ is a shuffle.
We observe Bf ∩ B(Φ) = ∅ and BJf ∩ B(Φ) = ∅, so Theorem 6 justifies

d̃VJεfn −→n→∞
d̃VJf and d̃Vgn −→n→∞

d̃Vf

for the Skorokhod topology on D([0, 1]2). Then, for all n ≥ 1, d̃LJεfn = dLJεfn and d̃Lf = dLf because
∆t(J

εfn) and ∆t(f) are not in (0, ε) for all t ∈ [0, 1]. Recall that Jεfn and Jf are PJG, which yields
that dLJεfn converges to dLf for the Skorokhod topology, by applying Theorem 5. Since dLf is continuous
on [0, 1]2, this convergence also happens uniformly on [0, 1]2. Similarly, Theorems 4 and 5 ensure that
d̃Lgn = d̃LJgn = d̃LJεfn = dLJεfn and dTgn = dTgn−Jgn = dTfn−Jfn = dTfn . Hence,

dTfn + 2dLJεfn −→n→∞
dTf + 2dLf

for the Skorokhod topology on D([0, 1]2), which implies that dTfn uniformly converges to dTf on [0, 1]2,
because dTf is continuous too. To conclude, recall that ||Jfn − Jεfn||∞ −→

n→∞
0. We deduce the uniform

convergence of (dLfn) to dLf on [0, 1]2 with the help of Corollary 2.

Theorem 8. If fn −→ f for the Skorokhod topology on H and if f is PJG, then dLfn −→ dLf and
dTfn −→ 0 uniformly on [0, 1]2. It follows dVfn −→ dVf = 2dLf uniformly on [0, 1]2.

Proof. Let ε > 0 such that ε /∈ {∆t(f) : t ∈ [0, 1]}. This condition ensures Jεfn −→ Jεf for the
Skorokhod topology on H by Proposition 7, and even more, it holds ||fn − Jεfn||∞ −→ ||f − Jεf ||∞.
The triangular inequality of dTfn and the formula (12) lead to ||dTfn ||∞ ≤ 2||fn − Jεfn||∞, because
Jεfn ≤ Jfn ≤ fn. Moreover, Corollary 2 implies

||dLfn − d
L
f ||∞ ≤ 2||fn − Jεfn||∞ + 2||f − Jεf ||∞ + ||dLJεfn − d

L
Jεf ||∞.

All the jumps of the Jεfn are higher or equal to ε and Jεfn converges to Jεf , thus there is N ≥ 1 such
that all the Jεfn have at most N jumps. By the previous theorem, ||dLJεfn − d

L
Jεf ||∞ −→ 0, so we get

lim sup ||dTfn ||∞ + lim sup ||dLfn − d
L
f ||∞ ≤ 6||f − Jεf ||∞.

Since the excursion f is PJG, it holds f = Jf and ||f − Jεf ||∞ −→
ε→0

0 thanks to Proposition 7. The set

{∆t(f) : t ∈ [0, 1]} is countable, so we can make ε→ 0 within the above inequality.

4.3 From convergences of pseudo-distances to convergences of quotient metric spaces

Recall the notions presented at the start of Section 2.3. To see how Theorems 6, 7, and 8 can bring us
some convergences of pointed weighted metric spaces under the form of Theorem 3, we have to present
the definition of the pointed Gromov-Hausdorff-Prokhorov distance, which truly induces a topology
on the set of the GHP-isometry classes of pointed weighted compact metric spaces. Recall that when no
confusion is possible, we simply denote a metric space (possibly endowed with some additional structure)
by its underlying set.

A correspondence between two compact metric spaces (X1, d1) and (X2, d2) is a subset R of
X1 × X2 such that for all x1 ∈ X1 and y2 ∈ X2, there exists x2 ∈ X2 and y1 ∈ X1 such that
(x1, x2), (y1, y2) ∈ R. We say a correspondence between X1 and X2 is compact if it is compact in the
product space X1 ×X2. The distortion of a correspondenceR is defined by

dis(R) = sup {|d1(x1, y1)− d2(x2, y2)| : (x1, x2), (y1, y2) ∈ R} .

The Gromov-Hausdorff distance between X1 and X2 is then expressed by the formula

dGH(X1, X2) =
1

2
inf
R

dis(R),
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where the infimum is taken over all correspondences R between X1 and X2. Similarly, the pointed
Gromov-Hausdorff distance d•GH(X1, X2) between two pointed compact metric spaces (X1, d1, a1) and
(X2, d2, a2) is expressed by the same formula up to the difference that the infimum is instead taken over
all correspondences R between X1 and X2 such that (a1, a2) ∈ R. For both distances, we may restrict
the infimum to compact correspondences without modifying the value. Indeed, a correspondence and its
closure have the same distortion, and the latter is a compact correspondence becauseX1×X2 is compact.
Let (X1, d1, a1, µ1) and (X2, d2, a2, µ2) be two pointed weighted compact metric spaces. A coupling
between µ1 and µ2 is a Borel probability measure on X1 × X2 whose marginals on X1 and X2 are µ1
and µ2. The pointed Gromov-Hausdorff-Prokhorov distance between X1 and X2 is then defined by the
formula

d•GHP(X1, X2) = inf
R,ν

max

(
1

2
dis(R), 1− ν(R)

)
where the infimum is taken over all couplings ν between µ1 and µ2 and all compact correspondences R
between X1 and X2 such that (a1, a2) ∈ R.

The functions dGH, d•GH, and d•GHP are only pseudo-distances but dGH(X1, X2) = 0 if and only
if X1 and X2 are isometric, d•GH(X1, X2) = 0 if and only if X1 and X2 are pointed-isometric, and
d•GHP(X1, X2) = 0 if and only if X1 and X2 are GHP-isometric. Hence, dGH defines a genuine distance
on the space K of isometry classes of compact metric spaces, d•GH defines a genuine distance on the
space K• of pointed-isometry classes of pointed compact metric spaces, and d•GHP defines a genuine
distance on the space K•

w of GHP-isometry classes of pointed weighted compact metric spaces. We
call their respective topologies the Gromov-Hausdorff, the pointed Gromov-Hausdorff, and the pointed
Gromov-Hausdorff-Prokhorov topologies. Furthermore, the metric spaces K, K•, and K•

w are separable
and complete. See [28] and [2] for proof of the stated facts and for more information. Now, recall from
Section 2.3 the definition of quotient metric spaces and Definition 3.

Lemma 5. For all n ≥ 1, let dn, d ∈ D([0, 1]2) be two pseudo-distances on [0, 1] such that the quotient
pointed weighted metric spaces Xn = [0, 1]/{dn = 0} and X = [0, 1]/{d = 0} are compact. It holds

d•GH(Xn, X) ≤ ρ2(dn, d), (30)

d•GHP(Xn, X) ≤ ||dn − d||∞. (31)

Furthermore, if dn −→ d for the Skorokhod topology on D([0, 1]2), then Xn −→ X for the pointed
Gromov-Hausdorff-Prokhorov topology.

Proof. Let us denote by [s]n and [s] the canonical projections of s ∈ [0, 1] respectively onXn andX , and
by µn and µ the push-forward measures of the Lebesgue measure on [0, 1] by the respective canonical
projections. Let λn, µn : [0, 1] −→ [0, 1] be two increasing bijections. The triangular inequality yields
||dn−d◦(λn, λn)||∞ ≤ 2||dn−d◦(λn, µn)||∞. But the quantity ||dn−d2◦(λn, λn)||∞ is the distortion
of the correspondenceRn = {([s]n, [λn(s)]) : s ∈ [0, 1]}. This proves (30) by taking the infimum over
λn, µn. When λn = id, the correspondence Rn has total mass for the coupling νn between µn and µ
defined by ∫

Xn×X
gdν =

∫ 1

0
g([s]n, [s])ds

for any bounded measurable g. This shows (31). If dn −→ d for the Skorokhod topology on D([0, 1]2)
then we can assume ||λn− id||∞+||dn−d◦(λn, λn)||∞ −→ 0. For all ε > 0, we define another compact
correspondenceRεn = {([s]n, x) : s ∈ [0, 1], x ∈ X such that d([λn(s)], x) ≤ ε} betweenXn andX . It
holds lim sup dis(Rεn) ≤ 2ε. Remark the compactness of [0, 1]/{d = 0}when d ∈ D([0, 1]2) implies the
canonical projection [0, 1] −→ X is càdlàg, so it is continuous almost everywhere. Thus, [λn(s)] −→ [s]
almost everywhere and νn(Rεn) −→ 1 according to the dominated convergence theorem.

Proof of Theorem 3. By definition of the relaxed Skorokhod topology, Θfn −→ Θf for the (rigid) Sko-
rokhod topology. Observe that if t ∈ [0, 1/2) then d̃VΘf (t, 1) = 0, and that if s, t ∈ [1/2, 1] then
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d̃VΘf (s, t) = d̃Vf (2s− 1, 2t− 1) thanks to the branching property. It is then a small exercise to check the

convergences Ṽfn −→ Ṽf and ṼΘfn −→ ṼΘf for the pointed Gromov-Hausdorff-Prokhorov topology
are equivalent. Finally, the previous lemma and Theorem 6 implies the point (i) because BΘf = Bf .
Likewise, we show the two other points using Theorems 7 and 8. Indeed, fn has at most N jumps if and
only if Θfn has at most N jumps. When f is PJG, J(Θf) = Θf by Proposition 7, thus Θf is PJG.

5 Topological space of vernation trees

Here, we propose a topological notion of vernation trees that does not require coding by excursions.
First, let us fix our framework by giving some definitions. Let (X, d) be a metric space and let x, y ∈ X .
We say that γ is a path on X from x to y when γ : [0, 1] −→ X is continuous such that γ(0) = x
and γ(1) = y. In that case, we will denote by Im γ = γ([0, 1]) its image. If γ is also injective,
we say that γ is an arc on X from x to y. By compactness of [0, 1], an arc provides a topological
embedding of the segment [0, 1] into X . Moreover, we say that γ is a geodesic on X from x to y when
d(γ(t), γ(s)) = |t− s|d(x, y) for all t, s ∈ [0, 1]. A geodesic from x to y is an arc if and only if x ̸= y.
Finally, we say that γ is a loop on X based at x when γ : [0, 1] −→ X is continuous, injective on [0, 1),
and such that γ(0) = γ(1) = x. A loop provides a topological embedding of the circle C into X .

Definition 6. A metric space (X, d) is geodesic when there exists a geodesic on X from x to y, for all
x, y ∈ X . A metric space (X, d) is a real tree when it is geodesic and when all arcs on X from x to
y have the same image, for all x, y ∈ X . We say a metric space (X, d) is a vernation tree when it is
geodesic and when it satisfies that for any γ1, γ2, two loops on X based at x, then either Im γ1 = Im γ2
or Im γ1 ∩ Im γ2 = {x}, for all x ∈ X .

We point out that any geodesic space is arc-connected by definition. For our work, we exclusively are
interested in compact metric spaces. When a metric space is indeed compact, it is geodesic if and only if
it is a length space. See [20, Chapter 2] for a definition of length spaces, a proof of the just mentioned
fact, and an extensive study of the notion. For a detailed study of real trees, we refer to Evans [24] or to
Paulin [38]. Observe a geodesic space is locally path-connected. Indeed, for any x ∈ X and r > 0, if
d(x, y) < r then a geodesic between x and y stays inside the ball of radius r and of center x. Moreover, it
is well-known that a Hausdorff space, so a metric space, is pathwise connected if and only if it is arcwise
connected, see [42, Chapter 31] or [13] for example. We deduce the following convenient lemma.

Lemma 6. Let (X, d) be a compact geodesic space. If F is a finite subset of X , then the connected
components of X\F are open and arcwise connected.

Proposition 8. When (X, d) is a compact geodesic space, the following statements are equivalent.

(i) The space (X, d) is a real tree.

(ii) For all x, y ∈ X , if x ̸= y then there exists u ∈ X\{x, y} such that x and y are in different
connected components of X\{u}.

(iii) There are no loops on X .

The implications (i) =⇒ (ii) =⇒ (iii) are obvious. The equivalence between (i) and (iii) is quite
easy to show and can be found in [15, Proposition 2.3]. We observe that the point (iii) obviously ensures
that a real tree is also a vernation tree, which might not be so clear by only looking at the definitions.
The interest of the point (ii) is that it can be naturally adapted into an equivalent definition for vernation
trees.

Proposition 9. When (X, d) is a compact geodesic space, the following statements are equivalent.

(i) The space (X, d) is a vernation tree.
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(ii) For all x, y ∈ X , if x ̸= y then there exists u, v ∈ X\{x, y} such that x and y are in different
connected components of X\{u, v}.

(iii) For all x, y ∈ X , if x ̸= y then there exists u, v ∈ X\{x, y} such that x and y are in different con-
nected components of X\{u, v} and such that 2min (d(x, u), d(x, v), d(y, u), d(y, v)) ≥ d(x, y).

Proof. The implication (iii) =⇒ (ii) is obvious. Let us assume that (ii) holds. Let γ1, γ2 be two loops
on X based at x and let s ∈ (0, 1) such that γ1(s) /∈ Im γ2. We set

a1 = sup{t ∈ [0, s] : γ1(t) ∈ Im γ2} and b1 = inf{t ∈ [s, 1] : γ1(t) ∈ Im γ2},

so that γ1(a1), γ2(b1) ∈ Im γ2 because γ1 is continuous and Im γ2 is closed. We choose a2, b2 ∈ [0, 1]
such that γ2(a2) = γ1(a1) and γ2(b2) = γ1(b1). Even if it means reversing γ2, we can assume that
a2 ≤ b2 without loss of generality. We can define three paths on X from γ1(a1) to γ1(b1) by setting

γ′1 : t ∈ [0, 1] 7−→ γ1(a1 + t(b1 − a1)),
γ′2 : t ∈ [0, 1] 7−→ γ2(a2 + t(b2 − a2)),

γ′3 : t ∈ [0, 1] 7−→


γ2(a2 − t) if t ≤ a2
x if a2 ≤ t ≤ b2
γ2(b2 + 1− t) if b2 ≤ t ≤ 1

.

By definition of a1 and b1, it is clear that Im γ′1 ∩ Im γ2 = {γ1(a1), γ1(b1)}, so it easily follows that
Im γ′1∩Im γ′2 = Im γ′1∩Im γ′3 = {γ1(a1), γ1(b1)}. Moreover, Im γ′2∩Im γ′3 = {γ1(a1), γ1(b1)} because
γ2 is injective on [0, 1). In the case where γ1(a1) ̸= γ1(b1), there exists u, v ∈ X\{γ1(a1), γ1(b1)}
such that γ1(a1) and γ1(b1) are in different pathwise connected components of X\{u, v} thanks to
(ii). In particular, we would have Im γ′i ∩ {u, v} ≠ ∅ for i = 1, 2, 3, which is impossible regarding
the intersections between the Im γ′i. Hence, we find that γ1(a1) = γ1(b1) and since a1 < s < b1, we
conclude that a1 = 0 and b1 = 1. This means Im γ1∩Im γ2 = {x}. By contraposition, if Im γ1∩Im γ2 ̸=
{x} then Im γ1 ⊂ Im γ2 and Im γ1 = Im γ2 by symmetry, which ends the proof of (ii) =⇒ (i).

Let us assume that (i) holds. Let g be a geodesic on X from x to y with x ̸= y, and let us set
u = g(1/2) so that d(x, u) = d(y, u) = d(x, y)/2. Let γ1 be an arc on X\{u} from x to y. It is also an
arc on X such that u /∈ Im γ1. We set

a1 = sup{t ∈ [0, 1] : γ1(t) ∈ g([0, 1/2])} and b1 = inf{t ∈ [a1, 1] : γ1(t) ∈ g([1/2, 1])},

which are well-defined because γ1(0) = g(0) and γ1(1) = g(1). Since γ1 and g are continuous, there
exists α1, β1 ∈ [0, 1] such that α1 ≤ 1/2 ≤ β1, g(α1) = γ1(a1), and g(β1) = γ1(b1). In fact, it even
holds α1 < 1/2 < β1 because u /∈ Im γ1, so a1 < b1 because g is injective. The real-valued function
t ∈ [a1, b1] 7−→ d(x, γ1(t)) is continuous and

d(x, γ1(a1)) = α1d(x, y) < d(x, y)/2 < β1d(x, y) = d(x, γ1(b1)),

so there exists s ∈ (a1, b1) such that d(x, γ1(s)) = d(x, y)/2. We set v = γ1(s), and we observe that
d(x, y) ≤ d(x, y)/2+d(y, v). We only need to verify that x and y are in different connected components
of X\{u, v} in order to show (i) =⇒ (iii). Let γ2 be an arc on X\{u, v} from x to y by contradiction
with Lemma 6. It is also an arc on X such that Im γ2 ∩ {u, v} = ∅. Similarly as with γ1, we set

a2 = sup{t ∈ [0, 1] : γ2(t) ∈ g([0, 1/2])} and b2 = inf{t ∈ [a2, 1] : γ2(t) ∈ g([1/2, 1])}

and we fix α2, β2 ∈ [0, 1] such that α2 < 1/2 < β2, g(α2) = γ2(a2), and g(β2) = γ2(b2). Moreover,
a2 < b2. Then, we define two paths γ′1, γ

′
2 on X from u to u by setting for all t ∈ [0, 1],

γ′1(t), γ
′
2(t) =


g(1/2 + 3t(β1 − 1/2)), g(1/2 + 3t(β2 − 1/2)) if t ≤ 1/3

γ1(b1 + 3(t− 1/3)(a1 − b1)), γ2(b2 + 3(t− 1/3)(a2 − b2)) if 1/3 ≤ t ≤ 2/3

g(α1 + 3(t− 2/3)(1/2− α1)), g(α2 + 3(t− 2/3)(1/2− α2)) if 2/3 ≤ t
.
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It is clear that γ′1 and γ′2 are paths on X from u to u. By definition of a1, b1, a2, b2, if t1 ∈ (a1, b1)
and t2 ∈ (a2, b2), then γ1(t1) /∈ Im g and γ2(t2) /∈ Im g. Since g, γ1, γ2 are injective, it follows that
γ′1 and γ′2 are loops on X based at u. We observe that if 1/2 < t < min(β1, β2) then g(t) ̸= u and
g(t) ∈ Im γ′1 ∩ Im γ′2, so it ensures that Im γ′1 = Im γ′2. However, s ∈ (a1, b1) so v = γ1(s) ∈ Im γ′1,
while v /∈ Im g and v /∈ Im γ2, so v /∈ Im γ′2. That is a contradiction, which concludes the proof.

When (X, d) is a compact metric space, we write diam(X) = supx,y∈X d(x, y). According to the
next lemma, a compact vernation tree has only a countable number of images of loops.

Lemma 7. If (X, d) is a compact vernation tree, then the set {Im γ : γ loop on X,diam(Im γ) ≥ ε}
is finite for all ε > 0.

Proof. We assume by contradiction the set of interest is infinite. Then, the compactness ofX yields there
exists two loops γ1, γ2 onX such that Im γ1 ̸= Im γ2, and there exists x1, y1 ∈ Im γ1 and x2, y2 ∈ Im γ2
such that d(x1, y1) ≥ ε, d(x1, x2) ≤ ε/4, and d(y1, y2) ≤ ε/4. We give ourselves two geodesics
gx, gy on X respectively from x1 to x2 and from y1 to y2. Observe that Im gx ∩ Im gy = ∅ because
d(Im gx, Im gy) ≥ d(x1, y1) − d(x1, x2) − d(y1, y2) > 0. Considering az = sup g−1

z (Im γ1) and bz =
inf g−1

z (Im γ2)∩[az, 1] for z ∈ {x, y} allows us to assume Im gx∩Im γ1 = {x1}, Im gx∩Im γ2 = {x2},
Im gy ∩ Im γ1 = {y1}, and Im gy ∩ Im γ2 = {y2} at the cost of replacing the inequality d(x1, y1) ≥ ε
with d(x1, y1) ≥ ε/2. Since X is a vernation tree and Im γ1 ̸= Im γ2, it holds #Im γ1 ∩ Im γ2 ≤ 1, so
choosing one of the two semi-loops of γ1 gives us an arc γ′1 onX from x1 to y1 such that Im γ′1 ⊂ Im γ1,
and Im γ′1 ∩ Im γ2 = {x1, y1} ∩ {x2, y2}. Thus, we can construct a loop γ by following gx from x1 to
x2, then following γ2 from x2 to y2, then following gy from y2 to y1, and finally following γ′1 from y1
to x1. Indeed, d(x1, y2) ≥ d(x1, y1) − d(y1, y2) > 0 and x2 ̸= y1 in the same way. We have found a
contradiction because x1, y1 ∈ Im γ1 ∩ Im γ but either gx(1/2) or gy(1/2) is in Im γ but not in Im γ1,
because it would hold x1, y1 ∈ Im γ1 ∩ Im γ2 otherwise.

Recall from Section 4.3 that K is the space of compact metric spaces up to an isometry, endowed
with the Gromov-Hausdorff distance dGH, and that it is separable and complete. Let L be the space of
isometry classes of compact geodesic spaces and let T be the space of isometry classes of compact real
trees. They are both closed subsets of K, see for example [24, Theorem 4.19] and [24, Lemma 4.22], so
they are also separable and complete. We denote by V the space of isometry classes of compact vernation
trees. We have the chain of inclusions T ⊂ V ⊂ L ⊂ K. The next theorem justifies that V is closed in
K, and so that it is separable and complete.

Theorem 9. Let (Xn, dn) be a compact vernation tree for all n ≥ 0 and let (X, d) be a compact metric
space. If Xn −→ X for the Gromov-Hausdorff topology then X is a compact vernation tree.

Proof. First, the subspace L is closed so X is a compact geodesic space. Let x, y ∈ X with x ̸= y,
we only need to find u, v ∈ X\{x, y} such that x and y are in different connected components of
X\{u, v}. There exists a sequence (Rn) of correspondences respectively between Xn and X such that
dis (Rn) −→ 0. For any n ≥ 0, there are xn, yn ∈ Xn such that (xn, x) ∈ Rn and (yn, y) ∈ Rn.
In particular, lim dn(xn, yn) = d(x, y) > 0 so we can assume that xn ̸= yn for all n ≥ 0 by only
considering large enough n. Hence, there exists un, vn ∈ Xn such that in the point (iii) of Proposition
9. Then, we have u′n, v

′
n ∈ X such that (un, u′n) ∈ Rn and (vn, v

′
n) ∈ Rn for all n ≥ 0. Since X is

compact, we can assume that there exists u, v ∈ X such that u′n −→ u and v′n −→ v, by restricting
ourselves on a subsequence. It follows that 2d(x, u) = lim 2dn(xn, un) ≥ lim dn(xn, yn) = d(x, y),
so x ̸= u. In the same way, we show that u, v ∈ X\{x, y}. We are going to show that x and y are in
different connected components of X\{u, v}.

Let γ : [0, 1] −→ X be a path on X from x to y. For all n ≥ 1 and 1 ≤ i ≤ n − 1, there exists
wn,i ∈ Xn such that (wn,i, γ(i/n)) ∈ Rn. We also write wn,0 = xn and wn,n = yn. We denote
by γn : [0, 1] −→ X a path on Xn such that the restriction of γn on [i/n, (i + 1)/n] corresponds to
a geodesic from wn,i to wn,i+1 for all 0 ≤ i ≤ n − 1. Since γn is a path on Xn from xn to yn, we
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have {un, vn} ∩ Im γn ̸= ∅, so by restricting ourselves on another subsequence, we can assume that
un ∈ Im γn for all n ≥ 1 without loss of generality. We choose tn ∈ [0, 1) such that γn(tn) = un, and
we can assume that there exists t ∈ [0, 1] such that tn −→ t. Let us prove that γ(t) = u. Observe that
dn
(
wn,⌊ntn⌋, un

)
≤ dn

(
wn,⌊ntn⌋, wn,⌊ntn⌋+1

)
by definition of γn. By definition of the wn,i, we find

dn
(
wn,⌊ntn⌋, un

)
≤ 2dis (Rn) + sup

s,r∈[0,1]
|s−r|≤1/n

|γ(s)− γ(r)|,

so lim dn(wn,⌊ntn⌋, un) = 0 thanks to the continuity of γ. It follows lim d (γ(⌊ntn⌋/n), u′n) = 0 too.
Moreover, we have tn −→ t, so γ(⌊ntn⌋/n) −→ γ(t). Recall that u′n −→ u, thus d(γ(t), u) = 0.

Besides the comparison between Proposition 8 and 9, we motivate our topological definition of ver-
nation trees with the following theorem.

Theorem 10. If f is an excursion, then the spaces Vf and Ṽf are compact vernation trees.

Observe the spaces Tf , Lf , and L̃f are also vernation trees, thanks to Theorems 4 and 5. That result
together with the fact that V is closed in the space K argues in favor of the existence of a result such as
Theorem 3. In order to demonstrate Theorem 10, recall the gluing of pointed metric spaces presented in
Definition 4 and let us give ourselves the following lemma.

Lemma 8. Let X0 and X1 be two pointed compact vernation trees, and let a ∈ X0. The gluing of X1

on X0 at a is also a pointed compact vernation tree.

Proof. The space X := X0 ∨a X1 is compact as a union of two compact spaces. Let x, y ∈ Xi with
i ∈ {0, 1}, there is a geodesic on Xi from x to y, so seen as an X-valued function, it is also a geodesic
on X from x to y. Let x ∈ Xi and y ∈ X1−i with i ∈ {0, 1}, we check the concatenation of a geodesic
on Xi from x to a with a geodesic on X1−i from a to y induces a geodesic on X from x to y. Hence,
the metric space X is geodesic. Remark that ∂X0 = ∂X1 = {a}, so any path γ on X from a point of
X0 to a point of X1 must verify a ∈ Im γ by connectedness. Thus, if γ is a loop on X then Im γ ⊂ X0

or Im γ ⊂ X1. Indeed, if γ(s0) ∈ X0\{a} and γ(s1) ∈ X1\{a} with s0 < s1 for example, then there
exists t ∈ (s0, s1) such that γ(t) = a but there also exists t′ ∈ [0, 1)\(s0, s1) such that γ(t′) = a.
This contradicts the injectivity of γ on [0, 1). Let γ, γ′ be two loops on X based at the same point x. If
Im γ ⊂ Xi and Im γ′ ⊂ Xi with the same i ∈ {0, 1}, then they can be seen as loops on the vernation
tree Xi based at the same point. Otherwise, it holds {x} ⊂ Im γ ∩ Im γ′ ⊂ X0 ∩X1 = {a}. Eventually,
the metric space X1 ∨a X2 is a vernation tree.

Proof of Theorem 10. Recall we already know the spaces Vf and Ṽf are compact with Propositions 3 and
4. We begin by assuming f is a continuous excursion. In that case, Vf = Ṽf = Tf and dTf = dclasf , as
defined by (1). It is well-known that Tf is a real tree, see [25] for example, so it is a vernation tree. Now,
we suppose that the only jump of f is at 0, namely ∆0 = f(0) > 0 and ∆t = 0 for all t ∈ (0, 1]. The
set B(f) =

{
xt0(f) : t ∈ [0, 1] such that xt0(f) < f(t)

}
is countable because f is càdlàg. If B(f) = ∅

then f is non-increasing on [0, 1], and we can check that dV(s, t) = 2δ0 (f(s), f(t)) and d̃V(s, t) =
2δ̃0 (f(s), f(t)) for all s, t ∈ [0, 1]. It follows that both Vf and Ṽf are metric circles of perimeter 2∆0.
Using Proposition 9, it is clear that a circle is a vernation tree. If x ∈ B(f), a judicious application
of the branching property, as stated by Proposition 6, shows there exists a continuous excursion h and
an excursion g with its only jump at 0 such that B(g) = B(f)\{x}, such that Vf (respectively Ṽf ) is
isometric to a gluing of Vh (respectively Ṽh) on Vg (respectively Ṽg). By induction on #B(f) and thanks
to the previous lemma, we deduce that if f has its only jump at 0 and if B(f) is finite, then Vf and Ṽf
are vernation trees. In the case where B(f) is infinite, we set

fn(t) =

{
f(t) if there exists s ∈ [0, 1] such that xs0(f) = xt0(f) ≤ f(s)− 1/n

xt0(f) otherwise
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for all t ∈ [0, 1] and n ≥ 1. It is straightforward to check that fn is an excursion with a unique jump at
0, that |fn(t) − f(t)| ≤ 1/n, and that xt0(fn) = xt0(f) for all t ∈ [0, 1]. In particular, dLfn = dLf and

d̃Lfn = d̃Lf , and we find dTfn −→ dTf uniformly on [0, 1]2 by applying Theorem 7. Hence, Vfn −→ Vf and

Ṽfn −→ Ṽf for the Gromov-Hausdorff topology thanks to Lemma 5. Moreover, we observe the identity
B(fn) = {xt0(f) : t ∈ [0, 1] such that xt0(f) ≤ f(t) − 1/n} holds, so B(fn) is finite because f is
càdlàg, thus Vfn and Ṽfn are vernation trees. Theorem 9 then ensures this is also the case for Vf and Ṽf .

We just proved that if f has at most one jump at 0, then Vf and Ṽf are vernation trees. Induction
over the number of jumps of f shows the result is still valid with the weaker assumption of having a
finite number of jumps. Indeed, using the branching property at the last jump of f allows writing Vf as a
gluing of Vh on Vg, where g is an excursion with one less jump than f and where h is an excursion with
a unique jump at 0. The same argument holds for Ṽf . Finally, we consider a general excursion f . We set
gn = f −Jf +J1/nf for all n ≥ 1. According to Theorem 4, all the jumps of gn are not lower than 1/n
so there is only a finite number of them, which implies Vgn and Ṽgn are vernation trees. Furthermore, it
holds Jgn = J1/nf , so Theorem 5 yields dTgn = dTf , dLgn = dL

J1/nf
, and d̃Lgn = d̃L

J1/nf
. Corollary 2 and

the point (iv) of Proposition 7 lead to Vgn −→ Vf and Ṽgn −→ Ṽf for the Gromov-Hausdorff topology.
This concludes the proof, once again thanks to Theorem 9.

Theorem 11. If X is a pointed compact vernation tree, then there exists two sequences of excursions
(fn) and (gn) such that Vfn −→ X and Ṽgn −→ X for the pointed Gromov-Hausdorff topology.

This is a weak converse for Theorem 10. For the proof of that theorem, we denote by VH the set
of isometry classes of compact metric spaces that are both limits for the pointed Gromov-Hausdorff
topology of spaces of the form Vf and of the form Ṽf , with f an excursion, for any choice of their
distinguished point. With this notation, Theorem 11 simply states V = VH. Let us already observe VH
is closed for the Gromov-Hausdorff topology. Moreover, we set ℓ(X) = {Im γ : γ loop on X} for any
compact metric space X .

Lemma 9. Let (X, d) be a compact vernation tree. If the set ℓ(X) is finite, then X ∈ VH.

Proof. First, if ℓ(X) = ∅ then X is a real tree according to the point (iii) of Proposition 8. But as a
matter of fact, Duquesne has already shown in [22, Lemma 4.2] that any pointed compact real tree is
coded by a continuous non-negative function F via the classical pseudo-distance dclas given by (1). We
point out that the coding function F in [22] satisfies F (0) = 0 but is defined on [0,M ] with an arbitrary
M > 0 without its last value having to be 0. Nevertheless, the function f : [0, 1] −→ [0,∞) defined by
f(t) = F (2tM) if t ≤ 1/2 and by f(t) = 2F (M)(1− t) if t ≥ 1/2 is a genuine continuous excursion
in our sense, and it is then straightforward to check that Tf is pointed-isometric to the pointed tree coded
by F via dclas. Hence, for all a ∈ X , there exists f ∈ H such that (X, d, a) and Vf = Ṽf = Tf are
pointed-isometric. Thus, if ℓ(X) = 0 then X ∈ VH. Now, let us assume that #ℓ(X) ≥ 1 and that
Y ∈ VH whenever Y is a compact vernation tree Y with #ℓ(Y ) ≤ #ℓ(X)− 1.

Let γ be a loop on X . The function d(·, Im γ) is well-defined and continuous on X because Im γ
is compact. For u ∈ Im γ, the subset Xu = {x ∈ X : d(x, Im γ) = d(x, u)} is closed in X so it
is compact. Clearly, Xu ∩ Im γ = {u}. Moreover, if g is a geodesic on X from x ∈ Xu to u, then
Im g ⊂ Xu. Indeed, for any y ∈ Im g, we can write d(y, u) = d(x, Im γ)− d(x, y) ≤ d(y, Im γ). Now,
let u, v ∈ Im γ with u ̸= v and let x ∈ Xu ∩Xv. We fix two geodesics gu, gv from x to u, v respectively
and we set a = sup g−1

u (Im gv), so that gu(a) ∈ Im gu ∩ Im gv. Following gu from u to gu(a), then
following gv from gu(a) to v, and following one of the two semi-loops of γ from v to u describes another
loop γ′. However, u, v ∈ Im γ ∩ Im γ′ and gu(a) ∈ Im γ′\ Im γ because gu(a) ∈ Xu ∩ Xv, so this
contradicts the fact X is a vernation tree. Hence, {Xu : u ∈ Im γ} is a partition of X . A similar
argument yields any geodesic from some point of Xu to some point of Xv has to hit Im γ. Such geodesic
would then hit the subsetXu∩ Im γ = {u}. Thereby, any geodesic from some point ofXu to some point
in Xv hits u then hits v. It follows that for all x ∈ Xu and y ∈ Xv,

d(x, y) = d(x, u) + d(u, v) + d(v, y). (32)
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Furthermore, a geodesic between two points of Xu stays in Xu, because it would have to hit u at
least two times otherwise. Thus, the subspace (Xu, d) is compact and geodesic for all u ∈ Im γ. The
same holds for the subspace (Im γ, d). Hence, these subspaces are compact vernation trees because a
loop on one of them is also a loop on X . Plus, Im γ is not included in Xu, so #ℓ(Xu) ≤ #ℓ(X) − 1
and Xu ∈ VH by induction hypothesis. As for Im γ, this geodesic space is homeomorphic to the metric
circle C, and this implies that Im γ is isometric to a metric circle 2∆ · C, with some ∆ > 0. One can
indeed show this by parametrizing γ by arc length. Alternatively, one can fix u, v ∈ Im γ such that
d(u, v) = diam(Im γ) and a geodesic g from u to v, and then check that Im γ\g([0, 1)) and g([0, 1)) are
isometric via w 7→ g (d(v, w)/d(v, u)). In particular, Im γ ∈ VH because the (shuffled) vernation tree
coded by the excursion f : t ∈ [0, 1] 7−→ ∆(1− t) is pointed-isometric to 2∆ · C, for any choice of the
root. Then, (32) and the compactness of X imply there is only a finite number of u ∈ Im γ such that
diam(Xu) ≥ 1/n, for all n ≥ 1. It follows the subset

Xn = Im γ ∪

 ⋃
u∈Im γ

diam(Xu)≥1/n

Xu


of X can be constructed with a finite number of consecutive gluings only involving elements of VH,
thanks to (32). With the help of Proposition 6 and of the bounds (6), (7), and (8), it is not hard to show
that if g, h are excursions, then the gluing of Vh on Vg at any point of Vg is pointed-isometric to another
vernation tree coded by some excursion f . The same result also holds with shuffled vernation trees. Then,
we observe that if (Yn) and (Zn) respectively converge to Y and Z for the pointed Gromov-Hausdorff
topology, then for all a ∈ Y , there is a sequence of points an ∈ Yn such that (Yn ∨an Zn) converges to
Y ∨a Z for the pointed Gromov-Hausdorff topology. Hence, VH is stable by gluing, so it follows that
Xn ∈ VH for all n ≥ 1. To conclude, it is clear that dGH(X,Xn) ≤ 1/n, so X ∈ VH because VH is
closed for the Gromov-Hausdorff topology.

Remark 3. Along the lines of the previous proof, we have shown that if γ is a loop on a compact
vernation tree (X, d) then (Im γ, d) is isometric to the metric circle 2diam(Im γ) · C.

Proof of Theorem 11. We denote by Int S the interior of a subset S of (0, 1), and we denote by Leb the
Lebesgue measure on (0, 1). Let x, y ∈ X and let g be a geodesic on X from x to y. For all ε > 0 and
c ∈ [0, 1], we set

dcε(x, y) = d(x, y)− cd(x, y)Leb
(
{t ∈ (0, 1) : ∃L ∈ ℓ(X), t ∈ Int g−1(L), diam(L) < ε}

)
. (33)

We point out the subset measured by Leb in (33) is open and for any t ∈ (0, 1), if there exists L ∈ ℓ(X)
such that t ∈ Int g−1(L) then L is unique because X is a vernation tree. Clearly, (1 − c)d(x, y) ≤
dcε(x, y) ≤ d(x, y). Let us verify that dcε(x, y) does not depend on the choice of the geodesic g. Let
g1, g2 be two geodesics on X from x to y, and let t ∈ (0, 1) such that there is η > 0 and L ∈ ℓ(X) with
(t− η, t+ η) ⊂ g−1

1 (L) and diam(L) < ε. Let s ∈ (t− η, t+ η), if g2(s) ∈ Im g1 then g2(s) = g1(s
′)

with s′ ∈ [0, 1], but s = s′ because g1, g2 are geodesics, so g2(s) = g1(s) ∈ L. If g2(s) /∈ Im g1
then we set a = sup g−1

2 (Im g1) ∩ [0, s] and b = inf g−1
2 (Im g1) ∩ [s, 1], so that a < s < b. The same

argument as just before ensures g1(a) = g2(a) and g1(b) = g2(b). Following g1 from g1(a) to g1(b) then
following g2 from g1(b) to g1(a) defines a loop γ with g1(s), g2(s) ∈ Im γ. Both g−1

1 (Im γ) and g−1
1 (L)

contain a neighborhood of s, thus Im γ = L. Whatever the case, we have shown g2(s) ∈ L, which gives
(t− η, t+ η) ⊂ g−1

2 (L). It follows dcε is indeed well-defined. Plus, it is continuous on X ×X because
it is Lipschitz. Informally, it corresponds to the metric obtained by contracting all small loops of X .

Let x, y, z ∈ X . A geodesic g from x to y gives a geodesic from y to x after reversing the time, so
dcε is symmetric. Moreover, if z ∈ Im g then d(x, y) = d(x, z) + d(z, y) and g induces a geodesic from
x to z and a geodesic from z to y, thus it becomes easy to compute dcε(x, y) = dcε(x, z) + dcε(z, y). Now
we suppose z /∈ Im g and we fix a geodesic g1 from x to z and a geodesic g2 from y to z. We set a =
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sup g−1(Im g1), u = g(a), v = g
(
inf g−1(Im g2) ∩ [a, 1]

)
, and w = g1

(
inf g−1

1 (Im g2) ∩ [g−1
1 (u), 1]

)
.

The positions of u, v, w on the geodesics yields

dcε(x, y) = dcε(x, u) + dcε(u, v) + dcε(v, y),

dcε(x, z) = dcε(x, u) + dcε(u,w) + dcε(w, z),

dcε(y, z) = dcε(y, v) + dcε(v, w) + dcε(w, z).

Either u = v = w or u, v, w are distinct and we can construct a loop γ that follows g from u to
v, then follows g2 from v to w, and finally follows g1 from w to u. In the latter case, we choose
the geodesic g∗ from u to v induced by g to write (33), so that (0, 1) ⊂ g−1

∗ (Im γ). This implies
dcε(u, v) = (1 − c1diam(Im γ)<ε)d(u, v) by uniqueness of L. Whatever the case we are in, it eventually
holds dcε(u, v) ≤ dcε(u,w) + dcε(v, w), and the triangular inequality of dcε follows. Eventually, d1ε is a
pseudo-distance onX and dcε is a distance onX which generates the same topology as d, for all c ∈ [0, 1)
and ε > 0. If c ∈ [0, 1) and x ̸= y then the function t ∈ [0, 1] 7−→ dcε(x, g(t))/d

c
ε(x, y) ∈ [0, 1] is a

continuous increasing bijection, so its inverse function λ is continuous and increasing. Using the identity
dcε(x, y) = dcε(x, z) + dcε(z, y) when z ∈ Im g gives that g ◦ λ is a geodesic on (X, dcε) from x to y.
Thus, (X, dcε) is a compact vernation tree when c ∈ [0, 1). We denote by Yε = X/{d1ε = 0} the quotient
metric space induced by the pseudo-distance d1ε , as defined in Section 2.3. It is clear that (dcε)0≤c<1 non-
increasingly converges pointwise to d1ε when c goes to 1, and that (d1ε)ε>0 non-decreasingly converges
pointwise to d when ε goes to 0. These functions are continuous on the compact space X × X , so the
Dini’s theorem implies (X, dcε) −→

c→1
Yε and Yε −→

ε→0
X for the Gromov-Hausdorff topology. In particular,

Yε is a compact vernation tree for all ε > 0, according to Theorem 9. Since VH is closed for the Gromov-
Hausdorff topology, we only need to show Yε ∈ VH for all ε > 0 to complete the proof. To do this, we
will examine the diameters of loops on Yε.

Let L ∈ ℓ(Yε), Remark 3 yields that L is isometric to 4∆ · C where diam(L) = 2∆ > 0. It follows
there exists c ∈ [0, 1) and x0, x1, x2, x3 ∈ X such that (1 − c)ε ≤ ∆/100, |dcε(xi, xi+1)−∆| ≤
∆/100 and |dcε(xi, xi+2)− 2∆| ≤ ∆/100 for all i ∈ Z/4Z. We choose a geodesic g on (X, dcε)
from x0 to x2 and we can assume dcε(g(1/2), x1) ≥ 9∆/10 without loss of generality. Let us also
fix a geodesic g0 on (X, dcε) from x0 to x1 and a geodesic g2 on (X, dcε) from x2 to x1. Similarly
as before, we set a = sup g−1(Im g0), x′0 = g(a), x′2 = g

(
inf g−1(Im g2) ∩ [a, 1]

)
, and x′1 =

g0
(
inf g−1

0 (Im g2) ∩ [g−1
0 (x′0), 1]

)
. Either x′0 = x′1 = x′2 or x′0, x

′
1, x

′
2 are distinct and we may con-

struct a loop γ on X that follows g from x′0 to x′2, then follows g2 from x′2 to x′1, and finally follows g0
from x′1 to x′0. Since x′0 ∈ Im g0, it holds dcε(x0, x1) = dcε(x0, x

′
0) + dcε(x

′
0, x1) so

dcε(x0, x
′
0) ≤ dcε(x′0, g(1/2)) + dcε(x0, x1)− dcε(g(1/2), x1) < dcε(x

′
0, g(1/2)) + dcε(x0, g(1/2)).

Thereby, dcε(x0, g(1/2)) = dcε(x0, x
′
0)+d

c
ε(x

′
0, g(1/2)), because those three points are in Im g. Together

with dcε(x0, x1) = dcε(x0, x
′
0) + dcε(x

′
0, x1), it then yields dcε(x0, x

′
0) ≤ 3∆/5. We find the same bound

for dcε(x2, x
′
2), and it follows dcε(x

′
0, x

′
2) ≥ 3∆/5. The loop γ is thus well-defined and we compute

3∆

5
≤ sup

x,y∈Im γ
dcε(x, y) = (1− c1diam(Im γ)<ε)diam(Im γ) ≤ dcε(x0, x1) + dcε(x1, x2) + dcε(x2, x0)

using Remark 3 and the uniqueness of L in (33). As a result of (1 − c)ε < 3∆/5, it is necessary that
ε ≤ diam(Im γ), thus ε ≤ 10∆. The conclusion that diam(L) ≥ ε/5 for all L ∈ ℓ(Yε) ensures Yε ∈ VH
thanks to Lemmas 7 and 9.

The reader might wonder if any compact vernation tree can be coded by an excursion. Let us infor-
mally explain why the answer is no for V. For all n ≥ 1 and for all u ∈ {+1,−1}n, we give ourselves
Cu a pointed metric circle of length 2/n, seen as [−1/n, 1/n] with the identification 1/n = −1/n
and whose root is 0. The metric space X is constructed by gluing each C(ϵ1,...,ϵn+1) on C(ϵ1,...,ϵn) at
the point 2ϵn+1/(n + 1)2, and then by taking the closure. One can prove X is compact because
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diam(X) ≤ 2 + 4
∑

1/n2 < ∞, and that it is a vernation tree thanks to Lemma 8 and Theorem 9.
However, if there was an excursion f such that Vf was isometric to X , there would be a point t ∈ [0, 1]
whose projection would be on C(1) or on C(−1). The reader should now be able to convince oneself
that there would be t ∈ [0, 1] and distinct r1, ..., rn ∈ [0, 1] such that xtri = 1/i − 1/(i + 1)2 for all
1 ≤ i ≤ n, for all n ≥ 1. Recalling Theorem 4, this leads to ∞ = sup Jf ≤ sup f and contradicts
that f is càdlàg. The issue here is the same as what prevents dV from enjoying a functional continuity,
namely that high variations of excursions may code short distances on the vernation tree. This problem
disappears for d̃V thanks to (3), thus we believe any compact vernation tree is isometric to a shuffled
vernation tree Ṽf coded by an excursion f . Nevertheless, we were not able to demonstrate it. We have
recently realized that Blanc-Renaudie managed to construct a contour path continuously exploring an
inhomogeneous continuum random looptree in finite time [10]. Adapting his construction and the coding
of any real tree by a continuous excursion of Duquesne [22] may result in a proof of our conjecture.

6 Probabilistic applications

Words and plane trees Before presenting our three applications, we recall the formalism of plane
trees, see [25] for example. Let N∗ = {1, 2, 3, ...} be the set of positive integers and let

U =
∞⋃
n=0

(N∗)n,

with the convention (N∗)0 = {∅}. The set U is totally ordered by the lexicographic order, denoted by
≤. An element of U\{∅} is a finite sequence of positive integers u = (u1, · · · , um), we set |u| = m the
generation or height of u, and←−u = (u1, · · · , um−1) the parent of u. We also set |∅| = 0. If u, v ∈ U ,
we write u ∗ v ∈ U for the concatenation of u and v, we say u is an ancestor of u ∗ v, and we write
u ⪯ u ∗ v. If j ∈ N∗, we say u ∗ (j) is a child of u and u is the parent of u ∗ (j).

A plane tree τ is a finite subset of U such that:

• ∅ ∈ τ ,

• if v ∈ τ and v ̸= ∅, then←−v ∈ τ ,

• for all u ∈ τ , there exists a non-negative integer ku(τ) (the number of children of u in τ ) such that
for every j ∈ N∗, u ∗ (j) ∈ τ if and only if 1 ≤ j ≤ ku(τ).

We denote the total progeny of τ , which is the total number of vertices of τ , by #τ and the height
of τ , which is the maximal generation, by |τ | = maxu∈τ |u|. If u ∈ τ , we define the subtree θuτ
stemming from u by θuτ = {v ∈ U : u ∗ v ∈ τ}, which is also a plane tree. Furthermore, we
denote by ∅ = u(0) < u(1) < · · · < u(#τ − 1) the vertices of τ listed in lexicographic order. We
call (u(i))0≤i≤#τ−1 the depth-first exploration of τ . The exploration by contour c = (c(i))0≤i≤2(#τ−1)

gives another way to explore the tree. Informally, c starts at the root and continuously visits the whole
tree from the left to the right. Maybe more precisely, c(0) = ∅, and c(i + 1) is the ≤-smallest child of
c(i) that has not been visited yet if one exists or c(i + 1) is the parent of c(i) otherwise. This process
crosses each edge two times, one time upwards and one time downwards, so the needed time to complete
the exploration is indeed 2(#τ − 1) and c(2#τ − 2) = ∅. In order to link those two explorations, we
define ξ(i) for all 0 ≤ i ≤ 2#τ −2 as the largest integer l such that u(l) has been visited by (c(j))0≤j≤i.
Moreover, the exploration processes induce finite sequences of integers that characterize the plane tree.
Namely, the height process H(τ) = (Hi(τ))0≤i≤#τ−1 is defined by Hi(τ) = |u(i)|, and the contour
process C(τ) = (Ci(τ))0≤i≤2#τ−2 is defined by Ci(τ) = |c(i)|. General arguments of [25, Section 1.6]
draw relations between the height process and the contour process via the two bounds

max
0≤i≤2#τ−2

∣∣∣∣ξ(i)− i

2

∣∣∣∣ ≤ |τ |2 + 1, (34)

max
0≤i≤2#τ−2

∣∣Ci(τ)−Hξ(i)(τ)
∣∣ ≤ 1 + max

0≤j≤#τ−1
|Hi+1(τ)−Hi(τ)| , (35)
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with the convention H#τ (τ) = 0. The process C(τ) is extended to the real interval [0, 2#τ − 2] by
specifying C(τ) is affine on each interval [i, i + 1] for 0 ≤ i ≤ 2#τ − 3. Then,

(
C2t(#τ−1)(τ)

)
t∈[0,1]

is a continuous excursion and it classically codes (via dclas) the pointed weighted metric space spanned
by τ . More precisely, the tree T coded by it is obtained by replacing each edge (←−u , u) of τ with a line
segment of length 1 and by endowing this space with the normalized sum of the Lebesgue measures of
those segments. With a slight abuse of notations, τ can be seen as a finite subset of T , so that ∅ is the
distinguished point of T and that the graph distance of τ is inherited from the metric on T .

6.1 Metric asymptotics for uniform random mappings

We write [n] = {1, ..., n} for n ≥ 1. We are interested in the asymptotic behavior of the patterns of
random uniform mappings on [n]. We follow the presentation of Aldous, Miermont, and Pitman in [5]. A
mapping m : [n] −→ [n] may be interpreted as a digraph with set of vertices [n] and with oriented edges
i → m(i), thus allowing edges of the form i → i. It naturally induces a simple graph (that may have
edges of the form (i, i)), that we will denote by G(m). We define m0(i) = i and mk+1(i) = m(mk(i))
the (k + 1)-fold iteration of m on i ∈ [n], for any k ≥ 0. We say i is a cyclic point of m if mk(i) = i
for some k ≥ 1 and we denote by Γ(m) the set of cyclic points of m. If γ ∈ Γ(m), we say the finite set
{mk(γ) : k ≥ 1} ⊂ Γ(m) is a cycle of m and we write

Tγ(m) = {γ} ∪
{
i ∈ [n]\Γ(m) : ∃k ≥ 0, mk(i) = γ

}
for the tree component of the mapping graph with root γ. By independently putting each set of children
of the vertices of Tγ(m) into uniform random order, the graph Tγ(m) naturally corresponds to a plane
tree Tγ(m). The tree components are bundled by the disjoint cycles Γj(m), for 1 ≤ j ≤ k(m), to form
the basins of attraction Bj(m) of m, that are the connected components of the graph G(m), namely

Bj(m) =
⊔

γ∈Γj(m)

Tγ(m).

While the Γj(m) partition Γ(m), the Bj(m) partition [n]. Let us explain how to index the cycles Γj(m)
while ordering Γ(m). We consider a random sample (Xk)k≥1 of independent uniform random points
of [n], independent from the random orders on the tree components. We index the basins of attraction
Bj(m) for 1 ≤ j ≤ k(m) by the order of their first appearances in the sample. For example, B1(m) is
the basin that contains X1 and B2(m) is the basin which contains the first Xk /∈ B1(m) if it exists, and
so on. When γi ∈ Γi(m) and γj ∈ Γj(m) with 1 ≤ i < j ≤ k(m), we write γi ≤m γj . To extend ≤m
into a total order on Γ(m), we only need to order each cycle Γj(m). Let γ•j ∈ Γj(m) be the root of the
tree component that contains the first Xk ∈ Bj(m). We then specify

m(γ•j ) ≤m m2(γ•j ) ≤m ... ≤m m#Γj(m)−1(γ•j ) ≤m γ•j .

We point out that≤m may even be extended to [n] using the lexicographic orders on the tree components.
When the mapping M is random, that whole ordering procedure is done independently from M . Let us
write γ(1) <m γ(2) <m ... <m γ(#Γ(m)) for the elements of Γ(m) listed in the ≤m-increasing
order. Finally, let us define the metric object associated with the mapping we are interested in. For
all 1 ≤ j ≤ k(m), we denote by Bj(m) the pointed weighted metric space Bj(m) endowed with its
graph distance, with its uniform probability measure, and with γ•j as its distinguished point. For all
j > k(m), we set Bj(m) = ∂ where ∂ is the pointed weighted metric space with a unique point. We
define G(m) =

(
1j≤k(m)#Bj(m)/n,Bj(m)

)
j≥1

. One can observe G(m) determines the mapping m
up to the labels of the vertices and the orientations of the cycles. Hence, it is a good metric interpretation
of the mapping pattern.

Given the random order on the graph, one can construct several processes associated with the map-
ping. We define the height process H(m) = (Hi(m))0≤i≤n of the mapping as the concatenation of the
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height processes of the tree components
(
Hi(Tγ(j)(m)) ; 0 ≤ i ≤ #Tγ(j)(m)− 1

)
for 1 ≤ j ≤ #Γ(m),

in that order, followed by a last zero term. Similarly, the contour process C(m) = (Ci(m))0≤i≤2n

of the mapping is the concatenation of the sequences
(
Ci(Tγ(j)(m)) ; 0 ≤ i ≤ 2#Tγ(j)(m)− 1

)
for

1 ≤ j ≤ #Γ(m), in that order and with the convention C2#Tγ(j)(m)−1(Tγ(j)(m)) = 0, followed by a last
zero term. We point out we have inserted a zero term between the contour processes of successive tree
components. Alternatively, H(m) and C(m) can be expressed as variations of the height and contour
processes of a single plane tree. Indeed, let T (m) be the unique plane tree such that k∅(T (m)) = #Γ(m)
and θ(i)T (m) = Tγ(i)(m) for all 1 ≤ i ≤ #Γ(m), so that #T (m) = n + 1. We let the reader observe
that Hn(m) = C2n(m) = 0,

Hi(m) = Hi+1(T (m))− 1 and Ci′(m) = max (0, Ci′+1(T (m))− 1)

for all 0 ≤ i ≤ n− 1 and for all 0 ≤ i′ ≤ 2n− 1. We keep track of the number of cyclic points via two
processes ℓ(m) = (ℓi(m))0≤i≤n and ℓ′(m) = (ℓ′i(m))0≤i≤2n defined by

ℓi(m) = # {1 ≤ j ≤ i : Hi(m) = 0} and ℓ′i′(m) =
1

2
#
{
1 ≤ j ≤ i′ : Ci(m) = Ci−1(m) = 0

}
for all 0 ≤ i ≤ n and for all 0 ≤ i ≤ 2n. We extend the processes C(m) and ℓ′(m) to the real interval
[0, 2n] by specifying they are affine on each interval [i, i + 1] for 0 ≤ i ≤ 2n − 1. Moreover, we set
Z0(m) = 0 and Zj(m) = Zj−1(m) + 1j≤k(m)#Bj(m) for all j ≥ 1. These marks delimit the intervals
corresponding to the basins of attraction. Observe C2Zj(m)(m) = 0 and ℓ′2Zj(m)(m)− ℓ′2Zj−1(m)(m) =

#Γj(m) for all 1 ≤ j ≤ k(m).
Now, let B|br| be the standard reflected Brownian bridge on [0, 1] and let L be half its local time at 0,

which is normalized to be the density of the occupation measure at 0 of the reflected Brownian bridge,
so that for any t ∈ [0, 1], it verifies the convergence in probability

1

2ε

∫ t

0
1{B|br|

s ≤ε}ds
P−→

ε→0+
Lt.

Let (Uj)j≥1 be a sequence of independent uniform random variables on [0, 1]. We define a sequence of
random points (Dj)j≥0 by setting D0 = 0 and Dj = inf{t ≥ Dj−1 + Uj(1 − Dj−1) : B

|br|
t = 0}

for all j ≥ 1. For all n ≥ 1, let Mn be a uniform random mapping on [n] and consider the associated
processes H(Mn), C(Mn), ℓ(Mn), ℓ′(Mn), and (Zj(Mn))j≥1. Aldous, Miermont, and Pitman proved
in [5, Theorem 1] that 2B|br|, L, and (Dj)j≥1 are the respective scaling limits of H(Mn), ℓ(Mn), and
(Zj(Mn))j≥1 for the uniform topology. Since B|br| and L are almost surely continuous, the estimates
(34) and (35) yield the following corollary.

Corollary 3. The marks (Zj(Mn)/n)j≥1 converge in distribution to the sequence (Dj)j≥1. Jointly with
that convergence, the following convergence holds in distribution for the uniform topology on [0, 1]2:(

1√
n
C2nt(Mn),

1√
n
ℓ′2nt(Mn)

)
t∈[0,1]

d−→
(
2B

|br|
t , Lt

)
t∈[0,1]

.

Recall from Section 4.3 the definition of the space K•
w of GHP-isometry classes of pointed weighted

compact metric spaces endowed with the pointed Gromov-Hausdorff-Prokhorov distance d•GHP. When
(X, d) is a compact metric space, we write diam(X) = supx,y∈X d(x, y). The space

S =

(αj , Xj)j≥1 : αj ≥ 0,
∑
j≥1

αj = 1, Xj ∈ K•
w, diam(Xj) −→ 0


is made separable and complete by the uniform distance

dS ((αj , Xj)j≥1, (βj , Yj)j≥1) = sup
j≥1

max (|αj − βj |, d•GHP(Xj , Yj)) .
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We write β · (αj , Xj)j≥1 = (αj , β ·Xj)j≥1 when β > 0. Up to the small abuse of identifying a pointed
weighted compact metric space with its class in K•

w, it holds G(m) ∈ S for any mapping m. Let us write
Znj = Zj(Mn) to lighten the notations. For n, j ≥ 1 and s ∈ [0, 1], we set

fnj (s) = C2Znj−1+2s(Znj −Znj−1)
(Mn) +

1

2

(
ℓ′2Znj (Mn)− ℓ′2Znj−1+2s(Znj −Znj−1)

(Mn)
)
,

fj(s) = 2B
|br|
Dj−1+s(Dj−Dj−1)

+
1

2

(
LDj − LDj−1+s(Dj−Dj−1)

)
.

They are excursions with a unique jump at 0 and it holds ∆0(f
n
j ) = #Γj(Mn)/2. Recall the vernation

tree coded by the contour process of a plane tree τ is the pointed weighted metric space spanned by τ , that
we denote by τ here. Let us remark ℓ′(Mn) only decreases (at speed 1/2) on the intervals where C(Mn)
is constant. Thanks to the branching property of dV, we observe that Vfnj is obtained by regularly gluing

the Tγ(Mn), for γ ∈ Γ(j) and in the order prescribed by ≤Mn , on a metric circle of length #Γj(M
n)

endowed with its Lebesgue measure, and by normalizing the sum of the measures of each component.
Thus, we find d•GHP(n

−1/2 ·Bj(Mn), n
−1/2 ·Vfnj ) ≤ n

−1/2 for all j ≥ 1. The root of Vfnj corresponds to
Mn(γ

•
j ) instead of γ•j , but they are at distance at most 1 anyway. Using the Skorokhod’s representation

theorem, we assume the convergences in distribution of Corollary 3 happen almost surely. It follows
n−1/2fnj −→ fj uniformly on [0, 1] for all j ≥ 1 almost surely, by continuity of B|br| and L. Since dV

is homogeneous, Theorem 7 directly ensures n−1/2 · Vfnj −→ Vfj for the pointed Gromov-Hausdorff-
Prokhorov topology for all j ≥ 1 almost surely. Next, we point out that clearly Dj −→ 1 almost surely,
so for all ε > 0, there is N ≥ 1 such that ||fj ||∞ ≤ ε and ||fnj ||∞ ≤ ε

√
n for all n ≥ N and j ≥ N .

In that case, diam(Vfj ) ≤ 6ε and diam(n−1/2 · Vfnj ) ≤ 6ε according to the inequalities (6) and (7).
Eventually, we deduce the desired scaling limit in distribution for G(Mn).

Theorem 12. The following convergence holds in distribution on the space (S, dS):
1√
n
·G(Mn)

d−→
(
Dj −Dj−1,Vfj

)
j≥1

.

6.2 Continuity in distribution of random stable looptrees

We briefly present the stable Lévy processes as Curien and Kortchemski in [18]. Let us fix α ∈ (1, 2). Let
X(α) be the α-stable Lévy process, which is defined as the stable spectrally positive Lévy process such
that E

[
exp

(
−λX(α)

t

)]
= exp(tλα) for all t ≥ 0 and λ > 0. It is a random càdlàg process from [0,∞)

to R whose all jumps are positive, and it satisfies the important scaling property that
(
c−1/αX

(α)
ct

)
t≥0

has the same distribution as X(α) for all c > 0. As a Lévy process, it is also characterized by its Lévy
measure

Πα(dr) =
α(α− 1)

Γ(2− α)
r−α−11(0,∞)(r)dr.

Furthermore, X(α) is a recurring process because lim supt→+∞X
(α)
t = +∞ and lim inft→+∞X

(α)
t =

−∞ almost surely. We also know the local minima of X(α) are distinct and reached almost surely,
namely for all t ≥ 0, if X(α)

t− = inf [0,t]X
(α) then X(α)

t = X
(α)
t− . Plus, it holds

P
(
X

(α)
t = inf

[0,t]
X(α)

)
= 0 (36)

for all t > 0. For more information about stable processes or the Lévy processes in general, and for the
proof of the facts mentioned here, we refer to [8].

Now, we define the normalized excursion of X above its infimum straddling the time 1 by following
Chaumont [14]. Its left and right boundaries are

g = sup

{
s ≤ 1 : X(α)

s = inf
[0,s]

X(α)

}
and d = inf

{
s ≥ 1 : X(α)

s = inf
[0,s]

X(α)

}
,

38



and its length is ζ = d− g. Almost surely, it holds 0 < g < 1 < d and

X(α)
g = inf

[0,g]
X(α) = inf

[0,1]
X(α) = inf

[0,d]
X(α) = X

(α)
d .

Moreover, the random variable ζ admits a positive density on (0,∞). Then, we eventually set

X
exc,(α)
t = ζ−1/α

(
X

(α)
g+ζt −X

(α)
g−

)
for all t ∈ [0, 1]. This process can be interpreted as an excursion of X(α) above its infimum conditioned
to have length 1. It is strictly positive on (0, 1) because the minima of X(α) are distinct, and it is an
excursion in the sense thatXexc,(α) ∈ H. Furthermore, it is independent from ζ. To lighten the notations,
we write Lα = LXexc,(α) , L̃α = L̃Xexc,(α) , Vα = VXexc,(α) , and Ṽα = ṼXexc,(α) . We point out that Lα

is exactly the random α-stable looptree constructed by Curien and Kortchemski in [18]. By analogy, one
could call Vα the random α-stable vernation tree. However, this name would not be so useful because
the next result, presented in [18, Corollary 3.4], implies Vα = 2 ·Lα almost surely.

Proposition 10. For all α ∈ (1, 2), the excursion Xexc,(α) is PJG almost surely.

Before proving the proposition, we straightforwardly extend the notations used for excursions. Let
f : [0,∞) −→ R be a càdlàg function. We set ∆t(f) = f(t)− f(t−) for t > 0 and ∆0(f) = f(0), we
write s ⪯f t when s ≤ t and f(s−) ≤ inf [s,t] f , and we set xts(f) = 1s≤tmax

(
inf [s,t] f − f(s−), 0

)
for all s, t ≥ 0. We also define f(t) = inf [0,t] f for all t ≥ 0.

Proof. The proof can be essentially found in [18], so we only detail some tedious steps using tools we
have developed earlier. We fix α ∈ (1, 2) and forget it in the notations. For n ≥ 0 and s ∈ [0, 1], let
Tn = inf{t ≥ 0 : Xt = −n} and fn(s) = XsTn + n. By recurrence of X , Tn is finite almost surely,
and fn is an excursion. We see that xts(fn) = xtTnsTn(X) for all s, t ∈ (0, 1], and xt0(fn) = XtTn + n for
all t ∈ [0, 1]. We first prove that almost surely, fn is PJG for all n ≥ 0, which is equivalent to

Xt − inf
[0,t]

X =
∑
s⪯X t

xts(X) (37)

for all t ≥ 0 since Tn −→ +∞ almost surely. The proof that (37) holds almost surely for every fixed
t ≥ 0 is presented in [18]. The left-hand side of (37) is obviously càdlàg and it is clear that if t ∈ [0, Tn]

then the right-hand side is equal to Jfn(t/Tn)− xt/Tn0 (fn), and thus it is càdlàg by Theorem 4. Hence,
(37) holds for all t ≥ 0 almost surely. Now, recall with (12) that an excursion f is PJG if and only if
dTf (t, 1) = 0 for any t ∈ [0, 1]. Almost surely, there exists N ≥ 1 such that d < TN . The excursion fN
is PJG so dTfN (t, 1) = 0 for any t ∈ [0, 1], and it follows that dTXexc(t, 1) = 0 for any t ∈ [0, 1] by an
application of the homogeneity and of the branching property on the interval (g/TN , d/TN ) for dT.

We set Xexc,(1)
t = 1 − t for all t ∈ [0, 1], and we write V1 = VXexc,(1) and Ṽ1 = ṼXexc,(1) . It is

immediate that Xexc,(1) is a PJG excursion and that V1 = Ṽ1 = 2 · LXexc,(1) = 2 · L̃Xexc,(1) = 2 · C,
where we remind that C is the metric circle of length 1. Let e be the standard Brownian excursion. We
set Xexc,(2) =

√
2 · e, and we write V2 = VXexc,(2) and Ṽ2 = ṼXexc,(2) . It is immediate that Xexc,(2)

is a continuous excursion and V2 = Ṽ2 = TXexc,(2) =
√
2 · Te, where Te is the Brownian Continuum

Random Tree introduced by Aldous in [3] and [4].

Theorem 13. The family α ∈ [1, 2] 7−→ Vα is continuous in distribution for the pointed Gromov-
Hausdorff-Prokhorov topology. In other words, for all β ∈ (1, 2), the following three convergences hold
in distribution for the pointed Gromov-Hausdorff-Prokhorov topology:

Lα
d−→

α→1+
C, Lα

d−→
α→β

Lβ, Lα
d−→

α→2−

√
2

2
Te.

39



The convergences when α tends toward 1 or 2 for the Gromov-Hausdorff topology have been shown
by Curien and Kortchemski in [18]. Here, we retrieve and generalize them by using Theorem 3 and the
lemma below.

Lemma 10. The family α ∈ [1, 2] 7−→ Xexc,(α) is continuous in distribution for the relaxed Skorokhod
topology.

Proof of the lemma. The desired convergences when α tends towards 1 or 2 have already been proven in
[18] with Propositions 3.5 and 3.6. However, we point out that when α → 1, the convergence as stated
in [18] does not seem true even with the time-reversing, because it would entail 0 = X

exc,(α)
0

d−→ 1. The
issue is that the Skorokhod topology is too rigid for the boundary values f(0), f(1), and f(1−). The
mistake is at the end of the proof of Proposition 3.6 with the application of the Vervaat transform because
the time of the infimum of the bridge is close, but not equal, to the unique big jump of the bridge. Our use
of the relaxed Skorokhod topology fixes the problem because it allows fn −→ f even when fn(0) = 0
and f(0) = 1.

If β ∈ (1, 2), we obtain the convergence in finite-dimensional distribution thanks to the Lévy property
and thanks to the convergences E

[
exp(−λX(α)

t )
]
= exp(tλα) −→

α→β
exp(tλβ) = E

[
exp(−λX(β)

t )
]

for

any t, λ ≥ 0. To show the tightness, we use the scaling property and bounds on fractional moments of
stable distributions [31, 36] to prove there is C(β) ∈ (0,∞) that only depends on β such that

E
[
|X(α)

t −X(α)
s |γ |X(α)

s −X(α)
r |γ

]
= E

[
(X

(α)
1 )γ

]2
|t− s|γ/α|s− r|γ/α ≤ C(β)|t− r|1+1/(2β+1)

with 2γ = β + 1, for all β + 2 < 2α < 2β + 1 and r ≤ s ≤ t ≤ r+ 1. This implies the tightness by the
Kolmogorov criterion for càdlàg processes, see [9, Theorem 13.5]. Hence,X(α) converges in distribution
to X(β) for the Skorokhod topology on [0, T ] when α → β, for all T ≥ 0. Then, we can suppose
that convergence happens almost surely on [0, T ] for all integers T by the Skorokhod’s representation
theorem. Since local minima ofX(β) are distinct and reached almost surely, we get g(X(α)) −→ g(X(β))

almost surely. Moreover, either by applying the strong Markov property at d(X(β)) or by recalling
that X(β)

g(X(β))
= X

(β)

d(X(β))
while the local local minima of X(β) are distinct, we check that d(X(β)) is

not a local minima of X(β) almost surely, so d(X(α)) −→ d(X(β)) almost surely. See [8] for more
details. Since X(β) is almost surely continuous at g(X(β)) and d(X(β)), it follows Xexc,(α) converges in
distribution to Xexc,(β) for the Skorokhod topology when α→ β.

Because we know Xexc,(α) is almost surely PJG for α ∈ [1, 2), Theorem 3 automatically shows the
continuity in distribution of the family α 7−→ Lα on [1, 2). However, it is not enough to prove the
convergence for α → 2 because e is a continuous excursion. Hence, we present a probabilistic method
that will work for all α ∈ [1, 2].

Let us quickly present Itô’s excursion theory applied to the stable Lévy process. We refer to [8,
Chapter IV] for proof and details. Recall Xt = inf{Xs : s ∈ [0, t]} is the running infimum process
of X . Since the process X −X is strong Markov and 0 is regular for itself, one can use Itô’s excursion
theory and take −X as the local time of X − X at level 0. Let (gj , dj), j ∈ J , be the excursion
intervals of X − X away from 0. Almost surely, we have Xgj− = Xgj = Xgj for all j ∈ J and for
all t ≥ 0, if t is a jump time of X then there exists j ∈ J such that t ∈ (gj , dj). For all j ∈ J , we set
ωj(s) = Xmin(gj+s,dj) −Xgj with s ≥ 0, the excursion away from 0 indexed by j. The ωj are elements
of the space E = {ω : [0,∞) −→ [0,∞) : càdlàg such that ∃M ≥ 0, ∀t ≥M, ω(t) = 0}. From Itô’s
excursion theory, the point measure

NX =
∑
j∈J

δ(−Xgj ,ωj)

is a Poisson point measure on [0,∞) × E with intensity dtn(dω), where n is a σ-finite measure on E .
Moreover,X is measurable with respect to the measureNX becauseXt > Xt almost everywhere almost
surely thanks to (36) and because the local minima Xgj are almost surely distinct.
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Let us choose the shuffle we will work with. When ∆ ∈ (0, 1/2], we define ϕ∆ as in Remark 1, and
when ∆ ≥ 1/2, we set ϕ∆ = ϕ1/2. It is straightforward to verify that Φ : ∆ > 0 7−→ ϕ∆ is a continuous
shuffle. Notice all the ϕ∆ have only a countable number of discontinuity points. From the strong Markov
property and the distribution of NX , we see that BXexc,(α) ∩ B(Φ) = ∅ almost surely for all α ∈ (1, 2).
We also have BXexc,(1) = {1} and BXexc,(2) = ∅ obviously. Thus, Lemma 10 and Theorem 3 ensure
the family α ∈ [1, 2] 7−→ Ṽα is continuous in distribution for the pointed Gromov-Hausdorff-Prokhorov
topology. The end of the proof of Theorem 13 is based on the observation that the Lebesgue measure
on [0, 1] is invariant under all the x ∈ [0, 1] 7−→ ϕ∆(x) ∈ [0, 1]. Informally, the shuffle under Φ of
joint points between loops does not change the law of the stable looptree. Formally, the continuity in
distribution of α ∈ [1, 2] 7−→ Vα will follow from the next theorem.

Theorem 14. For all α ∈ (1, 2), the random pointed weighted compact metric spaces Lα and L̃α have
the same distribution.

Let N∗ = {1, 2, 3, ...} be the set of positive integers. We fix α ∈ (1, 2) and forget it in the notations.
Let ε > 0. We define a sequence (τn(X))n≥0 of σ(X)-measurable stopping times by setting τ0(X) = 0
and τn(X) = inf {t > τn−1(X) : ∆t(X) ≥ ε} for n ≥ 1. The τn+1(X)− τn(X) are independent and
have the same law as τ1(X). Plus, τ1(X) > 0 almost surely because X is càdlàg with X0 = 0. We
postpone the proof of the following lemma.

Lemma 11. There almost surely exists an α-stable Lévy process Y , a bijection ψ : N∗ −→ N∗, and a
function λ : [0,∞) −→ [0,∞) which avoids at most countably many points and preserves the Lebesgue
measure on [0,∞) such that for all t ≥ 0 and k ∈ N∗, it holds Y λ(t) = Y t = Xt, Y τψ(k)(Y ) = Xτk(X),
∆τψ(k)

(Y ) = ∆τk(X), and

x
λ(t)
τψ(k)

∆τψ(k)

(Y ) = ϕ∆τk (X)

(
xtτk
∆τk

(X)

)
whenever τk(X) ≤ d(X).

The local minima of a stable Lévy process are almost surely distinct and Xg = Xd = inf [0,d]X , so
it holds g(X) = inf {t ≤ 1 : Xt = X1} and d(X) = sup {t ≥ 1 : Xt = X1}. The identity Y = X

thus yields g(X) = g(Y ), d(X) = d(Y ), and ζ(X) = ζ(Y ). Furthermore, as t ∈
[
g, d
]

if and only if
Xt = X1, we deduce from the properties provided by Lemma 11 that

τk(X) ∈
[
g, d
]
⇐⇒ τψ(k)(Y ) ∈

[
g, d
]
,

t ∈
[
g, d
]
⇐⇒ λ(t) ∈

[
g, d
]
,

for all t ≥ 0 and k ∈ N∗. Hence, we have that λ induces a function λexc : [0, 1] −→ [0, 1] such that
λ(g + ζt) = g + ζλexc(t) for all t ∈ [0, 1]. This function avoids at most countably many points and
preserves the Lebesgue measure on [0, 1]. For all s, t ∈ [0, 1], we compute

d̃L
ζ1/αJεXexc(s, t) =

∑
k∈N∗

τk(X)∈[g,d]

δ̃Xτk(X)

(
x
g+ζs
τk (X), x

g+ζt
τk (X)

)

=
∑
k∈N∗

τk(Y )∈[g,d]

δYτk(Y )

(
x
λ(g+ζs)
τk (Y ), x

λ(g+ζt)
τk (Y )

)
= dL

ζ1/αJεY exc (λ
exc(s), λexc(t))

by using the properties provided by Lemma 11 and the identities (17) and (18). The same kind of
computation gives dL

ζ1/αJεY exc
(λexc(1), 1) = 0. It follows that the application λexc naturally induces an

isometry λ0 from L̃ζ1/αJεXexc to Lζ1/αJεY exc which avoids at most countably many points and maps

the respective roots onto one another. In fact, we show λ0 is genuinely surjective with Proposition
4. Let us denote by µ̃ and µ the respective measures of L̃ζ1/αJεXexc and Lζ1/αJεY exc , which are the
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images of the Lebesgue measure on [0, 1] by the respective canonical projections. The invariance of the
Lebesgue measure on [0, 1] by λexc directly yields µ = λ0∗µ̃. Hence, the pointed weighted metric spaces
L̃ζ1/αJεXexc and Lζ1/αJεY exc are GHP-isometric. Since X and Y have the same distribution, we get(

ζ(X), L̃ζ1/α(X)JεXexc

)
d
=
(
ζ(X),Lζ1/α(X)JεXexc

)
.

Proposition 7, Corollary 2, and (31) ensure the couples
(
ζ, L̃ζ1/αXexc

)
and

(
ζ,Lζ1/αXexc

)
have the

same distribution, by making ε → 0+. We remind that dL is homogeneous but not d̃L. Nevertheless,
recall that ζ admits a positive density on (0,∞) and that ζ and Xexc are independent. We can then write

E [G (LXexc)] =
1

P
(
|ζ − 1| < ε

)E [1{|ζ−1|<ε}G
(
ζ−1/α · L̃ζ1/αXexc

)]
for any bounded continuous function G and for any ε > 0. With the help of the dominated convergence
theorem and Theorem 6, we end the proof by making ε→ 0+.

Proof of Lemma 11. We set X0 = X , ψ0 = idN∗ , and λ0 = id[0,∞). Let n ≥ 0. By induction, let us
assume we have constructed an α-stable Lévy process Xn, a bijection ψn : N∗ −→ N∗, and a function
λn : [0,∞) −→ [0,∞) which avoids at most countably many points and preserves the Lebesgue measure
on [0,∞) such that for all t ≥ 0 and k ∈ N∗, it holds Xn

λn(t) = Xn
t = Xt, X

n
τψn(k)(X

n) = Xτk(X),
∆τψn(k)

(Xn) = ∆τk(X), and

x
λn(t)
τψn(k)

∆τψn(k)

(Xn) =


ϕ∆τk (X)

(
xtτk
∆τk

(X)

)
if ψn(k) ≤ n

xtτk
∆τk

(X) if ψn(k) > n

.

We write ∆ = ∆τn+1(Xn)(X
n) and τ = τn+1(X

n) to lighten the notations. For any t ≥ 0, we set
Xt = Xn

τ+t−Xn
τ . Thanks to the strong Markov property of an α-stable Lévy process, we know X is an

α-stable Lévy process independent from
(
Xn

min(t,τ )

)
t≥0

. Let us denote by (gi, di), i ∈ I, the excursion

intervals of X−X away from 0 and by ωi its excursion away from 0 on (gi, di), so that the point measure

NX =
∑
i∈I

δ(−Xgi ,ωi)

is a Poisson point measure on [0,∞)×E with intensity dtn(dω). It is independent from
(
Xn

min(t,τ )

)
t≥0

,

and so from ∆. Let us define two applications depending on ∆.

φ : [0,∞) −→ [0,∞) Υ : [0,∞)× E −→ [0,∞)× E

x 7−→

{
∆−∆ϕ∆ (1− x/∆) if x <∆

x if x ≥∆
(x, ω) 7−→ (φ(x), ω)

Recall the expression of ϕ∆ with Remark 1. We check the Lebesgue measure on [0, 1] is invariant by
ϕ∆ for all ∆ > 0. Indeed, ϕ∆ : [0, 1] −→ [0, 1) is surjective and we can partition (0, 1] into a countable
number of intervals on whose ϕ∆ is affine with slope ±1. Whatever the value of ∆ is, it follows the
product measure dtn(dω) is invariant by Υ, so conditionally given

(
Xn

min(t,τ )

)
t≥0

, the point measure

Υ∗NX is also a Poisson point measure with intensity dtn(dω). Therefore, there exists an α-stable Lévy
process Xn+1 that satisfies τn+1(X

n+1) = τ ,
(
Xn+1

min(t,τ )

)
t≥0

=
(
Xn

min(t,τ )

)
t≥0

, and NX̂ = Υ∗NX
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almost surely, where X̂t = Xn+1
τ+t −Xn+1

τ for all t ≥ 0. Analogously, we denote by (ĝj , d̂j), j ∈ J , the
excursion intervals of X̂− X̂ away from 0 and by ω̂j its excursion away from 0 on (ĝj , d̂j), so that

NX̂ =
∑
j∈J

δ(−X̂ĝj
,ω̂j)

=
∑
i∈I

δΥ(−Xgi ,ωi)
.

For all x ≥ 0, we define σx(X) = inf{t ≥ 0 : Xt ≤ −x} and σx(X̂) similarly. We also set
ζ : ω ∈ E 7−→ sup{t ≥ 0 : ω(t) > 0}, so that ζ(ωi) = di − gi is the lifetime of ωi for any i ∈ I. It
follows from (36) that

σx(X) =
∑
i∈I

1−Xgi<x
ζ(ωi) = NX

[
1[0,x)ζ

]
,

almost surely, for all x ≥ 0. But if x ≥∆, we notice that (1[0,x)ζ) ◦Υ = 1[0,x)ζ, which gives σx(X) =

σx(X̂) in that case. The processes X and X̂ are continuous, so min (−∆,X) = min
(
−∆, X̂

)
and

σ∆(X) = σ∆(X̂) almost surely. By definition of ∆, it is now clear that Xn+1 = Xn = X almost
surely. Next, recall the local minima of an α-stable Lévy process are distinct almost surely. In particular,
the application Υ naturally induces a bijection υ : I −→ J , so that (−X̂ĝυ(i) , ω̂υ(i)) = Υ(−Xgi , ωi)

for all i ∈ I. When σ∆(X) < gi for some i ∈ I, we can describe [ĝυ(i), d̂υ(i)] as the interval on which
X̂ = Xgi < −∆, and this justifies X̂ = X on the interval [ĝυ(i), d̂υ(i)] = [gi, di]. Eventually, we have
found Xn+1

t = Xn
t for all t ∈ [0, τ ] or t ≥ τ + σ∆(X).

Next, we build a function λ′ : [0,∞) −→ [0,∞). If t ∈ [0, τ ), then we set λ′(t) = t. If t ≥ τ and
t−τ ∈ [gi, di] with i ∈ I, then we set λ′(t) = ĝυ(i)+t−gi. If t ≥ τ but t−τ is not in any of the [gi, di],
then we set λ′(t) = τ + σφ(−Xt−τ )

(X̂). Observe λ′ gives bijections respectively from [τ + gi, τ + di]

and [0, τ ) to [τ + ĝυ(i), τ + d̂υ(i)] and [0, τ ) that preserve their Lebesgue measures, for all i ∈ I. Almost
surely, each of these two countable families of intervals partitions a conull subset of [0,∞), according to
(36), so the Lebesgue measure on [0,∞) is invariant by λ′. It is easy to check that if s ̸= τ then

Xn+1
λ′(t) = Xn

t, x
λ′(t)
τ (Xn+1) = ∆ϕ∆

(
xtτ (X

n)

∆

)
, and xλ

′(t)
λ′(s)(X

n+1) = xts(X
n),

for all s, t ≥ 0. If t′ − τ > 0 is not in any of the [ĝυ(i), d̂υ(i)] then t′ − τ is the unique point where
X̂ reaches X̂t′−τ < 0, which means t′ = τ + σ−X̂t′−τ

(X̂). The function φ : [0,∞) −→ (0,∞) is
surjective, so there exists t ≥ τ such that λ′(t) = t′. Hence, the only point avoided by λ′ is τ . Notice a
jump has to be inside an excursion interval away from the infimum and that λ′(τ ) = τ+σ∆/2(X̂) is not a
jump of Xn+1. Eventually, our reasoning justifies the existence of a unique bijection ψn+1 : N∗ −→ N∗

such that ψn+1(k) = n+ 1 if ψn(k) = n+ 1 and τψn+1(k)(X
n+1) = λ′(τψn(k)(X

n)) otherwise, for all
k ∈ N∗. Furthermore, we set λn+1 = λ′◦λn. It is then straightforward to check that (Xn+1, ψn+1, λn+1)
satisfies the properties desired for the induction.

Now, observe that t ≤ d(X) if and only if Xt ≥ X1, for any t ≥ 0. Hence, we find d(Xn) = d(X),
and that τk(X) ≤ d(X) if and only if τψn(k)(X

n) ≤ d(X), for all n ≥ 0 and k ∈ N∗. This yields that
Xn has the same number N of jumps of height at least ε in [0, d(X)] as X , which is finite because X is
càdlàg. Thus, τk(X) ≤ d(X) if and only if ψn(k) ≤ N . Finally, the choice Y = XN , ψ = ψN , and
λ = λN verifies all the desired properties. In particular, XN is indeed an α-stable Lévy process because
N and d are the same for all the Xn, so we can write for any non-negative measurable function G

E
[
G
(
XN

)]
=
∑
n≥0

E
[
1{τn(Xn)≤d(Xn)<τn+1(Xn)}G(X

n)
]
=
∑
n≥0

E
[
1{N=n}G(X)

]
= G(X).

Remark 4. Even if it was needed to replace the looptrees with vernation trees, we believe Theorem 14
should stay true for a larger class of random processes. The main argument was that the point measure
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Υ∗NX is distributed as NX conditionally given
(
Xn

min(t,τ )

)
t≥0

, which should be obtained with some

kind of exchangeability. We think in particular of first passage bridges of processes with exchangeable
increments occurring in the work [35] of Marzouk.

6.3 Invariance principle for random discrete looptrees

Let τ be a plane tree defined as at the start of Section 6. We associate a discrete looptree Loop(τ) with
τ , defined as the graph on the set of vertices of τ where two vertices u ≤ v are joined by as many edges
as verified conditions among the following:

• u and v are consecutive siblings of the same parent, which means u =←−u ∗(j) and v =←−u ∗(j+1)
with some j ≥ 1.

• v is the first child of u in τ , which means v = u ∗ (1),

• v is the last child of u in τ , which means v = u ∗ (ku(τ)),

• u = v and u does not have any children, which means ku(τ) = 0.

In particular, if v is the unique child of u in τ , then they are joined by exactly two edges. We endow this
graph with the graph distance (every edge has unit length) and with the uniform probability measure on
its vertices, and we distinguish ∅ as its root so that Loop(τ) can be seen as a pointed weighted compact
metric space. We can also inductively construct Loop(τ) by first arranging ∅, (1), (2), ..., (k∅(τ)) into
a cycle of length k∅(τ) + 1, then by gluing the root of Loop

(
θ(j)τ

)
respectively on (j) for each 1 ≤

j ≤ k∅(τ). There are other ways to associate a discrete looptree with a tree. For example, Curien and
Kortchemski make ∅ correspond to a cycle of length k∅(τ) in [18]. For another version of the looptree,
they erase the edges linking a leaf to itself. In [35], Marzouk contracts the last edge of each cycle, so that
more than two cycles can share the same point.

Let (u(i))0≤i≤#τ−1 be the depth-first exploration of τ and let (c(i))0≤i≤2#τ−2 be its exploration by
contour. It is classical that the plane tree τ is coded by its Lukasiewicz walk L(τ) = (Li(τ))0≤i≤#τ ,
which is defined by L0(τ) = 0 and Li+1(τ) = Li(τ) + ku(i)(τ) − 1 for all 0 ≤ i ≤ #τ − 1. We
introduce a variant of this process that is adapted with the exploration by contour instead of the depth-
first exploration. Let W (τ) = (Wt(τ))t∈[0,2#τ−1] be the process which is affine with slope −1 on each
of the intervals [i, i+ 1) for 0 ≤ i ≤ 2#τ − 2, and such that W0(τ) = k∅(τ) + 1, W2#τ−1(τ) = 0, and

Wi(τ) =

{
Wi−1(τ) + kc(i)(τ) if |c(i)| = |c(i− 1)|+ 1

Wi−1(τ)− 1 if |c(i)| = |c(i− 1)| − 1

for all 0 ≤ i ≤ 2#τ − 2. Observe W (τ) can be expressed in terms of the Lukasiewicz walk and of the
contour process by the identity

Wi(τ) = Lξ(i)+1(τ) + Ci(τ) + 2 (38)

for all 0 ≤ i ≤ 2#τ − 2, where we remind that ξ(i) is the largest integer l such that u(l) has been
visited by (c(j))0≤j≤i. The Lukasiewicz walk is non-negative before its last value which is −1, see
[25, Proposition 1.1] for example, so the process W (τ) is positive on [0, 2#τ − 1) and is continuous
at 2#τ − 1. Hence, the process w(τ) : t ∈ [0, 1] 7−→ wt(τ) = W(2#τ−1)t(τ) is an excursion whose
jumps are at the times i/(2#τ − 1) with i = 0 or |c(i)| = |c(i − 1)| + 1. Moreover, w(τ) is PJG
according to Lemma 4. Let 1 ≤ i ≤ 2#τ − 2 such that |c(i)| = |c(i − 1)| + 1. We remark that
Wt

(
θc(i)τ

)
= Wi+t(τ)−Wi−(τ) for any t ∈ [0, 2#(θc(i)τ)− 1]. This kind of branching property can

be used with the help of Lemma 2 to compute that

x
i2/(2#τ−1)
i1/(2#τ−1) (w(τ)) =


kc(i1)(τ) + 1 if c(i1) = c(i2)

kc(i1)(τ) + 1− j if c(i1) ∗ (j) ⪯ c(i2)
0 otherwise

(39)
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Figure 3: Top Left: A planar tree τ . Top right: Its looptree Loop(τ). Bottom: Its process W (τ).

when 0 ≤ i1, i2 ≤ 2#τ − 2 are respectively either equal to 0 or such that |c(i)| = |c(i − 1)| + 1.
Furthermore, applying Proposition 6 while recalling that W (τ) is affine of slope −1 by parts allows us
to prove Lw(τ) can be constructed by gluing the pointed weighted metric spaces Lw(θ(j)τ) for 1 ≤ j ≤
k∅(τ) respectively at the position j on a metric circle of length k∅(τ)+1 which is rooted at position 0 and
endowed with its Lebesgue measure, and by normalizing the sum of the measures of the components.
Hence, an easy induction on #τ yields Lw(τ) is the pointed weighted metric space spanned with the
graph Loop(τ). Namely, it is obtained by replacing each edge with a line segment of length 1 and by
endowing this space with the normalized sum of the Lebesgue measures of those segments. With a slight
abuse of notations, we can also see Loop(τ) as a finite subset of Lw(τ), so that they share the same root
and that the graph distance of Loop(τ) is inherited from the metric on Lw(τ). It is now clear that

d•GHP

(
L 1

a
w(τ),

1

a
· Loop(τ)

)
≤ 1

a
+

1

#τ
(40)

for any a > 0. Thus, the excursion w(τ) will be crucial for understanding the scaling limits of large
discrete looptrees. The following theorem confirms this intuition in the PJG case.

Theorem 15. Let (τn) be a sequence of plane trees, let f be an excursion, and let (an) be a sequence of
positive real numbers which tends to∞ such that |τn|/an −→ 0 and

(
a−1
n L⌊t#τn⌋(τn)

)
t∈[0,1] −→ f for

the relaxed Skorokhod topology. If f is a PJG excursion, then

1

an
· Loop(τn) −→ Lf

for the pointed Gromov-Hausdorff-Prokhorov topology.
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Proof. If #τn/an −→ 0 then f = 0 because supL(τn) ≤ #τn, and the desired result holds because the
diameter of Loop(τn) is bounded by #τn. We can now assume #τn/an ≥ ε for some constant ε > 0,
so that #τn −→ ∞ and |τn|/#τn −→ 0 by the assumption |τn|/an −→ 0. The identity (38) and the
inequality (34) ensure a−1

n w(τn) −→ f for the relaxed Skorokhod topology. Finally, we apply Theorem
3 and the inequality (40).

Recall the definitions ofXexc,(α) and Lα presented in the previous subsection, as well as thatXexc,(α)

is a PJG excursion. We thus retrieve the invariance principle of Curien and Kortchemski [18, Theorem
4.1] stating that if |τn|/an

d−→ 0 and
(
a−1
n L⌊t#τn⌋(τn)

)
t∈[0,1]

d−→ Xexc,(α) for the Skorokhod topology,

with some α ∈ (1, 2), then a−1
n · Loop(τn)

d−→ Lα for the Gromov-Hausdorff topology. We point
out again that our definition of Loop(τ) slightly differs from Curien and Kortchemski’s, but the two
objects are at Gromov-Hausdorff distance at most 10, so the result stays true anyway. Moreover, this
result stills holds with α = 1, when Xexc,(1) = 1 − t and L1 = C. In the light of the asymptotic
behavior when α → 2 studied in the previous subsection, it is tempting to state that if |τn|/an

d−→ 0

and
(
a−1
n L⌊t#τn⌋(τn)

)
t∈[0,1]

d−→ e for the relaxed Skorokhod topology then 2a−1
n ·Loop(τn)

d−→ Te for
the Gromov-Hausdorff topology, where e is the standard Brownian excursion. Sadly, the reader could
convince oneself this is false by approximating e by PJG excursions, in a similar fashion as the counter-
example given at the beginning of Section 4. Here, the problem comes from a lack of exchangeability
in the order of siblings inside the plane trees. Nevertheless, by adding a hypothesis that expresses such
exchangeability, we will be able to state a general result for convergences of random discrete looptrees.

Let Ψ = (ψk)k≥1 be a family of permutations ψk respectively of {1, ..., k}. The family Ψ induces
a bijection, also denoted by Ψ with a slight abuse of notations, from any plane tree τ to another plane
tree Ψ(τ) = {Ψ(u) : u ∈ τ} by inductively setting Ψ(∅) = ∅ and Ψ(u ∗ (j)) = Ψ (u) ∗

(
ψku(τ)(j)

)
if u ∈ τ and 1 ≤ j ≤ ku(τ). Observe that if u, v ∈ τ then |Ψ(u)| = |u|, kΨ(u)(Ψ(τ)) = ku(τ),
and u ⪯ v if and only if Ψ(u) ⪯ Ψ(v). Basically, Ψ(τ) is the plane tree recursively constructed by
shuffling the order of siblings of the same parents, so Loop(Ψ(τ)) can be retrieved by shuffling the joint
points between the loops of Loop(τ). It is natural to try to compare the looptree shuffled by a family of
permutations Ψ with the shuffled looptree L̃w(τ) induced by a shuffle Φ.

Lemma 12. We assume the shuffle Φ is such that the Lebesgue measure on [0, 1] is invariant by ϕ∆ and
ϕ∆(0) = 0 for all ∆ > 0. Let τ be a plane tree, let Ψ be a family of permutations, and let a > 0. It holds

d•GHP

(
L̃ 1

a
w(τ),L 1

a
w(Ψ(τ))

)
≤ max

v∈τ

∑
u∈τ,j≥1
u∗(j)⪯v

ku(τ) + 1

a
δ

(
ϕ ku(τ)+1

a

(
1− j

ku(τ) + 1

)
, 1−

ψku(τ)(j)

ku(τ) + 1

)
.

Proof. We denote by c1 the exploration by contour of τ and by c2 the exploration by contour of Ψ(τ).
For all u ∈ τ\{∅}, we define (2#τ − 1)r1(u) as the unique integer i such that c1(i) = u and |c1(i)| =
|c1(i − 1)| + 1. Similarly, we define (2#τ − 1)r2(u) as the unique integer i such that c2(i) = Ψ(u)
and |c2(i)| = |c2(i − 1)| + 1. We also set r1(∅) = r2(∅) = 0. The r1(u) and the r2(u) for u ∈ τ are
respectively all the jumps of w(τ) and w(Ψ(τ)). For all u ∈ τ and y ∈ [0, 1], the times

t1(u, y) = inf
{
t ≥ r1(u) : wt(τ) = wr1(u)−(τ) + y∆r1(u)(w(τ))

}
t2(u, y) = inf

{
t ≥ r2(u) : wt(Ψ(τ)) = wr2(u)−(Ψ(τ)) + y∆r2(u) (w(Ψ(τ)))

}
are well-defined and the applications t1, t2 : τ×(0, 1] −→ [0, 1) are bijective. It is a simple consequence
of the fact W (τ) is strictly decreasing on the intervals [i, i+1). We use the conventions t2(u, ϕ∆(x)) =
t2(u, 1) when ϕ∆(x) = 0 = 1 ∈ C and t2(u, ϕ∆(x)) = t2(u, y) when ϕ∆(x) = y ∈ (0, 1) ⊂ C. Let
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us denote by [s]1 and [s]2 the canonical projections of s ∈ [0, 1] respectively on L̃ 1
a
w(τ) and L 1

a
w(Ψ(τ)).

Since ϕ∆ : [0, 1] −→ C is always surjective, the set

R = {([1]1, [1]2)} ∪
{(

[t1(u, y)]1 ,
[
t2(u, ϕ ku(τ)+1

a

(y))
]
2

)
: u ∈ τ, y ∈ [0, 1]

}
is a correspondence between L̃ 1

a
w(τ) and L 1

a
w(Ψ(τ)). We check its distortion is bounded by two times

the right-hand side of the desired inequality thanks to (39), Lemma 2, basic observations about Ψ, and
the identities ϕ∆(0) = 0. We define a probability measure ν on L̃ 1

a
w(τ) ×L 1

a
w(Ψ(τ)) by setting∫

L̃ 1
aw(τ)

×L 1
aw(Ψ(τ))

gdν =
1

2#τ − 1

∑
u∈τ

(ku(τ) + 1)

∫ 1

0
g

(
[t1(u, y)]1 ,

[
t2(u, ϕ ku(τ)+1

a

(y))
]
2

)
dy

for any bounded measurable function g. Obviously, ν(R) = 1. The process W (τ) takes integer values
at integer times and is affine of slope −1 on the intervals [i, i+ 1), so it follows that

t1

(
u,

j − y
ku(τ) + 1

)
= t1

(
u,

j

ku(τ) + 1

)
+

y

2#τ − 1

for all u ∈ τ , y ∈ [0, 1), and 1 ≤ j ≤ ku(τ)+1. The application t2 has an analogous behavior. Together
with the invariance of the Lebesgue measure on [0, 1] by ϕ∆, this allows us to verify that ν is a coupling
between the probability measures of L̃ 1

a
w(τ) and L 1

a
w(Ψ(τ)).

We say a random plane tree τ is called exchangeable if for any deterministic family Ψ of permuta-
tions, Ψ(τ) has the same distribution as τ . This will be the main assumption of our invariance principle
for random discrete looptrees. For example, it is satisfied by uniform random trees or Galton-Watson
trees conditioned on an event or a quantity that does not depend on the plane order: the number of ver-
tices, the number of leaves, the height, the degree sequence, the generation size sequence, the existence
of a chain with prescribed degrees...

Theorem 16. Let (τn) be a sequence of random exchangeable plane trees, let X be a random excursion,

and let (an) be a sequence of positive real numbers with an → ∞. If the convergence |τn|/an
d−→ 0

holds in distribution and if the convergence
(
a−1
n L⌊t#τn⌋(τn)

)
t∈[0,1]

d−→ X holds in distribution for the
relaxed Skorokhod topology, then the convergence

1

an
· Loop(τn)

d−→ 1

2
· VX

holds in distribution for the pointed Gromov-Hausdorff-Prokhorov topology.

In particular, this theorem gives scaling limits for Loop(τn) when τn is a large critical Galton-Watson
tree conditioned to have n vertices with offspring distribution in the domain of attraction of the Gaussian
law but with infinite variance, because the scaling limit of the Lukasiewicz walk and |τn| are known
in this case, see [21]. This was conjectured by Curien and Kortchemski in [18] and later proved by
Kortchemski and Richier [30] with a spinal decomposition argument. As scaling limits of Lukasiewicz
walks of uniform random trees with prescribed degree sequence are given by [27, Theorem 16.23],
our theorem yields another proof for scaling limits of uniform random looptrees with prescribed cycle
lengths obtained by Marzouk in [35], but only in the particular case where the height of the associated
tree becomes negligible against an.

Proof. Thanks to the Skorokhod’s representation theorem, we can assume all the convergences of the
hypothesis happen almost surely. We can adapt the argument in the proof of Theorem 15 to prove
that almost surely, d•GHP

(
a−1
n · Loop(τn),La−1

n w(τn)

)
−→ 0 and a−1

n w(τn) −→ X for the relaxed
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Skorokhod topology. Thus, we only need to find the limit in distribution of La−1
n w(τn)

. The strategy of
the proof is to construct a family of permutations Ψ and a shuffle Φ such that we can show La−1

n w(Ψ(τn))

and L̃a−1
n w(τn)

are close with Lemma 12. Then, as Ṽa−1
n w(τn)

= 2 · L̃a−1
n w(τn)

because w(τn) is PJG, we
would find the desired limit thanks to Theorem 3 and the exchangeability of τn. However, we have two
technical difficulties to overcome. On the one hand, if (k + 1)/an = (l + 1)/am = ∆, then ϕ∆ would
have to verify some relations with both ψk and ψl, which could complexify its construction. On the other
hand, if the set of the (k + 1)/an is dense, it may be impossible for Φ to be continuous at some points,
and so to verify the condition BX ∩ B(Φ) = ∅ almost surely.

By induction, we can choose a sequence (bn)n≥1 such that b1 = a1 and |bn+1 − an+1| ≤ 1 but
bn+1 /∈

⋃n
m=1 bmQ for all n ≥ 1. Therefore, we can assume that an/am ∈ Q =⇒ n = m without loss

of generality, which resolves the first difficulty. It is not difficult to express BX as the set of values of a
sequence of σ(X)-measurable random variables because X is almost surely càdlàg, so that the set

E = {x ∈ R : P(x ∈ BX) + P(∃∆ > 0, (∆, x) ∈ BX) > 0}

is countable. Let us fix ε ∈ (0,∞)\E for the time being. For all η ∈ (0, ε)\E, we are able to prove
||Jη(a−1

n w(τn)) − Jε(a−1
n w(τn))||∞ −→ ||JηX − JεX||∞ almost surely with Proposition 7, since

neither ε nor η are the height of some jump of X by definition of E. The set E is countable so we can
give ourselves a deterministic strictly decreasing sequence (η′p)p≥1 of points of (0, ε)\E that tends to 0.
Then, there exists a deterministic strictly increasing sequence (mp)p≥1 of integers such that

P
(
∃n ≥ mp,

∣∣∣||Jη′p(a−1
n w(τn))− Jε(a−1

n w(τn))||∞ − ||Jη
′
pX − JεX||∞

∣∣∣ ≥ 1

2p

)
≤ 1

2p

for all p ≥ 1. We construct another deterministic sequence (ηn) by setting ηn = ε if n < m1 and
ηn = η′p if mp ≤ n < mp+1 with p ≥ 1. This sequence tends to 0 so ||JX − JηnX||∞ −→ 0 almost
surely according to Proposition 7, and the Borel-Cantelli lemma ensures that almost surely,

||Jηn(a−1
n w(τn))− Jε(a−1

n w(τn))||∞ −→ ||JX − JεX||∞. (41)

Plus, the only limit point of the set D = {(k + 1)/an : k, n ≥ 1 such that k + 1 < anηn} is 0 because
ηn −→ 0, and that will resolve the second difficulty.

Let k, n ≥ 1. We set

ψk(l) =

{
k+1−l+1

2 if k + 1− l is odd
k + 1− k+1−l

2 if k + 1− l is even

for all 1 ≤ j ≤ k and we easily check that ψk is a deterministic permutation of {1, ..., k}. Since E is
countable, it is possible to choose a deterministic α ∈ (1/2, 1) such that αm(1+α)/2 /∈ E and αm /∈ E
for all m ≥ 1 and such that max(1 − α, 1/α − 1) ≤ min ((k + 1)/an, 1/(k + 1)). For all m ≥ 0, we
write I2m = (αm(1 + α)/2, αm] and I2m+1 =

(
αm+1, αm(1 + α)/2

]
. Plus, we also set

φ(x) =

{
x− αm

2 if x ∈ I2m with an integer m
1− x+ αm+1

2 if x ∈ I2m+1 with an integer m

for all x ∈ (0, 1]. Observe there is at most one 1 ≤ j ≤ k such that j/(k + 1) ∈ I2m ∪ I2m+1 because
1 − α ≤ 1/(k + 1). Let us denote by b the parity function defined on the set of integers by b(2m) = 0
and b(2m+ 1) = 1. Finally, we define ϕ k+1

an

: [0, 1] −→ C by setting

ϕ k+1
an

(x) =

{
1− φ(x) if ∃j ∈ {1, ..., k} such that j/(k + 1) ∈ I2m+1−b(j)

φ(x) otherwise
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for all x ∈ I2m ∪ I2m+1 with an integer m, and ϕ k+1
an

(0) = 0. We emphasize the notation ϕ k+1
an

does not

lead to any inconsistency. Indeed, if (k + 1)/an = (l + 1)/am then an/am ∈ Q, so n = m and k = l.
It is clear that ϕ k+1

an

is càglàd and surjective. The intervals (Im)m≥0 partition (0, 1] and ϕ k+1
an

is affine

with slope ±1 on each one of them, so it preserves the Lebesgue measure on [0, 1]. We check that for all
k, n ≥ 1,

sup
x∈(0,1]

∣∣∣∣2xδ (0, ϕ k+1
an

(x)
)
− 1

∣∣∣∣ ≤ min

(
k + 1

an
, 1

)
,

sup
1≤j≤k

δ

(
ϕ k+1
an

(
1− j

k + 1

)
, 1− ψk(j)

k + 1

)
≤ 2

k + 1
. (42)

For all n ≥ 1, we define a deterministic family of permutation Ψn = (ψnk )k≥1 by setting ψnk = ψk
if k + 1 < anηn and ψnk = id{1,...,k} if k + 1 ≥ anηn. Recall the only limit point of the set D is 0, D
is bounded from above by ε, and E is countable. Hence, we can give ourselves a deterministic strictly
decreasing sequence (βp)p≥1 of points of (0,∞)\E which tends to 0, such that β1 = ε, and such that
there is exactly one element of D inside [βp+1, βp) for all p ≥ 1. Then, we define a deterministic shuffle
Φε : ∆ > 0 7−→ ϕε∆ by setting ϕε∆(x) = x for all x ∈ [0, 1] if ∆ ≥ β1 = ε, and by setting ϕε∆ = ϕ k+1

an

if ∆ ∈ [βp+1, βp) with p ≥ 1, where (k + 1)/an is the unique point of D also inside [βp+1, βp). By
definition of E and of the ϕ k+1

an

, it holds BX ∩ B(Φε) = ∅ almost surely. Theorem 3 ensures that almost

surely, 2 · L̃a−1
n w(τn)

−→ Ṽf for the pointed Gromov-Hausdorff-Prokhorov topology, because w(τn) is
PJG. Moreover, the Lebesgue measure on [0, 1] is invariant by ϕε∆ and ϕε∆(0) = 0 for all ∆ > 0, and

sup
∆>0

sup
x∈[0,1]

∣∣∣∣2xδ (0, ϕε∆(x))− 1

∣∣∣∣ ≤ 1. (43)

Thus, we can apply Lemma 12. Recall the constructions of Φε and Ψn, and that ηn ≤ ε. Let u ∗ (j) ∈ τn
with j ≥ 1, we want to bound the corresponding term in the right-hand-side of the inequality provided
by Lemma 12. If ku(τn) + 1 ≥ anε, then this term is equal to 0 because ϕε∆(x) = x when ∆ ≥ ε
and ψnk (j) = j when k + 1 ≥ anηn. If anηn ≤ ku(τn) + 1 < anε, then we control the term with the
inequality (43). If ku(τn) + 1 < anηn, then we use the inequality (42). Eventually, we obtain

d•GHP

(
L 1

an
w(Ψn(τn))

, L̃ 1
an
w(τn)

)
≤ max

v∈τn

∑
u∈τn,j≥1
u∗(j)⪯v

(
0 + 21{

ηn≤ ku(τn)+1
an

<ε
}ku(τn) + 1− j

an
+

2

an

)

≤ 2|τn|
an

+ 2 sup
t∈[0,1]

∑
s∈[0,1]

ηn≤∆s(a
−1
n w(τn))<ε

xts

(
1

an
w(τn)

)

≤ 2|τn|
an

+ 2||Jηn(a−1
n w(τn))− Jε(a−1

n w(τn))||∞.

We point out the second inequality comes from the identity (39). Then, the almost sure convergences
|τn|/an −→ 0, 2 · L̃a−1

n w(τn)
−→ ṼX , and (41) yield that almost surely,

lim sup
n→∞

d•GHP

(
L 1

an
w(Ψn(τn))

,
1

2
· ṼX

)
≤ 2 ||JX − JεX||∞ . (44)

We remind that ϕε∆(x) = x for all x ∈ [0, 1] whenever ∆ ≥ ε. The identities (17) and (18) from
Theorem 5 then imply that dLJεX = d̃LJεX . Let us set Y = X − JX + JεX . We know JY = JεY from
the point (v) of Theorem 4, thus dTY−JY = dTX−JX and d̃LJY = dLJY = dLJεX . Moreover, Theorem 5
gives dTY = dTX and dVY = d̃VY . Therefore, we find

||d̃VX − dVY ||∞ = 2||d̃LX − d̃LJεX ||∞ ≤ 4||JX − JεX||∞,
||dVX − dVY ||∞ = 2||dLX − dLJεX ||∞ ≤ 4||JX − JεX||∞,
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thanks to Corollary 2, that is properly used with the constant K = 1 according to (43). Eventually, we
combine (44) and (31) to obtain lim sup d•GHP

(
L 1

an
w(Ψn(τn))

, 12 · VX
)
≤ 10 ||JX − JεX||∞ almost

surely. The random plane tree τn is exchangeable so it has the same distribution as Ψn(τn). However,
neither La−1

n w(τn)
nor VX depend on ε. Plus, ε may be chosen arbitrarily small because E is countable.

Hence, we conclude the convergence in distribution 2 ·La−1
n w(τn)

d−→ VX holds for the pointed Gromov-
Hausdorff-Prokhorov topology with the point (iv) of Proposition 7.

Remark 5. In Theorem 15, the assumption |τn|/an −→ 0 may be removed if one directly know the
limit of a−1

n w(τn). However, doing the same for Theorem 16 is not possible because we also used the

assumption |τn|/an
d−→ 0 to obtain the estimate (44). In fact, [30, Theorem 2] and [35, Theorem 7.5]

provide examples which confirm the latter assumption is not superfluous. As shown by Marzouk, when
|τn|/an is not negligible, an unbalance between dL and dT may occur so that the scaling limit of the
looptrees is the quotient metric space induced by the pseudo-distance adT + 2dL, with some a > 1.
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