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Abstract: Cortical activity and walking speed are known to decline with age and can lead to an
increased risk of falls in the elderly. Despite age being a known contributor to this decline, individuals
age at different rates. This study aimed to analyse left and right cortical activity changes in elderly
adults regarding their walking speed. Cortical activation and gait data were obtained from 50 healthy
older individuals. Participants were then grouped into a cluster based on their preferred walking
speed (slow or fast). Analyses on the differences of cortical activation and gait parameters between
groups were carried out. Within-subject analyses on left and right–hemispheric activation were
also performed. Results showed that individuals with a slower preferred walking speed required
a higher increase in cortical activity. Individuals in the fast cluster presented greater changes in
cortical activation in the right hemisphere. This work demonstrates that categorizing older adults by
age is not necessarily the most relevant method, and that cortical activity can be a good indicator
of performance with respect to walking speed (linked to fall risk and frailty in the elderly). Future
work may wish to explore how physical activity training influences cortical activation over time in
the elderly.

Keywords: fNIRS; walking speed; k-means clustering; gait control; prefrontal activity; cortical activation

1. Introduction

Walking is an everyday activity and is considered as one of the bases of human
locomotion. It is acquired at a young age of around 11 to 14 months and is refined until the
age of around 7 or 8 years [1]. This activity requires the coordination of multiple muscle
groups across the lower limbs and lower back to control parameters such as walking phase,
step length, step width, and pelvic inclination [2–4]. Furthermore, the variability of gait
parameters such as double support time, step length [5], and step time [6] has been linked
to fall risk in the elderly. The act of walking also provokes cerebral activation: the prefrontal
cortex (PFC), in particular the dorso-lateral PFC (DLPFC), is highly active in the control of
voluntary movement and is responsible for movement execution [7,8]. Older adults may
show an increased PFC activity in complex walking conditions such as dual-task conditions
compared to younger adults [9,10].

The effect of aging on walking is a natural phenomenon and alters gait pattern through
kinematic changes such as reduced step length and width, decreased walking speed,
and lower cadence [6,11–13]. These alterations in walking parameters were interpreted
as methods to preserve balance during walking by lowering the activity’s complexity
and efficiency.

Biomechanical adjustments made to the gait pattern with aging can be considered as
tell-tale signs of fall risk. In particular, walking speed is often used as an indicator of fall
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risk [5,14–18], as well as stride length, step frequency, and double support time [5,14,17]. In
addition to walking parameters, emerging evidence has shown that brain activity during
walking can predict falls in aging [19]. Brain activation can reveal subtle changes in brain
function that may precede behavioural modifications. Cerebral activity during walking can
be measured using techniques such as portable electroencephalography (EEG) or functional
near-infrared spectroscopy (fNIRS) [10,20–22]. Furthermore, a recent study showed that
dual-task walking compared to simple-task walking can increase DLPFC activity up to
two-fold [10].

While walking performance is seen to decrease (with respect to its speed and control)
and the required cognitive activity for carrying out a task is seen to increase with advanced
age, the trend is not always necessarily linear. Studies comparing gait variables between
different age groups within an elderly population do not always conclude high or significant
differences [10,23–25]. Some studies showed that individuals age at different rates, and
that each person has an “ageotype”, that is: a combination of molecular and physiological
factors that influence how the body ages [26,27]. The latter article warrants the notion of
categorising individuals by factors other than their age based on birth date. Furthermore, a
review carried out by Yogev-Seligmann et al. [8] highlighted the fact that there is a high
variability in frontal lobe alterations and decline in executive function depending on age,
but also education and individual lifestyle; all of which indicate that cognitive capacity
degrades with age; however, there is a high between-individual variability.

Although PFC activity during preferred-speed walking was well investigated [28,29],
few studies explored changes in cerebral activity during fast walking compared to slow
walking. There is, however, little consensus on whether walking speed affects PFC activity;
age may be an influencing factor. A recent study by de Belli et al. [30] found that both age
and walking speed affect pre-frontal cortex activity. Their study measured PFC activity in
young (mean age = 22 years) and older (mean age = 67 years) adults walking at preferred
and fast-walking speeds. Results showed that walking speed did not alter PFC activity
in young adults, but this was not the case in older adults who showed a significantly
higher increase in PFC activity in the left hemisphere (LH) during fast walking compared to
walking at a preferred speed. Harada et al. [31] and Metzger et al. [32] found that fast-speed
walking induced greater PFC activity changes in the LH in both young and old adults.
Work from two other studies [33,34] found, however, no significant changes in young adults
dependent on walking speed. The abovementioned studies indicate that the LH becomes
more active in fast walking conditions; hence, this emphasises the notion that the LH and
RH of the brain function independently from one another, in particular in more complex
situations. Furthermore, a complex situation for an older adult is not necessarily complex
for a younger adult.

The aim of this study is, therefore, to analyse left and right cortical activity changes in
elderly adults regarding their walking speed. This latter variable will be assessed indepen-
dently of participants’ age since, as aforementioned studies showed, their relationship is
not necessarily linear.

2. Materials and Methods

Data from 50 healthy older adults were used in this study. Data were obtained from
prior studies [10,20] for which ethical approval was previously obtained by the French
biomedical ethics committee (Comité de Protection des Personnes Nord Ouest III Ref. CPP:
2018-01 N◦ ID RCB: 2017-A03187-46). Informed consent was obtained from all participants
prior to the study. Inclusion criteria were: to be able to walk for at least 20 min, and absence
of other medical conditions that may interfere in gait. A brief description of materials and
methods of the walking task are described below, further information can be found in
Hoang et al. [10] and Ranchet et al. [20].

Of the 50 participants whose data were used in this study, the mean age ± standard
deviation (SD) was 67 ± 6.8 years old (range: 54–87); data were collected from 31 women
and 19 men.
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Participants were equipped with a 16-optode fNIRS system (NIRSport, NIRx Medical
Technologies, New York, NY, USA), consisting of eight sources and six detectors separated
by ~30 mm, placed over the DLPFC (see Figure 1a). Channels 9 and 10 were not considered
as these were short separation channels used to quantify peripheral signal artefacts. This
device measured the relative concentration of oxygenated (HbO) and deoxygenated (HbR)
blood flow to the DLPFC. Relative changes in HbO and HbR concentration were based on
changes to DLPFC blood flow compared with measures taken during quiet standing prior
to activity onset.
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Figure 1. (a) fNIRS montage measuring the dorsolateral prefrontal cortex according to the EEG
10-10 system. Red circles represent sources and blue circles represent detectors. Numbers represent
channels. (b) Walking path configuration. Images adapted from Hoang et al. [10].

Biomechanical gait parameters were also collected using two wearable sensors, one
attached to each shoe (Physiolog®5, Gait Up, Lausanne, Switzerland). This device was
previously used in studies [10,20,35] for gait analysis. Walking performance measures
included gait cycle time (seconds), cadence (steps per minute), stride length (m), and
walking speed (m/s). The parameters are expressed through their mean and coefficient of
variation (CV). The CV stated is the mean CV of all five walking trials for each participant.

After being equipped with the fNIRS and Gait Up devices, the protocol was explained
to the participant and consisted of the following: the procedure began with 45 s of quiet
standing, followed by a walking trial lasting 30 s. A total of five walking trials were
carried out. The duration of the rest period between trials varied from 25 to 35 s to
diminish possible resonance effects [36]. During these five trials, the participants walked at
a comfortable speed around an oval-shaped track marked onto the floor (see Figure 1b). All
trials took place indoors, in a well-lit room with minimal visual and auditory disturbances.
The walking was performed in the same direction for each of the 5 trials, and the results
obtained were averaged.

The following sections present the initial variables and data pre-processing, and finally,
the resulting list of variables used for analysis.

2.1. Initial Variables and Pre-Processing

Figure 2 shows (a) a typical fNIRS haemodynamic response function where zero
represents the mean level of haemoglobin concentration during the quiet standing prior
to activity. The data used to generate this graph do not stem from the present study,
but from Scholkmann et al. [37]. An increase in oxyhaemoglobin concentration (HbO)
occurred in conjunction with a smaller decrease in deoxyhaemoglobin concentration (HbR),
as oxygenated blood flowed into the active brain region. The sum of HbO and HbR is the
total haemoglobin concentration (HbT); (b) the variable avg_HbO (resp. HbR) represents
the average of HbO (resp. HbR) during the first 20 s of the walking trial, while max_HbO
(resp. min_HbR) represents the maximum value of HbO (resp. minimum value of HbR)
during the same period. Two additional variables combine HbO and HbR: the variable
deltaH represents the difference between the highest value of HbO and the lowest value of
HbR, and diff_Hb represents the difference between the mean value of HbO and the mean
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value of HbR. Both HbO and HbR can have positive and negative values; as a consequence,
the variables diff_Hb and deltaH can also have negative values.
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Figure 2. A typical fNIRS haemodynamic response function, adapted from Scholkmann et al. [37],
where (a) [HbT] corresponds to total haemoglobin concentration (HbO+HbR) and (b) max_HbO
(resp. minHbR) corresponds to the maximum (resp. minimum) of the oxyhaemoglobin (resp.
deoxyhaemoglobin) concentration over the 20 first seconds of walking; avg_HbO and avg_HbR
correspond to the average during the same period; diff_Hb corresponds to the difference between
avg_HbO and avg_HbR; deltaH corresponds to the difference of max_HbO and min_HbR and
tmax_HbO (resp. tmin_HbR) corresponds to the time when the maximum HbO (resp minimum HbR)
is reached.

The variables used in our study relate to several characteristics of HbO and HbR
flow over 20 s from the onset of walking. Change in oxy/deoxy-haemoglobin (HbO
and HbR, respectively) refers to the change in haemoglobin levels from the period of
quiet standing carried out before the task, for which the reference values were HbO = 0
and HbR = 0. The cerebral activity indicators were averaged over the 5 trials, given
for each channel. When data presented >3 extreme values within a channel, data from
the given channel were removed. Overall, data from 34 channels were omitted out of
800 (16 channels × 50 persons). The variability of HbO and HbR for a given person can
be very high depending on the different fNIRS channels. This variability is visible on
Figure S1 in the Supplementary Materials.

Table 1 defines the selected characteristics for HbO and HbR. All those features were
obtained over the time interval [0, 20] seconds and for each of the 16 channels. All cortical
activity variables, other than the times to maximal change, were measured in micromole
per litre (µmol/L). Time to maximal change variables are given in seconds (s).

Table 1. Calculated variables for cortical activity based on oxygenated and deoxygenated haemoglobin.

Variable Description HbO HbR

the mean value during the first 20 s of the
walking trial. avg_HbO avg_HbR

the minimum or maximum values during the
first 20 s of the walking trial. max_HbO min_HbR

time of the minimum or maximum values
during the first 20 s of the walking trial. tmax_HbO tmin_HbR

2.2. Additional Variables

In addition, as is visible in Figure 2, the cerebral activity corresponded to the con-
junction of an increase in oxyhaemoglobin concentration with a smaller decrease in de-
oxyhaemoglobin concentration. Some combinations were proposed in the literature, in
addition with HbT [35,36]. To have a better view of how to combine HbO and HbR to
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analyse cerebral activity, we defined additional variables that combine HbO and HbR (see
Table 2).

Table 2. Additional variables combining HbO and HbR, which are relative to the quiet standing
phase prior to walking procedure. The HbO and HbR measured during the quiet standing phase are
considered to be zero/baseline values.

Abbreviation Definition Description

avg_HbT mean(HbO+HbR) Average of total haemoglobin during the
20 first seconds of the walking trial.

max_HbT max(HbT) Maximum value of HbT during the
20 first seconds of the walking trial.

tmax_HbT Time at max(HbT) The time at which max_HbT occurs

diff_Hb diff_Hb = avg_HbO − avg_HbR Difference between the average in oxy- and
deoxy-haemoglobin as a measure of cortical activation

deltaH deltaH = max_HbO − min_HbR Maximum difference in oxy- and deoxy-haemoglobin

To acquire comprehensible results from the 18 channels available on the fNIRS device,
we analysed which channels to consider and how to regroup them. Of the 18 channels
available, only data from channels 1–8 and 11–18 were considered. Channels 9 and 10 were
short separation channels.

As aforementioned, previous research highlighted an independence between the left
and right cerebral hemispheres, particularly in older adults [30,31]. Based on these previous
works, the decision was made to also separate our data between LH and RH.

Despite previous work justifying separation of the LH and RH, their independence
was verified through correlation analyses. The variable used for these analyses was the
mean relative change in oxyhaemoglobin, as this is the most widely cited and accepted
variable for cortical activation [36,38]. Scatter plots between all channels were produced
to check for a linear distribution and, based on this, Pearson correlation coefficients using
a pairwise method and p-values were calculated for each channel. Stronger and more
significant correlations were found between the LH channels and between the RH channels,
while more moderate correlations were seen between the LH and RH channels. Results
from these a priori analyses can be found in Supplementary Materials (Figures S2 and S3).

2.3. Complete List of Variables

Collected data were primarily made up of cortical activation indicators and gait
parameters. Variables relating to cognition were also obtained from questionnaires carried
out prior to the experiment. A comprehensive list of all measures and abbreviations is
detailed below for cortical activation (Table 3) and gait parameters (Table 4). Two additional
variables were measured for all participants: the fear of falling in the community-dwelling
population through the Falls Efficacy Scale—international short version (FES-I_Score; [39]);
global cognitive state was assessed by the Montreal Cognitive Assessment (MoCA; [40]).

The coefficient of variation calculated was the ratio of the standard deviation to the
mean. In this article, the CV stated is the mean CV of all participants for all gait cycles
collected over the five walking trials.

2.4. Definition of Two Groups in the Population by K-Means Clustering

Data were sorted based on their walking speed using a K-means clustering algorithm
splitting them into one of two groups. Participants were allocated to either slow- or fast-
walking speed clusters. Through this partitional clustering method, each participant was
assigned to one group only. K-means clustering separates data into a pre-defined number
of groups (clusters). Clusters are formed by allocating data points such that, at the end,
the sum of the squared error is minimal (squared Euclidean distance between each data
point and the cluster centroid) for each cluster. In the case of this study, the elbow method
showed that the choice of two clusters provides the best compromise to get less variations
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within clusters and clusters as different as possible. Figure S4 in Supplementary Materials
shows the inflection point when using two clusters.

Table 3. Abbreviation and description of all variables calculated from fNIRS data. The HbO and HbR
measured during the quiet standing phase are considered to be zero/baseline values.

Abbreviation Description of the Cortical Activation Parameters

avg_HbO_l Mean change in oxyhaemoglobin, left hemisphere
avg_HbO_r Mean change in oxyhaemoglobin, right hemisphere
avg_HbR_l Mean change in deoxyhaemoglobin, left hemisphere
avg_HbR_r Mean change in deoxyhaemoglobin, right hemisphere
avg_HbT_l Mean change in total haemoglobin, left hemisphere
avg_HbT_r Mean change in total haemoglobin, right hemisphere
max_HbO_l Maximum change in oxyhaemoglobin, left hemisphere
max_HbO_r Maximum change in oxyhaemoglobin, right hemisphere
max_HbR_l Maximum change in deoxyhaemoglobin, left hemisphere
max_HbR_r Maximum change in deoxyhaemoglobin, right hemisphere
max_HbT_l Maximum change in total haemoglobin, left hemisphere
max_HbT_r Maximum change in total haemoglobin, right hemisphere

diff_Hb_l Mean difference in oxy and deoxy -haemoglobin as a measure of cortical
activation, left hemisphere

diff_Hb_r Mean difference in oxy and deoxy -haemoglobin as a measure of cortical
activation, right hemisphere

deltaH_l Maximum difference in oxy and deoxy -haemoglobin, left hemisphere
deltaH_r Maximum difference in oxy and deoxy -haemoglobin, right hemisphere

tmax_HbO_l Time elapsed at maximal change in oxyhaemoglobin, left hemisphere
tmax_HbO_r Time elapsed at maximal change in oxyhaemoglobin, right hemisphere
tmax_HbR_l Time elapsed at maximal change in deoxyhaemoglobin, left hemisphere
tmax_HbR_r Time elapsed at maximal change in deoxyhaemoglobin, right hemisphere
tmax_HbT_l Time elapsed at maximal change in total haemoglobin, left hemisphere
tmax_HbT_r Time elapsed at maximal change in total haemoglobin, right hemisphere

Table 4. Abbreviation and description of gait variables.

Abbreviation Description of the Gait Parameters

avg_gct Mean gait cycle time, the time from one heel strike to the
next heel strike of the ipsilateral foot (stride time)

gct_CV Coefficient of variation for gait cycle time
avg_cad Mean walking cadence
cad_CV Coefficient of variation for walking cadence

avg_Slength Mean stride length, the distance covered over a given stride

Slength_CV Coefficient of variation for stride length, the distance
covered over a given stride

avg_speed Mean walking speed
speed_CV Coefficient of variation for walking speed

Mean values for all variables were calculated for slow and fast clusters.
The K-means clustering algorithm generated two clusters of participants of n = 22 for

the slow cluster and n = 28 for the fast cluster. It can be seen in Table 5 that the distribution
of the participants in the slow and fast clusters did not follow the age distribution. Two
thirds of the 25 oldest participants, whose ages were above 67, were in the fast cluster,
and about two thirds of the 22 participants in the slow cluster were less than 65. Men and
women were fairly evenly distributed in the slow and fast clusters. The slow cluster had
an average speed of 0.95 m/s, whereas the fast cluster average speed was 1.28 m/s. No
participant was considered as severely overweight or obese, which could have changed the
values of the walking parameters.
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Table 5. Number of participants by age, gender, and gait speed groups, with mean speed for each
cluster given in parentheses.

55–65 Years Old 67–85 Years Old Men Women Total

slow cluster (0.95 m/s) 14 8 7 15 22
fast cluster (1.28 m/s) 11 17 12 16 28

Total 25 25 19 31 50

2.5. Statistical Methods

A chi2 test was used to test for differences between the number of participants and
spread of data in each cluster. Data for each cluster were tested for normality using the
Shapiro–Wilk test. Following the results from the latter test, either a Student’s independent
t-test or a Mann–Whitney U test was carried out to test for differences between the slow and
fast clusters for a given variable. This was performed for all variables. Further statistical
analyses were performed to test for difference between LH and RH cortical activity for
a given variable within a cluster. This was carried out using either paired t-tests or a
Wilcoxon’s signed rank test, for normal or non-normal data, respectively. Effect sizes
were calculated as Cohen’s d where 0.2 < d < 0.5 was considered small, 0.5 ≤ d < 0.8 was
considered medium, and d ≥ 0.8 was large.

All statistical analyses were performed in Matlab (version 2022a, The Mathworks Inc.,
Natwick, MA, USA); the threshold for statistical significance was set to 0.05.

3. Results
3.1. Comparisons between Slow and Fast Clusters

The chi-square goodness of fit test revealed no significant difference between the pro-
portion of participants in each cluster, χ2 (1,50) = 2.92, p = 0.09. Significant differences were
observed for some LH cortical activity variables, with the slow cluster showing greater corti-
cal activation than the fast cluster; in particular for variables: avg_HbO_l (+0.092 µmol/L),
max_HbT_l (+0.010 µmol/L), diff_Hb_l (+0.082 µmol/L), and tmax_HbO_l (+3.14 s) (see
Table 6 and Figure 3).

Table 6. Results of statistical analyses comparing the two clusters based on walking speed. Variables
are presented as the mean value for the given cluster ± standard deviation (SD). Effect size is given
with lower and upper confidence intervals (CI). Where significant differences lie in the data, the values
are shown in bold. Variables related with cortical activities are given in µmol/L, times are given in s.
The symbol * (respectively ** and ***) denotes a significant difference with p < 0.05 (respectively 0.01
and 0.001). Values in bold indicate that they are significantly higher than their counterpart.

Variable Slow Cluster
(Mean ± SD)

Fast Cluster
(Mean ± SD) p-Value Effect Size (Cohen’s d)

[Lower CI, Upper CI]

Age (years) 66.18 ± 5.87 67.46 ± 7.62 0.518 −0.18 [−0.75, 0.37]
FES-I_score 20.05 ± 3.75 19.21 ± 3.11 0.340 0.24 [−0.32, 0.8]
MoCA 26.82 ± 2.08 27.14 ± 1.80 0.611 −0.17 [−0.73, 0.39]

Gait parameters
avg_gct (s) *** 1.24 ± 0.14 1.07 ± 0.09 <0.001 1.42 [0.82, 2.08]
avg_cad (steps/min) *** 96.27 ± 12.11 112.81 ± 9.41 <0.001 −1.52 [−2.19, −0.91]
avg_Slength (m) *** 1.16 ± 0.08 1.33 ± 0.11 <0.001 −1.76 [−2.45, −1.12]
avg_speed (m/s) *** 0.95 ± 0.14 1.28 ± 0.10 <0.001 −2.68 [−3.50, −1.94]
gct_CV (%) 4.42 ± 3.00 3.56 ± 1.53 0.054 0.37 [−0.19, 0.94]
cad_CV (%) * 4.05 ± 1.65 3.49 ± 1.45 0.041 0.36 [−0.20, 0.93]
Slength_CV (%) 6.65 ± 2.78 6.28 ± 1.46 0.792 0.17 [−0.39, 0.73]
speed_CV (%) 8.08 ± 1.57 7.86 ± 1.81 0.406 0.13 [−0.43, 0.69]
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Table 6. Cont.

Variable Slow Cluster
(Mean ± SD)

Fast Cluster
(Mean ± SD) p-Value Effect Size (Cohen’s d)

[Lower CI, Upper CI]

Cortical activity parameters
avg_HbO_l (µmol/L) ** 0.056 ± 0.135 −0.035 ± 0.190 0.005 0.54 [−0.02, 1.11]
avg_HbO_r (µmol/L) 0.092 ± 0.153 0.084 ± 0.168 0.854 0.05 [−0.51, 0.61]
max_HbO_l (µmol/L) 0.212 ± 0.141 0.170 ± 0.221 0.087 0.22 [−0.34, 0.78]
max_HbO_r (µmol/L) 0.238 ± 0.154 0.279 ± 0.211 0.632 −0.21 [−0.78, 0.34]
diff_Hb_l (µmol/L) ** 0.068 ± 0.120 −0.014 ± 0.238 0.003 0.42 [−0.14, 0.99]
diff_Hb_r (µmol/L) 0.098 ± 0.160 0.079 ± 0.181 0.696 0.11 [−0.45, 0.67]
avg_HbR_l (µmol/L) −0.012 ± 0.047 −0.021 ± 0.071 0.777 0.15 [−0.41, 0.71]
avg_HbR_r (µmol/L) −0.006 ± 0.036 0.005 ± 0.060 0.462 −0.21 [−0.77, 0.35]
min_HbR_l (µmol/L) −0.060 ± 0.050 −0.074 ± 0.083 0.792 0.19 [−0.36, 0.76]
min_HbR_r (µmol/L) −0.055 ± 0.037 −0.060 ± 0.070 0.732 0.07 [−0.48, 0.63]
avg_HbT_l (µmol/L) * 0.045 ± 0.163 −0.056 ± 0.161 0.020 0.61 [0.05, 1.20]
avg_HbT_r (µmol/L) 0.086 ± 0.154 0.088 ± 0.175 0.961 −0.01 [−0.57, 0.54]
max_HbT_l (µmol/L) 0.211 ± 0.155 0.152 ± 0.170 0.111 0.36 [−0.20, 0.93]
max_HbT_r (µmol/L) 0.232 ± 0.153 0.280 ± 0.224 0.689 −0.24 [−0.80, 0.32]
deltaH_l (µmol/L) 0.272 ± 0.148 0.244 ± 0.283 0.071 0.12 [−0.44, 0.68]
deltaH_r (µmol/L) 0.293 ± 0.162 0.338 ± 0.236 0.689 −0.21 [−0.78, 0.34]
tmax_HbO_l (s) * 9.47 ± 5.33 6.32 ± 3.70 0.018 0.69 [0.12, 1.28]
tmax_HbO_r (s) 10.38 ± 3.44 8.37 ± 3.90 0.062 0.54 [−0.02, 1.11]
tmax_HbT_l (s) 9.51 ± 5.86 6.66 ± 4.25 0.052 0.56 [0, 1.14]
tmax_HbT_r (s) 10.02 ± 3.96 8.54 ± 4.10 0.113 0.36 [−0.20, 0.93]
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As expected, cadence, stride length, and walking speed were lower in the slow cluster
than in the fast cluster. Walking cadence was 16 steps per minute smaller, stride length was
0.17 m shorter, and walking speed was 0.33 m/s (1.19 km/h) slower. In the slow cluster,
gait cycle time was 0.17 s greater. Furthermore, the cadence variability, as measured by
cad_CV, was greater in the slow cluster than in the fast cluster by 0.56%. No significant
between-group differences were found for the FES-I score and MOCA score.

3.2. Comparisons between Left and Right Cortical Hemispheres

Results from statistical analyses between cortical hemispheres for data within a given
cluster showed no significant differences for the slow cluster. However, in the fast cluster,
a significant increase in cortical activity in the RH compared to the LH was observed
for multiple variables, such as avg_HbO (+0.119 µmol/L), max_HbO (+0.108 µmol/L),
diff_Hb (+0.0932 µmol/L), avg_HbT (+0.144 µmol/L), max_HbT (+0.128 µmol/L), deltaH
(+0.0944 µmol/L) tmax_HbO (+2.04 s), and tmax_HbT (+1.87 s). A full summary of all
cortical activity variables is given in Table 7.

Table 7. Results of statistical analyses comparing the activity of the left and right cortical hemispheres.
Variables are presented as the mean value for the given hemisphere ± standard deviation (SD), the
associated p-value, effect size based on Cohen’s d, and lower and upper confidence intervals (CI).
Where significant differences lie in the data, the values are shown in bold. Variables related with
cortical activities are given in µmol/L, times are given in seconds. The symbol * (respectively ** and
***) denotes a significant difference with p < 0.05 (respectively 0.01 and 0.001). Values in bold indicate
that they are significantly higher than their counterpart.

Variable LH
(Mean ± SD)

RH
(Mean ± SD)

LH–RH
(Mean ± SD) p-Value Effect Size (Cohen’s d)

[Lower CI Upper CI]

Slow cluster
avg_HbO (µmol/L) 0.056 ± 0.135 0.092 ± 0.153 −0.036 ± 0.147 0.269 −0.24 [−0.69, 0.19]
max_HbO (µmol/L) 0.212 ± 0.141 0.238 ± 0.154 −0.025 ± 0.136 0.391 −0.17 [−0.57, 0.22]
diff_Hb (µmol/L) 0.068 ± 0.120 0.098 ± 0.160 −0.030 ± 0.137 0.315 −0.21 [−0.63, 0.21]
avg_HbR (µmol/L) −0.012 ± 0.047 −0.006 ± 0.036 −0.006 ± 0.060 0.671 −0.13 [−0.75, 0.48]
min_HbR (µmol/L) −0.060 ± 0.050 −0.055 ± 0.037 −0.004 ± 0.057 0.935 −0.13 [−0.75, 0.48]
avg_HbT (µmol/L) 0.045 ± 0.163 0.086 ± 0.154 −0.041 ± 0.178 0.291 −0.25 [−0.74, 0.22]
max_HbT (µmol/L) 0.211 ± 0.155 0.232 ± 0.153 −0.020 ± 0.163 0.563 −0.13 [−0.59, 0.32]
deltaH (µmol/L) 0.272 ± 0.148 0.293 ± 0.162 −0.021 ± 0.124 0.438 −0.13 [−0.48, 0.21]
tmax_HbO (s) 9.47 ± 5.33 10.38 ± 3.44 −0.92 ± 5.50 0.443 −0.20 [−0.73, 0.32]
tmax_HbT (s) 9.51 ± 5.86 10.02 ± 3.96 −0.51 ± 5.91 0.689 −0.10 [−0.61, 0.40]

Fast cluster
avg_HbO (µmol/L) ** −0.035 ± 0.190 0.084 ± 0.168 −0.119 ± 0.148 0.001 −0.65 [−1.01, −0.32]
max_HbO (µmol/L) ** 0.170 ± 0.221 0.279 ± 0.211 −0.108 ± 0.147 0.002 −0.49 [−0.78, −0.22]
diff_Hb (µmol/L) ** −0.014 ± 0.238 0.079 ± 0.181 −0.093 ± 0.170 0.004 −0.43 [−0.76, −0.12]
avg_HbR (µmol/L) −0.021 ± 0.071 0.005 ± 0.060 −0.026 ± 0.070 0.088 −0.38 [−0.80, 0.02]
min_HbR (µmol/L) −0.074 ± 0.083 −0.060 ± 0.070 −0.014 ± 0.079 0.202 −0.18 [−0.57, 0.21]
avg_HbT (µmol/L) *** −0.056 ± 0.161 0.088 ± 0.175 −0.144 ± 0.157 <0.001 −0.84 [−1.26, −0.46]
max_HbT (µmol/L) ** 0.152 ± 0.170 0.280 ± 0.224 −0.128 ± 0.165 0.001 −0.63 [−0.99, −0.30]
deltaH (µmol/L) ** 0.244 ± 0.283 0.338 ± 0.236 −0.094 ± 0.170 0.004 −0.36 [−0.62, −0.10]
tmax_HbO (s) * 6.32 ± 3.70 8.37 ± 3.90 −2.04 ± 4.09 0.014 −0.53 [−0.96, −0.12]
tmax_HbT (s) * 6.66 ± 4.25 8.54 ± 4.10 −1.87 ± 4.60 0.040 −0.44 [−0.8, −0.02]

CI = confidence interval.

A summary of all statistical results for slow and fast cluster comparisons for cortical
activity is given in Figure 3. It presents the values of the main indicators of cerebral
activity for left and right hemispheres and slow and fast clusters. Significant differences
are signalled with the symbols * and ** for p-values under 0.05 and 0.01, respectively.
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4. Discussion

The aim of this study was to analyse left and right cortical activity changes in elderly
adults regarding their walking speed during a simple walking task. Data from 50 partici-
pants in the age range of 54–87 years old were analysed and split into two clusters based on
their walking speed. It came to our attention that creating groups of data based on age is not
always an appropriate method, as advancing in age affects people differently depending
on their previous and current lifestyles [26], and on an assessment of certain physical and
neural capacities through screening such as the physiological profile assessment [41,42].
To the authors’ knowledge, this is the first study of its kind to use a clustering algorithm
to group participants, rather than the more traditional method of separating them by age
(for more details on the K-means methodology commonly used, see recent literature re-
views [36,43,44]). Furthermore, this study sought to analyse a number of cortical variables
which are less commonly cited, such as HbT, deltaH, and diff_Hb; the most frequently
calculated variables being related directly to HbO or HbR.

The data used in this study is a subset of that used in Hoang et al. [45], the latter
study showing no significant differences (and only minor absolute differences) between
participants aged between 55 and 87 years old. Hoang et al. [45] compared gait parameters
(stride time, identical to avg_gct in our study, and preferred walking speed) as well as
cortical activity (in their study: ∆HbO and ∆HbR) between three age groups: young
adults (aged 18–37), middle-aged adults (aged 55–65), and older adults (aged 67–87);
while significant differences were detected between the young versus middle-aged, and
young versus older adults groups, very few differences were observed between the middle-
aged and older adults groups. The latter two groups are those used in the present study
and the lack of differences between those from Hoang et al. [45] may also be put down
to proximity of the groups in terms of age (only two years separate the cut-off for the
latter groups, whereas 18 years separate the young and middle-aged groups). However,
results from [45] showed a tendency for a greater increase in DLPFC activity, particularly
in the right hemisphere in older adults during simple walking compared to young and
middle-aged adults.

The K-means clustering algorithm created two clusters based on participants’ walking
speed: slow cluster and fast cluster for slow and fast walkers, respectively. The main
results from our analyses showed that the task of simple walking triggered greater overall
prefrontal cortical activity in participants of the slow cluster. Furthermore, within the
participants in the fast cluster, cortical activity was significantly greater in the RH than in
the LH.

The division of the participants into two clusters was based on their walking speed,
the difference in mean walking speed was 0.33 m/s (1.19 km/h). As observed in previous
studies [46], a greater walking speed was also associated with a lower (faster) mean gait
cycle time [47], a higher cadence [5,47–49], and a longer stride length [5,47–49]. Concerning
variation of gait parameters, expressed through the coefficient of variation (CV), only
cadence (cad_CV) demonstrated a significant difference (0.56%, p = 0.04) between the slow
and fast clusters. Despite the non-significance of other gait parameter CV between the
two clusters, there was a tendency to lower CV in the fast cluster. The participants who,
on average, had a greater walking speed also demonstrated a more stable gait pattern.
Multiple studies previously showed that an increase in walking speed lead to a decrease in
gait variability [5,14,50] and also a decrease in inter-segment coordination variability [50,51].
These variables were linked to gait control [52], and our results suggest that the participants
in the slow cluster had lower control and stabilisation of their gait.

In the elderly population, walking speed was associated with the risk of falls [5,14,15].
One may argue that walking speed lessens with aging and that groups should, therefore,
be created based on age. This concept was demonstrated by multiple authors [53–55];
however, there are also studies which do not find any significant influence of aging on
gait parameters [5,56,57]. Furthermore, if age were to be the most influential factor on
gait parameters, then the clusters originating from our K-means clustering algorithm



Sensors 2023, 23, 3986 11 of 16

would have been differing in age. However, chi-square results demonstrated no significant
differences between clusters based on age groups. The latter idea was implemented by [58]
who divided participants based on walking speed (fast versus slow); these authors did,
however, find a significant difference in the mean age of the two groups.

One may argue that the slow cluster naturally showed greater variability in gait
parameters as they walked at a slower speed, and this notion was shown by previous
studies [59,60]). However, the work from Kang and Dingwell [61] suggested that variability
in gait parameters in elderly individuals walking at their preferred speed may be due to
reductions in internal characteristics such as muscle strength and joint flexibility. The latter
parameters can be associated with age-related changes which, again, support the notion
that people age at different rates and that the definition of an ageotype for participant
categorisation may, at times, be more appropriate.

Cortical activity was seen to increase in participants within the slow cluster compared
to the fast cluster for the avg_HbO, avg_HbT, and diff_Hb variables. Time to maximum
oxyhaemoglobin was also greater in the slow cluster. This indicates that the cluster of
participants who were considered to be “fast” walkers reached their maximum necessary
oxyhaemoglobin level faster than the slow cluster and also observed a lower brain oxygena-
tion. Other cortical variables (max_HbO, max_HbT, and deltaH) demonstrated a higher
increase in activity, although this difference was not significant. The act of walking at
a self-selected comfortable pace is, therefore, seen to be more demanding, on a cortical
level, for participants in the slow cluster [62]. This finding is linked to the compensation-
related utilization of neural circuits hypothesis (CRUNCH), which is usually associated
with increasing age being related to an increase in the required cortical activity for the exe-
cution of a given task [63]. However, in our study, CRUNCH would apply to participants
within a similar age bracket and implies that it is not only age that influences the use of
compensatory neural networks.

The CRUNCH model highlights two types of compensation based on cortical activity
and performance: successful and unsuccessful [63]. Within our study, we can consider that
the slow cluster carried out unsuccessful compensation as they required greater cortical
activity to achieve a slower walking speed compared to the fast cluster.

The comparison of cortical activity changes between the LH and RH for participants
within a given cluster showed significantly higher increase in cortical activity in the RH
within the fast cluster only. Yet, in the case of multiple cortical variables (avg_HbO,
avg_HbT, diff_Hb), this greater increase in RH activation in the fast cluster was nonetheless
lower or equal to the RH activation change in the slow cluster (see Figure 3 and Table 7).
Change in LH activation was also lower in the fast cluster compared to the slow one. These
differences support evidence from previous studies [9,45], and highlight the possibility that
the increased LH and RH activation in the slow cluster is a compensatory activity.

Previous studies, such as De Belli et al. [30], Metzger et al. [32], and Harada et al. [31],
showed that within-subject differences between fast- and preferred-speed walking gener-
ates greater changes in cerebral blood flow to the left hemisphere. However, the results from
our study showed an increase in blood flow to the right cerebral hemisphere, compared to
the left hemisphere, in the cluster who displayed a greater walking speed. Nonetheless,
a higher overall cortical activation increase (left and right hemispheres) was observed in
participants producing a slower spontaneous walking speed. Participants demonstrating
a greater walking speed were not asked to walk at a slower speed, or vice versa. Hence,
differences between our study and those mentioned above may be due to differences in the
protocol with respect to the required walking speed.

Certain studies [20,64] suggested that loss of motor autonomy in older adults may be
detected through simple-task walking. The automaticity of walking in adults decreases
with age; however, its rate of decline varies depending on the individual [26,27]. As
automaticity processes in the brain are reduced for the performance of a simple walking
task, the required cortical activity increases, as does the risk of falling [29,35].
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In the present study, participants who required greater executive resources (shown
through increased DLPFC activity) also demonstrated a gait pattern that tends towards
the profile of an individual with a greater fall risk [5,6], namely through slower gait
speed, lower cadence, decreased stride length, and increased gait cycle time, as well as
increased variability in all of these aforementioned variables. A large UK biobank study [65]
associated faster pace walking with improved life expectancy due to the physical health
benefits brought about by a brisker walking speed, such as increased cardiorespiratory and
vascular function, musculoskeletal capacity, and advantages on mental health state.

The hemispheric asymmetry reduction in older adults (HAROLD) hypothesis states
that older adults present greater bilateral activity than younger adults for a given task [66].
The results from the present study suggest that models/hypotheses such as HAROLD and
CRUNCH may go further than just being age-related. Within our study, two clusters of
similar mean age showed significant differences in cortical activity and gait parameters
linked to fall risk. It may be worth extending both the CRUNCH and HAROLD notions to
consider performance variables rather than just age, but also fall risk and frailty.

The work presented in this study showed that elderly adults should not always be
categorised based on age, but that other factors, such as walking speed, can be used to
differentiate groups. Our results displayed differences in cortical activation between people
whose preferred walking speed is considered as slow or fast, those with a slower walking
speed requiring greater cortical activation than those with a faster walking speed.

Since walking speed is considered as one of the primary predictors of fall risk in the
elderly, it is interesting to note that a simple walking task may also lead to an overload of
cerebral functioning (seen through a strong increase in cortical activation). This may help
to explain why certain individuals are highly prone to falling when an obstacle must be
negotiated [67,68] and may also be related to the type of trajectory required. The work from
Belluscio et al. [69] showed that curvilinear trajectories require a greater cognitive demand
than linear ones in younger adults. This would also likely be the case in older adults as it
leads to task complexity [70]. If a person’s executive function is already saturated, then the
appearance of an obstacle (be it physical, visual, or auditory) will lead to an increased fall
risk as the individual will not have the necessary resources to mentally process the obstacle.
Therefore, future work may wish to build on these ideas by investigating cortical activation
changes during obstacle negotiation, and the possible effects that a training program to
increase walking speed may have on cortical activity; the latter notion being related to
the neural efficiency hypothesis [71]. Activities such as Nordic walking are known to
increase joint range of motion and activity levels in the elderly, it may be of interest to
assess the cerebral effect of such activities. The effect of a training program on cortical
activity was already investigated in elite cyclists and showed that increased training leads
to lower cortical demand [72,73], further research may seek to assess these effects in an
older population.

Certain limitations can be applied to our study and its methods; namely, the combined
analysis of linear and curvilinear trajectories. Human gait is not necessarily managed in
the same way depending on the trajectory angle [69] and these analyses should have been
treated separately. Furthermore, 50 participants is a relatively small sample size. It would
be interesting to repeat the experiment with a greater number of participants to confirm or
reject the drawn conclusions.

Gait speed can be influenced by leg length, which is related to height. The height of
the participants was not collected during this experiment and, therefore, we are unable to
comment on whether this would have influenced the measured gait speeds in each cluster.

5. Conclusions

The work presented in this study showed that elderly adults should not always be
categorized based on age, but that other factors, such as walking speed, can be used
to differentiate groups. The use of clustering algorithms, rather than classic age-based
separation, was employed to create population groups. Our results displayed differences
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in cortical activity between people whose preferred walking speed is considered as slow
or fast. The results of the present study suggest that older adults with a slower walking
speed need more cognitive resources to perform a given walking task, as compared with
older adults with a faster walking speed. Furthermore, the increased prefrontal activation
in LH and RH in the slow cluster can be interpreted as a possible compensatory activity.
These findings could reflect a higher risk of falling in older adults with a slower preferred
walking speed being related not only to biomechanical parameters, but also cortical activity.
This hypothesis could be further investigated in future research works, as these outcomes
have the potential to help explain fall risk in the elderly. Moreover, for application to the
elderly, or patients with neurological disorders, follow-up work may wish to examine the
effects of physical training programs on cortical activity.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/s23083986/s1, Figure S1: Detailed values of HbO (maximum and average)
and HbR (minimum and average) for each channel on the left and right hemisphere for four persons.
These plots show positive and negative values are visible for HbO and HbR, and the high variability
depending on the channels. Figure S2: Correlations matrix representing the left (red) and right
(green) channels in the axes. The black solid line traces the separation of the left and right channels.
Sig-nificant correlations are marked with *. Figure S3: Representation of the first two components
of the Principal Component Analysis of the left (red) and right (green) 16 channels used in fNIRS.
Figure S4: K-means elbow method to find the number of clusters that provides the best compromise
to get less variations within clusters and clusters as different as possible. The inflection point is
obtained when using two clusters.
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